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Abstract—Load Balancers (LBs) play a critical role in man-
aging the performance and resource utilization of distributed
systems. However, developing efficient LBs for large, distributed
clusters is challenging for several reasons: (i) large clusters
require numerous scheduling decisions per second, (ii) such
clusters typically consist of heterogeneous servers that widely
differ in their computing power, and (iii) such clusters often
experience significant changes in load. In this paper we propose
HALO, a class of scalable, heterogeneity-aware LBs for cluster
systems. HALO LBs are based on simple randomized algorithms
that are analytically optimized for heterogeneity. We develop
HALO for randomized, Round-Robin, and Power-of-D LBs. We
illustrate the benefits of HALO and demonstrate its superiority
over other comparable LBs using analytical, simulation, and
(Apache-based) implementation results. Our results show that
HALO LBs provide significantly lower response times without
incurring additional overhead across a wide range of scenarios.

I. INTRODUCTION

Large-scale cluster deployments are common in to-
day’s cloud-hosted application environments. Online service
providers such as Amazon, Facebook and Google often em-
ploy clusters of thousands of nodes for serving web re-
quests [1]–[3]. These online services often handle thousands
of customer requests per second [1], [3]–[8]. Scheduling
such large amounts of traffic on large-scale clusters requires
Load Balancers (LBs) that are capable of making millions of
scheduling decisions per second. Taking into account the fact
that typical response times for online services such as Amazon
and Facebook are on the order of tens of milliseconds [1],
[6], a scheduling delay of even a few milliseconds can lead
to a significant loss of revenue due to customer abandonment.
Thus, LBs must quickly route requests to servers and should
be inherently scalable.

Given the scalability limitations of complex, centralized
LBs, prior work has strongly emphasized simple, decentral-
ized LBs [9], [10]. Popular scalable LBs in use in today’s
production systems are typically based on Randomized (RND)
or Round-Robin (RR) LBs. RND LBs split incoming requests
among available back-end servers based on some probabili-
ties [11]. A more powerful version of RND LBs are Power-
Of-D choices (POD) LBs whereby a handful of servers
are probed, and the one with the least load is selected for
request forwarding [12], [13]. RR LBs are not randomized;
they successively cycle incoming requests among all available
back-end servers [14]. The aforementioned LBs can easily
scale to internet-sized systems, and are thus often the default
choice in LB products such as those offered by Apache [15]
and those employed by AWS EC2 groups [16].

Unfortunately, the simple design of scalable LBs is what
leads to their deficiencies. In particular, simple LBs are not
heterogeneity-aware and are not adaptive to changes in load
because of non-trivial factors, such as request rate and server
speeds, and their non-linear effect on response times. However,
today’s cluster systems are inherently heterogeneous [17],
[18] due to many factors including equipment and capacity
upgrades and replacement of failed components. Cloud service
providers, such as Amazon, also offer a diverse range of VM
sizes to suit various user requirements; currently, AWS offers
28 different types of EC2 instances, grouped into 5 separate
classes [19]. Likewise, online services often experience sig-
nificant variations in demand [20]–[22]. As a result, it is not
surprising that (load-balanced) clusters often experience low
utilization [2], leading to energy and resource wastage. Thus,
we claim that there is a need for scalable and adaptive LBs
that are suitable for heterogeneous environments.

In this paper we propose HALO, a class of novel
heterogeneity-aware load balancing algorithms. HALO can be
employed in clusters where servers have diverse configurations
including quantitative differences (for example, number of
CPU cores) and qualitative differences (for example, operating
frequencies). HALO algorithms are simple, hence scalable, yet
heterogeneity-aware and adaptive. In developing HALO, we
start with simple randomized LB algorithms; we then tune
the request split, via queueing-theoretic analysis, for optimal
performance in heterogeneous environments. Our findings are
non-trivial, and suggest that the natural solution of propor-
tional request splitting based on a server’s computing power
can be far from optimal. Our implementation, simulation,
and analytical results show that HALO significantly reduces
response time without incurring additional resource or energy
overhead across various load and cluster configurations.

The contributions of this paper are the design, analysis,
and implementation of HALO, a novel class of scalable,
heterogeneity-aware LBs. In particular:

• We theoretically prove that, under certain restrictions,
HALO provides optimal performance without consuming
additional resources.

• We develop HALO algorithms for RND, RR, and POD LBs.
• Via numerical analysis and simulations, we thoroughly

evaluate HALO LBs and show that they provide significantly
lower response times when compared to other scalable LBs.

• We implement our simple algorithms in the Apache LB [23]
and validate and demonstrate the superiority of HALO in
physical and virtual clusters.



Fig. 1. Illustration of our load-balanced heterogeneous cluster environment.

The rest of the paper is organized as follows. We initially
focus on RND LB and describe our cluster model and problem
statement in Section II. We then present our analytical results
in Section III that help optimize our HALO algorithms. Our
analytical results also provide qualitative estimates for system
performance under HALO. Based on our analysis, we develop
HALO algorithms for RND, RR, and POD LBs in Section IV
and present numerical and simulation results that demonstrate
the superiority of HALO. We present our implementation
results on small physical and virtual clusters in Section V.
We discuss prior work in Section VI and conclude the paper
in Section VII.

