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Abstract—Memory caches, such as Memcached, are a critical
component of online applications as they help maintain low la-
tencies by alleviating the load at the database. However, memory
caches are expensive, both in terms of power and operating costs.
It is thus important to dynamically scale such caches in response
to workload variations. Unfortunately, stateful systems, such as
Memcached, are not elastic in nature. The performance loss that
follows a scaling action can severely impact latencies and lead to
SLO violations.

This paper proposes ElMem, an elastic Memcached system
that mitigates post-scaling performance loss by proactively mi-
gration hot data between nodes. The key enabler of our work is an
efficient algorithm, FuseCache, that migrates the optimal amount
of hot data to minimize performance loss. Our experimental
results on OpenStack, across several workload traces, show that
ElMem elastically scales Memcached while reducing the post-
scaling performance degradation by about 90%.

Index Terms—elastic, memcached, auto-scaling, data-
migration

I. INTRODUCTION

A crucial requirement for online applications is elasticity –

the ability to add and remove servers in response to changes

in workload demand, also referred to as autoscaling. In a

physical deployment, elasticity can reduce energy costs by

∼ 30-40% [1]–[4]. Likewise, in a virtual (cloud) deployment,

elasticity can reduce resource rental costs [5]–[8]; in fact, elas-

ticity is often touted as one of the key motivating factors for

cloud computing [9]–[11]. Elasticity is especially important for

customer-facing services that experience significant variability

in workload demand over time [12]–[15].

Customer-facing services and applications, including Face-

book [12], [16] and YouTube [17], typically employ distributed

memory caching systems, e.g., Memcached [18], to allevi-

ate critical database load and mitigate tail latencies. While

Memcached enables significant performance improvements,

memory (DRAM) is an expensive resource, both in terms

of power and cost. Our analysis of Memcached usage in

Facebook [12] (see Section II) suggests that a cache node

is 66% costlier and consumes 47% more power than an

application or web tier node. Clearly, an elastic Memcached

solution would be invaluable to customer-facing applications.

Unfortunately, memory caching systems are not elastic in

nature owing to their statefulness. Consider a caching node

that is being retired in response to low workload demand.

All incoming requests for data items that were cached on the

retiring node will now result in cache misses and increased

load on the (slower) database, leading to high tail latencies.

Recent studies have shown that latencies and throughput

degrade significantly, by as much as 10×, when autoscaling

a caching tier [8]; worse, performance recovery can take tens
of minutes [19]. Our own results confirm these findings as

well (see Section II-D). Conversely, tail latencies for online

services such as Amazon and Facebook are on the order of

tens of milliseconds [20], [21]; even a subsecond delay can

quickly translate to significant revenue loss due to customer

abandonment.

Most of the prior work on autoscaling focus on stateless

web or application tier nodes which do not store any data [4]–

[7]. There is also some prior work on autoscaling replicated

database tiers [2], [3]. Memory caching tiers are neither

stateless nor replicated, and are thus not amenable to the

above approaches. While there are some works that discuss

autoscaling of Memcached nodes (see Section VI), they do

not address the key challenge of performance loss following

a scaling action.

This paper presents ElMem, an elastic Memcached system

designed specifically to mitigate post-scaling performance

loss. ElMem seamlessly migrates hot data items between

Memcached nodes before scaling to realize the cost and energy

benefits of elasticity. To minimize overhead, we implement

ElMem in a decentralized manner and regulate data movement

over the network (Section III).

The key enabler of ElMem is our novel cache merging

algorithm, FuseCache, that determines the optimal subset of

hottest items to move between retiring and retained nodes.

FuseCache is based on the median-of-medians algorithm [22],

and finds the n hottest items across any k sorted lists. We also

show that FuseCache is within a factor log(n) of the lower

bound time complexity, O(k log(n)) (Section IV).

We experimentally evaluate ElMem on a multi-tier,

Memcached-backed, web application deployment using sev-

eral workload traces, including those from Facebook [12] and

Microsoft [23]. Our results show that ElMem significantly

reduces tail response times, to the tune of 90%, and enables

cost/energy savings by autoscaling Memcached (Section V).

Further, compared to existing solutions, ElMem reduces tail

response times by about 85%.

To summarize, we make the following contributions:

1) We present the design and implementation of ElMem, an

elastic Memcached system.

2) We develop an optimal cache migration algorithm, Fuse-



Cache, that enables ElMem and runs in near-optimal time.

3) We implement ElMem and experimentally illustrate its

benefits over existing solutions.

The rest of the paper is organized as follows. Section II

provides the necessary background and motivation for our

work. Section III describes the system design of ElMem and

Section IV presents our FuseCache algorithm. We present our

evaluation results in Section V. We discuss related work in

Section VI and conclude in Section VII.

II. BACKGROUND, MOTIVATION, AND CHALLENGES

Online services are often provided by multi-tier deploy-

ments consisting of load-balanced web/application servers and

data storage servers. To avoid performance loss due to slow

I/O access at the data tier(s), many application owners employ

memory caching systems. These systems provide low latency

responses to clients and alleviate critical database load by

caching hot data items on memory (DRAM); several caching

servers can be employed in a distributed manner to provide

scalable memory caching. A popular caching system that is

employed by several companies, including Facebook [12],

[16], Twitter [24], Wikipedia [25], and YouTube [17], is

Memcached [18]. In the remainder of this paper, we focus

on Memcached as our memory caching system.

A. Memcached overview
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Fig. 1. Illustration of a multi-tier Memcached-backed application.

