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ABSTRACT

We consider online convex optimization (OCO) problems
with switching costs and noisy predictions. While the design
of online algorithms for OCO problems has received consid-
erable attention, the design of algorithms in the context of
noisy predictions is largely open. To this point, two promis-
ing algorithms have been proposed: Receding Horizon Con-
trol (RHC) and Averaging Fixed Horizon Control (AFHC).
The comparison of these policies is largely open. AFHC has
been shown to provide better worst-case performance, while
RHC outperforms AFHC in many realistic settings. In this
paper, we introduce a new class of policies, Committed Hori-
zon Control (CHC), that generalizes both RHC and AFHC.
We provide average-case analysis and concentration results
for CHC policies, yielding the first analysis of RHC for OCO
problems with noisy predictions. Further, we provide explicit
results characterizing the optimal CHC policy as a function
of properties of the prediction noise, e.g., variance and cor-
relation structure. Our results provide a characterization
of when AFHC outperforms RHC and vice versa, as well as
when other CHC policies outperform both RHC and AFHC.

1. INTRODUCTION

In an online convex optimization (OCO) problem, an algo-
rithm interacts with an environment in a sequence of rounds.
In round ¢ the algorithm chooses an action z; from a convex
decision/action space F, the environment reveals a convex
cost function h¢, and the algorithm pays cost h:(z:). The
goal of the algorithm is to minimize cost over a horizon T'.

OCO has a rich history, with applications in wide-ranging
areas of computer science and beyond [54, 27, 21, 50, 33,
34, 35, 36, 37]. In recent years, OCO has seen considerable
interest from applications in the networking and distributed
systems communities. In particular, OCO has enabled novel
designs for dynamic capacity planning, load shifting and de-
mand response for data centers [29, 34, 35, 36, 40|, geo-
graphical load balancing of internet-scale systems [33, 47],
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electrical vehicle charging [15, 29], video streaming [41, 25],
and thermal management of systems-on-chip [51, 52, 7].

Applications of OCO in the networking and distributed
systems communities typically differ in two significant ways
from the classical OCO literature: (i) actions incur switching
costs and (ii) noisy predictions about the future are available.

Switching costs capture the cost that is incurred by sys-
tems when moving from one state to another. This is mod-
eled by adding an extra term to the cost paid by the al-
gorithm in each round, i.e., the cost becomes h:(x:) + 3 ||
Z¢+ — Tt—1 ||, where || - || is a norm (often the one-norm), and
B € RT. This additional term models, e.g., the cost of turn-
ing servers on/off in dynamic capacity planning [29, 34, 35,
36, 40, 17] or the cost of changing a quality level in the case
of video streaming [24, 25]. The addition of switching costs
makes the algorithmic problem harder as it forces current
actions to depend on beliefs about future cost functions.

Predictions are of great importance in networking and dis-
tributed systems. Despite the considerable noise that is of-
ten inherent in forecasts, predictions can be extremely useful.
For example, predictions of future demand are critical in the
case of dynamic capacity planning in data centers to ensure
sufficient capacity [16, 30, 19, 29, 34, 35, 36, 40, 17]. Un-
fortunately, designing online algorithms that exploit noisy
predictions is an open, challenging topic.

In this paper, we focus on OCO problems that have both
switching costs and noisy predictions. While there is a sig-
nificant literature on OCO problems with switching costs
[13, 4, 20, 5, 33, 34, 6], there is much less work studying
the impact of predictions [33, 13, 34]. Further, the analytic
work that does focus on predictions typically assumes perfect
lookahead, the lone exception being Chen et al. [13].

Two promising algorithms. Perhaps the most natu-
ral starting point for studying algorithms for OCO prob-
lems with switching costs and noisy predictions is the class
of Model Predictive Control (MPC) algorithms. MPC is a
prominent and widely-studied class of algorithms in the con-
trol theory community [8, 48, 31, 12, 18, 38|, and much of
the work studying predictions in OCO problems has focused
on MPC and its variants, e.g., [33, 15, 14].

From these works, two promising algorithms have emerged:
Receding Horizon Control (RHC) and Averaging Fixed Hori-
zon Control (AFHC). (See Section 3 for formal definitions of
these two algorithms.) Both algorithms use a prediction hori-
zon/window of size w, but make decisions in very different
ways. RHC considers, at each point in time, the predictions
available in the current horizon, determines the trajectory of
w actions that minimize the cost within that horizon, and
then commits only the first action in that trajectory. By
contrast, AFHC works by averaging the actions of multi-
ple Fixed Horizon Control (FHC) algorithms, each of which
work similarly to RHC but commit to all w actions in a given
prediction horizon.



Receding Horizon Control (RHC) has a long history in the
control theory literature [8, 48, 31, 12, 18, 38|, but was first
studied analytically in the context of OCO in [33]. In [33],
RHC was proven to have a competitive ratio (the ratio of
the cost incurred by RHC to the cost incurred by the offline
optimal algorithm) of 1+ O(1/w) in the one-dimensional set-
ting, where w is the size of the prediction window. However,
the competitive ratio of RHC is 1+ Q(1) in the general case,
and thus does not decrease to one as the prediction window
grows in the worst case; this is despite the fact that predic-
tions are assumed to have no noise (the perfect lookahead
model). To this point there is no analytic work characteriz-
ing the performance of RHC with noisy predictions.

The poor worst-case performance of RHC motivated the
proposal of Averaging Fixed Horizon Control (AFHC) [33],
which provides an interesting contrast. While RHC is en-
tirely “forward looking”, AFHC keeps an “eye on the past”
by respecting the actions of FHC algorithms in previous
timesteps and thus avoids switching costs incurred by mov-
ing too quickly between actions. As a result, AFHC achieves
a competitive ratio of 1 + O(1/w) in both single and multi-
dimensional action spaces, under the assumption of perfect
lookahead, [33]. Further, strong guarantees on the perfor-
mance of AFHC have been established in the case of noisy
predictions [13].

Surprisingly, while the competitive ratio of AFHC is smaller
than that of RHC, RHC provides better performance than
AFHC in many practical cases. Further, RHC is seemingly
more resistant to prediction noise in many settings (see Fig-
ure 1 for an example), though no analytic results are known
for this case. Thus, at this point, two promising algorithms
have been proposed, but it is unclear in what settings each
should be used and it is unclear if there are other algorithms
that dominate these two proposals.

Contributions of this paper. The goal of this paper
is to provide new insights into the design of algorithms for
OCO problems with noisy predictions. In particular, our
results highlight the importance of commitment in online
algorithms, and the significant performance gains that can
be achieved by tuning the commitment level of an algorithm
as a function of structural properties of the prediction noise
such as variance and correlation structure.

In terms of commitment, receding horizon control (RHC)
and averaging fixed horizon control (AFHC) represent two
extreme algorithm designs — RHC commits to only one ac-
tion at a time whereas AFHC averages over algorithms that
commit to actions spanning the whole prediction horizon.
While the non-committal nature of RHC enables quick re-
sponse to improved predictions, it makes RHC susceptible to
switching costs. On the other hand, the cautious nature of
AFHC averts switching costs but makes it entirely dependent
on the accuracy of predictions.

Motivated by these deficiencies in existing algorithm de-
sign, we introduce a new class of policies, Committed Hori-
zon Control (CHC), that allows for arbitrary levels of com-
mitment and thus subsumes RHC and AFHC. We present
both average-case analysis (Theorems 1 and 6) and concen-
tration results (Theorems 7) for CHC policies. In doing so,
we provide the first analysis of RHC with noisy predictions.

Our results demonstrate that intermediate levels of com-
mitment can provide significant reductions in cost, to the
tune of more than 50% (e.g., Figure 4(a), Figure 5(a) and
Figure 6(a)). Further, our results also reveal the impact of
correlation structure and variance of prediction noise on the
optimal level of commitment, and provide simple guidelines
on how to choose between RHC and AFHC.

These results are enabled by a key step in our proof that
transforms the control strategy employed by the offline opti-
mal algorithm, OPT to the strategy of CHC via a trajectory

of intermediate strategies. We exploit the structure of our
algorithm at each intermediate step to bound the difference
in costs; the sum of these costs over the entire transforma-
tion then gives us a bound on the difference in costs between
OPT and CHC .

To summarize, this paper makes the following contribu-
tions to the literature on OCO with noisy predictions:

e We provide the first analysis of RHC for OCO problems
with noisy predictions.

e We characterize when RHC/AFHC is better as a func-
tion of the correlation structure and variance of predic-
tion noise.