II. MODEL AND PROBLEM STATEMENT

Fig. 1 illustrates the heterogeneous cluster environment that
we consider. We model the cluster using a queueing theoretic
abstraction. We assume that there are different “types” of
servers. Each server type represents a distinct resource con-
figuration. We logically partition the cluster into n groups of
homogeneous servers as shown in the figure. We only consider
the single dominant resource at a server, such as CPU, so
the number of units or speed or bandwidth of that resource
determines its type. Let the number of type i servers be ki.
We initially assume that all servers are single-core; we relax
this assumption in Section III-B. Let the speed of a type i
server be µi req/s (assuming a request takes 1/µi seconds
to complete, on average, on a type i server). Note that this
definition of server speed takes request size into account. Thus,
the total number of servers is

∑n
i=1 ki and the maximum

system throughput is
∑n
i=1 ki · µi req/s. Let the incoming

request rate into the entire system be λ req/s. We define load
as ρ = λ/ (

∑n
i=1 ki · µi). Load is a normalized measure of the

request rate, and is representative of system utilization. Note
that 0 ≤ ρ ≤ 1. We typically report performance as a function
of load in our results in this paper.

Our goal is to determine how best to split λ among the
available servers to minimize average response time, T . We
start with RND routing and then move to RR and POD in
Section IV. Under RND LB, we split incoming requests among
the available server groups. Let pi denote the probability of
sending a request to server group i. Within each group, we

load balance requests among the servers. Thus, each server in
group i receives pi/ki fraction of incoming requests. The RND
LB’s objective is to determine the optimal load split vector,
p∗i , to minimize T . Note that

∑n
i=1 pi = 1. Intuitively, the load

should be split proportionally, that is, pi = ki·µi/
∑n
j=1 kj ·µj .

Surprisingly, as we show in the next section, the optimal load
split can be far from proportional.

III. THEORETICAL ANALYSIS

In this section we present our theoretical results that help
optimize the load split for RND LBs in heterogeneous en-
vironments. These results will guide the development of our
HALO algorithms presented in Section IV.

For RND LBs, our objective is to find the optimal load split
among the servers, possibly as a function of the cluster config-
uration and the load (or request rate). We use queueing theory
to find the optimal load split, p∗i , under certain restrictions. We
later show in Sections IV-A and V that the p∗i vector results in
near-optimal performance even when we relax the restrictions
and consider more realistic settings.

For this section, we assume that the arrival process is
Poisson, with mean λ req/s. There is no restriction on the
distribution of request sizes. We assume that there is only
one class of CPU-bound requests, and each request can be
served by any of the available servers. Servers can process
multiple requests simultaneously (processor sharing). We first
consider, in Section III-A, clusters where heterogeneity is
due to differences in server speed. We then consider, in Sec-
tion III-B, clusters where heterogeneity is due to differences
in the number of cores.

A. Heterogeneity due to server speeds

We will first express mean response time, T , as a function
of the probabilistic load split vector, pi. Based on the model
described in Section II and Fig. 1, we can compute T using
a network of M/G/1/PS queues [24] as follows:

T =

n∑
i=1

piTi =

n∑
i=1

pi
µi − λpi/ki

(1)

where Ti is the mean response time of a request in group i.
Eq. (1) says that T is a weighted sum of the mean response
times for each server type, Ti = 1/(µi−λpi/ki). Here, λpi/ki
is the request rate at each type i server (since we load balance
the λpi req/s among the ki servers). Note that T is a function
of the load split, pi, in addition to other parameters.

The optimal probabilities, p∗i , and the optimal response time,
T ∗, can be determined by optimizing Eq. (1), given λ and
server speeds µi. We derive p∗i in two steps: we first derive
p∗i for the case of ki = 1 in Lemma 1, and then derive p∗i for
the general case of arbitrary ki in Lemma 2. Due to lack of
space, we only provide proof sketches (deferred to Appendix).



Fig. 2. Analytical results showing optimal load split, p∗1 , as a function of
load for various cluster configurations with n = 2. The solid dots at the right
of the figure show the value of p1 under proportional load split.

Lemma 1. For a heterogeneous cluster of n M/G/1/PS
servers with speeds µi (i = 1, 2, . . . n) and total request rate
λ, under RND LB:

p∗i =

µi
n∑
j=1

√
µj −

√
µi

n∑
j=1

µj + λ
√
µi

λ
n∑
j=1

√
µj

(2)

T ∗ =

2
n∑
i=1

n∑
j=i+1

√
µiµj − (n− 1)

n∑
i=1

µi + nλ

λ(
n∑
i=1

µi − λ)
(3)

Interestingly, p∗i is not the same as (the intuitive) propor-
tional split given by pi = kiµi/(

∑n
j=1 kjµj). In fact, p∗i can

be far from the proportional split. For the simple case of n = 2,
and k1 = k2 = 1, we can show that optimal split sends more
requests (when compared with proportional split) to the faster
server (say, µ1) when λ < µ1 − µ2.

