
Dynamic Management of Caching Tiers

SPEC Distinguished Dissertation Award 2013 (Invited Abstract)

Anshul Gandhi
IBM T.J. Watson Research Center

gandhian@us.ibm.com

1. INTRODUCTION
Application owners are typically concerned about getting

the best performance at the lowest cost. When the work-
load demand for an application is dynamic, lowering the cost
necessitates dynamic management of the hosting infrastruc-
ture (physical servers or virtual machines). An application
deployment is often divided into multiple tiers. The fron-
tend tier is usually stateless, and processes incoming work-
load requests using data from the backend. The backend
tier is stateful, and typically consists of a persistent storage
system, such as a database. To alleviate load at the back-
end, a stateful, but non-persistent, caching tier is often used
to cache data or partial results. For such multi-tier deploy-
ments, the ultimate goal is to scale all of the tiers to match
the varying workload demand.

Stateless tiers are easy to scale (see, for example, [7, 6])
since they do not store data that is required for request pro-
cessing. Scaling the stateful data tier is more complicated.
For the database tier, there needs to be at least one copy
of the data, so research is limited to questions of how many
replicas are needed and where to place the data (see, for ex-
ample, [2, 13]). The caching tier, on the other hand, stores
only a fraction of the total data, and this data is not nec-
essarily replicated. Since the caching tier is non-persistent,
we are not limited by a minimum amount of cached data,
so there is significant potential for scaling down the caching
tier. However, the caching tier plays a crucial role in filtering
the amount of requests that go to the database tier. Thus,
dynamically managing the caching tier requires careful con-
sideration of the possible impact on end-to-end application
performance. To the best of our knowledge, there has been
no work on dynamically managing the caching tier.

As part of this thesis, we propose two orthogonal ap-
proaches to dynamically managing the caching tier: (i) Cache-
Scale [14], and (ii) SOFTScale [8]. CacheScale works by dy-
namically scaling the caching tier in response to changes in
workload demand. To avoid performance degradation due
to transient cache misses, CacheScale carefully redistributes
important data elements prior to scaling. SOFTScale, on
the other hand, does not scale the caching tier, and instead
leverages the spare capacity in the caching tier nodes to han-
dle some of the stateless tier load. SOFTScale is especially
useful for handling transient overload caused by a sudden
increase in demand.

Copyright is held by the author(s).
ICPE’14, March 22-26, 2014, Dublin, Ireland

2. EXPERIMENTAL SETUP
We experiment with a testbed of 28 commodity servers,

which are divided into multiple tiers. We employ one of
these servers as the load generator running httperf [11].
Another server is used as the load-balancer running the
Apache HTTP Server, which distributes PHP requests from
the load generator to 20 application servers. The applica-
tion servers (Intel Xeon E5520 processor-based) parse the
incoming PHP requests and collect the required data from
the caching tier and the data tier. The caching tier com-
prises 5 memcache [10] servers (Intel Xeon X5650 processor-
based) and the data tier comprises a server (Intel Xeon
E5520 processor-based) with 5 disks running an Oracle Berke-
leyDB [12] database with a billion key-value pairs (250GB).

We design a key-value workload to model realistic multi-
tier applications such as the social networking site, Face-
book, or e-commerce sites like Amazon [4]. Serving a work-
load request involves fetching specific sets of items from the
data tier based on the request (more details on our workload
can be found in the thesis [5]).

Our goal in managing the caching tier is to successfully
meet end-to-end response time SLAs while minimizing the
total number of active servers employed, on average, by the
application.

3. CACHESCALE: SCALING THE CACH-
ING TIER

The caching tier plays a crucial role in regulating applica-
tion performance by filtering the number of data access re-
quests to the database tier. If the caching tier does not filter
enough requests, the database tier can get overloaded, lead-
ing to very high response times. These observations speak
against scaling the caching tier. However, the caching tier is
expensive and consumes a lot of power. For comparison, con-
sider Amazon’s EC2“High-Memory Quadruple Extra Large”
instance versus their “High-CPU Extra Large” instance [1].
These have approximately the same compute power, but the
high memory instance (60GB more memory) costs about 2-3
times more than the high cpu instance [1]. The high cost
for memory makes sense if we consider the power consumed
by the memory subsystem, which accounts for up to 40% of
the power in a server [9]. Thus, the caching tier is expensive
both in terms of monetary cost and power draw.

CacheScale makes the case for a vast reduction in the size
of the caching tier during low loads. We show [14] that we
can achieve huge savings in the size of the caching tier (up to
90%) without violating performance goals. The key insight
is that when the load drops, we do not need to filter as many



requests to the data tier, so we can get away with a lower
cache hit rate. If the requested data items were uniformly
distributed, a small decrease in the cache hit rate would not
lead to much savings. However, many studies have shown
that web requests follow a very skewed distribution, often
modeled as a Zipf distribution [3]. This implies that a small
decrease in cache hit rate can lead to a large decrease in the
amount of cached data.

