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Abstract—Cloud computing offers the flexibility to dynamically
size the infrastructure in response to changes in workload de-
mand. While both horizontal and vertical scaling of infrastructure
is supported by major cloud providers, these scaling options
differ significantly in terms of their cost, provisioning time,
and their impact on workload performance. Importantly, the
efficacy of horizontal and vertical scaling critically depends on the
workload characteristics, such as the workload’s parallelizability
and its core scalability. In today’s cloud systems, the scaling
decision is left to the users, requiring them to fully understand
the tradeoffs associated with the different scaling options. In
this paper, we present our solution for optimizing the resource
scaling of cloud deployments via implementation in OpenStack.
The key component of our solution is the modeling engine that
characterizes the workload and then quantitatively evaluates
different scaling options for that workload. Our modeling engine
leverages Amdahl’s Law to model service time scaling in scale-
up environments and queueing-theoretic concepts to model per-
formance scaling in scale-out environments. We further employ
Kalman filtering to account for inaccuracies in the model-based
methodology, and to dynamically track changes in the workload
and cloud environment.

I. INTRODUCTION

Cloud computing provides users the opportunity to quickly
deploy their applications/workloads in an elastic setting using
a “pay-as-you-go” pricing model. Cloud-deployed workloads
can be easily scaled in response to changing workload demand
by leveraging the cloud framework (see, for example [1], [2]).
Cloud workloads are scaled up when the workload demand
increases to handle the additional traffic without violating
performance Service Level Agreements (SLAs), and can be
scaled down when the workload demand decreases to save on
rental costs.

An application or workload can be horizontally scaled (“scale-
out”) by adding more virtual machines (VMs) to the existing
deployment, and can be vertically scaled (“scale-up”) by
adding more resources (such as vCPUs, memory, etc) to the
existing VMs. The choice of scaling can have a significant
impact on the cost and performance of the workload. For
example, we show in Section V that scale-up can be 3 times
more cost-effective than scale-out when the workload demand
is low, whereas scale-out can be 2 times more cost-effective
when the workload demand is high. However, the results also
depend on the performance SLA and the cost function1. Thus,
it is not at all obvious as to how the workload should be scaled
in response to varying traffic conditions.

1We acknowledge that the per-VM prices of various cloud providers depend
on external factors such as profit margins and market fluctuations. As such,
we will often use the amount of resources employed by the workload or
application as a proxy for the “cost”, and only use cloud providers’ listed
prices for specific use cases.

Importantly, the choice of scaling also depends on the work-
load characteristics. Parallel workloads that can be parallelized
on multiple cores to reduce their service time can significantly
benefit from scale-up. Sequential workloads, on the other hand,
do not benefit from multiple cores in terms of service time.
However, they do benefit from increased concurrency due to
scale-up. Given these differences, we assert that the optimal
scaling solution should account for the impact of workload
characteristics on the resulting performance. One approach to
scaling is to try all possible scaling options and then pick
the most cost-effective option that meets the performance
SLA. This is clearly an ineffective approach, which is made
even more complicated by the fact that a scaling decision
can involve scale-out and scale-up simultaneously, thereby
significantly increasing the space of possible scaling options.

There have been several empirical studies [3], [4], [5] aimed
at understanding the scalability of workloads on multi-core,
multi-thread systems in scale-up architectures. Most of these
studies are targeted at characterizing workload performance in
terms of system architecture (CPU cores, SMT level, cache
size, memory size and type) and in identifying resource
contentions in the software and/or hardware stack. While some
models linking workload performance to specific architecture
features have been proposed [6], [7], [8], to the best of our
knowledge, no attempts have been made to leverage workload
characterization for optimizing horizontal and/or vertical re-
source scaling in clouds.

In this paper, we propose a model-based approach to assess the
impact of workload on cloud resource scaling. The key compo-
nent of our solution is the modeling engine that characterizes
the workload and its horizontal and vertical scalability. Our
modeling engine leverages Amdahl’s Law to model service
time scaling in scale-up environments and queueing-theoretic
concepts to model performance scaling in scale-out environ-
ments. Using our model, we dynamically determine the most
cost-effective scaling option, including combinations of scale-
out and scale-up, that will result in the required performance
for any given workload.