We introduce and analyze a new class of Committed
Horizon Control (CHC) policies that generalizes AFHC
and RHC.

We highlight how the commitment level of a policy
should be tuned depending on structural properties of
prediction noise. By optimizing the level of commit-
ment, CHC policies can achieve performance improve-
ments of more than 50% over AFHC and RHC.

2. PROBLEM FORMULATION

We consider online convex optimization (OCO) problems
with switching costs and noisy predictions. We first intro-
duce OCO with switching costs (Section 2.1) and then de-
scribe the model of prediction noise (Section 2.2). Finally,
we discuss the performance metric we consider in this paper
— the competitive difference — and how it relates to common
measures such as regret and competitive ratio (Section 2.3).

2.1 OCO with switching costs

An OCO problem with switching costs considers a con-
vex, compact decision/action space F' C R™ and a sequence
of cost functions {hi, hs,...}, where each h; : F — RY is
convex, and F' is a compact set.

At time ¢, the following sequence occurs: (i) the online
algorithm first chooses an action, which is a vector z: € F C
R™, (ii) the environment chooses a cost function h; from a
set C, and (iii) the algorithm pays a stage cost h¢(z:) and a
switching cost 3||z: — z¢_1||, where 8 € RT, and ||-|| can be
any norm in R", and F' is bounded in terms of this norm,
ie, |lt—y|| <D forall z,y € F.

Motivated by path planning and image labeling problems
[45, 13, 42], we consider a variation of the above that uses
a parameterized cost function h¢(x¢) = h(x¢,y:), where the
parameter y; € R™ is the focus of prediction. This yields a
total cost over T rounds of

T
i 3 Wiy ur) + 8 e = il (1)

Note that prior work [13] considers only the case where
a least-square penalty is paid each round, i.e., an online
LASSO formulation with h(zs,y:) = % ||[ye — Kz¢||2. In this
paper, we consider more general h. We impose that h(x¢, y¢)
is separately convex in both x; and y; along with the follow-
ing smoothness criteria.

DEFINITION 1. A function h is a-Hdélder continuous in
the second argument for o € RY, i.e., for all x € F, there
exists G € RY, such that

|h(z,y1) — h(z,y2)| < Gllyr — y2ll5 Yy, v

G and a control the sensitivity of the cost function to a dis-
turbance in y.

For this paper, we focus on a < 1, since the only a-Holder
continuous function with « > 1 is the constant function [2].



When a = 1, h is G-Lipschitz in the second argument; if h
is differentiable in the second argument, this is equivalent to
Hayh(m7y)||2 S G7 Vx»y-

2.2 Modeling prediction noise

Predictions about the future play a crucial role in almost
all online decision problems. However, while significant effort
has gone into designing predictors, e.g., [63, 43, 44, 26], much
less work has gone into integrating predictions efficiently into
algorithms. This is, in part, due to a lack of tractable, prac-
tical models for prediction noise. As a result, most papers
that study online decision making problems, such as OCO,
use numerical simulations to evaluate the impact of predic-
tion noise, e.g., [1, 3, 36, 40].

The papers that do consider analytic models often use ei-
ther i.i.d. prediction noise or worst-case bounds on predic-
tion errors for tractability. An exception is the recent work
[13, 15] which introduces a model for prediction noise that
captures three important features of real predictors: (i) it
allows for correlations in prediction errors (both short range
and long range); (ii) the quality of predictions decreases the
further in the future we try to look ahead; and (iii) predic-
tions about the future are refined as time passes. Further,
[13] shows that it is tractable in the context of OCO. Thus,
we adopt the model from [13] for this paper.

Specifically, throughout this paper we model prediction
error via the following equation:

ye—yir = »_ [t —s)els), (2)

s=1+1

where g, is the prediction of y; made at time 7 < t. This
model characterizes prediction error as white noise being
passed through a causal filter. In particular, the prediction
error is a weighted linear combination of per-step noise terms
e(s) with weights f(t —s), where f is a deterministic impulse
response function. The noise terms e(s) are assumed to be
uncorrelated with mean zero and positive definite covariance
R.; let 02 = tr(R.). Further, the impulse response function
f is assumed to satisfy f(0) =1 and f(¢) = 0 for t < 0.

Note that i.i.d. prediction noise can be recovered by im-
posing that f(0) = I and f(¢t) =0 for all ¢ # 0. Further, the
model can represent prediction errors that arise from clas-
sical filters such as Wiener filters and Kalman filters (see
[13]). In both cases the impulse response function decays as
f(s) ~n® for some n < 1.

These examples highlight that the form of the impulse re-
sponse function captures the degree of short-term/long-term
correlation in prediction errors. The form of the correla-
tion structure plays a key role in the performance results we
prove, and its impact can be captured through the following
definition. For any k > 0, let || f||> be the two norm square
of prediction error covariance over k steps of prediction, i.e.,

k
1fel? = tr(BSyrdyi ) = tr(Re Y f(s)" f(5)),  (3)

s=0

where 6y} = Yirk—Yiir|e = ii’ZH ft+k—s)e(s). Deriva-
tion of (3) can be found in Appendix B.1 Equation (19).

2.3 The competitive difference

For any algorithm ALG that comes up with feasible actions
zara,: € F,Vt, the cost of the algorithm over the horizon can
be written as

T

cost(ALG) = > h(zarc.,yt) + Bl|lrarcs — varci-1] (4)
t=1

We compare the performance of our online algorithm against
the optimal offline algorithm O PT', which makes the optimal
decision with full knowledge of the trajectory of y;.

T
cost(OPT) = ;I‘lé%tzzl h(ze,ye) + B llze — w1l (5)

The results in this paper bound the competitive difference
of algorithms for OCO with switching costs and prediction
noise. Informally, the competitive difference is the additive
gap between the cost of the online algorithm and the cost of
the offline optimal.

To define the competitive difference formally in our setting
we need to first consider how to specify the instance. To do
this, let us first return to the specification of the prediction
model in (2) and expand the summation all the way to time
zero. This expansion highlights that the process y: can be
viewed as a random deviation around the predictions made
at time zero, y|o := ¥, which are specified externally to the
model:

ye =Ge+ »_ f(t— s)e(s). (6)

Thus, an instance can be specified either via the process y:
or via the initial predictions g, and then the random noise
from the model determines the other. The latter is preferable
for analysis, and thus we state our definition of competitive
difference (and our theorems) using this specification.

DEFINITION 2. We say an online algorithm ALG has (ex-
pected) competitive difference at most p(T) if:

sup Ee [cost(ALG) — cost(OPT)] < p(T). (7

Note that the expectation in the definition above is with
respect to the prediction noise, (e(t))f—;, and so both terms
cost(ALG) and cost(OPT') are random. Unlike ALG, the
offline optimal algorithm OPT knows each exact realization
of e before making the decision.

Importantly, though we specify our results in terms of the
competitive difference, it is straightforward to convert them
into results about the competitive ratio and regret, which are
more commonly studied in the OCO literature. Recall that
the competitive ratio bounds the ratio of the algorithm’s
cost to that of OPT, and the regret bounds the difference
between the algorithm’s cost and the offline static optimal.

Converting a result on the competitive difference into a
result on the competitive ratio requires lower bounding the
offline optimal cost, and such a bound can be found in The-
orem 6 of [33]. Similarly, converting a result on the com-
petitive difference into a result on the regret requires lower
bounding the offline static optimal cost, and such a bound
can be found in Theorem 2 of [13].

3. ALGORITHM DESIGN

There is a large literature studying algorithms for online
convex optimization (OCQO), both with the goal of design-
ing algorithms with small regret and algorithms with small
competitive ratio.

These algorithms use a wide variety of techniques. For
example, there are numerous algorithms that maintain sub-
linear regret, e.g., online gradient descent (OGD) based al-
gorithms [54, 21] and Online Newton Step and Follow the
Approzimate Leader algorithms [21]. (Note that the classical
setting does not consider switching costs; however, [4] shows
that similar regret bounds can be obtained when switching
costs are considered.) By contrast, there only exist algo-
rithms that achieve constant competitive ratio in limited



settings, e.g., [34] shows that, when F is a one-dimensional
normed space, there exists a deterministic online algorithm
that is 3-competitive. This is because, in general, obtain-
ing a constant competitive ratio is impossible in the worst-
case: [10] has shown that any deterministic algorithm must
be Q(n)-competitive given metric decision space of size n
and [9] has shown that any randomized algorithm must be
Q(4/logn/loglog n)-competitive.