However, the above savings are stipulated on being able to
cache the right data when scaling down/up. When removing
a caching tier node, we experience an immediate loss of the
“hot” data that was stored on the instance. When adding a
caching tier node, its cache is “cold” and the initial requests
will all be misses that go to the database tier. In order to
minimize the performance degradation due to these cache
misses, CacheScale proactively redistributes the cache con-
tents to ensure that the availability of the hot data in the
caching tier is not affected by the scaling actions. Impor-
tantly, CacheScale does this without requiring access to the
(elusive) LRU list. Full details on CacheScale can be found
in [14].

4. SOFTSCALE: STEALING FROM THE
CACHING TIER

SOFTScale takes a very different approach to managing
the caching tier. Rather than scaling the caching tier dur-
ing low loads, SOFTScale aims to instead leverage the spare
compute capacity at the caching tier to alleviate some of
the load at the stateless tiers. This allows for more aggres-
sive scaling of the stateless tiers, thereby lowering overall
resource consumption.

SOFTScale works by overloading the functionality of the
caching tier nodes to also act as frontend tiers. This requires
installing the frontend tier software at the caching tier nodes.
As a result, when the frontend tiers are unable to process
all the incoming requests in a timely manner (for example,
during load spikes or periods of transient overload), a frac-
tion of the requests can be routed directly to the caching
tier nodes which can temporarily act as frontend tiers. Of
course, one has to be careful not to overload the caching tier
when offloading frontend tier requests to it. Further, the in-
terference between caching tier work and frontend tier work
at the caching tier nodes must be minimized to avoid any
potential performance degradation. We address these con-
cerns in our implementation of SOFTScale in [8], and show
that SOFTScale can handle a range of load spikes which
would cause a normal system (without SOFTScale) to ex-
hibit very high response times. If needed, SOFTScale can be
coupled with techniques like admission control and request
prioritization to further minimize the damage caused by load
spikes. Full details on SOFTScale can be found in [8].

5. CONCLUSION
A popular approach to dealing with dynamic workload de-

mand is scaling the application deployment. While there has
been a lot of work [7, 6] on scaling the stateless tiers in a de-
ployment, the scaling of stateful tiers, such as the database
and caching tiers, has received much less attention, largely
because of the difficulty involved in scaling the stateful tiers
without negatively impacting end-to-end performance. We
propose two orthogonal approaches to dynamically manag-
ing the stateful caching tier: (i) CacheScale [14] carefully

scales the caching tier while ensuring availability of hot data
items, and (ii) SOFTScale [8] opportunistically steals spare
capacity from the (unscaled) caching tier to alleviate some
of the load at the other tiers. To the best of our knowledge,
these are the first approaches to dynamically managing the
caching tier.

6. REFERENCES
[1] Amazon Inc. Amazon elastic compute cloud (Amazon

EC2). http://aws.amazon.com/ec2.

[2] Hrishikesh Amur, James Cipar, Varun Gupta,
Gregory R. Ganger, Michael A. Kozuch, and Karsten
Schwan. Robust and flexible power-proportional
storage. In SOCC 2010, pages 217–228, Indianapolis,
IN, USA.

[3] Lee Breslau, Pei Cao, Li Fan, G. Phillips, and Scott
Shenker. Web caching and zipf-like distributions:
evidence and implications. In INFOCOM 1999, pages
126–134, New York, NY, USA.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key-value store.
In SOSP 2007, pages 205–220, Stevenson, WA, USA.

[5] Anshul Gandhi. Dynamic Server Provisioning for Data
Center Power Management. PhD thesis, School of
Computer Science, Carnegie Mellon University, 2013.

[6] Anshul Gandhi, Yuan Chen, Daniel Gmach, Martin
Arlitt, and Manish Marwah. Minimizing data center
sla violations and power consumption via hybrid
resource provisioning. In IGCC 2011, pages 49–56,
Orlando, FL, USA.

[7] Anshul Gandhi, Mor Harchol-Balter, Ram
Raghunathan, and Michael Kozuch. AutoScale:
Dynamic, Robust Capacity Management for
Multi-Tier Data Centers. Transactions on Computer
Systems, 30, 2012.

[8] Anshul Gandhi, Timothy Zhu, Mor Harchol-Balter,
and Michael Kozuch. SOFTScale: Scaling
Opportunistically For Transient Scaling. In
Middleware 2012, pages 142–163, Montreal, Quebec,
Canada, 2012.

[9] David Meisner, Brian T. Gold, and Thomas F.
Wenisch. PowerNap: Eliminating server idle power. In
ASPLOS 2009, pages 205–216, Washington, DC, USA.

[10] Memcached. A distributed memory object caching
system. http://www.danga.com/memcached.

[11] David Mosberger and Tai Jin. httperf—A Tool for
Measuring Web Server Performance. Sigmetrics:
Performance Evaluation Review, 26(3):31–37, 1998.

[12] Michael A. Olson, Keith Bostic, and Margo Seltzer.
Berkeley db. In USENIX ATC 1999, FREENIX
Track, pages 183–191, Monterey, CA, USA.

[13] Eno Thereska, Austin Donnelly, and Dushyanth
Narayanan. Sierra: practical power-proportionality for
data center storage. In EuroSys 2011, pages 169–182,
Salzburg, Austria.

[14] Timothy Zhu, Anshul Gandhi, Mor Harchol-Balter,
and Michael Kozuch. Saving Cash by Using Less
Cache. In HotCloud 2012, Boston, MA, USA, 2012.