Memcached is a distributed in-memory key-value (KV)

store that serves as an in-memory cache. Memcached sits in

between the client and the back-end database or storage tier,

as shown in Figure 1, and aggregates the available memory

of all nodes in the caching tier to cache data. The memory

allocated to Memcached on a node is internally divided into

1MB pages. The pages are grouped into slabs, where each

slab is responsible for storing KV pairs, or items, of a given

size range (to minimize fragmentation) by assigning each item

to a chunk of memory. Within a slab, KV pairs are stored as

a doubly-linked list in Most-Recently-Used (MRU) order.

Clients read (get) and write (set) KV data from Mem-

cached via a client-side library, such as libmemcached [26].

The library hashes the requested key and determines which

Memcached node is responsible for caching the associated KV

pair; note that each key maps (via hashing) to one specific

node. In case of a get, the KV pair is fetched from the faster

(memory access) Memcached node. Else, the client library can

decide to request the KV pair from the slower (disk access),

persistent database tier, and optionally insert the retrieved pair

into Memcached. Write requests proceed similarly; the client

can choose to additionally write the KV pair to the database.

Consistent hashing is typically employed to minimize the

change in key membership upon node failures.

Note that the client library, and not Memcached, determines

which node to contact. Memcached nodes are not aware of

the key range that they (or the other nodes) are responsible

for storing, thus placing this responsibility on the client. Each

Memcached node can be treated as a simple cache which stores

items in memory. If the number of items stored exceeds the

memory capacity, items are evicted using the Least-Recently-

Used (LRU) algorithm in O(1) time by simply deleting the

tail of the MRU list.

B. Cost/Energy analysis of Memcached

Despite the many benefits of Memcached, it is an expensive

solution, both in terms of cost and energy, because of its

DRAM usage. Recent numbers from Facebook suggest that

they use 72GB of memory per Memcached node [27]. By

contrast, the web or application tier nodes are equipped with

12GB of memory. Memcached nodes typically have a Xeon

CPU [16], and we expect application tier nodes to have

about twice the computing power as that of a Memcached

node. Using power numbers reported by Fan et al. [28],

and normalizing them to get per GB and per CPU socket

power consumption, we estimate that an application tier server

(2 CPU sockets, 12GB) will consume 204 Watts of (peak)

power, whereas a Memcached node (1 CPU socket, 72GB)

will consume 299 Watts (47% additional power). In terms

of cost, a compute-optimized EC2 instance currently costs

$0.1/hr, whereas a memory-optimized EC2 instance currently

costs $0.166/hr (66% higher cost), based on numbers for large

sized instances [29].

C. Potential benefits of an elastic Memcached

Online services that employ Memcached often exhibit large

variations in arrival rate [1], [14], [30], presenting an op-
portunity for reducing operating costs by dynamic scaling.

For example, production traces from Facebook [12] indicate

load variations on the order of 2× due to the diurnal nature

of customer-facing applications, and a further 2–3× due to

traffic spikes. Our preliminary analysis of these traces reveals

that a perfectly elastic Memcached tier—one that instantly

adds/removes the optimal number of nodes and consolidates

all hot data on the resulting nodes—can reduce the number of

caching nodes by 30–70%. Unfortunately, dynamic scaling of

Memcached is a difficult problem.

D. The inelastic nature of Memcached

Stateful systems store data that is required for the efficient

functioning of the application. In the case of Memcached,

hot data is cached in memory to mitigate load on the critical

database tier. By design, stateful systems are not elastic due to

their data dependence. Building elastic stateful systems thus

requires careful consideration of the data on each node.

The key challenge in designing elastic stateful systems is

the immediate, albeit transient, performance degradation after

scaling. Addition of a new cache node results in a cold cache,



Fig. 2. Post-scaling performance degradation for Memcached.

whereas removal of an existing cache node results in loss of

hot data. In both cases, performance can suffer severely due to

cache misses—until the cache is warm again, which can take

several minutes.

The red line (baseline) in Figure 2 shows the steep increase

in 95%ile response time, from about 6ms to 1600ms, when

Memcached is scaled in from 10 VMs to 9 VMs when using

the Facebook ETC demand trace [12] (see Section V-A for

details on our experimental setup). This significant increase in

response time (RT), which we refer to as peak RT (shown in

the figure), can hurt performance SLOs. Likewise, the time to

revert to stable RTs, referred to as restoration time, dictates

the duration of performance degradation; in Figure 2, the

baseline’s restoration time is more than 30 minutes. We refer to

this overall loss in performance as post-scaling performance
degradation.

Most of the existing work on elastic stateful systems either

ignores the post-scaling performance degradation problem

(e.g., Amazon ElastiCache [31] ignores this crucial perfor-

mance loss [32]) or assumes that data is replicated and thus

at least one copy will exist (e.g., Sierra [3] and Rabbit [2]),

which is not the case for Memcached. Our goal is to address
this critical gap in the design of stateful systems by specifically
mitigating the post-scaling performance degradation. The blue

line (ElMem) in Figure 2 shows the improved performance

under our approach, with peak RT reducing from 1600ms

to 130ms and restoration time reducing from more than 30

minutes to about 2 minutes.

III. ELMEM SYSTEM DESIGN

To enable an elastic Memcached design, ElMem specifically

focuses on mitigating the post-scaling performance degrada-

tion. The design of ElMem is motivated by the observation that

post-scaling degradation is caused by cache misses (due to a

cold cache); thus, if we can identify and migrate the hot items

prior to scaling, we can mitigate post-scaling degradation.

Note that the hotness of an item refers to its recency of access;

Memcached already stores the most recently used (MRU)

access timestamp of each item.

The key challenge in mitigating post-scaling degradation

lies in efficiently determining the correct subset of hot items

to migrate between appropriate nodes. This section discusses

the system design of ElMem, while our FuseCache algorithm

that efficiently migrates hot items is presented in Section IV.
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Fig. 3. ElMem’s solution architecture, shaded in red. We only show compo-
nents involved in the design of ElMem. The figure illustrates the case of one
node being retired (scaled in).