To better understand Eq. (2), consider the simple case where
n = 2. In this case, we have:

p∗1 =
µ1
√
µ2 − µ2

√
µ1 + λ

√
µ1

λ(
√
µ1 +

√
µ2)

, p∗2 =
µ2
√
µ1 − µ1

√
µ2 + λ

√
µ2

λ(
√
µ1 +

√
µ2)

When µ1 > µ2, we have p∗1 > p∗2, as expected. Further, when
λ < µ1 −

√
µ1µ2, we have p∗1 > 1, implying that all requests

should be sent to server 1 when the request rate, λ, is low.
While this sounds counter-intuitive, the key idea here is that
when request rate is (very) low, it is best to send all requests
to the faster server since there is no contention in the system.
However, as request rate increases, we need both servers to
handle the load. This also shows that the optimal load split
depends on request rate (or load).

The solid lines (magenta and blue) in Fig. 2 illustrate our
analytical results for ki = 1 and n = 2. We only show p∗1
(p∗2 = 1 − p∗1). We see that p∗1 = 1 when load is low, as
expected. As load increases, p∗1 decreases, and approaches the
proportional load split (p1 = µ1/(µ1 + µ2)) as ρ → 1. For
the case of µ1 = 2, µ2 = 1 (magenta line), the improvement
in response time afforded by the optimal load split over the
proportional load split varies from 25% to 3% as load varies

from 0.01 to 0.99. For the case of µ1 = 1.5, µ2 = 1 (blue
line), there is lesser heterogeneity in the system, and the
improvement in response time varies from 16% to 1%.

The above result for ki = 1 can be easily extended to
the case of arbitrary ki, as given by Lemma 2 below. The
proof proceeds along similar lines as that of Lemma 1 (in the
Appendix) and is omitted due to lack of space.

Lemma 2. For a heterogeneous cluster of n groups of ki (i =
1, 2, . . . n) M/G/1/PS servers with speeds µi (i = 1, 2, . . . n)
and total request rate λ, under RND LB:

p∗i =

kiµi
n∑
j=1

(kj
√
µj)− ki

√
µi

n∑
j=1

(kjµj) + kiλ
√
µi

λ
n∑
j=1

(kj
√
µj)

(4)

T ∗ =

2
n∑

i=1

n∑
j=i+1

(kikj
√
µiµj)−

n∑
i=1

(kiµi
n∑

j=1,j 6=i
kj) + λ

n∑
i=1

ki

λ

(
n∑

i=1
(kiµi)− λ

) (5)

The above lemmas tell us how to optimally split incoming
traffic among available back-end servers for heterogeneous
(w.r.t. server speed) clusters. Of course, we restrict p∗i to be
between 0 and 1. Note the dependence of p∗i on request rate,
λ. This shows that the optimal split depends on system load.

An important result that can be immediately derived from
the above lemmas is the insensitivity of the response time and
optimal load split to scaling of the system size (scaling here
refers to ki → cki for some constant integer c > 1). In particu-
lar, recalling from Section II that load, ρ = λ/ (

∑n
i=1 ki · µi),

we have the following useful corollaries for scaled systems:

Corollary 1. The optimal mean response time, T ∗, for a
heterogeneous cluster of M/G/1/PS servers operating at
load ρ does not change under scaling (of ki).

Corollary 2. The optimal load split, p∗i , for a heterogeneous
cluster of M/G/1/PS servers operating at load ρ does not
change under scaling (of ki).

The dashed lines in Fig. 2 illustrate our analytical results
for arbitrary ki and n = 2 with µ1 = 2 and µ1 = 1. Again,
we see that p∗1 = 1 when load is low. As load increases, p∗1
decreases, and approaches the proportional load split (p1 =
k1µ1/(k1µ1+k2µ2)) as ρ→ 1. In fact, it can be easily shown
by substituting ρ = λ/ (

∑n
i=1 ki · µi) = 1 in Eq. (4) that:

Corollary 3. For a heterogeneous cluster of M/G/1/PS
servers operating under RND LB, the optimal load split ap-
proaches the proportional as load (or request rate) increases.
Mathematically, p∗i → kiµi/

(∑n
j=1 kj · µj

)
as ρ→ 1.

The improvement in response time afforded by the optimal
split over the proportional split varies from 33% (at low
load) to 3% (at high load) when the number of slower



Fig. 3. Numerical results showing optimal load split, p∗1 , as a function of
load for various multi-core cluster configurations with n = 2 and ki = 1.
The solid dots at the right show the value of p1 under proportional load split.

servers is higher (green line) and from 16% to 2% when the
number of faster servers is higher (red line). This reduction in
improvement can be analytically proven based on Cor. 3. We
omit the proof and present the final result:

Corollary 4. For a heterogeneous cluster of M/G/1/PS
servers operating under RND LB, the improvement in mean
response time afforded by the optimal load split over the
proportional load split decreases with load (or request rate).