However, all of the algorithms and results described above
are in the worst-case setting and do not consider algorithms
that have noisy predictions available. Given noisy predic-
tions, the most natural family of algorithms to consider come
from the family of Model Predictive Control (MPC) algo-
rithms, which is a powerful, prominent class of algorithms
from the control community. In fact, the only analytic re-
sults for OCO problems with predictions to this point have
come from algorithms inspired by MPC, e.g., [8, 48, 31, 12].
(Note that there is a large literature on such algorithms in
control theory, e.g., [18, 38] and the references therein, but
the analysis needed for OCO is different than from the sta-
bility analysis provided by the control literature.)

To this point, two promising candidate algorithms have
emerged in the context of OCO: Receding Horizon Control
(RHC) [32] and Averaging Fixed Horizon Control (AFHC)
[33]. We discuss these two algorithms in Section 3.1 below
and then introduce our novel class of Committed Horizon
Control (CHC) algorithms, which includes both RHC and
AFHC as special cases, in Section 3.2. The class of CHC
algorithms is the focus of this paper.

3.1 Two promising algorithms

At this point the two most promising algorithms for in-
tegrating noisy predictions into solutions to OCO problems
are RHC and AFHC.

Receding Horizon Control (RHC): RHC operates by
determining, at each timestep ¢, the optimal actions over
the window (¢ + 1,¢ 4+ w), given the starting state z; and a
prediction window (horizon) of length w.

To state this more formally, let y.,, denote the vector
(Yr41|7> - - - » Yr+w|r), the prediction of y in a w timestep pre-
diction window at time 7. Define X7 **(z,,.|,) as the vector
in F'* indexed by t € {T+1,...,7+w}, which is the solution
to

T+w TH+w

min Z h(mt,yqr) + Z Bllxe — me—1], (8)

TrglrmTrqw 1 Pl
subject to x; € F.

ALGORITHM 1  (RECEDING HORIZON CONTROL). For all
t <0, set trac,t = 0. Then, at each timestep T > 0, set

TriCr11 = X1 (@rHO T, Y.|7) (9)

RHC has a long history in the control theory literature,
e.g., [8, 18, 38, 12]. However, there are few results known in
the OCO literature, and most such results are negative. In
particular, the competitive ratio of RHC with perfect looka-
head window w is 1+O(1/w) in the one-dimensional setting.
The performance is not so good in the general case. In par-
ticular, outside of the one-dimensional case the competitive
ration of RHC is 1 + Q(1), i.e., the competitive ratio does
not decrease to 1 as the prediction window w increases in
the worst case [34].

Averaging Fixed Horizon Control (AFHC): AFHC
provides an interesting contrast to RHC. RHC ignores all his-
tory — the decisions and predictions that led it to be in the
current state — while AFHC constantly looks both backwards
and forwards. Specifically, AFHC averages the choices made

by Fixed Horizon Control (FHC) algorithms. In particular,
AFHC with prediction window size w averages the actions of
w FHC algorithms, each with different predictions available
to it. At time ¢, a FHC algorithm determines the optimal
actions Ti41,...,Tt+w given a prediction window (horizon)
of length w as done in RHC. But, then FHC implements all
actions in the trajectory xiy1,...,Tt+w instead of just the
first action z;. Fixed Horizon Control algorithms are individ-
ually more naive than RHC, but by averaging them AFHC
can provide improved worst-case performance compared to
RHC. To define the algorithm formally, let

Qu={i:i=k modw}N[-w+1,T]fork=0,...,w—1

ALGORITHM 2  (FIXED HORIZON CONTROL, VERSION k).
FHCU“)(w), is defined in the following manner. For all
t <0, set xi-fl)ic’t = 0. At timeslot T € Qi (i.e., before

Yr+1 is revealed), for allt € {T+1,...,7 +w}, use (8) to
set

k T+1 k
xiw){c,t =Xy * (mg«“z){c,fvylf) : (10)

Note that, for £ > 1, the algorithm starts from 7 = k — w

rather than 7 = k in order to calculate xg%at for t < k.
While individual FHC can have poor performance, sur-

prisingly, by averaging different versions of F'HC we can ob-

tain an algorithm with good performance guarantee. Specif-
ically, AFHC is defined as follows.

ALGORITHM 3  (AVERAGING FIXED HORIZON CONTROL).
For all k, at each timeslot T € Q, use FHC™ to determine

xgl){C,TJrlf c mgfl){CJui»w’ and fort=1,...,T, set
1 w—1
TAFHC® = Z wg‘?—]C,t' (11)
k=0

In contrast to RHC, AFHC has a competitive ratio of 1+
O(1/w) regardless of the dimension of the action space in the
perfect lookahead model [33]'. This improvement of AFHC
over RHC is illustrated in Figure 1(a), which shows for a
specific setting with perfect lookahead, AFHC approaches
the offline optimal with increasing prediction window size
while RHC is relatively constant. (The setting used for the
figure uses a simple model of a data center with a multi-
dimensional action space, and is described in Appendix A.)

Comparing RHC and AFHC: Despite the fact that
the worst-case performance of AFHC is dramatically better
than RHC, RHC provides better performance than AFHC
in realistic settings when prediction can be inaccurate in the
lookahead window. For example, Figure 1(b) highlights that
RHC can outperform AFHC by an arbitrary amount if the
predictions are noisy. Specifically, if we make predictions
accurate for a small window + and then inaccurate for the
remaining (w — 7y) steps of the lookahead window, AFHC
is affected by the inaccurate predictions whereas RHC only
acts on the correct ones. The tradeoff between the worst-
case bounds and average-case performance across AFHC and
RHC is also evident in the results shown in Figure 3 of [33].

The contrast between Figure 1(a) and 1(b) highlights that,
at this point, it is unclear when one should use AFHC/RHC.
In particular, AFHC is more robust but RHC may be better
in many specific settings. Further, the bounds we have de-
scribed so far say nothing about the impact of noise on the
performance (and comparison) of these algorithms.

1Note that this result assumes that there exists eg > 0, s.t. h(z,y) >
eo - x,Vx,y, and the switching cost is 3 - (z¢ — z¢—1)" where (z)T =
max(z,0).
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Figure 1: Total cost of RHC and AFHC, normal-
ized by the cost of the offline optimal, versus: (a)
prediction window size, (b) number of steps of per-
fect prediction with w = 10. Note (a) and (b) were
produced under different cost settings, see Appendix

A.

3.2 A general class of algorithms

The contrast between the performance of receding horizon
control (RHC) and averaging fixed horizon control (AFHC)
in worst-case and practical settings is a consequence of the
fact that RHC is entirely “forward looking” while AFHC
keeps an “eye on the past”. However, both algorithms are
extreme cases in that RHC does not consider any informa-
tion that led it to its current state, while AFHC looks back
at w FHC algorithms — every set of predictions that led to
the current state.

One way to view this difference between RHC and AFHC
is in terms of commitment. In particular, AFHC has FHC
algorithms that commit to the w decisions at each timestep
and then the final choice of the algorithm balances these
commitments by averaging across them. In contrast, RHC
commits only one step at a time.

Building on this observation, we introduce the class of
Committed Horizon Control (CHC) algorithms. The idea
behind the class is to allow commitment of a fixed number,
say v, of steps. The minimal level of commitment, v = 1,
corresponds to RHC and the maximal level of commitment,
v = w, corresponds to AFHC. Thus, the class of CHC algo-
rithms allows variation between these extremes.

Formally, to define the class of CHC algorithms we start
by generalizing the class of FHC algorithms to allow limited
commitment. An FHC algorithm with commitment level v
uses a prediction window of size w but then executes (com-
mits to) only the first v € [1,w] actions which can be visu-
alized by Figure 2. To define this formally, let

Up={i:i=k modov}Nn[-v+1,T]for k=0,...,0—1.

Fixed horizon control with lookahead window w and com-
mitment level v, FHC® (v, w), is defined in the following
manner. For notational convenience, we write z® (k)

ALGORITHM 4
allt <0, set ng}{c,t = 0. At timeslot T € ¥y, (i.e., before
Yr+1 18 revealed), for allt € {T+1,...,7+v}, use (8) to set

xgk) = XtT+1 (x(Tk),y‘T) .

Note that, for £ > 1, the algorithm starts from 7 = k — v
rather than 7 = k in order to calculate :vgk)A We can see
that FHC with limited commitment is very similar to FHC
as both use (8) to plan w timesteps ahead, but here only the
first v steps are committed to action.

CHC(v,w), the CHC algorithm with prediction window
w and commitment level v, averages over v FHC algorithms

(12)

= J"FHC’('U,'UJ) .