We consider a multi-tier application deployment consisting

of a Memcached tier comprised of several nodes, as shown in

Figure 1. To dynamically scale Memcached while minimizing

post-scaling performance degradation, the following questions

must be addressed:

(Q1) When and how much to scale?
(Q2) Which nodes to scale?
(Q3) How to migrate data prior to scaling?

We are less concerned with the autoscaling policy that ad-

dresses Q1 (which is a pluggable module in our system

design) and more concerned with how to minimize the post-

scaling degradation when a scaling event is to be executed.

Of the above three questions, Q3 and (to a lesser extent) Q2

are crucial to mitigate the post-scaling degradation. We first

describe the solution architecture of ElMem, followed by our

approach to address Q1, Q2, and Q3.

A. ElMem architecture

ElMem’s solution architecture is shown in Figure 3. ElMem

consists of a Master, an Agent on each Memcached node, and

an AutoScaler on one of the web servers. In the case of scale

in, we refer to nodes that are being turned off as retiring nodes,

and those that remain as retained nodes, as shown in Figure 3.

For scale out, we use the terms new nodes and existing nodes.

The AutoScaler monitors the keys requested from Mem-

cached over time and uses this information to decide on

autoscaling (Q1, see Section III-B); this decision is relayed as

hints to the Master, who ultimately triggers the autoscaling.

The AutoScaler can be located on any one of the web servers.

Since incoming requests are load balanced among the web

servers, sampling the keys at one web server allows us to

infer the underlying popularity distribution of requested keys.

The Master is the lightweight central controller that or-

chestrates the autoscaling and the data migration prior to

scaling, and can be located either on a separate node or

colocated with a web server or the load balancer. In case

of a scale-in decision, after receiving the autoscaling hints,

the Master decides which nodes to scale based on a scoring

mechanism that takes into account the hotness of items at

each Memcached node (Q2, see Section III-C). Then, prior

to executing the scaling, the Master initiates data migration

between the retiring nodes and the retained nodes to mitigate

the post-scaling performance loss (Q3, see Section III-D).

Once the migration is complete, the Master informs the web

servers about the change in Memcached composition and



issues scaling directives to the retiring nodes to turn off. The

scale-out case is similar, except that new nodes are first added,

followed by data migration between existing nodes and new

nodes, and only then does the Master inform the web servers

about the change in Memcached composition.

The ElMem Agents (one at each Memcached node) com-

municate with each other, and the Master, to perform the

actual data migration; this includes fetching the requested

subset of KV pairs, transferring KV pairs to other nodes, and

incorporating migrated KV pairs with locally cached pairs.

The Agents are also responsible for inferring the hotness of

items, as needed, for scaling and migration decisions.

B. When and how much to scale?

Dynamic scaling of the Memcached tier starts with ad-

dressing Q1, that is, when to scale and how much to scale

by? To address Q1, we consider the maximum request rate,

say rDB , that the database or back-end storage tier can

handle without violating the SLO performance target; here, we

assume that database is the performance bottleneck, which is

typically the case [8]. The AutoScaler then uses this estimate

to determine, for a given incoming request rate, say r, the

minimum Memcached hit rate, say pmin, to ensure that no

more than rDB req/s go to the database. Specifically:

r · (1− pmin) < rDB =⇒ pmin >
(
1− rDB

r

)
(1)

As in prior work [2], [3], [33], [34], rDB can be obtained by

profiling the database or by examining database logs.

If the incoming request rate into the system, r, increases

significantly, then we must add more Memcached nodes (scale-

out) to satisfy pmin as per Eq. (1); note that rDB is typically

a constant for a given database configuration. On the other

hand, if r decreases, then pmin will decrease (per Eq. (1)),

possibly allowing us to save on costs by scaling in the size

of the Memcached tier. r can be easily monitored online at

the load balancer; Apache [35] and Nginx [36] load balancers

already provide this ability.

To determine the need for, and amount of, Memcached

scaling, the AutoScaler employs the stack distance measure

to derive the memory capacity that achieves pmin. The stack

distance of an item, say x, is defined as the number of unique

items requested between successive requests to x. By tracking

the stack distance of items over a trace of requests, we can

determine the number of cache hits and misses for all cache

sizes in a single pass over the trace [37]. ElMem employs this

idea, by using the MIMIR [38] implementation to periodically

compute the amount of memory required for every integer

hit rate percentage (in a single pass) based on the request

trace. The difference between required memory and current

Memcached memory capacity, normalized by the memory

capacity of each node, is used to determine the number of

nodes to scale-in or scale-out. Since we cannot exactly predict

future Memcached requests, we use the recent history of

requests as our representative trace, similar to prior work on

storage workload modeling [39], [40].

In summary, the AutoScaler periodically (every minute)

employs Eq. (1) to derive pmin and then uses the stack

distance measure over the recent trace of cache requests to

determine the amount of scaling. Given the simple expression

in Eq. (1) and the efficient implementation of the stack

distance algorithm, the above computation takes less than a

second. The AutoScaler then relays this information to the

ElMem Master. In our implementation of ElMem, the exact

autoscaling algorithm is a pluggable module. Thus, the user

can input a different autoscaling algorithm, such as a predictive

scaling framework [6], [41], if needed.

C. Which nodes to scale?

When scaling in, an important question is which Mem-

cached nodes to turn off. Ideally, we want to migrate the

hottest items from the retiring nodes to the retained nodes.

Choosing a node that has very little hot data allows ElMem

to quickly migrate this data to other nodes and scale in. On

the other hand, a node that has a lot of hot data on it will

require significant migration time before the scaling in event,

resulting in lost opportunity costs.

Ideally, we should pick the node whose hot data migration

requires the least amount of bytes to be transferred over the

network. However, finding such a node entails determining,

for each node, the subset of data on each slab that is hotter

(with respect to MRU timestamp) than the corresponding data

on that slab on all other nodes.