The main contributions of this paper are:
• We experimentally investigate the impact of horizontal and

vertical scaling on cost, performance, and provisioning times
for different cloud-deployed applications (Section III).
• We develop a performance model using Amdahl’s Law

and queueing-theoretic principles to predict the tradeoff
of various scaling options (Section IV). We also employ
a Kalman filtering-based approach to dynamically infer
the (possibly changing) system parameters required by our
model with minimal benchmarking efforts (Section IV). The
Kalman filter also provides robustness against inaccuracies
that are inherent in model-driven approaches.



• We validate our solution via implementation on OpenStack,
and demonstrate the benefits of our approach by determining
the optimal scaling of popular multi-tier benchmark work-
loads (Section V).

II. EXPERIMENTAL SETUP

We use OpenStack [9] as the underlying scalable cloud system.
The VMs for the applications are created on an OpenStack
managed private cloud deployment on SoftLayer [2] physical
machines. We employ multiple hypervisors with 8 CPU cores
and 8 GB of memory each. Scale-up and scale-out is executed
via the OpenStack API. We use Chef [10] to automate the
installation of software on VMs during boot. At a high-
level, applications are deployed as a collection of VMs in
OpenStack. We experiment with two different application
workloads: (i) RUBiS [11], which is a sequential workload,
and (ii) LINPACK [12], which is a parallel workload. We
discuss the specifics of these workloads and their deployment
in Section II-A. We monitor the resource consumption and
application performance using our Monitoring agent, described
in Section II-B. The monitored statistics are then forwarded to
the Modeling engine, described in Section II-C, which per-
forms the workload characterization and analyzes the different
scaling options.

A. Workloads

1) RUBiS: We use the open source multi-tier application,
RUBiS [11], as a representative sequential workload for our
experiments. RUBiS is an auction site prototype modeled after
eBay.com supporting 26 different classes of web requests
such as bid, browse, buy, etc. Our implementation of RUBiS
employs Apache as the front-end web server, Tomcat as the
Java servlets container, and MySQL as the back-end database.
In our experiments, we focus on scaling the Tomcat tier.
We employ RUBiS’s benchmarking tool, which emulates user
behavior by defining sessions consisting of a sequence of
requests, to generate load for our experiments. The think time
between requests is exponentially distributed with a mean of 1
second. We fix the number of clients for each experiment and
vary the load by dynamically changing the composition of the
request classes mix.

The Apache and MySQL tiers are each hosted on a 4 vCPU
VM. The Tomcat application tier is hosted on multiple VMs.
We use host aggregates and availability zones (which are
essentially logical cloud partitions) offered by the OpenStack
nova scheduler to place the Apache and MySQL VMs on one
hypervisor and Tomcat VMs on a different set of hypervisors.

We set the SLA in terms of mean response time. We focus on
the mean response time of browse requests since customers
often base their web experience based on how long it takes to
browse through online catalogues. We want the response time
SLA for the browse requests to be less than 35ms, on average.
The secondary goal is to minimize the total cost of Tomcat
VMs employed by the application. We use the total number
of vCPUs employed by the application tier as a proxy for
cost, unless stated otherwise. Thus, the overall objective is to
minimize the resource cost while ensuring that the 35ms SLA
for the browse requests is not violated. In our experiments, we
find that the application performance is most affected by the

processing power (number of VMs and number of cores per
VM), and is much less affected by the allocated memory and
storage space. We thus focus on scaling the processing power
of the application tier.

2) LINPACK: We use Intel LINPACK [12] as a representative
parallel workload for our experiments. LINPACK executes a
collection of linear algebra operations on matrices of a given
input size. The workload is inherently parallelizable, with a
small sequential portion during the initialization phase. We run
LINPACK in a transactional manner by using httperf [13] as
the workload generator and Apache as the front-end load bal-
ancer that distributes requests to back-end application servers
running LINPACK.

