
ServerMore: Opportunistic Execution of Serverless
Functions in the Cloud
Amoghavarsha Suresh, Anshul Gandhi

PACE Lab, Stony Brook University
Stony Brook, NY, USA

{amsuresh,anshul}@cs.stonybrook.edu

ABSTRACT
Serverless computing allows customers to submit their jobs
to the cloud for execution, with the resource provisioning
being taken care of by the cloud provider. Serverless func-
tions are often short-lived and have modest resource require-
ments, thereby presenting an opportunity to improve server
utilization by colocating with latency-sensitive customer
workloads. This paper presents ServerMore, a server-level
resource manager that opportunistically colocates customer
serverless jobs with serverful customer VMs. ServerMore
dynamically regulates the CPU, memory bandwidth, and
LLC resources on the server to ensure that the colocation
between serverful and serverless workloads does not impact
application tail latencies. By selectively admitting serverless
functions and inferring the performance of black-box server-
ful workloads, ServerMore improves resource utilization on
average by 35.9% to 245% compared to prior works; while
having a minimal impact on the latency of both serverful
applications and serverless functions.

CCS CONCEPTS
• Computer systems organization → Cloud comput-
ing.

1 INTRODUCTION
Serverless computing is an emerging paradigm enabled by
cloud computing wherein customers only need to submit
their jobs (referred to as functions) and the provider will
execute it for them on their servers. Compared to the tradi-
tional “serverful” cloud computing model where customers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3486979

are responsible for their possibly elastic resource require-
ments (e.g., via renting the number and type of VMs needed),
serverless computing shifts the burden of resource manage-
ment to the cloud service provider [37]. Given the ease of
access and the many benefits, such as virtually unlimited
capacity and economical computing power, many different
domains are translating their applications, where possible,
to serverless computing functions [11, 35, 37, 41].

A valuable opportunity presented by serverless functions,
that we explore in this paper, is that they can improve re-
source utilization in traditional VM-centric customer clouds
by consuming the spare and idle resources left behind af-
ter provisioning VMs on a server. Today’s serverless func-
tions are ideally suited for this opportunity because of their
specific properties—they are often short-lived with modest
resource requirements [49]. However, there are several chal-
lenges thatmust be addressedwhen attempting to safely colo-
cate customer’s serverless functions with customer VMs to
alleviate the critical under-utilization problem [7] in clouds:
(1) The key problem is to ensure that serverless functions

get executed without impacting the performance of
serverful (i.e., VMs, in our context) applications. Note
that both serverless functions and serverful applications
are customer jobs in our context, and thus latency-sensitive.

(2) The customer VMs can have varying resource configura-
tionswithdynamically changing arrival patterns [50].
Thus, the serverless colocation must adapt, in real-time,
to the serverful resource needs.

(3) Serverless functions can have diverse resource require-
ments and execution times. Colocating a serverful ap-
plication with different functions can result in a variety
of interference scenarios, including scenarios where the
resource contention is too severe to resolve.

(4) Colocating serverful applications with serverless func-
tions can result in contention for different resources
simultaneously, including CPU, memory, and cache.
Despite the resource partitioning mechanisms provided
by modern servers [17, 18], avoiding contention for a
single resource is non-trivial, let alone for multiple re-
sources. Worse, serverful applications can have different
sensitivity to contention for different resources [4, 22].

https://doi.org/10.1145/3472883.3486979


SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

(5) A practical challenge that exacerbates colocation with
customer VMs is that the cloud provider may not have
visibility of application performancewithin theVM .
This makes it difficult for the provider to protect the tail
latencies of serverful applications.
Prior work in black-box performance management of cus-

tomer cloud applications has focused on colocating customer
applications with latency-insensitive provider or batch jobs
that can be paused or throttled to maintain acceptable cus-
tomer application performance [1, 21, 22, 27, 50]. We discuss
related work in detail in Section 2. By contrast, in our setup,
serverless workloads are customer-centric and are being colo-
cated with latency-sensitive customer VMs with the goal of
improving resource utilization.
We present ServerMore, a server-level resource manager

that opportunistically executes customer serverless jobs on
spare and idle resources colocatedwith customer VMs. Server-
More is designed with the objective of maximizing the re-
source utilization of cloud servers while ensuring that the
serverful latency is within an acceptable range.We aim for a
serverful tail latency (P99) degradation threshold of <10%.
Further, despite the serverless functions being executed in
a “best-effort” manner in cloud offerings [31, 45], we aim to
minimize the tail latency of serverless functions.

Given the black-box nature of customer VMs, ServerMore
does not rely onmonitoring their latency, unlike priorworks [4,
27]. Instead, ServerMore uses a proxy statistic to infer VM
application performance, and accordingly determines the
spare capacity that can be advertized to serverless work-
loads. Further, ServerMore dynamically responds to varia-
tions in serverful workload, adjusting the advertized capacity
as needed.
To account for the diverse nature of serverless functions,

ServerMore quickly characterizes incoming functions and
accordingly decides on whether or not to colocate their sub-
sequent invocations with customer VMs. Given the modest
resource needs of many functions, ServerMore colocates
multiple functions to significantly improve server utiliza-
tion and carefully regulates the resource allocation between
functions. Note that, in contrast to serverful workloads, the
latency and execution details of serverless functions are vis-
ible to providers; major cloud providers like AWS already
offer monitoring tools for serverless functions [39].
ServerMore actively regulates the sharing of multiple re-

sources (CPU, memory bandwidth, and LLC), unlike much of
the prior work that is focused on a single resource [21, 50, 51].
In fact, when colocating with serverless functions, we show
that managing only one resource, such as CPU or LLC, is not
enough to provide serverful performance isolation. By man-
aging multiple resources, ServerMore is able to also safely
colocate functions on the cores allocated to serverful appli-
cations.

We implement ServerMore by modifying Apache Open-
Whisk and employing a light-weight user-space daemon.
Across multiple latency-sensitive VM applications and di-
verse serverless functions, we experimentally show that
ServerMore improves resource utilization significantly. Un-
der all scenarios that we experiment with, including time-
varying workload, ServerMore ensures that the serverful
tail latency degradation is below 10%. We also empirically
compare with prior works that provide performance isola-
tion on colocated cloud servers and show that ServerMore
improves resource utilization on average by 35.9% to 245%
across a variety of colocation scenarios while meeting server-
ful performance targets and minimizing serverless function
latency.
2 RELATEDWORK
In recent years, the problem of resource under-utilization has
received increasing attention from the research community.
In this section, we summarize the relevant prior works and
contextualize the problem we are addressing in this paper.

White-box resource management: Heracles [27] pro-
poses to colocate latency-critical (LC) workloads with best-
effort batch jobs by using the SLO of the latency-critical
workload as a feedback signal to allocate resources for batch
jobs. Heracles performs core, cache, and network bandwidth
regulation, but is only applicable to workloads whose SLOs
are available. Borg [48] and Bistro [14] are cluster-level sched-
ulers that colocate LC applications with batch jobs; however,
these private-cloud schedulers have complete visibility of
the application latency. PARTIES [4] proposes to colocate
multiple LC workloads by tracking their individual SLOs;
PARTIES regulates resources based on how close each work-
load is to its SLO. However, in a public cloud, customer ap-
plications on serverful instances are black-boxes whose per-
formance information cannot (or should not) be accessed by
providers [22, 30, 33].

Black-box resource management: 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 [21] colo-
cates LC workloads with batch jobs by maintaining a buffer
of idle cores. To determine the right number of buffer cores,
𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 performs offline characterization of the LCworkload.
Such profiling of customer workload may not be possible in
a public cloud setup since the workload would not be in the
provider’s control and identifying representative workload
behavior would be infeasible [22, 50]. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 is a black-
box solution to colocate LC workloads in a public cloud with
batch jobs. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 aggressively throttles the resource al-
location of batch jobs to maintain an acceptable range of IPC
for the serverful workload. We show, experimentally, the
many benefits of ServerMore over 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 in
Section 5.