ElMem avoids this overhead by only comparing the hotness

of the median items, in MRU order, across nodes. Specifically,

for each slab b, ElMem Agents determine the median item

in the MRU ordered linked list and send the item’s MRU

timestamp to the Master. The Master then compares the

timestamps of all median items, across nodes, for each slab.

The motivation behind this approach is as follows: assume we

have only 1 slab of items on 2 nodes, each of size n items,

and we want to scale in to 1 node. By choosing the node

with the colder median to retire, we are guaranteed an upper

bound of n/2 items to be moved [22]. On the other hand, if

we randomly choose a node, we may have to move, in the

worst case, all n items.

To account for the impact of different slabs, ElMem consid-

ers the weighted sum of slab scores, sb,i, and the percentage of

memory pages assigned to this slab, wb. Thus, to retire a node,

the Master chooses the node which is argmin
i

(
∑

b sb,i · wb),

where the summation is over all slabs. To retire x nodes, the

Master chooses the x distinct values of i that result in the

x smallest weighted sums. The choice of the node(s) is then

relayed to all Agents on retiring nodes to execute the migration

(as discussed in the next subsection). We show, in Section V,

that this strategy results in the optimal node choice for scaling

in almost all the traces we consider, and provides almost a

36% reduction in the number of items migrated compared to

a random strategy.



D. How to migrate data prior to scaling?

The final and crucial step in autoscaling of Memcached is

to address the post-scaling performance degradation. While

our key component for addressing this issue is the FuseCache
algorithm (presented in the next section), we first describe the

system design for this component here. Most of our discussion

is geared towards scale-in, though the design is similar for

scale-out, and is discussed at the end of this subsection.

ElMem addresses post-scaling degradation by correctly

identifying the subset of hot items on retiring nodes and

migrating them efficiently to retained nodes, prior to scaling.

Consider an item x belonging to a slab with chunk size b on

a retiring node. Based on the design of Memcached, x must

be migrated to a slab with chunk size b. The target node for

migrating x is uniquely computed by taking its hash. Thus, to

determine whether to migrate x or not, ElMem must compare

x’s MRU access timestamp with those of items on the target

node’s corresponding slab. Based on these comparisons, the

retiring nodes send their hot data to retained nodes, who will

then merge this data with their existing cached data, evicting

older items as needed. To minimize overhead during migration,

ElMem executes the migration in three successive phases, as

discussed below.

1) Metadata transfer from retiring to retained nodes
To facilitate comparison, each Agent on a retiring node,

once informed of the autoscaling decision by the Master,

hashes its keys using consistent hashing and sends them along

with their timestamps to the (hashed) target retained nodes.

Note that the hashing function takes as input the member list

of nodes, and so we use only the list of retained nodes when

hashing for this phase; thus, the autoscaling decision from the

Master is relayed to Agents prior to this phase. To minimize

the overhead of transferring the metadata over the network, we

investigate the use of ssh, scp, rsync. We find that it is best to

create a tarball of the metadata (without compression) and pipe

the output directly to the retiring node over ssh. Further, in this

phase, we only transfer keys (which are usually small, about

10s of bytes in the case of Facebook [12]) and timestamps (10

bytes), and not values (100-1000 bytes [12]).

2) Hotness comparison on retained nodes
The Agent on each retained node must now determine, for

every slab, the subset of keys from each retiring node that

are hotter, in terms of MRU timestamp, than its existing data.

While this is a challenging task, the problem is simplified by

the observation that keys on each slab are implicitly stored

in MRU order; thus, we only need to determine the number

of keys per slab that we want to migrate from every retiring

node. Nonetheless, a naive comparison of k lists of n items

each requires O(n ·k log(n ·k)) time. Our optimal FuseCache
algorithm, discussed in Section IV, solves this problem in

O(k (log(n))2) time, which is a factor log(n) more than the

theoretical lower bound. The Agents on the retained nodes

then inform the Master about the number of keys to migrate

from each retiring node.

3) Data migration from retiring to retained nodes
The Master directs the retiring nodes to transfer the required

number of KV pairs per slab, as determined by FuseCache,

to the retained nodes. Agents on the retiring nodes pipe this

data directly to the retained nodes. On the retained nodes,

the Agents invoke a thread to write the migrated data into the

local Memcached by prepending them to the start of the MRU

list, thus evicting the colder items at the end of the MRU list

of the retained node. For efficiency, we implement this new

thread as part of the Memcached source code. Note that, by

design of our FuseCache algorithm, the items being evicted

are necessarily colder (in terms of MRU timestamp) than the

KV pairs being migrated.

Once the Master receives an acknowledgement from all

retiring node Agents, it informs the clients on the web servers

about the change in Memcached membership (from all nodes

to only retained nodes), and sends directives to retiring nodes

to turn off. This completes the scale-in process. We show, in

Section V, that this entire migration process of three phases

requires about 2 minutes, for our setup.

4) Extension to scale out
The process for scale out is similar to, but simpler than,

the above described 3-phase process for scale in. Once the

autoscaling decision has been relayed to Agents, each existing

node hashes its keys (based on the scaled-out membership of

nodes) and determines the set of its KV pairs that hash to the

new nodes. Under consistent hashing, if we scale out from k
nodes to (k+1) nodes, then only about 1

(k+1) of the KV pairs

on each of the k existing nodes will hash to the new (k+1)th

node [42]. As a result, the total KV pairs to be migrated to the

new node, from all existing nodes, will typically be less than

the capacity of the new node. Thus, ElMem simply migrates

all hashed KV pairs and sets them on the Memcached of the

new node. In the rare case that the KV pairs to be migrated

require more memory than the new node’s capacity, we can

run our FuseCache algorithm to determine the top KV pairs

and set them. Once the migrated data is set, clients on the

web servers are informed about the scaled-out membership of

Memcached.