The httperf application and the Apache load balancer are each
hosted on a 4 vCPU VM. The LINPACK application tier is
hosted on multiple VMs. We set the mean response time SLA
for LINPACK requests as 5 seconds. The overall objective is
to minimize the resource cost of the LINPACK application
tier while ensuring that the 5s SLA is not violated. Since
LINPACK is CPU-bound, we focus on scaling the processing
power of the LINPACK VMs.

B. Monitoring agent

While most of the monitoring information required for our
model-driven approach can be obtained directly from the phys-
ical infrastructure, some of the more critical information, such
as per-tier service times, requires invasive benchmarking which
is not possible for a cloud service provider. For estimating
such unobservable parameters, we employ Kalman filtering
(see Section IV).

We use virt-top (part of the libvirt [14] package) to collect VM
CPU utilization statistics from each hypervisor periodically.
For the application-level metrics, we periodically monitor
the request URLs directed at the application deployment to
compute the request rate and response time. Note that the user
can choose to provide these metrics to us directly (for example,
using a REST call). The monitoring interval is set to 10s.

C. Modeling engine

The modeling engine is responsible for workload characteriza-
tion and analysis of the various scaling options. The modeling
engine is invoked whenever a new entry is recorded by the
monitoring engine (once every 10s). The modeling engine
consumes this information and infers the important system
parameters via the Kalman filtering approach (Section IV).
The underlying queueing model, along with the inferred pa-
rameters, allow the modeling engine to determine the optimal
scaling action, if any is needed.

III. PERFORMANCE-COST TRADEOFFS

In this section, we investigate the effects of scale-up and scale-
out on performance and cost. For performance, we look at the
maximum load, or request rate, that the system can handle
without violating the response time SLA (35ms for RUBiS
and 5s for LINPACK). For cost, we look at hourly rental
prices based on Amazon EC2’s General Purpose On-Demand
Instances [15], Rackspace’s Performance 1 Flavor Managed
Cloud Service [16], and Softlayer’s CloudLayer Instances [17].
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(a) Sequential workload RUBiS [11] (b) Parallel workload LINPACK [12]

Fig. 1: Performance of scale-up and scale-out in terms of maximum allowable request rate for a fixed SLA.

We also consider the provisioning time, which is the time taken
to execute the scaling action.

A. Performance

Figure 1 shows our experimental results for the maximum
request rate that can be handled by the application (without
violating the SLA) as a function of the scaling. The scaling is
in units of total number of cores employed by the application
tier. In particular, scaling refers to the total number of vCPUs
on the single VM in case of scale-up and the number of 1vCPU
VMs in case of scale-out.

In Figure 1(a), we see that performance scales almost linearly
under RUBiS for both scale-out and scale-up. Since RUBiS is
a sequential workload, adding more cores to the VM or adding
more VMs has the same effect: increased computing power to
handle greater concurrency. There are, of course, difference in
the two different types of scaling. Scale-up introduces more
contention for OS and locks, whereas scale-out requires more
work at the load balancer.

In Figure 1(b) for LINPACK, we see that performance in-
creases significantly under scale-up initially, and then starts
to plateau. We claim that this concave downwards shape is
because of diminishing gains obtained from scale-up. Under
scale-out, performance scales linearly. However, for LIN-
PACK, we see that scale-up results in much better performance
than scale-out. This is because LINPACK is parallelizable,
and thus, scale-up decreases the service time of LINPACK.
This allows for more aggressive sharing of resources at the
VM. By contrast, under scale-out, the service time of a single
LINPACK request does not change. Thus, to get good response
times, a VM should only host one request at any time.

Observe that the frequency of a single vCPU is not changed
in our setting as we are not exploiting dynamic frequency
scaling [18]. Dynamically changing frequency of vCPUs as an
alternate to increasing number of vCPUs (with fixed, static fre-
quency) is also been employed in existing solutions (see e.g.,
VMware vCenter [19]). This will add another dimension in the
scaling decision problem and may result in different scaling
behavior for sequential workloads like RUBiS. However, CPU
frequency scaling is unappealing due to its limited range [20]
and diminishing returns, since higher clock frequency causes
more energy dissipation [18].