Recently, a pair of works [1, 50] have proposed a new class
of VMs, called Harvest-VM, to run batch jobs along with cus-
tomer VMs. The resources provided for Harvest-VMs can be



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

changed at any time including eviction of the VM. The focus
in Ambati et al. [1] is on harvesting the spare unallocated
resources. In SmartHarvest [50], the focus is on harvesting
resources which have been allocated to customer VMs but
are unused and can thus be allocated to Harvest-VMs. In
both the works, the focus is on predicting and exploiting
only CPU cores that are idle, and not other resources. Fur-
ther, these works do not directly react to latency degradation
of the LC application. In contrast, we infer the performance
of the serverful application and accordingly exploit the spare
CPU, LLC, and memory bandwidth resources. Finally, the
implementation and historical traces used in these works is
not publicly available for comparison, and given the reliance
of the predictors on the training data, the implementation is
non-trivial to emulate.

Serverless resource management: In Archipelago [42],
a new serverless platform is proposed with deadline-aware
scheduling and proactive spawning of sandboxes to reduce
latency of the functions. However, Archipelago does not fo-
cus on improving resource utilization. ENSURE [44] uses the
SLO of serverless functions to efficiently colocate multiple
serverless functions. Both the above works are orthogonal
to ServerMore as they do not consider serverful workloads,
which continue to be popular with customers [37]. Other
works have focused on specific problems with serverless
scheduling such as coldstarts [34, 40, 43], latency of server-
less function chains [46], and resource under-utilization in
function chains [16].

3 MOTIVATION AND CHALLENGES
In this section, we study the performance impact of colo-
cating serverful workloads with serverless functions under
various resource regulation mechanisms supported by mod-
ern servers. In this work, we focus on potential interference
for resources within a server: CPU, LLC, and Memory. We do
not consider local disk contention since serverless functions
typically employ distributed storage [26, 36].

Applications: In this motivation section, we use Tensor-
Flow Serving, or TF-Serving, a latency-sensitive application
from PerfKit Benchmarker [13], as our serverful application.
The TF-Serving application is run on a VM, referred to as
primary VM, with 4 vCPUs and 32 GB memory with the
VM being pinned to 4 physical cores. We use the following
serverless functions to stress different resources: Matrix-
Multiplication (100% CPU usage), SeBS-Compress (32% CPU
usage), Web-Api (8% CPU usage), Memory-Stream (memory
bandwidth intensive), LLC-Reg (LLC intensive), and LLC-
Rand (LLC intensive). Web-Api [3] and SeBS-Compress are
functions from recent works [6]. The memory and LLC stress
serverless functions are based on the popular memory stress
benchmark STREAM [28], with their working set size pro-
portional to the resource they stress. LLC-Reg and LLC-Rand

4x Web-Api 2x Compress 2x Matrix-Mult
0

20

40

60

80

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

serverful

serverless

(a) TF-Serving RPS=4
4x Web-Api 2x Compress 2x Matrix-Mult

0

80

160

240

320

400

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

18.4%

serverful

serverless

(b) TF-Serving RPS=12
Figure 1: CPU Interference: Colocation of TF-Serving
serverful workload with different functions under
varying degrees of CPU requirement. The red dashed
line indicates the 10% P99 degradation threshold that
we aim to stay under.

have regular and random access patterns, respectively. The
serverless functions are allocated 512 MB upon invocation.

Methodology: To study the performance impact, we use
a server with 10 physical cores (and 11 cache-ways); the
server supports cache and memory bandwidth partitioning
via CAT and MBA [20], respectively. Section 5.1 has detailed
information on our testbed. Unless specified otherwise, we
run the TF-serving application for 150 seconds with a con-
stant load of 12 requests per second (RPS). For the serverless
workload, multiple requests/copies of the same function are
dispatched in batches, with each batch being dispatched after
the previous batch has been served; we vary the number of
simultaneous copies of the function that are executed across
experiments. We use the 99th percentile latency (P99) as
our performance metric. Similar to recent studies on cloud
application performance, we set the acceptable latency degra-
dation target to 10% [50]. We run each experiments 3 times
and report the average P99 across the runs.

3.1 CPU interference
We start by analyzing CPU interference to answer the ques-
tion is it feasible, with respect to performance, to share cores
between serverless functions and serverful applications? Fig-
ure 1(a) shows the degradation in P99 relative to no coloca-
tion when TF-Serving (with load of 4 RPS) is colocated with
various CPU-stressing serverless functions. The x-axis labels
indicate the number of simultaneous serverless requests in
each batch. Both serverful application and the serverless
functions are run on the same set of cores. As is typically
the case (e.g., Amazon Lambda [38]), the serverless func-
tions are allotted CPU proportional to their memory, i.e.,
𝑎𝑙𝑙𝑜𝑡_𝑐𝑝𝑢 = (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑚𝑒𝑚𝑜𝑟𝑦/1024); this allottment is
enforced through the cgroups CPU isolation mechanism of
cpu-shares.

Colocating with Web-Api has the lowest impact (6-9%) on
P99 degradation of both serverful and serverless functions,
with both being in the acceptable limit of 10% P99 degra-
dation. Web-Api has low CPU requirement and despite 4



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

copies of the function running simultaneously, the impact is
minimal. In contrast, only 2 copies each of the relatively CPU
heavy functions of SeBS-Compress or Matrix Multiplication
can have severe impact on the serverful application’s P99
latency degradation with as much 61% degradation in the
case of MM colocation.

In Figure 1(b), we increase the TF-Serving load to 12 RPS.
The average CPU utilization of TF-serving at 12 RPS is 87%,
which is significantly higher than the 36% CPU utilization at
4 RPS. When colocating with Web-Api, SebS-Compress, and
Matrix Multiplication, the P99 of serverful exhibits 18.4%,
134%, and 394% degradation, respectively. Clearly, the server-
ful workload has an impact on performance degradation;
while Web-Api provided acceptable degradation when TF-
Serving was run at RPS of 4, this is no longer the case.

Takeaway 1. At low levels of serverful CPU utilization, cpu-
shares can be used to safely (with respect to tail latency) colo-
cate some serverless functions but not others. As the serverful
load changes, the potential candidate functions for safe coloca-
tion will change as well.

3.2 LLC interference

1x LRand 1x LReg 2x LReg 3x LReg 4x LReg
0

20

40

60

80

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

serverful

serverless

(a) No isolation
1x LRand 1x LReg 2x LReg 3x LReg 4x LReg

0

20

40

60

80

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

serverful

serverless

(b) Cache partitioning
Figure 2: LLC Interference: Colocation of TF-Serving
workload with LLC-sensitive serverless functions.

3.2.1 Colocation without LLC isolation: Figure 2(a) shows
the results of colocating LLC-Reg and LLC-Rand serverless
functions with TF-Serving on the same socket, hence sharing
LLC, but run on different cores. We see that colocation with
LLC-Rand results in significant (50%) P99 latency degradation
for serverless. When colocating with multiple copies of LLC-
Reg, TF-Serving experiences P99 degradation of 18–52%, with
LLC-Reg facing 12–18% latency degradation. With multiple
copies of LLC-Reg involved in a colocation experiment, the
LLC interference can happen among the serverless functions
and between serverful and serverless functions. In fact, with
multiple applications contending for the limited amount of
LLC capacity, there is also contention for memory bandwidth,
which exacerbates the performance degradation.

3.2.2 Colocation with LLC isolation: ModernCPUs equipped
with Intel Resource Director Technology (RDT) [20] provide

functionality to effectively partition the LLC among the pro-
cesses. Specifically, Intel RDT allows us to specify a resource
control tag called class of service (COS) [17], which can be
used to control the available resources to a group of pro-
cesses, applications, VMs, or containers. The cache specific
control provided by RDT is popularly known as Cache Allo-
cation Technology (CAT), that allows us to specify physical
cache lines that can be used by a COS. In our setup, we par-
tition the 11 cache-ways proportional to the core allocation,
resulting in 5 and 6 cache-ways exclusively dedicated to the
VM and the serverless functions, respectively.