(FHC wiTH LIMITED COMMITMENT). For

Figure 2: Fixed Horizon Control with commitment
level v: optimizes once every v timesteps for the next
w timesteps and commits to use the first v of them.

with prediction window w and commitment level v. Figure
3 provides an overview of CHC. For conciseness in the rest
of the paper, we will use .T,Ek) to denote the action decided
by FHC™® (v, w) at time t¢.

at each

Committed Horizon Control:
timestep, it averages over all v actions defined by
the v FHC algorithms with limited commitment.

Figure 3:

ALGORITHM 5
timeslot T € Uy, use FHC™ (v,w) to determine x(TIi)l, e
:rgfgv, and at timeslot t € 1,...,T, CHC(v,w) sets

v—1

1 Z (k)
xT = — T
CHC,t v t

k=0

(13)

RHC and AFHC are the extreme levels of commitment in
CHC policies and, as we see in the analysis that follows, it
is often beneficial to use intermediate levels of commitment
depending on the structure of prediction noise.

4. AVERAGE-CASE ANALYSIS

We now present the main technical results of this paper,
which analyze the performance of committed horizon con-
trol (CHC) algorithms and address several open challenges
relating to the analysis of receding horizon control (RHC)
and averaging fixed horizon control (AFHC). In this section
we characterize the average case performance of CHC as a
function of the commitment level v of the policy and prop-
erties of the prediction noise, i.e., the variance of prediction
noise e(s) and the form of the correlation structure, f(s).
Concentration bounds are discussed in Section 5. All proofs
are presented in Appendix B.

Our main result establishes bounds on the competitive dif-
ference of CHC wunder noisy predictions. Since CHC gen-
eralizes RHC and AFHC, our result also provides the first
analysis of RHC with noisy predictions and further enables
a comparison between RHC and AFHC based on the prop-
erties of the prediction noise.

Prior to this paper, only AFHC has been analyzed in the
case of OCO with noisy predictions [13]. Further, the anal-
ysis of AFHC in [13] depends delicately on the structure of

(CoMMITTED HORIZON CONTROL). At each



the algorithm and thus cannot be generalized to other poli-
cies, such as RHC. Our results here are made possible by a
novel analytic technique that transforms the control strat-
egy employed by OPT, one commitment length at a time, to
the control strategy employed by FHC® (v, w). At each in-
termediate step, we exploit the optimality of FHC™ (v, w)
within the commitment length to bound the difference in
costs; the sum of these costs over the entire transformation
gives a bound on the difference in costs between OPT and
FHC® (v, w). We then exploit Jensen’s inequality to extend
this bound on competitive difference to CHC.

Theorem 1 below presents our main result characterizing
the performance of CHC algorithms under noisy predictions
for functions that are a-Hélder continuous in the second ar-
gument; in particular, @ = 1 corresponds to the class of func-
tion that is Lipschitz continuous in the second argument.

THEOREM 1. Assuming that the prediction error follows
(2), then for h that is a-Hélder continuous in the second
argument, we have

v—1
2TB8D 2GT
Eeost(CHC) < Eeost(OPT) + 202 4 29T 5 p e (1)
v v
k=0

Note that, while Theorem 1 is stated in terms of the compet-
itive difference, it can easily be converted into results about
the competitive ratio and regret as explained in Section 2.

There are two terms in the bound on the competitive dif-
ference of CHC: (i) The first term 2722 can be interpreted
as the price of switching costs due to limited commitment;
this term decreases as the commitment level v increases. (ii)
The second term 29T SV~ 1| f;||* represents the impact of
prediction noise on the competitive difference and can be
characterized by ||fx|| (defined in (3)), which is impacted
by both the variance of e(s) and the structural form of the
prediction noise correlation, f(s).

Theorem 1 allows us to immediately analyze the perfor-
mance of RHC and AFHC as they are special cases of CHC.
We present our results comparing the performance of RHC
and AFHC by analyzing how the optimal level of commit-
ment, v, depends on properties of the prediction noise.

In order to make concrete comparisons, it is useful to con-
sider specific forms of prediction noise. Here, we consider
four cases: (i) i.i.d. prediction noise, (ii) prediction noise with
long range correlation, (iii) prediction noise with short range
correlation, and (iv) prediction noise with exponentially de-
caying correlation. All four cases can be directly translated
to assumptions on the correlation structure, f(-). Recall that
many common predictors, e.g., Wiener and Kalman filters,
yield f that is exponentially decaying.

i.i.d. prediction noise. The assumption of i.i.d. predic-
tion noise is idealistic since it only happens when the forecast
for y; is optimal based on the information prior to time ¢ for
all t = 1,...,T [23]. However, analysis of the i.i.d. noise is
instructive and provides a baseline for comparison with more
realistic models. In this case, Theorem 1 can be specialized
as follows. Recall that E[e(s)e(s)”] = Re, and tr(R.) = o°.

COROLLARY 2. Consider i.i.d. prediction error, i.e.,

o=

If h satisfies is a-Hélder continuous in the second argument,
then the expected competitive difference of CHC' is upper
bounded by

s=0
otherwise.

278D

Ecost(CHC) <Ecost(OPT) + — +2GTo",

which is minimized when v* = w.

This can be proved by simply applying the form of f(s) to
(14). Corollary 2 highlights that, in the i.i.d. case, the level
of commitment that minimizes the competitive difference al-
ways coincides with the lookahead window w, independent
of all other parameters. This is intuitive since, when pre-
diction noise is i.i.d., increasing commitment level does not
increase the cost due to prediction errors. Combined with
the fact that increasing the commitment level decreases the
costs incurred by switching, we can conclude that AFHC' is
optimal in the i.i.d. setting.

Long range correlation. In contrast to i.i.d. predic-
tion noise, another extreme case is when prediction noise
has strong correlation over a long period of time. This is
pessimistic and happens when past prediction noise has far-
reaching effects on the prediction errors in the future, i.e., the
current prediction error is sensitive to errors in the distant
past. In this case, prediction only offers limited value since
prediction errors accumulate. For long range correlation, we
can apply Theorem 1 as follows.

COROLLARY 3. Consider prediction errors with long range
correlation such that

c, s<1L

1l ={g 57

where L > w. If h is a-Hélder continuous in the second ar-

gument, the expected competitive difference of CHC' is upper

bounded by

2TBD(a+2) — 4GTc%0® _;

v

a4+ 2

2T GTc 0 )0

—v

a+2

Ecost(CHC) — Ecost(OPT) <

If % > a(2w)l+% + 2, then v* = w; if % < ai“,
then v* = 1, otherwise v* is in between 1 and w.

Corollary 3 highlights that, in the case of long range correla-
tion, the level of commitment that minimizes the competitive
difference depends on the variance o2, the switching cost 3,
the smoothness G, «, and diameter of the action space D.
The term fozr = can be interpreted as a measure of the
relative importance of the switching cost and the prediction
loss. If Gfaiia = 0%_2 € O(1), i.e., the one step loss due
to prediction error is on the order of the switching cost,
then v* = 1 and RHC optimizes the performance bound;
if ae = a(2w)'*2 42 € Q(w), then v* = w and AFHC
optimizes the performance bound. Otherwise, v* € (1, w).
We illustrate these results in Figure 4(a) which plots the
competitive difference as a function of the commitment level

for various parameter values. The case for the dashed line
satisfies % > a(2w)* % 4 2 and shows competitive dif-
ference decreases with increasing levels of commitment. Here,
the window size is 100, and thus AFHC minimizes the com-
petitive difference, validating Corollary 3. The dot-dashed

. . D . .
line satisfies < —2_ and shows the increase in com-

B

GcXo™ a+2

petitive difference with commitment, highlighting that RHC
is optimal. The solid line does not satisfy either of these
conditions and depicts the minimization of competitive dif-
ference at intermediate levels of commitment (marked with
a circle). Figure 4(b) illustrates the relationship between o
and the optimal commitment level v* (marked with a circle
that corresponds to the same v* as in Figure 4(a)). As «
increases, the prediction loss increases, and thus the optimal
commitment level decreases to allow for updated predictions.

Short range correlation. Long range correlation is clearly
pessimistic as it assumes that the prediction noise is always
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Figure 4: Illustration of Corollary 3, for long range
dependencies. (a) shows the time averaged expected
competitive difference as a function of the commit-
ment level, and (b) shows the optimal commitment
level as a function of a.

correlated within the lookahead window. Here, we study an-
other case where prediction noise can be correlated, but only
within a small interval that is less than the lookahead win-
dow w. This is representative of scenarios where only limited
past prediction noises affect the current prediction. For such
short range correlation, Theorem 1 gives us:

COROLLARY 4. Consider prediction errors with short range
correlation such that

sl = {5

where L < w. If h is a-Hélder continuous in the second ar-
gument, the expected competitive difference of CHC is upper
bounded by:

ifv>1L

s<L
s> L,

2TBD

Ecost(CHC) — Ecost(OPT) < 0 + 2GT(co)™(L + 1)*/?