The observed differences in performance of scale-up and scale-
out for the sequential and parallel workloads in Figure 1
motivates us to develop a model to better understand the impact
of workload on scaling. We explain our modeling and analysis
in Section IV.

B. Cost

Figure 2 shows the per-instance hourly rental costs for different
cloud providers. We obtain the cost of scale-out by linearly
extrapolating the cost of a single VM. As such, we do not
take into account any discounts that might be possible because
of bulk orders. We see that the cost function is exactly the
same (linear) for scale-up and scale-out under Amazon EC2’s
pricing model. We observed the same linear cost function
under Microsoft Azure’s pricing scheme as well [21] (not
shown). In such cases, the decision between scale-up and scale-
out depends on the performance impact. For Rackspace [16]
and Softlayer [17], we find that the scale-up cost is lower than
the scale-out cost for the same total number of cores purchased.
Note that this analysis does not take other resources such as
memory and storage into account. In choosing the above data,
we tried to ensure that the memory and storage specifications
were constant across different service providers for each CPU
scaling size.

C. Provisioning time

In terms of the provisioning time, it takes about 30-40 seconds
for scale-out in our OpenStack environment (via the boot

Fig. 2: Cost of scale-up and scale-out in terms of cents/hr.
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(a) RUBiS (b) LINPACK

Fig. 3: Modeling service rate scale-up via Amdahl’s Law. β represents the scale-up efficiency of the workload. Average modeling
error is 1.3% in case of (a) the sequential workload RUBiS and 2.3% in case of (b) the parallel workload LINPACK.

command in OpenStack) with pre-configured application tier
images. However, if vanilla images are used and application
software is installed after boot-up, the provisioning time can
easily extend to 4-10 minutes. For scale-up, the provisioning
time is about 20 seconds. During scale-up (via the resize
command in OpenStack), the instance is rebooted with the new
resource configuration. While this results in application down-
time during scale-up, we do not have to reinstall application
software.

IV. MODELING

The modeling engine lies at the heart of our solution. Our
modeling goal is to understand how scale-out and scale-up
affect response time.

A. Modeling scale-out

We use a queueing-network model [22] to approximate our
multi-tier cloud workloads. Consider the RUBiS workload
described in Section II-A1. For RUBiS, we have a single
front-end VM and a single database VM, but possibly many
application tier VMs. We assume perfect load balancing among
the homogeneous application tier VMs, thus allowing us to
approximate the application tier using a single representative
M/G/1/PS [22] queue. If the total workload request rate is λ,
then the request rate at this single M/G/1/PS queue is λ

k , where
k is the number of application tier VMs. Under this model, the
mean response time, T , is [22]:

T =

(
1

Sfe
− λ

)−1
+

(
1

Sapp
− λ

k

)−1
+

(
1

Sdb
− λ

)−1
(1)

where Sfe, Sapp, and Sdb, are the service times2 at the front-
end, application, and database tiers, respectively. Equation (1)
tells us how scale-out affects response time.

B. Modeling scale-up

In order to understand the effect of scale-up on response time,
we first have to analyze how service time at the application
tier, Sapp, is affected by scale-up. Amdahl’s Law [6] suggests

2Service time for a tier is defined as the total time taken to serve the
workload request at that tier, assuming no resource contention. In other words,
it is the minimum execution time at a tier.

that scale-up should decrease a fraction, β, of Sapp multiplica-
tively, assuming the workload is parallelizable, for example
LINPACK (see Section II-A2). This β fraction refers to the
portion of Sapp that is parallelizable. In particular, if Sapp(x)
denotes the application tier service time when the application
tier VMs have x vCPUs each, then:

Sapp(x) = Sapp(1) ·
(
β

x
+ (1− β)

)
(2)

Interestingly, even for sequential workloads that cannot be
parallelized, such as RUBiS, we can use a similar approach.
Such workloads benefit from increased concurrency due to
multiple cores. In this case, while the service time remains
the same, the service rate (or peak throughput) of the VM
increases. We expect the service rate to be proportional to the
number of vCPUs, x. Since service time can be viewed as
the inverse of service rate, we can use Equation (2) to also
model the increase in service rate for sequential workloads
such as RUBiS. As such, β represents the scale-up efficiency
of a workload. Our results in Section IV-E validate our service
time/rate modeling for sequential and parallel workloads.