IV. THE FuseCache ALGORITHM

We now present the FuseCache algorithm that determines

the subset of keys to migrate to mitigate post-scaling perfor-

mance degradation. FuseCache is invoked when there is a

need to determine the hottest KV pairs across different sets

of KV pairs from different nodes. Specifically, consider the

case where we are scaling in (k−1) nodes, and each of these

nodes send their hashed keys and timestamps, for a given

slab, to a retained node that has space for n items in that

slab. FuseCache must now determine the top n keys across

all k lists (including its own list of items on that slab), where

n >> k, typically. Since keys in Memcached are stored in

MRU order, FuseCache’s goal is to pick the top n hottest
items from k different sorted lists.

A naive way of picking the hottest items is to merge all k



lists into one list of N items, where N > n is the total number

of items across all lists, and then sort them in O(N log(N))
time. An arguably better algorithm, the k-way merge [43],

iteratively pops the hottest item across all k lists N times,

resulting in time complexity of O(N ·k). Since we only require

the top n < N items, we can achieve our goal in O(n·k) time.

We can further reduce this time to O(n log(k)) by using heaps

to determine the hottest element in each step [43]. By contrast,

FuseCache achieves this goal in O(k (log(n))2) time, which

is much quicker since typically n >> k.

A. Algorithm design

We have k sorted (in MRU order) lists of timestamps, each

of size si, for i = 1, 2, . . . , k. Of these, (k − 1) belong to

the retiring nodes and one, say the kth, is the retained node.

Let sk = n. Since the (k − 1) retiring nodes only send a

subset of their keys (those that hash to the retained node, see

Section III-D), we have si < n for i < k. Our algorithm

should find the hottest set of n keys from across all k lists.

Our FuseCache algorithm is presented in Algorithm 1 and

returns the number of hottest items to pick in MRU order,

toPick[i], from each list, i. FuseCache’s key idea is to employ

the median-of-medians (MOM) algorithm [22] recursively to

discard cold items in each round until we are left with the

hottest n items. We now provide a high-level description of

our algorithm; refer to Figure 4 for illustration. Let Nj be the

number of items across all lists at the start of round j. Note

that, in the worst case, each list is initially of size n, thus

N1 = n · k.

We first find the medians of each of the k sorted list. Next,

we find the MOM, the median item in the median list. By

construction, we are guaranteed that at least 1/4th of the items

are colder than the MOM [22]; this is denoted by the green

bottom-right quadrant in Figure 4 (here, for illustration, the

lists are arranged in decreasing order of hotness). Likewise, at

least 1/4th of the items are hotter than the MOM.

Next, we find the insertion point of the MOM in all other

lists using binary search; insertion point of the MOM in the

median list is itself. Note that the insertion point will be

towards the end of the MRU list for the hotter lists and closer

to the beginning of the MRU list for the colder lists, as shown

in Figure 4. Let the set of items hotter than the MOM be

X; note that |X| > N1/4. If |X| > n, we discard the at least

N1/4 items that are colder than the MOM (including the green

quadrant in Figure 4), reducing our search space of n hottest

items to at most N2 = 3N1/4 and moving to round 2. Now

consider the case of |X| ≤ n. Since |X| > N1/4, this case

is only possible when N1 < 4n. Thus, as long as Nj ≥ 4n,

we have |X| > n, allowing us to discard 1/4th of the search

space, on average, and move to round (j+1), where we repeat

the entire process.

Now consider the first such m such that Nm < 4n. For

round m, again, if |X| > n, we can discard the cold items and

reduce the search space to 3/4th. Thus, consider the remaining

case of |X| ≤ n. If |X| = n, we have found our hottest n

hotness
n
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o
t
n
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s
s

Medians

MOM

Insertion point of MOM

Hotter than MOM

Can be discarded

Fig. 4. Illustration of FuseCache. Leveraging the median-of-medians allows
us to discard at least a quarter of the search space in initial rounds.

items, the set X . If |X| < n, we retrieve the set X of items and

recurse the entire process to find the remaining n−|X| hottest

items from the remaining Nm−|X| items. Since |X| > Nm/4,

we have again reduced the search space by at least 1/4th. We

repeat the above process until we find all n hottest items.

Algorithm 1 FuseCache

1: procedure FUSECACHE(k, [list1, list2, . . . , listk], n)

2: med ← [01, 02, ..., 0k]

3: startP t ← [01, 02, ..., 0k]

4: endPt ← [01, 02, ..., 0k]

5: for i ← 1 : k do
6: s[i] ← |listi|
7: startP t[i] ← 0
8: endPt[i] ← s[i]− 1

9: while n > 0 do
10: for i ← 1 : k do
11: med[i] ← list[i][(startP t[i] + endPt[i])/2]

12: MOM ← median(med, k)
13: countX ← 0
14: insertP ts ← [01, 02, ..., 0k]

15: for i ← 1 : k do
16: sizei ← endPt[i]− startP t[i] + 1
17: insertP ts[i] ←

insertionPt(list[i], startP t[i], sizei,MOM)
18: curCountX ← insertP ts[i] + 1
19: countX ← countX + curCountX

20: if countX > n then
21: for i ← 1 : k do
22: endPt[i] ← startP t[i] + insertP ts[i]

23: else if countX ≤ n then
24: for i ← 1 : k do
25: startP t[i] ← startP t[i]+insertP ts[i]+1
26: n ← n− countX

27: toP ick ← [01, 02, ..., 0k]

28: for i ← 1 : k do
29: toP ick[i] ← endPts[i] + 1

return toP ick



B. Time complexity

This algorithm runs in O(k (log(n))2) time. For each list,

finding the median takes O(1) time since lists are sorted.