Figure 2(b) shows our LLC interference results when using
LLC partitioning as described above; we use the same set
of applications as in Section 3.2.1. We see that, with LLC
partitioning, the LLC-Rand function no longer experiences
significant performance degradation. However, we see that
colocating multiple copies of LLC-Reg continues to impact
P99 latency of both serverful and serverless applications,
although the degradation is slightly lower than without LLC
partitioning in Figure 2(a). This is not necessarily a failure of
the LLC partitioning provided by CAT since with multiple
applications simultaneously contending for limited LLC, the
contention spills over to memory bandwidth.

Takeaway 2. Providing performance isolation for a single re-
source may not be enough to maintain acceptable tail latencies.

3.3 Memory Bandwidth interference
We now consider memory bandwidth interference. Note that
a serverless function request is specified with a required
amount of memory. Thus, a serverless function can only be
run on a server if sufficient memory is available and hence
memory capacity interference is not a concern.

3.3.1 Colocation without isolation. Figure 3(a) shows the
results of colcating TF-serving with Memory-Stream (MS)
serverless function (with an average memory bandwidth
usage of 8.5 GBps) on the same socket and NUMA domain,
but run on different cores. We see that with 2 and 4 copies
of serverless functions, TF-Serving experiences non-trivial
P99 degradation of 26.4% and 205.6% respectively, with the
serverless workload facing 5.7% and 52.6% degradation.

3.3.2 Colocation with Memory Bandwidth isolation. Modern
servers equipped with Intel Memory Bandwidth Allocator
(MBA) [20] provide two mechanisms to regulate memory
bandwidth—𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔 and 𝑐𝑎𝑝𝑝𝑖𝑛𝑔. Throttling regulates the
memory accesses of a COS by specifying throttle value as
a percentage of the maximum bandwidth.The throttle per-
centages are approximate and serve as a hint for how much
throttling should be applied [18]. Capping involves mem-
ory bandwidth monitoring to track and cap the memory
bandwidth for a COS.



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

1x MS 2x MS 4x MS
0

50

100

150

200

250

P
9

9

d
e

g
ra

d
a
ti
o

n
 (

%
)

serverful

serverless

(a) No isolation
100% 90% 60% 30% 20%

0

40

80

120

160

P
9

9

d
e

g
ra

d
a
ti
o

n
 (

%
)

serverful

serverless

(b) 2 copies of Memory-Stream with isolation
100% 90% 60% 30% 20% 10%

0

100

200

300

400

P
9

9

d
e

g
ra

d
a
ti
o

n
 (

%
)

serverful

serverless

(c) 4 copies of Memory-Stream with isolation

Figure 3: Memory Bandwidth Interference: Latency degradation with and without the use of 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔 memory
bandwidth isolation. Note that the x-axis scale varies across the subfigures.

Figure 3(b) shows the results of colocating 2 copies of
Memory-Stream with TF-Serving when using the 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔
mechanism. We apply the 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔 mechanism to server-
less functions. The throttle value represents the maximum
allowable bandwidth with 100% representing no throttling
and 10% representing maximum throttling. While throttling
reduces the latency degradation of serverful, aggressive throt-
tling (only 20% bandwidth available to serverless) is needed
to limit serverful P99 degradation to below 10%, which comes
at the expense of severe degradation for serverless.
Figure 3(c) shows the results of colocating 4 copies of

Memory-Stream with TF-Serving when using the 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔
mechanism. The latency degradation is considerably higher
here when compared to Figure 3(b) where only 2 copies of
Memory-Stream were colocated. In fact, even with the max-
imum throttling of 10%, TF-Serving still faces 28% latency
degradation. These results show that while throttling can
alleviate serverful degradation, the exact throttling value is
not obvious and in some cases even maximum throttling is
insufficient. Further, throttling hurts serverless performance.
The colocation results with 𝑐𝑎𝑝𝑝𝑖𝑛𝑔 are similar to 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑖𝑛𝑔
(thus omitted) and have similar tradeoffs.
Takeaway 3. Resource regulation mechanisms provided by
modern servers require workload-specific tuning for perfor-
mance isolation. Despite such tuning, some serverless functions
cannot be safely colocated with serverful applications.

4 DESIGN OF SERVERMORE
We consider a public cloud setup wherein customers can re-
quest VMs or submit serverless jobs. To minimize contention,
no other workload (such as provider batch jobs) is scheduled
on this customer-centric cloud. While VM requests include
requirements for all resources, serverless requests only in-
dicate the required amount of memory, as is the case for
AWS Lambda [38] and Google Cloud Functions [15]. The
CPU resources for serverless functions are then allocated
proportional to the memory requirement.

We assume that there is a continuous stream of customer
requests for VMs and serverless functions, and that there is

Serverless
Invoker

Resource
Advertizer

Resource
Monitor

Serverless
Scheduler

Node-2

Node-1

Node-N

IPC
CPU%

Memory BW

Cores
Memory BW

Functions

Spare
Resources

Fn
Characterizer

Updated
Function

Function
Charcteristics

VM-2

VM-1

VM-K

Fn

F1 F2

Customer
Requests

Figure 4: Illustration of the ServerMore design.
We show the ServerMore components inside one
server/node (Node-2) for ease of presentation. VM-𝑖
and F 𝑗 represent customer VMs and serverless func-
tions, respectively.

enough cloud capacity to handle all requests. Our objective is
to maximize the resource utilization of the cloud servers while
ensuring that the serverful latency is within an acceptable
range. Further, despite serverless being executed in a “best-
effort” manner in cloud offerings [31, 45], we aim to minimize
the tail latency of serverless functions.

The takeaways from Section 3 suggest that there is an op-
portunity to colocate functions with latency-sensitive server-
ful applications by careful regulation of multiple resources,
but the candidate functions to colocate must be dynamically
selected depending on the serverful workload and latency. In
practice, another challenge that we must overcome is that
customer VMs are black-box in nature, and thus the provider
cannot (or should not) characterize the latency of the appli-
cation running inside the customer VM [22, 30, 33].

Overview of ServerMore: The design of our solution,
ServerMore, is guided by the need to address the above chal-
lenges and the specific constraints and opportunities intrin-
sic to serverful and serverless workloads. Figure 4 shows
the different components (in blue) of ServerMore. At a high-
level, a Resource Monitor within a server (or node) tracks



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

1x LReg 2x LReg 3x LReg 4x LReg
0

20

40

60

80

P
9
9
 d

e
g
ra

d
a
ti
o
n
 (

%
)

0

1

2

3

4

s
ta

n
d
a
rd

iz
e
d
 m

e
a
n
 d

if
fe

re
n
c
e

latency

ipc

(a) Colocation with LLC-Reg
1x MS 2x MS 3x MS

0

50

100

150

200

250

P
9

9
 d

e
g

ra
d

a
ti
o

n
 (

%
)

0

5

10

15

s
ta

n
d

a
rd

iz
e

d
 m

e
a

n
 d

if
fe

re
n

c
e

latency

ipc

(b) Colocation with Memory-Stream

Figure 5: Illustrating the correlation between latency
degradation and the standardized mean difference of
IPC (ratio ofmean difference to standard deviation) of
serverful workload when colocated with LLC-Reg and
Memory-Stream.

the resource usage of serverful workload(s). Based on the
usage and server capacity, the Resource Advertizer computes
the spare capacity that can be employed by serverless func-
tions. The Serverless Scheduler selectively admits incoming
customer serverless functions for colocation based on the
advertized capacity and based on the usage characterization
of individual functions (collected via the Fn-Characterizer).
We now discuss the design decisions for these components
in the following subsections.

4.1 Inferring the application performance
of black-box customer VMs

A natural approach to avoid performance degradation for
colocated serverful workloads is to immediately react to high
tail latencies. While prior work on colocation assumed that
application latency is visible to the provider [4, 12, 27], this
is not the case for customer VMs in a public cloud.