Finally, observe the black dashed line in Fig. 2 that repre-
sents the case of ki scaling with the cluster having 100× the
number of servers as for the case of the green dashed line.
The fact that the p∗1 value is the same for both these cases
illustrates Cor. 2.

B. Heterogeneity due to server cores

We now consider the case where the server speeds (µi) are
identical, but the number of cores in each server group may
vary. This is typically the case when renting VMs from cloud
service providers such as AWS [19]. In this scenario, we model
each server as an M/M/c, where c is the number of cores.
Thus, we represent the heterogeneous cluster as n groups of
ki M/M/ci systems. Assuming a request rate of λ and core
speed of µ (load, ρ = λ/(µ

∑n
i=1 kici)), we can express the

mean response time of the cluster as:

T =

n∑
i=1

pi · τ
(
λpi
ki
, µ, ci

)
, (6)

where τ(l, µ, c) = 1
µ + lk

µk(kµ−l)k! ·
[
kµ−l
kµ

k−1∑
i=0

li

µii! +
lk

µkk!

]−1
is the mean response time of an M/M/c system with request
rate l and service rate µ [24]. Unfortunately, the complex
expression for τ makes it difficult to obtain closed-form
expressions for p∗i that minimize T in Eq. (6). We instead
resort to numerical results to illustrate the optimal load split
for this case.

Fig. 3 illustrates our numerical results for core heterogeneity
with n = 2 and ki = 1. We set c2 = 1 and vary c1. We see that
initially p∗1 = 1 when load is very low. As load increases, p∗1
decreases, and approaches the proportional load split (p1 =
c1/(c1 + c2)) as ρ → 1. In this case, p∗1 is always higher

Fig. 4. Analytical results comparing HALO and Base (top) and HALO and
Proportional (bottom) for randomized LB. In both cases, HALO provides
significantly lower response times.

than the proportional load split because a multi-core server
can handle bursts of load better than a single-core server with
proportionally lower load. In fact, the improvement in response
time afforded by the optimal load split over the proportional
load split increases with load, unlike the case of heterogeneity
due to server speeds (Cor. 4). The maximum improvement over
the range of load considered in Fig. 3 is 18%, 10%, and 4%
for c1 = 8 (black line), c1 = 4 (blue line), and c1 = 2 (red
line), respectively.

IV. HALO LBS

We now present our HALO LB algorithms. We de-
velop HALO algorithms for RND (Section IV-A), RR (Sec-
tion IV-B), and POD (Section IV-C) LBs. In each case, we
also evaluate HALO and compare it with other algorithms.

A. HALO RND

HALO RND is directly based on the optimal load split
derived in Lemma 2. In particular, HALO RND routes each
incoming request to a server in group i with probability p∗i
given by Eq. (4). This is in contrast to Base RND that routes
requests to servers with equal probability (pi = ki/

∑n
j=1 kj)

and Proportional RND that (intuitively) routes requests to
servers based on their speed (pi = kiµi/

∑n
j=1 kjµj). Note

that the algorithms only differ in their routing probabilities,
and are thus comparable in terms of overhead.

Fig. 4 shows our analytical results comparing HALO RND
with Base RND (top) and Proportional RND (bottom). In
order to show multiple cases, we plot the percentage improve-
ment in mean response time afforded by HALO over others as
a function of load, ρ (defined in Section II). We use load as a
proxy for request rate in the graphs. Note that, by definition,
load is not affected by the LB policy since it depends on the



(a) µ1 = 1.5, µ2 = 1. (b) µ1 = 2, µ2 = 1.

Fig. 5. Simulation results comparing the improvement in mean response time afforded by HALO RR over Base RR for various request size distributions.
The hyper-exponential distribution is more variable that the exponential, and the hypo-exponential is less variable. Here, n = 2 and k2 = k1 = 1.

workload and cluster configuration. Also note that we only
report the relative values of ki due to the insensitivity of
response time to scaling under RND LB (see Cor. 1).

We see that HALO RND provides great improvements
(almost as much as 100%) in response time when compared to
Base RND, especially at high loads when the slower servers
are overwhelmed by traffic under Base RND. HALO RND
also provides significant improvements (as much as 26%)
when compared to Proportional RND, especially at low loads
when some of the requests under Proportional RND are routed
to slower servers. This is in agreement with Cor. 4. Observe
that, in both cases (top and bottom plots), the improvement
increases with heterogeneity (difference between speeds of
servers). Clearly, Base and Proportional are not as good as
expected. We further validate this result via implementation
in Section V-A.

B. HALO RR

Round-Robin (RR) is easier to implement than RND routing
(no random number generation is required), and provides more
fine-grained load balancing due to its non-random routing.
RR is the default LB algorithm for many systems, including
Amazon’s Elastic Load Balancer [16]. Unfortunately, RR
does not take heterogeneity into account. This can result in
high response times. In particular, Base RR simply cycles
successive requests among all available servers regardless of
server speeds. We specifically take heterogeneity into account
for our HALO RR which first routes requests to server groups
based on Eq. (4), and then uses RR to cycle successive requests
within each group.