Finding the MOM from among the medians takes O(k)
time. Finding the k insertion points via binary search takes

O(k log(n)) time. At each round, we reduce 1/4th of the

search space. Thus, to exhaust the initial (at most) n ·k items,

we will need log(n · k) = log(n) + log(k) rounds. Therefore,

total time complexity is O(k (log(n))2), considering k < n.

This O(k (log(n))2) complexity is significantly lower than

the O(n log(k)) complexity of k-way merge algorithms with

heaps, especially for realistic Memcached deployments with

hundreds or even thousands of nodes (k), with each node

consisting of billions of items (n).

1) Theoretical lower bound on time complexity
The theoretical lower bound on time complexity for this

problem is O(k log(n)). To see this, note that our problem

of determining the hottest n items can be reduced to the

equivalent problem of picking an xi for each of the k lists

such that
∑k

i=1 xi = n, where xi is the number of top

items, in MRU order, to pick from the ith list to constitute

the list of hottest n items. The number of possible solutions

for all feasible xi are
(
n+k−1

n

)
. Using a decision tree to

solve this equivalent problem will require a tree with
(
n+k−1

n

)
leaves, resulting in a height of log

(
n+k−1

n

)
. Thus, an optimal

solution that makes the right decision at each level of the

tree will require O(log
(
n+k−1

n

)
) steps, which simplifies to

O(k log(n)).

V. EVALUATION

A. Experimental Setup

For our evaluation, we set up a multi-tier Memcached-

backed web application composed of several VMs deployed

on an OpenStack cloud, similar to the one in Figure 1. At

a high-level, the load generator creates PHP web requests

and directs them at the load balancer, which in turn forwards

the requests to Apache web servers (with PHP support). The

web server parses the request and determines the data items

needed to serve the web request; we fix the number of data

items required per request to be 100 random KV pairs, whose

popularity distribution can be controlled. The items are first

requested from the Memcached tier via a multi-get (using the

libmemcached library); note that several nodes might have to

be contacted to serve all KV pairs. In case of a miss, the

web server contacts the database. The fetched KV pairs from

the database are inserted into Memcached, possibly leading to

evictions. Note that the KV requests are get requests (read-

only), thus no new KV pairs are written to the database.

We define response time (RT) for each web request to be the

weighted average (over the 100 KV fetches) of the latencies of

the get requests that hit in the Memcached and the remaining

requests that are served by the database. We report tail RTs

(95%ile RTs) when evaluating performance.

To generate load, we deploy httperf [45] on a large VM

(8vCPU, 15GB RAM), and optimize it for high throughput.

We use a single Apache web server VM (4vCPU, 8GB

RAM), running mpm prefork with mod php, which employs

the libmemcached library to communicate with Memcached.

For the Memcached tier, we use a pool of 10 VMs, each with

2-vCPUs and 4GB memory, mimicking an economical cloud

configuration; we use Memcached version 1.4.31. Finally, for

the database, we employ ardb [46] (version 0.9.3), which

uses the Redis protocol for communication and leverages

RocksDB [47] as the back-end. The database runs on a

physical machine with 8 cores and 32 GB RAM to miti-

gate the I/O bottleneck. Nonetheless, the bottleneck in our

application is the database, which is typically the case in

deployments [12]. Our database can handle a peak request

rate of about 4,000 req/s before the latency rises abruptly; we

thus set rDB = 4, 000 req/s when deciding on scaling (see

Section III-B).

1) Modifications to Memcached
We add some custom functionality to Memcached to facili-

tate ElMem. First, we implement a timestamp dump command

using LRU crawler routine in Memcached to write the MRU

timestamps of a slab to a local file; this helps with the

FuseCache algorithm (see Section III-D1). Second, we im-

plement the batch import of KV pairs onto Memcached from

a local file to help with FuseCache (see Section III-D3). This

import functionality employs the set method of Memcached

but removes the data checks since we already know the KV

pairs are valid. Our modified Memcached source code is

publicly available on Github [48].

2) Workload
In terms of the workload, the key size is fixed at 11 bytes

and the value sizes range from 1 byte to 1000 bytes. The

value sizes follow a Generalized Pareto distribution with scale

(σ) of 250.476 and shape (κ = −ξ) of 0.348238, similar

to the distribution reported by Facebook [12]. The data set

contains about 190 Million KV pairs, resulting in a size of

about 60GB on the database. We use an exponential inter-

arrival time distribution for the incoming requests, where the

mean request rate changes dynamically as determined by the

arrival trace (see below).

3) Traces
To drive our Memcached-backed multi-tier application, we

use three different types of demand traces: (i) (digitized)

Memcached traces from Facebook [12] – SYS and ETC,

(ii) storage workload traces from Microsoft [23], and (iii)

traces from online applications – SAP from an enterprise

application [49] and NLANR from WITS [50]. Since our focus

is on mitigating the post-scaling degradation, we consider

trace snippets where demand varies considerably, as shown

in Figure 5. We only show normalized values as these are

modified per system capabilities.

B. Results

We first evaluate the benefits of ElMem’s migration, in-

cluding its choice of which node(s) to scale, in terms of
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Fig. 5. Traces (normalized) used in our experiments.

Time (mins)
0 5 10 15

H
it 

ra
te

60

80

100
baseline ElMem

Time (mins)
0 5 10 1595

%
ile

 R
T 

(s
)

0

0.2

0.4 baseline ElMem

(a) SYS: 10 → 7 nodes.
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(b) ETC: 10 → 9 and 9 → 10 nodes.
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(c) SAP: 10 → 9 and 9 → 8 nodes.
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(d) NLANR: 8 → 9 and 9 → 8 nodes.
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Fig. 6. Experimental evaluation results illustrating the hit rate and 95%ile response time for ElMem and baseline for all traces. Numbers in the subcaption
indicate the scaling action(s).

mitigating the performance degradation. Next, we evaluate

FuseCache, including its overhead. We then evaluate the

choice of which node to scale. Finally, we compare ElMem

with other approaches.