While application performance within the VM cannot be
monitored by the cloud provider, the resource usage and
hardware performance counters related to the VMs can be
easily tracked by the provider via the hypervisor and OS. In
ServerMore, the Resource Monitor tracks the Instructions Per
Cycle (IPC) counter of the customer VM and uses this as a
proxy for the performance of the VM-deployed application.
While not perfect, IPC has been shown to be well correlated
with application performance [22], especially for CPU-bound
workloads [23, 52].

For non–CPU-bound workloads, we find that the raw IPC
value is not as well correlated with latency because of the
diminished change in IPC for a corresponding change in la-
tency. Instead, we find that the standardized mean difference
of IPC, 𝑠𝑚𝑑𝑖𝑝𝑐 (ratio of mean difference to standard deviation)
is much better correlated with the latency degradation due
to colocation. Figure 5 highlights the correlation between the
P99 degradation for TF-Serving and 𝑠𝑚𝑑𝑖𝑝𝑐 when colocated
with LLC-Reg and Memory-Stream. 𝑠𝑚𝑑 is a statistic, often
referred to as Cohen’s 𝑑 statistic, that is commonly employed

when measuring the effect size between two means [5, Chap-
ter 2]. An advantage of employing 𝑠𝑚𝑑 is that it is easy to
adapt to changes in the serverful workload by updating the
mean and standard deviation of its IPC (see Section 4.3).

4.2 Characterizing serverless functions
Takeaways 1 and 3 suggest that different serverless functions
can naturally induce different types and intensities of inter-
ference. To account for these differences and safely colocate
functions with customer VMs, it is necessary to characterize
the incoming functions. Unlike black-box serverful VMs, the
latency (and resource usage) of serverless functions can be
characterized by cloud providers since the function’s perfor-
mance is visible. Major serverless providers, including AWS
Lambda [39], already offer tools to monitor and characterize
serverless functions.
We use docker stats [8] and Intel’s PQoS [19] to char-

acterize serverless functions, specifically determine their (i)
CPU utilization, (ii) LLC sensitivity, and (iii) memory band-
width requirements. For a newly created/modified serverless
function, the Serverless Scheduler runs the first new invo-
cation in a dedicated server, shown as Fn-Characterizer in
Figure 4, and returns the result to the customer. Subsequent
invocations need not be actively characterized and are con-
sidered for colocation. If an already characterized function ex-
hibits significantly different characteristics at runtime, such
as a much higher total CPU usage, it will re-characterized at
the next invocation.

LLC-sensitivity:Wedefine a function to be LLC-sensitive
if a substantial portion of its working set size fits in the LLC.
To determine whether a serverless function is LLC sensi-
tive, we run one offline invocation of the function on the
Fn-Characterizer by allotting a single cache-way to it (via
Intel’s CAT [17]). If the function is LLC sensitive, reducing
the available cache will result in an increase in its utilized
memory bandwidth The above sensitivity test can result
in false positives (functions that are not LLC sensitive but
flagged as such). However, a false positive will only impact
resource utilization and not create undue LLC contention;
we find this to be an acceptable tradeoff.

Classifying functions for CPU colocation:Motivated
by Takeaway 1, we aim to only share serverful cores with
𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 serverless functions. Based on our analysis in
Section 3, we classify a function as 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 if it is non–
LLC-sensitive and has CPU utilization of less than 25%.

4.3 Dynamic resource management for
safely colocating serverless functions

To safely colocate serverless functions next to serverful work-
loads to improve server utilization, ServerMore dynamically
regulates the resource usage of multiple resources (see Take-
aways 1 and 2), as discussed next.



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 1 Computing spare CPU capacity for serverless
1: while true do
2: 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑟𝑒𝑠 ← 0.0
3: foreach 𝑐𝑢𝑟_𝑣𝑚 ∈ VMs do
4: 𝑐𝑢𝑟_𝑖𝑝𝑐, 𝑐𝑢𝑟_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙 ← 𝑟𝑒𝑎𝑑_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑐𝑢𝑟_𝑣𝑚)
5: 𝜇𝑖𝑝𝑐 , 𝜎𝑖𝑝𝑐 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑐𝑢𝑟_𝑖𝑝𝑐,𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒)
6:
7: foreach 𝑐𝑜𝑟𝑒 ∈ cur_vm do
8: 𝜇𝑐𝑝𝑢, 𝜎𝑐𝑝𝑢 ← 𝑢𝑝𝑑𝑎𝑡𝑒_𝑚𝑒𝑡𝑟𝑖𝑐𝑠 (𝑐𝑢𝑟_𝑐𝑝𝑢_𝑢𝑡𝑖𝑙)
9: 𝑣𝑚_𝑐𝑝𝑢_𝑙𝑖𝑚𝑖𝑡 ← 𝜇𝑐𝑝𝑢 + 𝜎𝑐𝑝𝑢 + 𝑏𝑢𝑓 𝑓 𝑒𝑟𝑐𝑝𝑢
10: 𝑚𝑎𝑥𝑐𝑝𝑢 ← 100 − 𝑣𝑚_𝑐𝑝𝑢_𝑙𝑖𝑚𝑖𝑡

11: 𝑚𝑖𝑛𝑐𝑝𝑢 ← 0.5 ×𝑚𝑎𝑥𝑐𝑝𝑢
12:
13: 𝑠𝑚𝑑𝑖𝑝𝑐 ←𝑚𝑎𝑥{0,𝑚𝑖𝑛{1, (𝜇𝑖𝑝𝑐 − 𝑐𝑢𝑟_𝑖𝑝𝑐)/𝜎𝑖𝑝𝑐 }}
14: 𝑖𝑝𝑐_𝑓 𝑎𝑐𝑡𝑜𝑟 ← 1 − (𝑠𝑚𝑑𝑖𝑝𝑐/𝑐𝑐𝑝𝑢_𝑖𝑝𝑐 )
15: 𝑐𝑝𝑢_𝑎𝑙𝑙𝑜𝑐 ← 𝑖𝑝𝑐_𝑓 𝑎𝑐𝑡𝑜𝑟 × (𝑚𝑎𝑥𝑐𝑝𝑢 −𝑚𝑖𝑛𝑐𝑝𝑢)
16: 𝑐𝑝𝑢_𝑎𝑙𝑙𝑜𝑐 ← 𝑐𝑝𝑢_𝑎𝑙𝑙𝑜𝑐 +𝑚𝑖𝑛𝑐𝑝𝑢
17:
18: 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑟𝑒𝑠 ← 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑟𝑒𝑠 + 𝑐𝑝𝑢_𝑎𝑙𝑙𝑜𝑐
19: 𝑠𝑝𝑎𝑟𝑒_𝑐𝑝𝑢 ← 𝑠ℎ𝑎𝑟𝑒𝑑_𝑐𝑜𝑟𝑒𝑠 + 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒_𝑐𝑜𝑟𝑒𝑠
20: 𝑠𝑙𝑒𝑒𝑝 (𝑚𝑒𝑡𝑟𝑖𝑐_𝑠𝑎𝑚𝑝𝑙𝑒_𝑝𝑒𝑟𝑖𝑜𝑑)
21: end

4.3.1 Sharing CPU between serverful and serverless. Server-
More’s CPU resource management logic, which runs period-
ically (once every second in our implementation), is shown
in Algorithm 1. We first determine the amount of resource
capacity on the server that should be reserved for serverful;
the remaining capacity can then be spared for serverless. All
cores on a server not allocated to customer VMs are reserved
for serverless, and referred to as exclusive cores. The remain-
ing cores, referred to as shared cores, are primarily allocated
to customer VMs, but their spare capacity can be used to
host additional serverless functions, thereby aggressively
increasing server utilization.
Since the serverful workload’s behavior can change over

time, we track variations in its resource usage. The Resource
Monitor component inside the server captures short-term be-
havior by computing the standard deviation (𝜎𝑐𝑝𝑢 ) of server-
ful’s resource usage and long-term behavior by computing
the mean (𝜇𝑐𝑝𝑢 ) usage; both are computed over a moving win-
dow (lines 4, 8 in Algorithm 1). We then reserve 𝜇𝑐𝑝𝑢 +𝜎𝑐𝑝𝑢 +
𝑏𝑢𝑓 𝑓 𝑒𝑟𝑐𝑝𝑢 capacity for serverful, where 𝑏𝑢𝑓 𝑓 𝑒𝑟𝑐𝑝𝑢 capacity
is used for handling abrupt bursts in serverful workload (line
9). The unreserved capacity and exclusive cores are then
advertized (lines 18–19) to Serverless Scheduler for hosting
serverless functions; we discuss the Serverless Scheduler in
Section 4.4.