Fig. 5 shows our results comparing HALO RR with
Base RR for the simple case of n = 2 and k2 = k1 = 1.
Due to the complexity involved in analyzing RR routing,
we employ simulations to evaluate our results. We again
see that HALO RR provides great improvements (almost as
much as 100%) in response time when compared to Base RR,
especially at high loads. Base RR treats all servers as equal
when assigning requests to servers. Thus, the faster servers
are under-utilized, whereas the slower servers are overloaded,
and this imbalance is more pronounced at higher loads. By

contrast, HALO RR sends more requests to faster servers, thus
providing significantly lower response times.

Interestingly, HALO RR provides qualitatively similar im-
provements even for the case of non-exponential distributions,
as shown in Fig. 5 (blue and red lines). This result, along with
the fact that HALO RND’s optimality does not depend on
the request size distribution (since M/G/1/PS), suggests that
HALO is robust, to some extent, to the request size distribution.

Observe, from Figs. 5(a) and 5(b), that the improvement in
response time increases with heterogeneity for all distributions.
In fact, when the heterogeneity is weak (Fig. 5(a)), the im-
provement is negative for the case of moderate load when com-
pared to Base RR. This is because Base RR deterministically
maximizes the time between requests (inter-arrival time) at a
server as opposed to HALO RR which (only) probabilistically
maximizes this time. Further, at low loads, HALO RR benefits
from sending requests almost exclusively to faster servers. As
load increases, HALO RR must use slower servers as well
to handle the increased load, similar to Base RR. Thus, as
load increases, the improvement over Base RR decreases. At
very high loads, HALO RR again benefits from preferentially
sending more traffic (compared to Base RR) to faster servers.

Fig. 6 shows our simulation results comparing HALO RR
with Base RR (top) and Proportional RR (bottom) across
various cluster configurations. Here, Proportional RR is the
LB that first proportionately routes requests to server groups
based on their speed and then uses RR to cycle successive
requests within each group. We see that HALO RR provides
significant improvements (as much as 25%) when compared
to Proportional RR, especially at low loads when a greater
fraction (compared to HALO RR) of the requests under
Proportional RR are routed to slower servers. This observation
is in agreement with Cor. 4 despite the fact that Cor. 4 deals
with RND routing.

Note that the improvement in response time increases with
heterogeneity, and is negative for the case of weak hetero-
geneity (black line) and moderate load as discussed above.
Finally, note the difference between the scaled systems (black
and red lines) in Fig. 6. This indicates that RR LB is sensitive
to scaling as opposed to RND LB (see Cors. 1 and 2).



Fig. 6. Simulation results comparing HALO and Base (top) and HALO and
Proportional (bottom) for Round-Robin LB. In both cases, HALO provides
significantly lower response times.

C. HALO POD

Power-Of-D (POD) routing is known [12], [13] to improve
response times, especially at high loads, over RND and RR
LBs. This is because POD randomly samples the current load
at a few (D) servers, and routes the incoming request to the
least loaded of the sampled servers. In terms of overhead,
POD is more expensive than RND or RR due to the need for
sampling the load at multiple servers. The value of D (number
of servers sampled) can be used as a proxy for the cost of POD.

Fig. 7 shows the improvement in mean response time
afforded by POD over RR as a function of D for various
values of load for a homogeneous cluster (n = 1) of k1 = 10
servers. Note that, for homogeneous clusters, HALO = Base
= Proportional. As expected, the improvement in response
time increases with D. Also, as expected, response time
improvement is greater for higher loads. Note that D= 1 is the
same as RND, and thus results in higher response time than
RR. D= k1 = 10 is popularly known as Join-the-Shortest-
Queue (JSQ) routing [24], and provides the lowest response
time under POD, but at a high cost (of D= k1 units). Typically,

Fig. 7. Simulation results illustrating the improvement in response time
afforded by POD over RR as a function of D for various values of load.
Here, n = 1, k1 = 10, and µ = 1.

Fig. 8. Simulation results comparing HALO and Base (top) and HALO
and Jsq (bottom) for Power-Of-D LB. HALO provides significantly lower
response times when compared to Base. When compared to the costly Jsq,
HALO provides significantly lower response times at low loads, but results
in relatively higher response times at high loads.

D= 2 provides the best tradeoff between response time and
cost. We refer to POD with D= 2 as Base POD, and POD
with D=

∑n
i=1 ki as Jsq POD.

We adapt Base POD for heterogeneous environments by
proposing HALO POD which samples servers according to
the optimal group probability given by Eq. (4). In particular,
HALO POD samples a server in group i with probability
p∗i /ki. We also use these probabilities when breaking ties
between server groups. We retain the value of D (= 2).