1) Benefits of migration
The key evaluation for ElMem is the reduction in post-

scaling performance degradation. For comparison, we consider

a “baseline” approach that is informed about the autoscaling

decision at the same time as ElMem, but it does not migrate

items and immediately scales in or out, resulting in a cold

cache. Thus, it uses the same approach for Q1 (Section III-B)

and Q2 (Section III-C) as ElMem, but differs in the approach

for Q3 (Section III-D).

Figure 6 shows the performance of baseline and ElMem

for our traces. For each figure, the top graph shows the hit

rate and the bottom graph shows the 95%ile response time,

for each second. We start with Figure 6(a), which illustrates

the performance for the SYS trace. Initially, the RT is about

5ms, which is in line with a high hit rate Memcached-backed

application. At about the 3-min mark, the request rate drops

significantly, translating to a scale in decision from 10 to 7

nodes, per the stack distance-based autoscaling scheme III-B.

The baseline immediately autoscales from 10 to 7 nodes,

without migration, resulting in the significant rise in RT from

5ms to 90ms, eventually peaking to 340ms; even after 10

minutes, the RT for baseline continues to be well above 100ms,

a 20× increase over the pre-scaling RT.

By contrast, ElMem migrates data and then scales down

from 10 to 7 nodes at about the 5-min mark. After migration,

the RT is much lower than the baseline; the peak RT under

ElMem after the 3-min mark is about 35ms (compared to

340ms under baseline). In fact, the average of the 1-second

95%ile RTs after the 3-min mark reduces from 188ms under

baseline to about 22ms under ElMem, a reduction of almost

88%. Note that the 2 minute difference for ElMem represents

our migration and FuseCache overhead. Other results for scale



down are similar, as in Figures 6(b) - 6(d), with an average

post-scaling performance degradation reduction of 96% for
ETC, 90% for SAP, 92% for NLANR, and 97% for Microsoft.

Results for performance improvement under scale out (for

ETC and NLANR) are similar, with average post-scaling

performance degradation reduction of 81%. Note that, imme-

diately after scale out, we expect the hit rate under baseline

to drop (due to cold cache) and that under ElMem to remain

unchanged (due to FuseCache migration, which avoids cold

cache). This is exactly what we observe for the scale out

actions in Figures 6(b) and 6(d).

2) Overhead of FuseCache

For scale in and scale out, our FuseCache algorithm takes,

on average, about 2 minutes. Specifically, the breakdown of

FuseCache’s overhead is:

• about 2 seconds to score the nodes based on their medians

(Section III-C),

• about 50 seconds to hash and dump data (Section III-D1),

• about 7 seconds to transfer the metadata (Section III-D1),

• less than 2 seconds to run FuseCache(Section III-D2),

• about 45 seconds to migrate the required data (Sec-

tion III-D3), and

• about 8 seconds to set the migrated data into Memcached

(Section III-D3).

We envision ElMem as being deployed in cases where

the change in request rate is not intermittent, for example,

diurnal changes in traffic or a sustained drop in request rate

after a peak demand. In such cases, an overhead of about 2

minutes is not significant compared to, say, an hour of reduced

request rate during which elasticity can help save substantial

costs. Compared to baseline, which has no overhead in terms

of delay in executing autoscaling, ElMem does have some

overhead. However, as shown in Section V-B1, the baseline is

an infeasible approach that significantly impacts tail response

times. Thus, despite the small overhead of delay in autoscal-

ing, ElMem is critical in realizing the design of an elastic

Memcached system.

In terms of scalability of the overhead, we consider the time

complexity of each of the steps outlined above. The scoring

of the nodes takes O(s k) time, where s is the number of

slabs per node and k is the number of nodes. FuseCache takes

O(k (log(n))2) time, as discussed in Section IV-B. The rest

of the steps take at most O(n) time, where n is the number of

items in each node; the exact complexity depends on the subset

of hot items being migrated and is typically lower than O(n).
Thus, the scoring step and FuseCache are linear in terms of

number of nodes (k), while the other steps are linear in terms

of the number of items being migrated, on average, per node.

3) Choice of which node to scale
During scale in, ElMem determines the node(s) to scale

based on the hotness of their median items, as discussed in

Section III-C. For a given scaling action, say scale in from 10

nodes to 9 nodes, the choice of node is only dependent upon

the popularity distribution.

Nodes sorted by median hotness score
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Fig. 7. Evaluation of node choice for scaling.

Figure 7 shows our experimental results for the number of

items moved when scaling from 10 to 9 nodes depending

on the choice of node for scaling; here, nodes are sorted

in ascending order of median hotness score, as defined in

Section III-C. ElMem picks the node with the coldest median

score, that is, node 1; this results in migrating about 3.97

million items. By contrast, scaling a randomly selected node,

which is typically the case in autoscaling [4], [6], results in

migrating, on average, about 6.23 million nodes, an increase

of about 60%. In the worst case, about 7.4 million items must

be migrated, an increase of about 86%.

4) Comparison with other migration approaches
To further evaluate ElMem, we compare two other migration

approaches:

1) Naive migrates n−x
n fraction of items off of x randomly

chosen nodes in response to a request to scale in x nodes.

Naive migration assumes that the distribution of hotness

of items within each node is similar. Thus, when scaling

in from, say, n to (n − 1) nodes, Naive assumes that

the coldest 1/n fraction of items of all nodes can be

discarded.