C. Kalman filtering and robustness

Cloud providers cannot access the user application directly to
compute system parameters such as service times. We thus
use a Kalman filtering technique to infer these unobservable
parameters. Kalman filtering works by leveraging observable
monitoring information, such as end-to-end response time and
VM utilization (see Section II-B), and using model-based
equations, such as Equation (1), to estimate unobservable
parameters. Importantly, by employing the Kalman filter to
leverage the actual monitored values, we minimize our de-
pendence on the approximate queueing model of the system.
Another critical advantage of employing a Kalman filter in
cloud performance modeling is the ability to quickly detect
and react (by updating the system parameters) to changes in
the workload, as evidenced by our previous work [23]. Due to
lack of space, we omit details on Kalman filtering and refer
the readers to [24], [23] for more information.

We employ Kalman filtering to estimate service times (and
service rates). In particular, we run experiments with varying
request rates for each scale-up setting (with 1 VM only)
and process the collected monitored data (see Section II-B)
via Kalman filtering to estimate per-tier service times. This

4



(a) Scale-out (b) Scale-up

Fig. 4: Good agreement (9% error) between theoretical and implementation results for the sequential workload RUBiS.

(a) Scale-out (b) Scale-up

Fig. 5: Good agreement (7% error) between theoretical and implementation results for the parallel workload LINPACK.

profiling step can be avoided if we have prior knowledge of
β and Sapp(1). Figure 3 shows our estimated service times
(crosses) based on observed experimental results with scale-
up for (a) the sequential workload RUBiS and (b) the parallel
workload LINPACK. We use our OpenStack implementation
setup described in Section II for the experiments. We then use
regression to fit (shown as solid line) the estimated service
times to Equation (2). This gives us β = 0.819 and Sapp(1) =
21ms for RUBiS with a modeling error of 1.3% (parallelism
at the HTTP request level, allowing execution of multiple
concurrent requests) and β = 0.648 and Sapp(1) = 4.96s for
LINPACK with a modeling error of 2.3% (parallelism at the
thread level, but with a small sequential initialization portion).

D. Combined model

Combining Equations (1) and (2), we get the final model for
response time as a function of workload characteristics (β and
Sapp(1)) and scale-up (x) and scale-out (k). In particular, we
replace Sapp in Equation (1) with Sapp(x) from Equation (2) to
derive T as a function of x (scale-up) and k (scale-out). We can
use this T (x, k) function to determine the maximum request
rate that can be handled by a given scaling option without
violating the SLA (see Section IV-E), which is the largest value
of λ in Equation (1) such that (s.t.) T (x, k) < SLA. For a
given λ, we can obtain feasible values of x and k such that
Tλ(x, k) < SLA, and further, combine this function with a
cost function, such as those in Figure 2, to determine the most
cost-effective scaling option (see Section V).

E. Model validation

Figures 4 and 5 show our theoretical and implementation
results for (a) scale-out and (b) scale-up for RUBiS and
LINPACK respectively. We use our OpenStack implementation
setup described in Section II for these experiments. We see
that our model can predict performance (in terms of maximum
load that can be sustained without violating SLA) fairly well
for both scale-out and scale-up, including combinations of the
two. The average prediction error is about 9% for RUBiS and
7% for LINPACK. In the next section, we employ our model
to predict the optimal scaling under various scenarios.