2GT (co)® a2 '
» a+2((L+1) (L —2) + 1);
ifv<L
Ecost(CHC) — Ecost(OPT) < 218D
v
4GTc"c” (a+2)/2
ot (v+1) 1).
If 552+ > H(L), where H(L) = (L +1)*/*(aL —
2) + 1), then v* = w; if % < min(H(L),D%_Q), then

v* =1, otherwise v* is in between 1 and w.

Corollary 4 shows that the structure of the bound on the
competitive difference itself depends on the relative values
of v and L. In terms of the optimal commitment level,
Corollary 4 shows that, similar to Corollary 3, the term

Gcﬁaiia comes into play; however, unlike Corollary 3 (where
L > w), the optimal commitment level now also depends
on the length of the interval, L, within which prediction er-
rors are correlated. Note that H(L) is increasing in L. If
% > H(L), i.e., the prediction loss and L are small com-
pared to the switching cost, then v* = w and thus AFHC
optimizes the performance bound. On the other hand, if
the prediction loss and L are large compared to the switch-
ing cost, then v* = 1, and thus RHC' optimizes the bound;
otherwise, v* lies is between 1 and w, and thus intermedi-
ate levels of commitment under CHC perform better than

AFHC and RHC.
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Figure 5: Illustration of Corollary 4, for short range
correlations. (a) shows the time averaged expected
competitive difference as a function of the commit-
ment level, and (b) shows the optimal commitment
level as a function of «.

Note that when prediction noise is i.i.d., we have L = 0
and H(L) < 0; hence we have % > H(L) and thus
v™* = w, which corresponds to the conclusion of Corollary 2.

We illustrate these results in Figure 5(a), which plots the
competitive difference as a function of the commitment for
various parameter values. The dashed line satisfies % >
H(L) and shows the drop in competitive difference with
increasing levels of commitment. The competitive differ-
ence is lowest when the commitment level is 100, which
is also the window size, thus validating the optimality of
AFHC as per Corollary 4. The dot-dashed line satisfies
gCDJ < min(H (L), %H) and shows the increase in competi-
tive difference with commitment, highlighting that RHC is
optimal. The solid line does not satisfy either of these con-
ditions and depicts the minimization of competitive differ-
ence at intermediate levels of commitment. Figure 5(b) il-
lustrates the relationship between a and the optimal com-
mitment level v*. As « increases, loss due to prediction noise
increases; as a result, v* decreases.

Exponentially decaying correlation. Exponentially
decaying correlation is perhaps the most commonly observed
model in practice and is representative of predictions made
via Wiener [49] or Kalman [28] filters. For clarity of illus-
tration we consider the case of & = 1 here. In this case,
Theorem 1 results in the following corollary.

COROLLARY 5. Consider prediction errors with exponen-
tially decaying correlation, i.e., there exists a < 1, such that

ca®, $>0

sl = {5 20

If h is 1-Holder continuous, then the expected competitive
difference of CHC' is upper bounded by

218D  2GT
Ecost(CHC) — Ecost(OPT) < B T c;)'
v —a
a*(1 — a®**)GTco
v(1l — a?)?
When % > 2(%2&2) the commitment that minimizes the
performance bound is v* = w, i.e., AFHC minimizes the
2
performance bound. When % < 2<f+a>, v* =1, i.e., RHC

minimizes the performance bound.

Corollary 5 shows that when the prediction noise o and the
correlation decay a are small, the loss due to switching costs
is dominant, and thus commitment is valuable; on the other
hand, when o and a are large, then the loss due to inaccurate
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Figure 6: Illustration of Corollary 5, for exponen-
tially decaying correlations. (a) shows the time av-
eraged expected competitive difference as a function
of the commitment level, and (b) shows the optimal
commitment level as a function of the decay param-
eter, a.

predictions is dominant, and thus a smaller commitment is
preferable to exploit more updated predictions.

We illustrate these results in Figure 6(a), which plots the
competitive difference as a function of the commitment for

various parameter values. The dashed line satisfies gz >

and shows the drop in competitive difference with

a2
2(1-a?)
increasing levels of commitment. The competitive difference
is lowest when the commitment level is 100, which is also
the window size, thus validating the optimality of AFHC as
per Corollary 5. The dot-dashed line satisfies % > z(fiia)
and shows the increase in competitive difference with com-
mitment, highlighting that RHC is optimal. The solid line
does not satisfy either of these conditions and depicts the
minimization of competitive difference at intermediate lev-
els of commitment. Figure 6(b) illustrates the relationship
between a and the optimal commitment level v*. As a in-
creases, correlation decays more slowly, thus the loss due to
prediction noise becomes dominant; as a result, v* decreases.

Strong convexity. All of our results to this point depend
on the diameter of the action space D. While this is common
in OCO problems, e.g., [54, 27], it is not desirable.

Our last result in this section highlights that it is possi-
ble to eliminate the dependence on D by making a stronger
structural assumption on h — strong convexity. In particular,
we say that h(-) is m—strongly convex in the first argument
w.r.t. the norm of the switching cost ||| if V&1, 22, ¥,

h(a1,y) = h(e2,y) 2 (O:h(@z,y) - (01 —22)) + 5 [l22 = ol

Strong convexity is used in the online learning literature to
obtain performance bounds that are independent of the di-
ameter of action space, see, e.g., [22, 46]. Under the assump-
tion of strong convexity, we obtain the following.

THEOREM 6. If h is m-strongly convex in the first argu-
ment with respect to ||-|| and a-Hdélder continuous in the sec-
ond argument, we have

2B%T

Ecost(CHC') — Ecost(OPT) <
mu

v—1
+2GT Y | full™

k=0

Theorem 6 is useful when the diameter of the feasible set
D is large or unbounded; when D is small, we can apply
Theorem 1 instead. As above, it is straightforward to apply
the techniques in Corollaries 2 — 5 to compute v* for strongly
convex h under different types of prediction noise?.

2We only need to change 8D with ,82/171 in the bounds of the corol-
laries to draw parallel conclusions.

5. CONCENTRATION BOUNDS

Our results to this point have focused on the performance
of CHC algorithms in ezpectation. In this section, we es-
tablish bounds on the distribution of costs under CHC algo-
rithms. In particular, we prove that, under a mild additional
assumption, the likelihood of cost exceeding the average case
bounds proven in Section 4 decays exponentially.

For simplicity of presentation, we state and prove the con-
centration result for CHC when the online parameter y is
one-dimensional. In this case, R, = ¢2, and the correlation
function f : N — R is a scalar valued function. The results
can be generalized to the multi-dimensional setting at the
expense of considerable notational complexity in the proofs.

Additionally, for simplicity of presentation we assume (for
this section only) that {e(t)}—; are uniformly bounded, i.e.,
e > 0, s.t. V¢, |e(t)] < e. Note that, with additional effort,
the boundedness assumption can be relaxed to e(t) being
subgaussian, i.e., E[exp(e(t)?/e?)] < 2, for some € > 0.

Given {§: }{—1, the competitive difference of CHC is a ran-
dom variable that is a function of the prediction error e(t).
To state our concentration results formally, let V1T be the
upper bound of the expected competitive difference of CHC'
in (14), ie., ViT = 2LBD | 26T 5~ )|

v v

THEOREM 7. Assuming that the prediction error follows
(2), and h is a-Holder continuous in the second argument,
we have

P(cost(CHC) — cost(OPT) > ViT + u)
—u?a?
< - 0
=oxp (21+2aG252TF(v) > ’

for any u > 0, where F(v) = (1 30" (v — ,’€)°‘|f(k:)|°‘)2

This result shows that the competitive difference has a
sub-Gaussian tail, which decays much faster than the nor-
mal large deviation bounds obtained by bounding moments,
i.e., Markov Inequality, the rate of decay is dependent on the
sensitivity of h to disturbance in the second argument (G, ),
the size of variation (¢), and the correlation structure (F(v)).
This is illustrated in Figure 7, where we show the distribu-
tion of the competitive difference of CHC under different
prediction noise correlation assumptions. We can see that,
for prediction noise that decays fast (i.i.d. and exponentially
decaying noise with small @) in Figure 7(a), the distribution
is tightly concentrated around the mean, whereas for predic-
tion noise that are fully correlated (short range correlation
and long range correlation) in Figure 7(b), the distribution
is more spread out.