Ideally, serverless functions should be able to utilize the ad-
vertized capacity without impacting serverful performance.

1x LReg 2x LReg 3x LReg 4x LReg
0

2

4

6

8

10

M
e
m

o
ry

B
a
n
d
w

id
th

 (
G

B
p
s)

Figure 6: Super-linear increase in memory bandwidth
usage of LLC-Reg.

However, resource partitioning is not perfect; e.g., L1 and
L2 caches for shared cores can be under contention between
serverless and serverful. To safeguard against such instances,
we rely on feedback from the black-box serverful VM in the
form of IPC. Specifically, we compute the standardized mean
difference of IPC (𝑠𝑚𝑑𝑖𝑝𝑐 ), which is the difference in (moving-
window-based) average IPC and currently monitored IPC
divided by the standard deviation of IPC. A large (positive)
value of 𝑠𝑚𝑑𝑖𝑝𝑐 indicates a statistically significant drop in
serverful IPC, suggesting latency degradation. In such cases,
we shrink the advertized capacity (lines 13–16) by a factor
of (1 − 𝑠𝑚𝑑𝑖𝑝𝑐/𝑐𝑐𝑝𝑢_𝑖𝑝𝑐 ), where 𝑐𝑐𝑝𝑢_𝑖𝑝𝑐 is a parameter.
4.3.2 Sharing CPU between serverless functions. Since the
advertized capacity may be sufficient to host multiple server-
less functions, there can be contention among functions as
well. Existing serverless platforms typically allocate a fixed
amount of CPU, proportional to the memory requested by a
function [49]. In ServerMore, for serverless functions, we use
cpu-shares (a CPU allocation/isolation mechanism) from
Linux cgroups to allocate CPU proportional to the memory
requested as 𝑎𝑙𝑙𝑜𝑡_𝑐𝑝𝑢 = (𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑_𝑚𝑒𝑚𝑜𝑟𝑦/1024).
In contrast to the existing practice of providing a fixed

amount of CPU, the choice of cpu-shares is beneficial to
functions since cpu-shares is a soft limit and is applica-
ble only when there is CPU contention. Thus, by using
cpu-shares, ServerMore improves the latency of functions
in the average case (when not every colocated function is
competing for CPU) while ensuring that the worst case per-
formance (when all functions are competing for CPU) is
similar to that under existing practices.
4.3.3 Sharing memory bandwidth. Given the challenges and
limitations (see Section 3.3.2) in employing MBA to regulate
memory bandwidth interference, we instead rely on feed-
back from the serverful workload to regulate the sharing
of memory bandwidth between serverful and serverless. As
with CPU, we first determine the bandwidth that should be
reserved for serverful, and then advertize the rest. Our mem-
ory bandwidth regulation logic is similar to Algorithm 1 and
is thus omitted.
4.3.4 Sharing LLC. In ServerMore, we fairly partition the
LLC between serverful and serverless, allocating cache-ways
among them in proportion to the number of cores allotted to
the VMs and the exclusive cores allotted to serverless. Shar-



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

ing LLC between multiple serverless functions is non-trivial
since the mode of LLC partitioning is to devote exclusive
cache-ways and there can bemanymore functions than there
are cache-ways. Another issue with LLC sharing is that if
insufficient LLC is provided to an LLC-sensitive function, its
memory bandwidth requirement can sharply increase, im-
pacting other workloads (see Section 3.2.2). Figure 6 shows
the super-linear increase in memory bandwidth usage by the
LLC-Reg function colocated with TF-Serving as we linearly
increase the number of simultaneous copies of LLC-Reg. To
address these issues, in ServerMore, we allow at most one
LLC-sensitive function to be colocated with serverful work-
loads. There is no restriction on the number of colocated
non–LLC-sensitive functions as they are, by definition, not
impacted by LLC contention.

4.4 Selectively admitting serverless
functions

The Serverless Scheduler reads in the advertized spare ca-
pacity and uses the function characterizations (from Sec-
tion 4.2) to determine whether an incoming function can
be colocated in the spare capacity. Specifically, for a server,
let 𝑠𝑝𝑎𝑟𝑒_𝑐𝑝𝑢 and 𝑠𝑝𝑎𝑟𝑒_𝑚𝑒𝑚 denote the spare CPU and
memory bandwidth, respectively, that can be used by server-
less (see 𝑠𝑝𝑎𝑟𝑒_𝑐𝑝𝑢 in Algorithm 1 for reference). Further,
let 𝑠𝑝𝑎𝑟𝑒_𝑙𝑙𝑐 denote the number of additional LLC-sensitive
functions that can be accommodated on that server; note
that 𝑠𝑝𝑎𝑟𝑒_𝑙𝑙𝑐 ∈ {0, 1}. Then, if an incoming function has
characterized CPU and memory bandwidth usage less than
𝑠𝑝𝑎𝑟𝑒_𝑐𝑝𝑢 and 𝑠𝑝𝑎𝑟𝑒_𝑚𝑒𝑚, respectively, the Serverless Sched-
uler will admit the function for colocated execution on that
server if the function is not LLC-sensitive or if 𝑠𝑝𝑎𝑟𝑒_𝑙𝑙𝑐 = 1.
For colocation on shared cores, only 𝑙𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡 functions
are considered (see Section 4.2). If the function is admit-
ted for colocation, the 𝑠𝑝𝑎𝑟𝑒_𝑐𝑝𝑢, 𝑠𝑝𝑎𝑟𝑒_𝑚𝑒𝑚, and 𝑠𝑝𝑎𝑟𝑒_𝑙𝑙𝑐
variables of that server are decremented accordingly and re-
advertized for admitting future functions. Note that server-
less functions can experience coldstarts [44] in our setup.
While the Serverless Scheduler can be modified to only admit
functions that have a warm container, we choose not to em-
ploy this restrictive selection given our focus on improving
resource utilization.

4.5 Sensitivity analysis for algorithm
parameters

To determine the parameter values for our resource regula-
tion algorithms, we conduct sensitivity analysis using the
applications from Section 3 in addition to Data-Serving, Web-
search, and Web-serving applications from the CloudSuite
benchmark suite [10]. We note that our evaluation results in
Section 5 do not employ these “training” workloads.

Function Class Runtime CPU
Image Resizing (IR) LW 0.48 s 8.6%
Email Gen (EG) LW 0.24 s 12%

Stock Analysis (ST) LW 0.78 s 15%
File Encrypt (FE) LW 0.71 s 14%

Sentiment-
Review (SR) LW 0.37s 18%

Nearest-
Neighbors (NN) HW (C) 4.4 s 68.5%

Rodinia CFD (CFD) HW (C) 37.1 s 88.3%
Sorting (SO) HW (C, M) 11.2 s 90%

Dot-Product (DP) HW (C, L) 48.2 s 100%
Structured-
Grid (SG) HW (C, M) 50.9 s 100%

Table 1: Serverless functions used in our evalua-
tion and sensitivity analysis. For non-lightweight (or
heavyweight, HW) functions, we indicate the domi-
nant resource (C: CPU, L: LLC,M:memory bandwidth)
in parentheses.

For CPU regulation, we colocate the serverless functions
with serverful applications and measure the latency im-
pact for ccpu_ipc = 0.5, 1.0, 1.5, 2.0; window_size = 5, 10, 20,
30 seconds; and buffercpu = 10%, 15%, 20%, 30%. Based on
our experiments, we choose ccpu_ipc = 1.0, window_size =
10s, and buffercpu = 20% as these values provided the most
spare CPU while minimizing the impact on serverful la-
tency. Similarly, for memory bandwidth regulation, we set
cmbw_ipc = 0.5, window_size = 10s. Among the parameters,
the window_size and ccpu_ipc are largely insensitive, while
buffercpu and cmbw_ipc are generally sensitive to the config-
ured values. The values for the latter are chosen conserva-
tively to prefer low latency at the expense of lower resource
utilization.