2) CacheScale [8] migrates items from retiring to retained

nodes based on the hotness of items inferred from in-

coming requests. Specifically, when informed about the

autoscaling decision, CacheScale logically partitions the

nodes into a primary cache and a secondary cache; the

secondary cache is composed of retiring nodes. Incoming

requests are first tried at the primary nodes; if they miss,

they are retried at the secondary nodes. If the request hits

in the secondary nodes, then it is migrated to the primary

node, thus migrating hot items based on incoming request

distribution. The secondary nodes are then discarded after

some time; in our implementation of CacheScale, we

discard them after about 2 minutes, which is the same

as ElMem’s overhead.

Figure 8 shows the performance of ElMem compared to

that of Naive and CacheScale for a specific snippet of the

SYS trace. In this case, the scaling decision (10 to 7 nodes)

was made at about the 3-min mark. We see that the RT under

ElMem is quite low, except for the roughly 1-min overhead

during which RT is high. However, the RT under Naive and

CacheScale continues to degrade well after the scaling event.

The performance under Naive is poor as it does not migrate

the optimal set of hot items, and may in fact be evicting

hot items when migrating colder items from other nodes.
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Fig. 8. Comparing ElMem’s migration to other approaches.

For example, if Naive chooses the coldest node and migrates
n−1
n fraction of items from this node to a hot node, it may

incorrectly evict hot items on that node. By contrast, ElMem

would not migrate cold items. CacheScale also performs

poorly as its migration depends on the hotness inferred based

off of the incoming requests, which may not be accurate;

further, the migration is dictated by the request rate and thus

may be limited. Clearly, as seen in Figure 8, ElMem provides

significant reduction in tail response times when compared

to Naive (about 70% reduction) and CacheScale (about 64%

reduction).

VI. RELATED WORK

These is ample prior work on improving the performance

of Memcached by addressing its network overhead (e.g.,

Chronos [51], Mcrouter [52], and Twemproxy [53]) and global

locks (e.g., KV-Cache [54], MemC3 [55], and Mercury [56]).

There is also some prior work on improving the performance

of Memcached clusters by addressing hot spots or load imbal-

ance (e.g., SPORE [57] and Zoolander [58]), communication

overheads among nodes (e.g., AdaptCache [59]), and fault

tolerance (e.g., Nishtala et al. [16]). Given the scope of our

work, we focus on prior work related to dynamic scaling of

Memcached.

Nishtala et al. [16] employ the “Cold Cluster Warmup”

technique at Facebook when adding a new Memcached cluster

by allowing clients to retrieve data (misses) from an existing

warm Memcached cluster rather than persistent storage. How-

ever, this technique requires replicated Memcached clusters,

and thus increases resource costs. CacheScale [8] proposes

horizontal scaling of Memcached tiers by passively migrating

data between Memcached nodes based on incoming requests.

While effective, the restoration time of CacheScale critically

depends on the arrival rate and popularity distribution, and can

thus be arbitrarily high. By contrast, ElMem is independent

of the arrival rate and popularity skew and is optimized, via

the optimal FuseCache algorithm, to regulate the overhead of

migration. Hwang et al. [60] propose an adaptive partitioning

algorithm to re-balance the load created by hot items due

to data skew. In a follow-up work [61], the authors discuss

the challenges in designing self-managing caches and propose

integrating dynamic scaling with load balancing, but do not

discuss this further. Dynacache [62] is a cache controller

that determines the best memory allocation and eviction

policies for different applications in a shared Memcached-

as-a-service setting. The authors later extended this work

in Cliffhanger [63] to dynamically allocate memory among

applications using a shared Memcached. However, this work

incrementally adds more memory capacity (scale-up) to an

existing node rather than adding new nodes (scale-out). We

note that scale-up is not always feasible, especially at run-

time, for physical deployments.

The stack distance concept is often used to efficiently

determine the hit rate of caches and characterize them, as

in MIMIR [38], Moirai [64], SHARD [65] and counter

stack [66]. ElMem also employs stack distance, but specifically

to facilitate scaling. Different from the above approaches,

ElMem leverages stack distance to estimate the amount of

memory needed to achieve a certain hit rate, and then translates

this to scaling decisions and optimal migration.

There has also been recent work on alleviating the load

imbalance, or hot spots, in Memcached caused by the uneven

popularity of items. MBal [67] focuses on migrating and

replicating items across Memcached worker threads (within

and across nodes) to balance load. While the migration can be

used to facilitate dynamic scaling as well, this aspect is not

evaluated. SPORE [57] proposes a self-adapting, popularity-

based data replication scheme to avoid hot spots. Zoolan-

der [58] proposes using idle cache nodes for replication, and

issuing requests to all replicas concurrently to avoid stragglers

by using the first received result. While replication can be em-

ployed to improve performance, it requires additional memory

resources and is thus contrary to our objective.

Lastly, there has been prior work on dynamic scaling of

the database tier. Rabbit [2] and Sierra [3] propose elastic

database tiers by organizing and scaling data replicas for

storage systems such that at least one copy of the data is

always on. Such approaches are not applicable to Memcached

as it is not a persistent or replicated data store.

VII. CONCLUSION AND FUTURE WORK

This work focuses on the critical post-scaling performance

degradation problem that hinders the dynamic scaling of mem-

ory caches and other stateful clusters. We present the design of

ElMem, an elastic system that dynamically scales Memcached

in response to changes in workload demand. The key enabler

of ElMem is our optimal FuseCache algorithm that finds the

hottest items among Memcached nodes; further, FuseCache’s

running time is within a logarithmic factor of the theoretical

lower bound. Our experimental evaluation of ElMem, using

workload traces from Facebook, Microsoft, and other web

services, shows that we can substantially reduce the post-

scaling degradation while accurately scaling Memcached; this

elasticity translates to reduced energy consumption in physical

deployments and reduced rental costs in virtual deployments.
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