If we consider the time-averaged competitive difference, or
the regret against the offline optimal, we can equivalently
state Theorem 7 as follows.

COROLLARY 8. Assuming that the prediction error follows
(2), and h is a-Hélder continuous, then probability that the
competitive difference of CHC' exceeds Vi can be bounded by

P <% [cost(CHC) — cost(OPT)] > Vi + u)

< —u?
> exp 2120220 F () /T )

where F(v) = (1 Z;(l)(v— /c)|f(l€)|°‘)2 Assuming f(s) <
C for s =0,...,v, then limr_o F(v)/T = 0 if either v €
O(1), or f(s) <cn® for somen < 1.

3This involves more computation and worse constants in the concen-
tration bounds. Interested readers are referred to Theorem 12 and
the following remark of [11] for a way to generalize the concentration
bound.
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of average-case bounds under different correlation
structures: (a) i.i.d prediction noise; exponentially
decaying, a = 2/3; (b) long range; short range, L = 4.
Competitive differences simulated with random re-
alization of standard normal e(¢) 1000 times under
the following parameter values: T = 100,v = 10,5D =
1,G=01l,a=1c=1.

Corollary 8 shows that, when either the commitment level
v is constant, or the correlation f(s) is exponentially decay-
ing, the parameter of concentration F(v)/T for the regret of
CHC tends to 0. The full proof is given in Appendix B.6.
To prove this result on the concentration of the competitive
difference, we make heavy use of the fact that h is a-Holder
continuous in the second argument, which implies that the
competitive difference is a-Holder continuous in e. This al-
lows application of the method of bounded difference, i.e.,
we bound the difference of V' (e) where one component of e
is replaced by an identically-distributed copy. More specif-
ically, we use the following lemma, the one-sided version of
one due to McDiarmid:

LEMMA 9  ([39], LEMMA 1.2). Let X = (X1,...,Xn) be
independent random variables and Y be the random variable
f(X1,...,X,), where function f satisfies|f(z) — f(z})]| < ck
whenever x and x}, differ in the kth coordinate. Then for
any t >0, P(Y —EY >t) gexp( 2t )

n 2
Xh=1%k

6. CONCLUDING REMARKS

Online convex optimization (OCO) problems with switch-
ing costs and noisy predictions are widely applicable in net-
working and distributed systems. Prior efforts in this area
have resulted in two promising algorithms — Receding Hori-
zon Control (RHC) and Averaging Fixed Horizon Control
(AFHC). Unfortunately, it is not obvious when each algo-
rithm should be used. Further, thus far, only AFHC has
been analyzed in the presence of noisy predictions, despite
the fact that RHC is seemingly more resistant to prediction
noise in many settings.

In this paper, we provide the first analysis of RHC with
noisy predictions. This novel analysis is made possible by
the introduction of our new class of online algorithms, Com-
mitted Horizon Control (CHC), that allows for arbitrary lev-
els of commitment, thus generalizing RHC and AFHC. Our
analysis of CHC provides explicit results characterizing the
optimal commitment level as a function of the variance and
correlation structure of the prediction noise. In doing so, we
characterize when RHC/AFHC is better depending on the
properties of the prediction noise, thus addressing an impor-

tant open challenge in OCO.

Our focus in this paper has been on the theoretical anal-
ysis of CHC and its implications for RHC and AFHC. The
superiority of CHC suggests that it is a promising approach
for integrating predictions into the design of systems, espe-
cially those that operate in uncertain environments. Going

forward, it will be important to evaluate the performance
of CHC algorithms in settings where RHC and AFHC have
been employed, such as dynamic capacity provisioning, geo-
graphical load balancing, and video streaming.
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APPENDIX
A. EXPERIMENTAL SETUP FOR FIG. 1

Setting for Figure 1(a): This example corresponds to
a simple model of a data center. There are (w + 1) types of
jobs and (w + 2) types of servers available to process these
jobs. Each server has a different linear cost {a(t),b,c: 0 <
a(t) < b < ¢} (low, medium, high respectively) depending
on the job type. The low cost is a monotonically increasing
function of time that asymptotically approaches the constant
medium cost (i.e. a(t) = a+ (b — a)5t, where 0 < a < b).
The switching cost S only applies when a server is turned
on (shut down costs can be included in the turning on cost)
and has a magnitude greater than the difference between
the medium and low costs (i.e. S > b — «). The high cost is
constant but greater than the difference between the medium
and low costs multiplied by the prediction window size plus
the switching cost. (i.e. ¢ > (b—a)w+ ). One special server
(server 0) can process all jobs with medium cost. Label all
other servers 1 through (w + 1) and all job types 1 through
(w4 1). Let server s € {1,...,w + 1} be able to process job
type s with low cost, job type s — 1 with high cost, and all
other job types with medium cost.

We assume perfect prediction within the prediction win-
dow, w. The trace that forms Figure 1(a), is one in which the
whole work load is only with one job type at each timestep
starting with job type 1 and sequentially cycles through all
job types every (w + 1) timesteps.

This forces RHC to switch every timestep and FHC to
switch every w timesteps to avoid a future high cost but
take advantage of a low cost at the current timestep.

The offline optimal puts all of the workload on server 0
that processes all jobs with medium cost and so never incurs
a switching cost after the first timestep.



RHC and AFHC try to take advantage of the low cost
but the trace tricks them with a high cost one timestep be-
yond the prediction window. Switching to server 0 is always
slightly too expensive by (b— oz)% within the prediction win-
dow. The values used in Figure 1(a) are as follows: cycling
workload of size 1 for 100 timesteps, « = 0.9, b =1, 8 = 2,
c=01(w+1)+3.

Setting for Figure 1(b): Similar to Figure 1(a), the
setting in which this example was constructed corresponds
to a simple model of a data center. The key difference is that
predictions are noisy. There are (w + 1) types of jobs and
(w+1) types of servers available to process these jobs. Each
server has a different linear cost {a,c: 0 < a < ¢} (low, high
respectively) depending on the job type. The switching cost
B only applies when a server is turned on (shut down costs
can be included in the turning on cost) and has a magnitude
less than the difference between the high and low cost (i.e.
B < ¢ —a). Label all servers 1 through (w + 1) and all job
types 1 through (w+1). Let server s € {1,...,w+ 1} be able
to process job type s with low cost, and all other job types
with high cost.

We assume perfect prediction within only the first y timesteps

of the prediction window, w. The trace that forms Figure
1(b), is one in which the whole work load is only with one job
type at each timestep starting with job type 1 and sequen-
tially cycles through all job types every (w + 1) timesteps.
Error in the last w — - timesteps of the prediction window is
produced by making those predictions be equal to the pre-
diction of the last perfect prediction (i.e. the v-th timestep
within the prediction window).

RHC equals the offline optimal solution in this setting
which is to switch the whole workload at every timestep to
the server with the unique low cost. AFHC on the other hand
puts (w—+)/w of the workload on servers with high cost and
only v/w of the workload on the server with the unique low
cost. The values used in Figure 1(b) are as follows: cycling
workload of size 1 for 30 timesteps, a =1, c =6, 5 =0.1.

B. PROOF OF ANALYTIC RESULTS

We first introduce some additional notation used in the

proofs. For brevity, for any vector x we write ;. ; = (x4, ..., ;)

for any i < j. Let ™ denote the offline optimal solution to
(5), and let the cost of an online algorithm during time pe-
riod [t1, t2] with boundary conditions g, zg and with online
data y¢,..t, be

ta

gz (z;ws;amiy) = Y h(@e,ye) + Bllzs, o |

t=tq

ta
+ Y Blleer, @l + Bz, zsl.

t=tq+1

If zg is omitted, then by convention xp = z:, (and thus
Bllze, —ze|| = 0). If x5 is omitted, then by convention x5 =
Z¢;—1. Note that g, +,(z) depends only on x; for t; — 1 <
1 < to.