5 EVALUATION RESULTS
This section presents our experimental evaluation of Server-
More, including comparisons with existing approaches. We
start by discussing our experimental methodology. We then
present results for colocation with a single serverful applica-
tion and multiple serverful applications. We end this section
with an ablation study to analyze the significance of each
resource regulation design in ServerMore.

5.1 Experimental methodology
In this section, we describe our experimental setup, Server-
More implementation, and the applications, baselines, and
metrics used for evaluation.

5.1.1 Testbed. We evaluate ServerMore on a cluster of 6
nodes each equipped with an Intel Xeon Silver 4114 CPU
(with 10 physical cores in all), 192 GB memory, 14 MB of



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

LLC (11 cache-ways), and 50 GB/s memory bandwidth. To
focus our results on the impact of interference, we colocate
serverful and serverless applications on the same socket. We
use a single node to host the VMs (for serverful workloads)
and the containers (for serverless functions). We use Linux
KVM to deploy the VMs and Apache OpenWhisk [47] to
deploy the serverless functions. The client for both server-
ful and serverless workloads are hosted on a single node.
Of the remaining four nodes, we use one to host the Open-
Whisk controller, and the rest to co-host Ceph file system
and Redis database to emulate distributed services required
for serverless functions to read and write data.

5.1.2 Implementation of ServerMore. ServerMore is imple-
mented via a user-space daemon andmodifications toApache
OpenWhisk [47]. The user-space daemon performs the role
of Resource Advertizer (see Figure 4) and is implemented in
∼500 lines of Python code. The daemon periodically (once
every second) samples the monitoring metrics (IPC, CPU
utilization, memory bandwidth) and recomputes the spare
resources that can be advertized for serverless.

We use mpstat to measure CPU usage and Intel PQoS [19]
to measure memory bandwidth usage. We modify the PQoS
tool to monitor the hypervisor processes to obtain the IPC for
each running VM. The advertized resources are read by the
Serverless Invoker (node-level serverless resource manager),
which passes this information to the Serverless Scheduler.
The Serverless Scheduler in turn uses the updated resource
offerings to make function admission decisions. Both Server-
less Invoker and Scheduler are implemented as modifications
to Apache OpenWhisk, which required ∼1200 lines of Scala
code. The user-space daemon, and the performance monitor-
ing, together consume less than 1% of CPU.

5.1.3 Applications and traces. The serverful applications we
use for evaluation are: (i) Moses: a state-of-the-art real-time
machine translation system, (ii) Xapian: an open-source
search engine, (iii) Sphinx: a speech recognition system,
and (iv) Memcached: a widely used in-memory key-value
store [29]. All applications, except Memcached, are from the
TailBench [24] benchmark suite. These applications have a
wide variety of tail latency (P99) ranges, allowing us to com-
prehensively evaluate our solution: < 1𝑚𝑠 for Memcached;
8–12𝑚𝑠 for Moses and Xapian; and 2–4𝑠 for Sphinx.
We use real world traces, scaled to our testbed, where

applicable. For Moses and Xapian, we use two NLANR [32]
traces—Large Variations (LV) and Dual Phase (DP)—shown
in Figure 7. For Memcached, we use the mutilate tool to
generate Facebook’s 𝐸𝑇𝐶 trace [2] (with an average of 10K
requests/sec). Sphinx is a CPU-intensive workload and has
relatively higher latency compared to other severful work-
loads; we thus use a constant load of 1 query per second
(QPS) to drive Sphinx.

50 100 150 200

Time (s) 

0

200

400

600

800

1000

(a) Large Variations

50 100 150 200

Time (s) 

0

200

400

600

800

1000

(b) Dual Phase
Figure 7: Traces used to drive the Moses and Xapian
serverful applications, based on NLANR traces [32].
The y-axis is in units of requests per second (RPS).

For serverless, we use functions from publicly available
sources, including FunctionBench [25] and SeBS [6]; details
of these functions are presented in Table 1. We note that
these functions are different from the “training” functions
used in our motivation study (Section 3) and sensitivity anal-
ysis (Section 4.5). We use an open-loop load generator with
an arrival rate of 4 requests/sec. For every request, the load
generator randomly chooses from among the function pool
listed in Table 1. We vary the function-mix by controlling
the ratio of lightweight to heavyweight functions and con-
sider three scenarios: Low (30% heavyweight), Medium (40%
heavyweight), and High (50% heavyweight).

5.1.4 Metrics. Our objective is to improve the server’s re-
source utilization while minimizing the performance impact
on customer workloads. To measure the latency impact, we
monitor the P99 latency of applications. We target a maxi-
mum P99 degradation of 10% for serverful workloads, similar
to recent works on colocation [50]. Since serverless offerings
are “best-effort” in practice [31, 45], we do not set a P99 tar-
get and instead attempt to minimize the P99 degradation of
functions.
For improvement in resource utilization, we focus on

serverless functions’ usage since ServerMore aims to improve
server utilization by colocating functions with serverful ap-
plications. The primary mode of colocation in ServerMore
is to allocate CPU to functions. We thus report the time-
averaged number of cores used by serverless functions as a
proxy for resource usage improvement. We run each experi-
ment 3 times and report the average of the metric across the
runs, similar to [50].
5.1.5 Baseline. We experimentally compare ServerMore to
two baseline black-box resource managers (RM) proposed in
recent works:
(1) PerfIso [21]: is a black-box RM which colocates latency-
sensitive serverful jobs with batch jobs. 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 improves
resource utilization by running batch jobs in the unallocat-
ted cores of a server and maintains a fixed number of buffer
cores to limit interference. To emulate 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 , we maintain
a number of buffer cores and tune this number during evalu-
ation. While 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 does not provide LLC partitioning or



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(a) Moses: Large Variations trace

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(b) Moses: Dual Phase trace

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(c) Sphinx, QPS=1

Figure 8: P99 latency degradation of Moses and Sphinx applications when colocated with different serverless
mixes.

Low Medium High
0

2

4

6

8

10

C
o
re

s

ServerMore PerfIso PerfIso-LLC Scvgr

(a) Moses: Large Variations trace

Low Medium High
0

2

4

6

8

10
C

o
re

s

ServerMore PerfIso PerfIso-LLC Scvgr

(b) Moses: Dual Phase trace

Low Medium High
0

2

4

6

8

10

C
o
re

s

ServerMore PerfIso PerfIso-LLC Scvgr

(c) Sphinx, QPS=1

Figure 9: Number of cores used by serverless functions upon colocation with Moses and Sphinx serverful applica-
tions.

memory bandwidth regulation, we additionally implement a
version of 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 with LLC partitioning, which we refer to
as 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 .
(2) Scavenger [22]: A black-box RM which monitors the raw
IPC value of the latency-sensitive VM and aggressively throt-
tles the colocated provider batch-job containers to minimize
the VM’s performance degradation. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 does not use
cache partitioning or memory bandwidth regulation; how-
ever, 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 does indirectly regulate the cache pressure
asserted by batch jobs via cpu-quota. To emulate 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 ,
we modify OpenWhisk to use cpu-quota.

Both baselines only leverage dedicated cores that are not
allocated to the customer VMs for hosting batch jobs.

5.2 Colocation with a single VM
In this subsection, we consider colocation with a single
serverful application running in a VM with 4 vCPUs, 16
GB of memory, and 5 exclusive cache-lines, with the vC-
PUs pinned to four physical cores. On the same socket, the
remaining 6 cores and 6 cache-lines are exclusive to the
serverless functions.