Fig. 8 shows our simulations results comparing
HALO POD with Base POD (top) and Jsq POD (bottom)
for various cluster configurations. Here, the black line
represents the scenario in Fig. 7. We see that HALO POD
provides significant improvement (as much as 32%) over
Base POD by simply modifying the sampling probabilities
to adapt to heterogeneity. While HALO POD does provide
significant improvement (as much as 30%) over Jsq POD at
low loads, Jsq POD is better at higher loads. This is because
Jsq POD with D=

∑
ki is intrinsically heterogeneity-aware

as it monitors the load at all servers before routing requests.
However, Jsq POD is expensive. For example, for the green
line, Jsq POD samples 30 servers, whereas HALO POD only
samples 2 servers (a 15× difference in overhead). Further,
Jsq POD does not directly take server speeds into account. In
fact, if we set D=

∑
ki for HALO POD, we can still obtain

some improvement (as much as 10%) over Jsq POD at high
loads. Note that, as usual, the improvement in response time
increases with heterogeneity.

V. IMPLEMENTATION RESULTS

In this section we present our implementation results for
HALO; we use Apache [23] as our LB. We modify Apache’s
mod_proxy* modules to enable our HALO algorithms. We
first present our results on a small heterogeneous (due to server



(a) µ1 = 2.4GHz, µ2 = 0.8GHz.
λ = 8 req/s.

(b) µ1 = 2.4GHz, µ2 = µ3 = 0.8GHz.
λ = 2 req/s.

(c) µ1 = 2.4GHz, µ2 = 1.6GHz, µ3 = 0.8GHz.
λ = 0.5 req/s.

Fig. 9. Implementation results for various RND LB policies. In all cases, HALO RND provides the lowest response time, and is about 10-40% better than
Proportional RND.

speeds) physical cluster in Section V-A, and then present our
results on a small heterogeneous (due to server cores) virtual
cluster in Section V-B. We only present results for RND.

A. Physical cluster

Our physical testbed consists of five dual-core Intel servers
with DVFS technology. We leverage DVFS to set different
operating frequencies of 0.8GHz, 1.6GHz, and 2.4GHz, for
the servers. We disable turbo-boost for our experiments. We
employ three of these servers as the back-end worker servers
running PHP. Each back-end server is connected to an inline
power meter (WattsUp Pro ES) to measure its instantaneous
power draw. We employ the fourth server as the LB running
Apache. We employ the fifth server as our dedicated load
generator running httperf [25]. We generate PHP requests from
this load generator, and each request stresses the CPU at the
back-end servers. At the maximum frequency of 2.4Ghz, each
request takes about 300ms to complete. Thus, the server speed
at 2.4GHz is 2 · 1

0.3 ≈ 6.7 req/s (since dual-core). Likewise,
we can compute the speeds at different operating frequencies.
We experiment with various server clusters and request rates.
Note that the physical cluster experiments represent the case of
heterogeneity due to differences in server speeds, as analyzed
in Section III-A.

Fig. 9 illustrates a subset of our experimental results. Here,
µi is the operating frequency of server i, and λ is the total
request rate into the cluster. We set i = 1 for the faster server
type. For each graph, we experiment with various choices of
request routing probabilities, pi, and plot the average response
time over multiple runs as a function of these probabilities,
highlighting the HALO LB split (red cross) and Proportional
LB split (black plus).

Fig. 9(a) shows our results for a 2-server experiment with
µ1 = 2.4GHz and µ2 = 0.8GHz. The request rate (Poisson
distributed) is λ = 8 req/s. The optimal load split probability
for HALO RND in this case is p∗1 = 0.78 according to Eq. (4).
The Proportional RND load split probability is p1 = µ1/(µ1+
µ2) = 0.75. As shown in Fig. 9(a), HALO RND results in
13% lower response time than Proportional RND. Note that

we only show p1 since p2 = 1 − p1. The average power
consumption of the back-end (two servers), as measured by our
inline power meters, for HALO RND and Proportional RND
is similar. This is because the total work (request processing)
done by the servers under both LB policies is the same; the
difference is in the workload split between the servers.

Fig. 9(b) shows our results for a 3-server experiment with
µ1 = 2.4GHz, µ2 = µ3 = 0.8GHz, and λ = 2 req/s. Here,
the optimal load split probability for HALO RND is p∗1 = 1
(send all load to the fastest server) whereas Proportional RND
probability is p1 = 0.6. In this case, HALO RND results in
39% lower response time. Finally, Fig. 9(c) shows our results
for a 3-server experiment with µ1 = 2.4GHz, µ2 = 1.6Ghz,
µ3 = 0.8GHz, and λ = 0.5 req/s. We use a 3-d plot here
to show the dependence of response time on p1 and p2
(p3=1-p1-p2). In this case, the optimal load split probability
for HALO RND is p∗1 = 1 and p∗2 = p∗3 = 0, whereas
the Proportional RND load split probability is p1 = 0.5,
p2 = 0.33, and p3 = 0.17. We see that HALO RND
results in 34% lower response time than Proportional RND.
Again, in both of the above 3-server experiments, the average
power consumption of the back-end (three servers) under
HALO RND and Proportional RND is similar.

