Analyzing the Power Consumption of the Mobile Page Load

Yi Cao Javad Nejati  Pavan Maguluri

Aruna Balasubramanian

Anshul Gandhi

Stony Brook University
{yicao1, jnejati, smaguluri, arunab, anshul} @cs.stonybrook.edu

1. INTRODUCTION

A large portion of today’s Web traffic comes from mo-
biles devices. User experience of mobile Web pages has be-
come an important factor that content providers and service
providers want to improve. One metric for evaluating user
experience is the mobile Web performance, specifically the
page load time (PLT). While improving mobile Web per-
formance has drawn increasing attention [2], most optimiza-
tions tend to overlook an important metric, energy. PLT and
energy are distinct metrics; we observe in our experiments
that these metrics may not always be correlated. Given the
importance of battery life for mobile users, we argue that
Web page optimizations should also be evaluated for their
impact on energy consumption.

However, examining the energy effects of a Web optimiza-
tion is challenging, even if one has access to power monitors,
for several reasons. First, Web page loads experience high
variance due to network conditions and device scheduling.
Our own experiments show that the energy consumption of
a Web page can vary by about 30% under the same exper-
imental setup. Second, Web pages can be highly complex
since they are composed of distinct components, which are
individual page load activities such as loading objects, pars-
ing the page, or evaluating Javascript. There are also many
levels of dependencies among those components during the
page load process. Without detailed application-level se-
mantics, it is hard to tease out the energy contribution of
each component. Third, the page load process is short-lived,
ranging from several milliseconds to a few seconds. Although
different power models [3, 5] for mobile devices have been
proposed, they do not work well for such short-lived appli-
cations. This is because such models require fine-grained
resource monitoring, which incurs substantial overhead and
impacts model accuracy.

2. RECON

We present RECON(REsource- and COmpoNent-based
modeling), a model that addresses all of the challenges out-
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Figure 1: Using WProf-M to decompose the com-
ponents when loading the instagram.com Web page.

lined above to accurately predict the energy consumption
of any mobile Web page load. The design of RECON is
motivated by the fact that resource monitoring incurs sig-
nificant overheads at fine-grained time scales, and does not
provide insights into the page load process. Instead, RE-
CON collects resource-level data at coarse granularity, and
then exploits low-level page load semantics. RECON ex-
tracts page load semantics using WProf-M [4], a tool that
decomposes the page load process into various components.
In effect, RECON augments coarse-grained resource moni-
toring with component-level information, resulting in high
prediction accuracy and providing benefits over individual
resource-only or component-only models.

Our modeling approach breaks down the page load process
into “segments”, where a segment is defined as an interval of
page load activity during which the components of the Web
page do not change. By definition, a segment is composed
of at least one component. Further, the entire page load
process can be partitioned into discrete (non-overlapping)
segments. Figure 1 shows how we partition a page load into
segments using WProf-M’s component-level decomposition.
We then model the power consumption of a segment, s, as:

p, = wo + Z wiRi+Z’LUj7 1)

1€ Resources JEs

where i represents the various resources we monitor, includ-
ing CPU utilization and frequency, bytes and packets trans-
mitted through the WiF'i interface; R; represents the average
value for that resource during s; j represents a component,
and thus j € s is the set of all components that make up
segment s; finally, w; and w; are coefficients (independent
of s) representing the power contribution of the resources
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Figure 2: Actual vs. predicted energy consumption
for 6 popular Web pages.

and components. wy is also a coefficient, and represents the
baseline power consumption of the phone which could be
attributed to background activities, screen brightness, etc.
Our next task is to determine the values of these coefficients.

We use multiple linear regression to derive the weights
vector, w, that is indicative of the power contribution of each
component and resource, and the baseline power. Once we
derive the weights, we can compute the energy consumption
of the segment by multiplying the predicted power with the
segment length (obtained via WProf-M); summing over all
segments gives us the Web page energy consumption.

In the training period, we monitor the ground-truth power
consumption by using the Monsoon Power Monitor [1]. We
train our regression model on nine instantiations of a given
Web page and test on the tenth instantiation. Owur error
results are based on a 10-fold cross validation.

3. RESULTS

We validate RECON on the Samsung Galaxy S4 and S5
devices using 50 popular Web pages chosen from alexa.com.
Our results show that RECON’s average prediction error for
energy consumption across these Web pages is 4.48%, and
the average segment-level energy consumption prediction er-
ror is less than 8.88%. Figure 2 shows the actual and pre-
dicted mean energy consumption for 6 popular Web pages,
and the confidence intervals around the predicted mean.

4. APPLICATIONS: OPTIMIZATION

An important application of RECON is studying the en-
ergy effects of Web optimizations. To that end, we consider
four popular optimizations: Compression, Minification, In-
lining and Ad-block. Our mean prediction error for Web
page energy consumption under these optimizations is a low
5.45%. In addition to accurately predicting the energy ef-
fects of an optimization, RECON also provides Web devel-
opers with several useful applications in optimization:

4.1 Breaking down total power consumption

RECON decomposes the total energy consumption of a
Web page into component-level energy consumption, so that
we know each component’s contribution to the total energy
consumption. For example, Figure 3 (left) shows the pre-
dicted per-component energy usage for alexa.com. Further,
RECON allows Web developers to visualize how an opti-
mization affects component-level energy consumption. Fig-
ure 3 (right) shows the change in predicted per-component
energy usage under compression for fico.com. We see that,
after compression, the energy consumption of evalhtml and
Javascript increases, indicating that compression is not use-
ful for these components. On the other hand, the energy
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Figure 3: Left: predicted per-component power
consumption for alexa.com; Right: changes in per-
component energy consumption for fico.com due to
compression.

consumption for text decreases, suggesting that text com-
pression is useful.

4.2 Analyzing why energy consumption changes

With the help of RECON, we can explore not only how but
also why energy consumption changes due to an optimiza-
tion. For example, the inlining optimization embeds all the
external Javascripts and CSS in the root HTML file. Inlin-
ing avoids small downloads, so the energy consumption due
to downloading decreases. However, inlining lengthens the
HTML evaluation, which, according to RECON, is a power-
hungry component. In our experiments with netfliz.com,
we found the total energy consumption increases on inlining
although the PLT decreases.

5. CONCLUSION

RECON provides Web developers with quick and accu-
rate power predictions of the mobile page load. Moreover,
RECON helps users explore how and why energy consump-
tion changes due to an optimization. Our end-goal in this
research is to enable and promote simultaneous energy- and
performance-analysis of Web pages; RECON is an impor-
tant step in this direction.
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