V. ANALYSIS

A. Comparison of different scaling options

We now employ our scaling model to examine the various
scaling options for different workloads. Figure 6 shows our
analytical results for RUBiS in terms of cost as a function of
the load under scale-out, scale-up, and optimal, for different
response time SLAs. A load of l is defined as the request
rate (λl) that equals l times the peak throughput of a single
1-vCPU VM (λ0). Here, optimal refers to the most cost-
effective combination of scale-out and scale-up, as determined
by our model, that satisfies the SLA. Mathematically, the
optimal configuration for load l is a solution of the following
optimization problem: minx,k c(x, k), s.t. Tλl

(x, k) < SLA,
where, λl = l ∗ λ0, and c(x, k) is the cost of renting k VMs
with x vCPUs each from the cloud provider. For cost, we use
the total number of cores employed as opposed to the more
volatile metric of cents/hr.
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(a) SLA = 25ms (b) SLA = 35ms (c) SLA = 45ms

Fig. 6: Analysis of various scaling options for RUBiS as a function of load for various response time SLAs.

(a) SLA = 5.0s (b) SLA = 5.5s (c) SLA = 6.0s

Fig. 7: Analysis of various scaling options for LINPACK as a function of load for various response time SLAs.

We observe that the combination of scale-out and scale-
up (optimal) can provide significant cost savings over the
individual scaling options. The cost savings increase with load
(or request rate) and are higher when the response time SLA is
more strict. Further, scale-up is more cost-effective than scale-
out when the SLA is more strict and when the load is low.
However, scale-out is more cost-effective than scale-up when
the load is high.

For the case of 25ms SLA in Figure 6(a), scale-up is the
optimal choice at low request rates, and provides significant
cost-savings over scale-out (about 64% at a load of 2 for 1
5-vCPU VM vs 14 1-vCPU VMs). However, scale-up cannot
achieve the required response time at a load of above 7 due
to the nature of service time scaling explained in Section IV.
For high loads, scale-out is superior to scale-up, but is still
significantly more expensive than optimal (more than 3 times
costlier than optimal at a load of 8 for 53 1-vCPU VMs vs 4
4-vCPU VMs). As the response time target becomes less strict
in Figures 6(b) and 6(c), scale-out starts to approach optimal.
The cost savings of optimal over scale-out for response time
targets of 35ms and 45ms are about 29% (5 3-vCPU VMs vs
21 1-vCPU VMs) and 25% (6 2-vCPU VMs vs 16 1-vCPU
VMs) respectively, at a load of 8.

Figure 6 shows our analytical results for LINPACK in terms
of cost as a function of the load under scale-out, scale-up,
and optimal, for different response time SLAs. We again see
that optimal provides significant cost savings over individual
scaling options, and the savings increase with load and are
greater when the SLA is more strict. For the case of 5s SLA
in Figure 7(a), scale-up is more cost-effective than scale-out.
This is to be expected based on our initial experimental results
in Figure 1(b). However, for the case of 5.5s SLA and 6s SLA
in Figures 7(b) and 7(c) respectively, we see that scale-out
outperforms scale-up. This is because of the low β value (low

scale-up efficiency) for LINPACK (see Figure 3(b)), which
makes scale-up less desirable at high scale. This is to be
expected since a high scale-up value implies more OS and
lock contention at the VM as opposed to the “shared nothing”
scale-out option.

B. Analysis of the optimal scaling option

We now further examine the optimal scaling in order to better
understand the optimal resource allocation. Figure 8 shows
the resource allocation under the optimal scaling policy for
different loads as a function of β. Here, we assume the
parameters of the RUBiS workload setup except for β (that is,
SLA and Sapp(1)). The number of rectangles in each vertical
bar represents the number of VMs in that allocation, and the
height of each rectangle represents the number of vCPUs. We
restrict our analysis to homogeneous VM configurations only.

We see that the optimal scaling prefers larger VMs (scale-up)
as β increases. This is to be expected since β represents the
scale-up efficiency of the workload. Interestingly, we see that
the optimal VM size (number of vCPUs per VM) for a given
β does not change with load, except for the case of β = 1.
Thus, the optimal allocation can be viewed as scaling out the
optimal-sized VM based on the load. Importantly, we find that
the cost (total number of vCPUs) of optimal scaling decreases
with β. Thus, it is less expensive to scale workloads that have
high scale-up efficiency.