The above experimental results validate our HALO RND
LB (Eq. (4)) and highlight our superiority over Propor-
tional RND. These results are also in agreement with Cors. 3
and 4 which state that the optimal load split approaches
the proportional load split at high request rates (Fig. 9(a))
and that the improvement afforded by the optimal load split
over the proportional load split decreases with request rate,
respectively (Figs. 9(b) and 9(c) have lower request rate but
greater response time improvement than Fig. 9(a)).

B. Virtual cluster

For our virtual cluster, we rent various VMs from Ama-
zon EC2 [26] to act as our back-end servers. In particular,
we experiment with m3.large (1 core), m3.xlarge (2 cores),
m3.2xlarge (4 cores), c3.large (1 core), c3.4xlarge (8 cores)
and c3.8xlarge (16 cores) instance types. We turn off hyper-



(a) m3.Large:m3.2XLarge, λ = 15 req/s. (b) c3.Large:c3.4XLarge, λ = 31 req/s. (c) c3.Large:c3.8XLarge, λ = 64 req/s.

(d) m3.Large:m3.2XLarge, λ = 20 req/s. (e) c3.Large:c3.4XLarge, λ = 40 req/s. (f) c3.Large:c3.8XLarge, λ = 80 req/s.

Fig. 10. Implementation results for various RND LB policies on EC2. The top row shows experiments with lower request rates, and the bottom row shows
experiments with higher request rates. In all cases, our HALO RND LB provides the lowest response time, and is about 7-36% better than Proportional RND.

threading for our experiments. We only consider 2-server
experiments. For the m3 instances, each request takes about
217ms to complete on each core, thus µ = 1

.217 ≈ 4.6 req/s.
For the c3 instances, each request takes about 200ms to com-
plete on each core, thus µ = 1

.2 = 5 req/s. We continue using
our physical servers for running the load generator and the
modified Apache LB. Note that the virtual cluster experiments
represent the case of heterogeneity due to differences in the
number of cores, as analyzed in Section III-B.

Fig. 10 illustrates a subset of our results. We set i = 1 for
the server with more cores. Each column represents the same
configuration, but with lower request rate on top and higher
request rate below. We see that higher request rate results
in a greater improvement in mean response time afforded by
HALO RND over Proportional RND, similar to our observa-
tions in Section III-B. In general, we find that the percentage
improvement for the virtual cluster experiments is lower than
that for the physical cluster experiments. Nevertheless, we see
that HALO RND significantly lowers response time, by as
much as 36%, when compared to Proportional RND LB.

VI. PRIOR WORK

A. Scalable LBs

Prior work has strongly emphasized the need for simple,
scalable LBs [9], [10], [27]. Popular examples of such LBs
are those based on RND routing [11], RR routing [15], [16],
and POD routing [27]–[29]. Simple RND based LBs, such
as Base RND and Proportional RND, are scalable but do not

perform well in heterogeneous environments, as we show in
Figs. 4, 9, and 10. Likewise, RR LBs are simple and scalable,
but cannot be easily extended to heterogeneous clusters. As
shown in Figs. 5 and 6, Base RR performs very poorly in
heterogeneous environments, especially at high loads, since
it treats all servers as equal. While POD LBs are typically
superior to RND and RR LBs [12], [13], they are not well
suited to heterogeneous environments [27], [28], and typically
incur some overhead (proportional to D) associated with
sampling [29].

1) RND LBs: Randomized heterogeneity-aware LBs typi-
cally route requests to servers in (static) proportion to their
computing power [11]. While scalable, such approaches are
not adaptive to changes in workload. Our HALO RND LB, by
contrast, is heterogeneity-aware, adaptive to load, and is easily
scalable given its simple randomized nature. Our preliminary
work [30] focused on heterogeneity-aware RND LBs in the
context of different server speeds. This paper significantly
builds on our prior work by providing theoretical analysis,
addressing heterogeneity due to server cores, and developing
heterogeneity-aware RR and POD LBs.

2) RR LBs: The most widely-employed LBs are those
based on RR routing. There has been some prior work on
improving the performance of RR in heterogeneous settings.
Moonian et al. [31] modify the RR algorithm to take job
deadlines into account by dynamically allocating CPU shares.
Tiwari et al. [32] extend RR to heterogeneous environments
by considering a server’s processing power, queue length, and



utilization, resulting in a Proportional RR like scheme. Rong
et al. [33] extend RR to heterogeneous environments and
propose a hierarchical routing scheme for heavy traffic. As we
show in Fig. 6, significant improvements over Base RR can be
achieved even at low loads. Katevenis et al. [14] propose the
implementation of weighted RR for ATM switches, but assume
that the weights are given. Shreedhar et al. [34] propose Deficit
RR which aims to provide fair allocation of resources with low
overhead. Our focus in this paper is on optimizing performance
with minimal overhead; we do not focus on fairness.

3) POD LBs: Eager et al. [28] proposed a decentralized
POD LB for request processing. However, the authors specif-
ically focus only on homogeneous environments. Recently,
Sparrow [27] proposed a POD scheduler for large clusters.
However, as acknowledged by the authors, Sparrow does
not perform well in heterogeneous environments. Dean et
al. [29] also proposed sending requests to multiple servers
simultaneously to reduce latency (for example, by fetching
cached results). However, the proposed replication technique
consumes additional resources.