Moses under Large Variations: We begin our evalua-
tion results with colocation of different serverless request
mixes with Moses, which is a memory-bandwidth-intensive
serverful application. We drive the Moses workload via the
Large Variations (LV) trace shown in Figure 7(a). The LV
trace is a challenging real-world trace with a wide range of
RPS (100 to 900 req/s) and abrupt spikes, with an average

40 80 120 160 200 240

Time (s)

0

1

2

3

4

S
h
a
re

d
 C

P
U

0

200

400

600

800

1000

R
e
q
u
e
st

s/
se

c

Cores

RPS

Figure 10: Timeline of shared cores (left y-axis) adver-
tised by ServerMore for serverless function execution
upon colocation with Moses under the load of Large
Variations trace (right y-axis).

load of 486 RPS. The serverful P99 latency degradation and
the serverless core usage of different resource managers are
shown in Figure 8(a) and Figure 9(a), respectively. For all
serverless function mixes, ServerMore maintains the P99 degra-
dation well below the 10% threshold and is able to utilize, on
average, 6.41 cores for executing serverless functions.
In Figure 10, we show the timeline of the shared cores

(in blue) advertised by ServerMore for serverless function
execution under the Large Variations trace (in orange). In
the first half of the trace, we see that ServerMore does not
advertise any shared cores since the serverful load is high.
However, as the serverful load decreases in the second half,
ServerMore responds by offering shared cores for serverless
execution, thus aiming to improve resource utilization. The



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

figure also highlights the responsiveness of ServerMore as
it adapts to a changes in serverful load in a timely manner,
thereby minimizing the impact on serverful latency.

Low Medium High
0

40

80

120

160

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

282.9% 513.1%B0

B1

B2

(a) 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜

Low Medium High
0

40

80

120

160

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

B0

B1

B2

(b) 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶

Figure 11: P99 latency degradation for different buffer
core sizes (𝐵) of 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 when colocated
with Moses and driven by Large Variations trace.

For 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 we experiment with the num-
ber of buffer cores (starting from 0) and determine the min-
imum number of buffer cores, for each function-mix, for
which the P99 degradation is below 10%. We show the P99
degradation for different buffer core values (𝐵) in Figure 11.
For 0 buffer cores (i.e., using 6 cores to run serverless func-
tions), the serverful P99 under 𝑀𝑒𝑑𝑖𝑢𝑚 and 𝐻𝑖𝑔ℎ function
mixes can be exceedingly high, with the P99 degradation be-
ing as high as 513% for 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 under 𝐻𝑖𝑔ℎ mix. By increas-
ing the buffer cores to 1, the performance of both 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜

and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 improves, but for the 𝐻𝑖𝑔ℎ function mix the
P99 degradation (133% and 56%, respectively) is still much
higher than the 10% threshold. Only with 2 buffer cores do
𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 provide safe colocation for the𝐻𝑖𝑔ℎ
mix. The P99 degradation under 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 for 0 buffer cores
highlights the role played by the serverless function mix. As
we move from 𝐿𝑜𝑤 to 𝐻𝑖𝑔ℎ, more ℎ𝑒𝑎𝑣𝑦𝑤𝑒𝑖𝑔ℎ𝑡 functions
are admitted, making colocation increasingly challenging.

For colocation with Moses, both 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶
utilize about 4.67 cores for serverless functions across func-
tion mixes. Under the 𝐻𝑖𝑔ℎ mix, they only utilize 4 cores for
serverless, compared to the 6.4 core usage for ServerMore.
Across all function mixes, ServerMore provides 37.3% more
cores to serverless compared to 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 .
𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 , with its aggressively resource throttling, imposes
only 2–4% P99 degradation for serverful, but only manages
to utilize 1.8–2 cores for serverless under different function
mixes. Across all mixes, ServerMore provides 230% more
cores for serverless compared to 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 .

In Figure 12(a) and 13(a), we respectively show the P99 of
the serverless functions and the percentage of the serverless
functions that were admitted, when colocated with Moses
(Large Variations trace). By carefully characterizing and selec-
tively admitting functions, ServerMore is able to host many
serverless functions. Further, by managing the interference

between functions, ServerMore imposesminimal P99 degra-
dation on accepted functions. By comparison, the base-
lines do not focus on protecting the performance of the colo-
cated functions, resulting in much fewer (often at least 50%
fewer than ServerMore) accepted functions and much higher
latency degradation for the accepted functions. In fact, un-
der 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 , the serverless functions face significant P99
degradation (280%–435%).

Moses under Dual Phase: Figures 8(b) and 9(b) show
the serverful P99 degradation cores utilized for serverless
functions by different resource managers when colocating
with Moses driven by the Dual Phase (DP) trace (shown in
figure 7(b)). The DP trace ranges from 100 to 900 RPS with
an average of 440 RPS; in contrast to the LV trace, there is
a noticeable phase change in DP as it moved from low to
high RPS. We see that ServerMore has low P99 degradation,
ranging from 2% to 4.4% for different mixes, and on an aver-
age utilizes 6.58 cores for hosting serverless functions. 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜
and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 both require at least one buffer core to meet
the 10% P99 degradation threshold. Consequently, they have
lower core utilization (by 29.1% and 24%, respectively) com-
pared to ServerMore. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 continues to have low im-
pact on the serverful P99 degradation (0.5%–7.5%), but only
utilizes 1.95 cores, on average, across functions mixes; this
serverless core usage is 70% lower than that under Server-
More. As with the LV trace, the serverless P99 degradation
(Figure 12(b)) and percentage of functions admitted (Fig-
ure 13(b)) continue to be significantly better for ServerMore
than the baselines.

Sphinx: Figure 8(c) and 9(c) show the serverful P99 degra-
dation and cores utilized for serverless functions, respec-
tively, when colocating serverless with the memory-band-
width-intensive serverful Sphinx application. ServerMore
continues to perform well with serverful P99 degradation in
the 6.5%–8.2% range and serverless core usage of about 6.6,
on average, across function mixes. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 continues to
have lower P99 degrdation (maximum of 8.8%) but with a
low serverless core utilization of only 2.36. Both 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and
𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 require a larger buffer of at least 3 cores (except
in one case) to meet the P99 degradation threshold of 10%.
In terms of serverless, ServerMore provides, on average across
functions mixes, 147%, 98%, and 179% more core utilization
than 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 , 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 , and 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 , respectively. The
serverless P99 degradation (Figure 12(c)) and percentage of
functions admitted (Figure 13(c)) continue to be significantly
better for ServerMore than the baselines.
A practical problem with the 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 approach of main-

taining a buffer is that the number of buffer cores needed to
meet the P99 threshold varies with the application. In con-
trast, by assessing the performance degradation of serverful
(via 𝑠𝑚𝑑𝑖𝑝𝑐 ) and dynamically advertizing spare capacity for



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

Low Medium High
0

20

40

60

80

100

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

375% 280% 77% 435%
ServerMore

PerfIso

PerfIso-LLC

Scvgr

(a) Moses: Large Variations trace

Low Medium High
0

20

40

60

80

100

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

275% 424% 459%
ServerMore

PerfIso

PerfIso-LLC

Scvgr

(b) Moses: Dual Phase trace

Low Medium High
0

20

40

60

80

100

P
9
9

d
e
g
ra

d
a
ti
o
n
 (

%
)

448% 460% 452%
ServerMore

PerfIso

PerfIso-LLC

Scvgr

(c) Sphinx, QPS=1

Figure 12: P99 latency degradation of serverless functions when colocated with Moses and Sphinx serverful ap-
plications.

Low Medium High
0

10

20

30

40

50

F
u
n
c
ti
o
n
s

a
llo

w
e
d
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(a) Moses: Large Variations trace

Low Medium High
0

10

20

30

40

50

F
u
n
c
ti
o
n
s

a
llo

w
e
d
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(b) Moses: Dual Phase trace

Low Medium High
0

10

20

30

40

50

F
u
n
c
ti
o
n
s

a
llo

w
e
d
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(c) Sphinx, QPS=1

Figure 13: Percentage of serverless functions accepted upon colocation with Moses and Sphinx serverful applica-
tions.
multiple resources to serverless, ServerMore is able to au-
tomatically adapt to variations and phase changes in the
serverful workload.