B.1 Proof of Theorem 1

To characterize the suboptimality of CHC in the stochas-
tic case, we first analyze the competitive difference of fixed
horizon control with commitment level v, FHC*(v). With-
out loss of generality, assume that & = 0. Subsequently
we omit k and v in FHC for simplicity. Construct a se-
quence of T-tuples (£',€2,...,6M), where M1 = #{t €
[1,T] | t mod v = 1} < [T/v], such that &' = z* is the
offline optimal solution, and & = zrmc, for all t < Tv 41
hence, £M! = zrpo. At stage 7, to calculate €771 apply

FHC to get (Zrv+1, - -
f:v+1:(‘r+1)v with Z7y41:(r41)0 t0 get §

=,

By examining the terms in &7 and

o Ervtw) = X7 (£74, Y. 7v), and replace

T+1
, i.e.,

7677:117 :i‘TU+17 e i“("T+1)U7 g?‘r-&-l)v-&-ly LR é’;)

€71, we have

g, 7€) — 91,7 (€75)

=-4 sz7—+1)u+1 - HCZ‘TJrl)U + B sz‘TJrl)erl — E(r11)w

-3 ||m:—1}+1 — 5;'1,“ +8 H"ET’U+1 - E:v”

(r4+1)v

- > (aef,y) +Blat —2ia]))

t=1v+1
(t+1)v

+ > (@) + B @~ F-al) (15)

t=1v+1

By construction of (Zrv41,...,&(r41)v), it is the optimal
solution fOr gr.1,(r+1)0 (5 €503 (i 1)0415 ¥:+), hence

(T+1D)v
(R(Zt, yt)ro) + BT — Ze—1]l)
t=T1v+1
+ Bl Ero+1 — &Ll + B |E(r+1)0+1 — Er41)0 |
(T+1D)v
S Z (h(‘rr,ythv)"'[_}”x: _xr—IH)

t=1v+1

)

+8 Hm:’v+1 _SZUH + 5 "‘i(T+1)U+1 - I?‘r-&-l)v

Substituting the above inequality into (15) and by triangle
inequality, we have

a, (€ hy) —91,7(E5y)

(t+1)v
SQIB "wZT+1)U+1 7"i(7'+1)u+1H + Z |h(z;7yt\‘rv) - h(zZ7yt)|
t=1v+1
(t+1)v
+ Z |h(£t7yt) _h(jtvyth"u)l
t=rv+1
(T+1)v
<26D+2G Y lwr — werols (16)
t=T1v+1

Summing these inequalities from 7 = 0 to 7 = M; and
noting that &Mt = Tpael(v) and & =z, we have

My (t74+1)v

cost(FHC! (v)) gcost(OPT)+2M1,3D+2GZ Z ||yt7yt‘m||;

T=0t=71v+1

T «@
—cost(OPT) +2M18D + 2G> Hyt st H2 .
t=1
(17)
where ¢*(t) = argmingew, u<: |t —u|. For k=1, ¢*(t) = u
whenever u = 7v and t € [u,u + v — 1] for some 7. We only

have M; terms of the switching cost ||x’{T+1)v+1 — Z(r41)o41 H
since (My + 1)v+ 1 > T. By the same argument, we have

T
cost(FHCF(v)) < cost(OPT) + 2M 8D + QGZ Hyt = Yok (1) H2
t=1



Recall that xcrc: = %22:1 Ig@;c .» by convexity of the

cost function and Jensen’s inequality, we have

v—1
cost(CHC) < 1 Z cost(FHCF(v))
Y k=0

T v—1

2 Z > Hyi T Yt—ok (1) H

t=1k=0

<cost(OPT) + ——— 2T5D Qf zT: kz;) Hyt Yet—ok (1) H

T v—1

" ZZ vt = vee—aerylly - (

t=1k=0

2 v—1 M.BD
<cost(OPT) + 23 k=o MkBD
v

2T D
<cost(OPT) + —— B

where the third inequality is because Zz;é M, = T since
by definition M}, is the number of elements in [1,7] that
is congruent to £ modulus v; and the fourth inequality is
because for all ¢, t — ¢*(t) always range from 1 to v when k
goes from 0 to v — 1.

Finally, we show that EHyT — Yr|r— (k+1)“2 < |Ifell®
finish the proof. Note that for a = 2, by (2), we have

D fr—s)e(s)

2

E|lyr = yrjr—ern) ||l = E

=Etr < Z e(r—s1)" f(s1)" fs2)e(r — 52)>
—tr < Z f(s1)” f(s2)Ee(r — s2)e(T — 31)T>

<Rer ) — I, (19)

where the second equality is due to cyclic invariance of trace
and linearity of expectation, and third equality is due to the
fact that e(s) are uncorrelated. When o < 2, F(z) = /2
is a concave function, hence by Jensen’s inequality,

E llyr = yrir-inlly = EF(lyr = grpr—esn [13)
)= £l
B.2 Proof of Corollary 3

Taking expectation over the prediction error and assuming
long range correlation, we have for all k <v < w

<F(E|lyr = yrir—esn I3

k

k
1Fell® =D tr(Re f(5) 7 f(5)) = D _(Re’, f(5))?

s=0
k
1/2
< (|| Re
s=0

where the inequality is due to Cauchy-Schwarz and ||fx| =
vk + 1lco. To compute competitive difference of C HC, note
that

(k+1)0”,

7GR =

v—1 v+1
Z 1l =3 (VEF Teo)™ < caaa/ ke dk
k=0 1

260‘00‘ at2
=@+ -, (20)

Thus, by Theorem 1,

Ecost(CHC) —

2TBD
Ecost(OPT) < 8D
v

v—1
+ QGTT I;}(vk + leo)®
<2TBD 4GTc*o™
v v(a+2)
_2TBD(a+2) —4GTc%0™ y  4AGTco® ) (LH) 1a/2

(w+nt+e/2 -1

a—+2 a—+2 v
2TBD( +2) —4GTc 0™ 4 2543 TP a2
a—+2 a—+2 ’

where the last inequality is because (v+1)/v < 2 for v > 1.

If BD(a + 2) < 2Gc¢0®, which implies 52+ < 725, then
the right hand side is an increasing function of v, hence the
commitment level that minimizes the performance guarantee
isv*=1.

On the other hand, if BD(a + 2) > 2Gc%0®, then let

A= BD(D‘Jri);;GCaGQ ,B= 22+&Z_G;Ca"a , then the right hand
side is F(v) = 2T(Av™! 4+ Bv®/?), by examining the gradi-
ent F'(v) = 2T(—A1F2 + 2Bv~ 172/ since F'(v) > 0 iff
v?>F'(v) > 0 and v®F’(v) is an increasing function in v, we
can see that when v < (22)2/(*F2) F(y)’ < 0 and F(v) is
a decreasing function, when v > (24 )2/ p(y) > 0 and
)2/(f¥-‘r2)7

F(v) is an increasing function, hence when v = (24
F(v)" = 0 is the global minimum point of F(v).

)2/(a+2) > w, we have v* = w, this
> a(2w)'t% + 2. When WDUQ €

Therefore, when (E—B
8D
Gc®o™
(%, 0w+ +2), v
o = (ﬁD(a+2)—2Gcaa‘1 )2/<“+2)

happens when

* is between 1 to w, in this case,

224+a/2nGex g

B.3 Proof of Corollary 4

Taking expectation over the prediction error, when k < L,
similar to the proof of Corollary 3, ||fx]®> < (k + 1)c?0?
When k > L, || fx]|* < (L + 1)c?0®. Hence if v > L, we have

v—1 L—-1 v—1
SO =D+ Dl
k=0 k=0 k=L

2(co)® ot2
<——= 1) 2
T a+?2 (L+1)

=v(co)* (L +1)*/?
G ((L F1)2(2L+1) — (a+2)L) — 1)
a+ 2
=v(co)* (L +1)*/2

B

where the first inequality if by (20). Hence, by Theorem 1,

— 1)+ (v - L)(eo)* (L + 1)°/*

9TBD  2GT %= o
— < 0 i
Ecost(CHC) — Ecost(OPT) < " + . E 1 fxll

2T5D+2GT(CU) (L +1)>/?
. 2GT (CO’)Q a/2 -
o a s (L)L =2)+1)

The right hand side can be written as 2T(A_TB + C), where
= BD,B = G(co)*H(L),C = G(co)*(L + 1)*/? and



H(L) = ((L+ )% (al —2) + 1). When A > B, then  B.5  Proof of Theorem 6
the right hand side is a decreasing function in v, hence v* = The proof follows in the same fashion as that of Theorem

w; this happens when Gﬁa = > H( ). When A < B, then 1. Recall that we have
the right hand side is an increasing function in v, hence we g€t y) — ar(€75y)

want v* to be small, i.e., v < L, this happens when % < (r41)