Figure 9 shows the resource allocation under the optimal
scaling policy for different loads as a function of β. Here,
we assume the parameters of the LINPACK workload setup
except for β. We again see that the optimal scaling prefers
larger VMs as β increases, and the optimal VM size for a
given β appears to be insensitive to load. We also see that the
cost of optimal scaling decreases significantly with β.
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(a) Load = 3 (b) Load = 5 (c) Load = 7

Fig. 8: Optimal allocation as a function of β for various loads assuming the RUBiS workload setup. The number of rectangles
in each vertical bar represents the number of VMs and the height of each rectangle represents the number of vCPUs.

(a) Load = 3 (b) Load = 5 (c) Load = 7

Fig. 9: Optimal allocation as a function of β for various loads assuming the LINPACK workload setup. The number of rectangles
in each vertical bar represents the number of VMs and the height of each rectangle represents the number of vCPUs.

VI. RELATED WORK

There has been a lot of work on pure scale-out, or horizontal
scaling [25], [26], [27], and pure scale-up, or vertical scal-
ing [28], [29], [30], of applications. There has been much less
work on combined scale-out and scale-up. A comparison of
scale-out and scale-up architectures is presented in [31], [32],
where the need for an automated approach for comparison
among the two scaling options is advocated. The availability
of different scaling options in the cloud makes the choice of
scaling difficult, causing practitioners to often make incorrect
choices [33]. The advantages and challenges of combined
scale-out and scale-up were empirically analyzed in [34], [35],
[36], [37]. An experimental evaluation of scale-out vs scale-
up architectures for commercial workloads was carried out
in [38], [39], [40] where it was concluded that scale-out
offers better cost-performance tradeoff compared to scale-up.
However, some recent studies [30], [41] argue that scale-up can
achieve comparable, and sometimes, even better performance
than scale-out for certain workloads. All of the above cited
works focus solely on experimental research for evaluating the
tradeoffs between scale-out and scale-up. To the best of our
knowledge, our work is the first to propose and validate an
analytical model for evaluating different scaling options.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an analytical model to understand the
impact of workload characteristics on the efficacy of scale-out
and scale-up in the cloud. We examine the core scalability
of sequential and parallel workloads, and model its effects on
performance scaling. Our model provides great accuracy when
compared with implementation results, and is very useful in
determining the optimal scaling for any given workload as a
function of workload demand and required SLA.

Our results indicate that combining scale-up and scale-out can
provide significant cost savings over pure scale-up or pure
scale-out. Further, we find that scale-up is typically superior to
scale-out when the SLA is strict, whereas scale-out is typically
superior to scale-up when the load is high. Importantly, we
find that the relative ordering of the different scaling options
depends critically on the workload characteristics. For work-
loads that have high scale-up efficiency, vertical scaling is
near-optimal for all SLAs and loads. Further, the total amount
of resources required by a workload for meeting its SLA
decreases with an increase in the scale-up efficiency.

In our experiments with RUBiS, there are multiple request
types concurrently running on the system. For simplicity,
we only focus on the performance of a single request type
(browse), and restrict our application performance model in
Section IV to a single request type system. However, it is
possible to extend our performance modeling to workloads
with multiple request types, as in our previous work [23].

Our performance metric in this paper is mean response time.
We can extend our approach to capture other metrics as well,
such as higher percentiles of response time, or combinations
of metrics such as response time and latency. However, we do
require the performance metric(s) to be expressed in terms of
system variables, as in Equation (1). An alternative approach
would be to model the system as a black-box, and infer
the relationship between performance and observable system
parameters. Such a black-box modeling approach, however,
does have its limitations. For example, a 100% cpu usage is
not surprising for a batch workload, such as Hadoop, but is
alarming, and indicates the need for scaling in the case of
transactional workloads, such as RUBiS.

For the workloads in this paper, we only focused on scaling
compute resources. In the future, we will consider workloads,
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such as Hadoop, that require the scaling of multiple resources
including compute, I/O, and network.

Our modeling efforts in this paper represent the first step
towards the development of an automated optimal scaling
solution for cloud applications. As part of future work, we will
leverage our model to build an online scaling service for cloud
applications that will execute the most cost-effective scale-out
and scale-up actions in response to varying workload demand
while taking the workload characteristics into account.
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