B. Heterogeneity-aware LBs

Heterogeneity-aware LBs thoroughly analyze the state of
all servers in the cluster to determine the best candidate
server for each incoming request [17], [18], [35]. Heath et
al. [17] consider a heterogeneous environment and solve for
the optimal load distribution between servers using iterative
algorithms such as simulated annealing. While effective, such
iterative algorithms are slow to converge, requiring several
minutes between successive scheduling decisions. Likewise,
Chen et al. [35] propose greedy algorithms for load dis-
tribution in heterogeneous environments. While the greedy
algorithms leverage dynamic programming for expediting their
decision time, they still require several seconds to compute
the load distribution. Lee at al. [36] propose a heterogeneity-
aware scheduler that computes the impact of resources on
the progress of the job, and uses this knowledge to guide
placement. However, the authors focus on jobs that have large
completion times, thus allowing for complex decision making.
While the above LBs successfully address heterogeneity, they
require complex computations, thus limiting scalability.

C. Hierarchical LBs

LBs can also be employed as part of multi-level schedulers
for clusters that handle diverse applications [37], [38]. In such
cases, requests are initially assigned to groups of workload-
specific servers; intra-group LBs then assign requests to in-
dividual servers. Our HALO LBs can easily be employed as
intra-class LBs for handling, for instance, web requests.

VII. CONCLUSION

In this paper we present HALO, a class of novel LBs
that provide low response times without incurring any signif-
icant overhead. While most LBs today are either scalable or

heterogeneity-aware, HALO is both. HALO bridges this gap
between scalability and heterogeneity-awareness by building
on simple scalable LBs, randomized LBs in particular, and
then optimizing them for heterogeneous environments. We
use theoretical analysis to optimize HALO LBs, providing
many useful results about the performance of HALO LBs in
the process. We easily extend our randomized HALO LB to
Round-Robin and Power-Of-D choices LBs, and believe that
the basic idea behind HALO can be adapted by other LBs.

As part of future work, we will examine how HALO
LBs can be adapted to data analytics workloads where the
heterogeneity is (also) due to proximity to data. In such
environments, data-local or rack-local servers are selected with
higher probability; HALO LBs can be employed in such cases
to preferentially select servers that are “closer” to source data.
We will also experiment with larger cluster sizes to evaluate
the scalability of HALO LBs. Finally, we intentionally avoided
enforcing fairness in this paper to facilitate scalability. In
future work, we will explore how we can integrate fairness
without significantly limiting scalability. Our end-goal in this
research is to build a dynamic LB for distributed computing
environments that is scalable and heterogeneity-aware. Our
efforts in this paper represent the first steps in this direction.
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APPENDIX

Proof sketch for Lemma 1. We first consider the case of n =
2. For n = 2, let the probability of sending a request to server
1 (with speed µ1) be p. Then,

T =
p

µ1 − pλ
+

1− p
µ2 − (1− p)λ

.

We now derive the optimal value of 0 ≤ p ≤ 1 that minimizes
T . After some algebra (taking first and second derivatives of
T w.r.t. p), we get

p∗ =
µ1
√
µ2 − µ2

√
µ1 + λ

√
µ1

λ(
√
µ1 +

√
µ2)

.

Substituting this p∗ into the expression for T gives us

T ∗ =
2
√
µ1µ2 − (µ1 + µ2) + 2λ

λ(µ1 + µ2 − λ)
.

Note that this agrees with Eqs. (2) and (3) for n = 2.

We now use induction to prove Lemma 1 for all n. Assume
that Lemma 1 is true for n = N . Then, for n = (N + 1), we
can partition the (N+1) server system into a single server with
request probability p1 and an N -server system with request
probability (1 − p1). For the N -server system (with primed
variables) with request rate λ′ = λ(1 − p1), by the inductive
hypothesis, we know that

p′∗i =

µi
N∑
j=1

√
µj −

√
µi

N∑
j=1

µj + λ′
√
µi

λ′
N∑
j=1

√
µj

, and

T ′∗ =

2
N∑
i=1

N∑
j=i+1

√
µiµj − (N − 1)

N∑
i=1

µi +Nλ

λ(
N∑
i=1

µi − λ)
.

The mean response time for the (N + 1)-server system can
then be written as (from Eq. (1)):

T =
p1

µ1 − λp1
+ (1− p1) · T ′∗ (7)

Note that T ′ is itself a function of p1 (since request rate for
the N -server system is λ′ = λ(1 − p1)). We can now derive
the optimal p∗1 by differentiating Eq. (7). The remaining N
optimal probabilities (for request rate λ) can then be derived
by noting that

p∗i+1 = (1− p∗1) · p′∗i .

Finally, T ∗ for the (N + 1)-server system can be derived by
substituting p∗1 into Eq. (7). The resulting expressions match
those given by Eqs. (2) and (3) for n = (N + 1), thus
completing the proof by induction.


