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1 Introduction
Data centers that host public clouds often suffer from low
resource utilization [1]. To increase utilization, recent works
have proposed running batch workloads, such as Hadoop
or Spark jobs, on VMs next to customer VMs to leverage
idle resources [6]. While effective, the key challenge with this
approach is interference – the performance degradation of
the colocated customer VMs due to resource contention with
batch workload VMs at the underlying host server [5].

Prior work in this area typically resorts to terminating the
batch workload VMs when the customer VMs’ performance
starts to degrade [3]. Public cloud providers also offer such
services, e.g., Azure Batch VMs, that can be used to run
batch workloads but can be preempted by the provider at
any time to accommodate higher-priority VMs.

In this work, we propose a new class of batch VMs whose
resource utilization can be dynamically regulated by the
provider based on the resource usage of colocated VMs to
minimize performance interference. To achieve this goal, we
first analyze the resource consumption of Spark workloads
and then investigate hypervisor capabilities that enable pre-
cise resource regulation of batch VMs. Our preliminary ex-
perimental results on KVM hosts show that our batch VMs
can increase resource utilization without affecting the perfor-
mance of colocated latency-sensitive web workloads.
2 Experimental Setup
Figure 1 illustrates our experimental setup. We use several
servers, referred to as PMs (Physical Machines), each with 8-
core CPUs and 64 GB memory; we use KVM to deploy VMs
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Figure 1. Illustration of our cloud setup.

on these PMs. To mimic a customer deployment, we set up the
CloudSuite web serving benchmark on three VMs, each run-
ning in a separate PM, hosting the load balancer (HAProxy),
web server (Nginx), and database server (MySQL), respec-
tively; we refer to these as the primary VMs. For batch VMs,
we deploy a Spark cluster running workloads from the spark-
bench suite. We colocate a Spark slave VM with each of the
three primary VMs, as depicted by PM2, PM3, and PM4 in
Figure 1. We also make use of two PMs, PM5 and PM6, to
host additional Spark slave VMs in specific experiments (see
Section 3). To drive the primary application, we leverage the
Faban workload generator, which is colocated with the Spark
Master on a different PM.
3 Analyzing Resource Contention
The baseline plot (solid black line) in Figure 2 shows the
90%ile Response Times (RT) of CloudSuite when the colo-
cated Spark batch VMs are idle. The blue dashed line shows
the performance of CloudSuite when we run the KMeans
workload on Spark; clearly, the colocated batch VMs severely
impact the performance of the primary VMs.

To further analyze the interference due to Spark VMs, we
also investigate TeraSort and LinearRegression workloads.
Figure 3(a) shows the 90%ile RTs of CloudSuite when only
its HAProxy load balancer VM is colocated with Spark (on
PM2); we move the Spark Slave VMs initially colocated with
the web server and database VMs of CloudSuite to PM5 and
PM6. We see that, regardless of the Spark workload, Cloud-
Suite performance is not affected significantly. Figures 3(b)
and 3(c) highlight the impact of different Spark workloads
when colocated with only the Nginx web server and only the
MySQL database of CloudSuite, respectively. This time, we
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Figure 2. Performance of primary workload (CloudSuite).
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(a) Spark colocated with load balancer.
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(b) Spark colocated with web server.
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(c) Spark colocated with database.
Figure 3. Impact of Spark workloads on different components of CloudSuite.

see that the performance of CloudSuite is affected. However,
on careful observation, we see that only KMeans and Tera-
Sort impact CloudSuite performance significantly, and not
LinearRegression. This is because KMeans and TeraSort jobs
create high disk and network load when writing the data
to HDFS during the shuffle stage; we verified this claim by
monitoring the disk and network I/O traffic. As such, prior
works that only focus on CPU interference mitigation [6] are
ineffective in this case. The above results highlight the need
for dynamically regulating the Spark resource usage based
on the specific primary and batch workloads.
4 Dynamic Resource-Adaptive Batch VMs
To precisely regulate the resource consumption of batch VMs,
we exploit existing capabilities of hypervisors and OSes.

Figure 4 shows the 90%ile RTs of CloudSuite under various
resource regulation schemes for the background Spark batch
VMs running KMeans (colocated only with MySQL). As be-
fore, baseline (solid black line) illustrates the performance of
CloudSuite when colocated Spark VMs are idle. The dashed
blue line shows the performance when Spark is running in
colocated VMs and the CPU resources are fairly shared (1:1
shares) among colocated VMs using virsh [4] to control the
resource allocation of KVM guests. Clearly, fair allocation
results in significant performance interference. If we prioritize
CPU for CloudSuite by giving it a 1000:1 shares ratio, the re-
sulting performance (dashed magenta line), while better than
1:1 shares, is still quite variable; this suggests that CPU is not
the only resource under contention. If we also limit the disk
I/O usage (to 15MBps write bandwidth) for colocated Spark
VMs using virsh, the resulting performance (dashed green
line) is almost similar to the baseline performance, suggesting
effective interference mitigation. Further, the resulting CPU
usage of the physical host server increases by 116% when
compared to the baseline, suggesting a substantial increase in
resource efficiency. Thus, by carefully regulating the resource
usage of batch VMs, we can increase resource efficiency while
maintaining acceptable performance.
5 Related Work
Heracles [2] combines software and hardware isolation mech-
anisms to run batch jobs next to latency sensitive jobs. How-
ever, Heracles focuses on bare metal environments whereas
we focus on virtualized environments and propose a new class
of VMs that adjust their resource usage based on colocated
VMs. Zhang et al. [7] use historical data to determine the
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Figure 4. Experiment for cpu-shares and limited disk IO.
resource consumption treads of primary jobs and accordingly
colocate long, medium, or short length batch tasks next to
them. However, the batch tasks are killed when the primary
job requires more resources, whereas our approach aims to
throttle the batch VMs without killing them, thus minimizing
the loss of batch workload progress.
6 Conclusion and Future Work
This paper makes the case for a new class of provider-
controlled resource-adaptive VMs that can be launched next
to customer VMs in public cloud data centers to increase
resource efficiency. As part of future work, we will focus
on regulating other resources, including memory and cache,
and design an automated system that dynamically regulates
resource consumption on batch VMs to minimize interference.
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