) < co‘) +5 _ . B . .
H(L) When v < L, Z H‘f ” I ((U T ) : 1)7 <28 H’T(T-H)U-H - J}(T+1)v+1|| + Z |h(xt7yf\‘r”) - h(xt’yt”
hence t=Tv41

v—1
2T8D  2GT o (r4+1v
Beost(CHC) ~ Beost(OPT) < 202+ 2L ST 1A 'S e ) hGaw o)
k=0 t=rv+1
< QTBD(O‘ + 2) —4GTc%0" 4GT(CJ)a ((’U + 1)1+a/2) (t+1)v
< v(a+2) v(a+2) <2B||@(r1yot1 — Frt1yos|| + 2G Z llye = yerroll; -
If Gcaga < a+2, then the right hand side is an increasing =Tt (21)
function in v, hence v* = 1.
B.4 Proof of Corollary 5 coﬁiléf(e l}zl el; éz—strongly CONVEX, Jry41,(r+1)v 1S also m-strongly
Taking expectation over the prediction error, assuming ’
that there exists a < 1, such that for all s, ||f(s)||z < ca®, Gro+1,(r41)0 (Erot1:(r41)05 Ervs E(r41)v+15 Yo o)
we have " P
& SgTU+1,(T+1)U ('TTU+1:(T+1)'U+I; §T’U; I(T+1)U+l; y-|'rv)
‘fk” Ztr R f ( )) = Z(Ri/Q,f(S»Z - ag7v+1,(7+1)v(i'-rv+1:(7—+1)v) . (x;k'v:(7+l>'v - -:Erv:(-r+1)v)
s=0 m (t+1)v
* ~ 112
1/2 2 £ 2 2 2s 221—a2k T2 Z Hmt_xt”
< <HRe | 1560 = 0% = Po” =, e
- °=0 By the optimality of Z,411:(r+1)», minimizes the cost func-
where the inequality is due to Cauchy-Schwarz, hence for h o Gryt1,(r41)0 (T3 €703 E(r41)0+13 Y- o), We have the first or-
that is G-Lipschitz in the second argument, we have || fi| < der condition
co(l—az<k+1)/2) . . . '

1-a? ’ where the lnequahty is because ! @ =z ag'rv+l <T+1)U('i.T’U+1'<T+1)’U)-(x:’u+1‘<7'+1)’u7£TU+1‘<T+1)’U) > 07
(1—a?), and 1 — a2(*F+D < 1 — g20+D) 4 a6+ /g — (1 , : : : >
az(k-s-1)/2)27 hence, hence

Ecost(CHC) — Ecost(OPT) (4o o
o1 Z (h(%y Yejro) + BT — ft—1||)
_2TBD | 2GT 5~ co(l = a? D /9) t=rod1
= — 2 - r - -
v v k=0 1 a +BH$TU+1 _gﬂ"UH +/8||x(7'+1)v+1 _x(T+1)’L)H
2TBD | 2GTco  GTco 2% e .. mo s
RS g Shbc gy Z < > (n@i i) + Bl — il = B 13— i)
t=1v+1
<2T5D 2GTco  GTco a (1 —a? ) + Bll@ror1 — &oll + B||Er 41041 — Tty »
- 1—-a?> wv(l-—a?) 1-—a?
Substituting the above inequality into (21) and summing
Let A=2TBD, B = “G% and C = QIG_TCQ", then over T, we have
A B(l- a®’) L M 41
ECOSt(CHC) ECOSt(OPT) " T +C COSt(FHC (1})) — COSt(OPT) = Zgl,T(ET ;y) — gl,T(§T§ y)
. 2 =0
:% + C. M-1 M (1) m ,
) . <28 Z € s1y041 = Eerpryoral| = D Z 5 & — 2|
Hence when A > B, (A— B) + Ba Y > 0, and the RHS is r=0t=rv+1
a decreasing function in v, hence v* = w and this happens M (1w
GT o a? [
when 2T 8D > 5= 3% which implies 2 @ > m + ZGZ Z Hyt _ ytITUHQ
On the other hand, if A < B— Ba, then (A— B)+ Ba?®" < T=0t=Tv+1
A — B + Ba < 0, and the right hand side is an increasing M
function in v, hence v* = 1, and this happens when 278D < < Z (2,8 |25 or1 — Trotrl| — m |7ps1 — im+1||2)
a2GTeo 1 . . . 28D a2 - Tut 2 Tt
=57 (1 — a), which implies 2= < ey =
M (t+1)v
+2GZ Z Hyt _yt|‘rv”2
T7=0t=1v+1
(@) 9282 M el N
ST 26 v e o

t=1



where (a) is because for any t,

5 ~ m * ~
26 llat — 2]l = 5 Ml — &)
m * ~ 2/6 2 2/62 2132
== gl =&l = S < S

Summing over k from 0 to v — 1 as in (18) and taking
expectation on both sides as in (19) finishes the proof.

B.6 Proof of Theorem 7

By the proof of Theorem 1 and assuming one dimensional
setting, we have

T v—1
cost(CHC) — cost(OPT) < 26% + ? ZZ |y
7=1k=0

@

(22)

Y. flr—s)els)

s=17—k+1

C28TD | 2G o~
=S

T7=1k=1

which is a function of the randomness of prediction noise
e=(e(l),...,e(T)), let

2BTD  2G o~ &
R D D)

T=1k=1

o

ST f(r—s)es)

s=17—k+1

I(e) :=

be the upper bound of the competitive difference of CHC' in
terms of the random variables e(1),...,e(T). For every i, let
e(i)’ be an independent and identical copy of e(i), and let
e; = (e(l),...,e(i—1),e(i),e(i+1),...,e(T)) be the vector
that differ from e by the replacing the ith coordinate with
an identical copy of e(4), then let d;s be the kronecker delta,
we have

@

Z disf (T — s)e(s)

v 7=1k=1 |s=7—k+1
2% T v T @
- Y Oisf(r = s)ei(s)
v T=1k=1 |s=7—k+1
2% T v T @
<=3 dis f (1 — 5)(e(s) — €i(s))
v 7=1k=1 |s=7—k+1

where the last inequality is due to the fact that F(x) = z“
is a a-Holder continuous with constant 1, hence Vz,y, |z
y°| < |z — y|®. Therefore,

DLy s

T7=1k=1

li(e) — Z bis f (1 — s)(e(s) —

s=7—k+1

”2GZZ S Sulf(r— 5)[°le(s) -

k=17=1s=7—k+1

le(i) — €i(i)]”

ei(s)|”

®2G
_’U

=

=1s5=0

21+aGEa v—1

> (w—9)lf(s)
s=0

where (a) is because for all & < 1, (Zle lai])* < Zle la; |,
to prove this, note that we only need to show that

Vo,y 20, (x+y)* < 2% +y° (24)

and iterate this inequality k£ times. To prove the above, note
that when £ = 0 or y = 0 or a = 1, the inequality is trivially

(23)

a
T = y‘r\‘r—k|

true. Otherwise, wlog assume z > y, and let t = y/z <
1. (24) is equivalent to (1 4+ ¢)® < 1+ t%, this is true by
examining the function F(t) = 1+ ¢* — (1 +¢)®, note that
F(0) =0, and for a < 1, F(t) = a(t*™ ' — (1 +8)*"1) > 0,
since a” hence F(t) > 0 for all ¢, which proves (a).

(b) is because let 8" = 7 — s, then

DD D Sulfr—s)els) -

k=171=1s=7—k+1
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DD il () e(r — ) = ei(r = )|
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k=1s"=0

ei(s)|”

HM*

di(r—stle e(t —s') —ej(r —s)|* )

=Je(i) — €4(i)|”

Let ¢; = 2" T*Ge* 302, w
1(e})]? < ¢Z, by Lemma 9, we have

P(cost(CHC) — cost(OPT) > ViT 4 u)

, then by (23), |i(e) —

< X i = ex _u2
ST\ ¢ ) T TP\ TR )
where F(v) = (1 3072w — k)| £(k)]*).

B.7 Proof of Corollary 8
By Theorem 7,
P <%[cost(CHC) —cost(OPT)] > Vi + u)

=P (cost(CHC) — cost(OPT) > ViT + uT)
—2u?

< 7 ) = .
= (zf_l ) op <21+2aG2520F<v)/T>

If v € O(1), then F(v) is bounded since f(s) is bounded,
hence F(v)/T — 0 as T — oc.
Otherwise, if f(s) < ¢n® for n < 1, denote a = n~,

(e )
11 a (11_7(?:)):0

r = (100

k=0
«

= ((1 —Cna)2 * (1:7,7&)2”)2 € 0(1).

Hence in this case F'(v)/T — 0 as T — oco.

then

2t
( ¥ —a(v+1)+a" !
(1—a)?

then

a)Q < (C"‘(v - 770‘((1) T+ na(v+1)))2

1—a)?v