Xapian and Memcached: In Figures 14 and 15, we re-
spectively show the P99 degradation and serverless core
usage of different resource managers when colocating func-
tions with serverful Xapian and Memcached applications.
Both Xapian andMemcached, in the load regime we consider,
are not memory-bandwidth-intensive. As before, all resource
managers continue to meet the P99 threshold. ServerMore
continues to provide significant core utilization improvement
over 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 ; the increase in core usage over 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟
afforded by ServerMore is 249%, 273%, and 293%, respec-
tively, for Xapian with LV trace, Xapian with DP trace, and
Memcached.

The core usage improvement of ServerMore over 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜
and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 is less pronounced since the serverful appli-
cations do not require any buffer cores for memory band-
width protection. Nonetheless, by allowing serverless func-
tions to safely execute on the serverful cores, ServerMore
still provides a modest 9–15% core usage improvement over
𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 . The results of P99 degradation of
serverless and the percentage of functions admitted show
similar trends as Figure 15, and are thus omitted.
5.3 Colocation with multiple VMs
We now consider the scenario where two serverful applica-
tions are hosted on a server. Both serverful VMs are identical,

with 4 vCPUs, 16 GB of memory, and 4 cache-lines each. We
allocate 2 cores and 3 cache-lines exclusively to serverless.
Figures 16(a) and 16(b) respectively show the serverful

P99 degradation and serverless core utilization when colo-
cating functions with the co-hosted Moses and Xapian VMs;
both serverful workloads are driven by the LV trace. Given
the increased serverful load, 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 , with its aggressive
throttling of serverless, results in negligible serverless uti-
lization and minimal P99 serverful degradation. ServerMore,
𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 , and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 continue to comply with the P99
degradation target. While 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 and 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 do not
require any buffer cores, ServerMore still outperforms them
(by about 33.9%) in terms of serverless core usage by allow-
ing functions to safely execute intermittently on the eight
serverful cores.
Figures 17(a) and 17(b) show our results when colocat-

ing functions with the co-hosted Moses and Sphinx VMs.
Compared to the results when colocating with Moses and
Xapian, 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 cannot safely colocate functions without
using buffer cores, resulting in serverless core utilization of
only 1 core. 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜𝐿𝐿𝐶 does better than 𝑃𝑒𝑟 𝑓 𝐼𝑠𝑜 , providing
an average of 1.67 cores. By contrast, ServerMore manages to
not only use both exclusive serverless cores, but also utilizes
some of the spare capacity of serverful cores, resulting in
an average utilization of 2.57 cores. 𝑆𝑐𝑎𝑣𝑒𝑛𝑔𝑒𝑟 continues to
perform poorly with minimal colocation.



ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(a) Xapian: Large Variations trace

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

ServerMore PerfIso PerfIso-LLC Scvgr

(b) Xapian: Dual Phase trace

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g

ra
d

a
ti

o
n

 (
%

)

ServerMore PerfIso PerfIso-LLC Scvgr

(c) Memcached, QPS=10K

Figure 14: P99 latency degradation of Xapian and Memcached applications when colocated with different server-
less mixes.

Low Medium High
0

2

4

6

8

10

C
o
re

s

ServerMore PerfIso PerfIso-LLC Scvgr

(a) Xapian: Large Variations trace

Low Medium High
0

2

4

6

8

10
C

o
re

s
ServerMore PerfIso PerfIso-LLC Scvgr

(b) Xapian: Dual Phase trace

Low Medium High
0

2

4

6

8

10

C
o
re

s

ServerMore PerfIso PerfIso-LLC Scvgr

(c) Memcached, QPS=10K

Figure 15: Number of cores used by serverless functions upon colocation with Xapian and Memcached serverful
applications.

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

ServerMore

PerfIso

PerfIso-LLC

Scvgr

(a) Serverful latency degradation
Low Medium High

0

1

2

3

4

C
or

es

(b) Serverless cores used

Figure 16: Results of colocating serverless with Moses
and Xapian (under LV trace) running on two 4-core
VMs.

Low Medium High
0

4

8

12

16

20

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

ServerMore

PerfIso

PerfIso-LLC

Scvgr

(a) Serverful latency degradation
Low Medium High

0

1

2

3

4

C
or

es

(b) Serverless cores used
Figure 17: Results of colocating serverless with Moses
(LV trace) and Sphinx (QPS of 1) running on two 4-core
VMs.
5.4 Significance of ServerMore’s resource

regulation
We now perform an ablation study to understand the impor-
tance of the resource regulation decisions made in the design
of ServerMore. We colocate Moses (running the LV trace)
with serverless functions and selectively disable a specific
resource regulation. Figure 18(a) shows the P99 degradation

Low Medium High
0

10

20

30

40

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

(a) LLC regulation disabled
Low Medium High

0

10

20

30

40

P
9
9

d
e
g
ra

d
a
tio

n
 (

%
)

(b) Memory bandwidth regulation
disabled

Figure 18: Results of colocating Moses (LV trace) with
serverless functions under ServerMore with partially
disabled resource regulation.

for Moses when we disable LLC regulation for ServerMore.
We see that the P99 degradation is consistently above the
threshold, highlighting the importance of both partitioning
the cache and checking for LLC-sensitive functions when
admitting serverless load. Figure 18(b) shows the P99 degra-
dation when we disable memory bandwidth regulation for
ServerMore. This time, the threshold is violated for the more
memory-bandwidth-intensive 𝑀𝑒𝑑𝑖𝑢𝑚 and 𝐻𝑖𝑔ℎ function
mixes, highlighting the necessity of memory bandwidth reg-
ulation.

6 ACKNOWLEDGMENT
We would like to thank our shepherd Sundar Dev, and other
anonymous reviewers for their valuable feedback. We would
also like to thank CloudLab [9] for providing the infrastruc-
ture to conduct the experiments. This work was supported
by NSF grants CNS-1750109 and CNS-1717588.



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Amoghavarsha Suresh, Anshul Gandhi

REFERENCES
[1] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun, KeWang, Brian

Dolan, Brian Corell, Sekhar Pasupuleti, Thomas Moscibroda, Sameh
Elnikety, Marcus Fontoura, and Ricardo Bianchini. 2020. Providing
SLOs for Resource-Harvesting VMs in Cloud Platforms. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, 735–751. https://www.usenix.org/conference/
osdi20/presentation/ambati

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems (London, England, UK) (SIGMETRICS ’12). Association for
Computing Machinery, New York, NY, USA, 53–64. https://doi.org/
10.1145/2254756.2254766

[3] AWS. 2021. AWS Samples. https://github.com/aws-samples.
[4] Shuang Chen, Christina Delimitrou, and José F. Martínez. 2019. PAR-

TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 107–120. https://doi.org/10.1145/
3297858.3304005

[5] Jacob Cohen. 1988. Statistical power analysis for the behavioral sciences.
Routledge.

[6] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2020. SeBS: A Serverless Benchmark
Suite for Function-as-a-Service Computing. CoRR abs/2012.14132
(2020). arXiv:2012.14132 https://arxiv.org/abs/2012.14132

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Mar-
cus Fontoura, and Ricardo Bianchini. 2017. Resource Central: Un-
derstanding and Predicting Workloads for Improved Resource Man-
agement in Large Cloud Platforms. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 153–167.
https://doi.org/10.1145/3132747.3132772

[8] Docker. 2021. docker stats | Docker Documentaion. https://docs.docker.
com/engine/reference/commandline/stats/.

[9] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-
tion of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC). 1–14. https://www.flux.utah.edu/paper/duplyakin-atc19

[10] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. SIGPLAN Not. 47, 4 (March 2012), 37–48. https://doi.org/10.
1145/2248487.2150982

[11] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475–488.
https://www.usenix.org/conference/atc19/presentation/fouladi

[12] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org/

conference/osdi20/presentation/fried
[13] Google Cloud Platform GCP. 2021. PerfKit Benchmarker. https://

github.com/GoogleCloudPlatform/PerfKitBenchmarker.
[14] Andrey Goder, Alexey Spiridonov, and Yin Wang. 2015. Bistro: Sched-

uling Data-Parallel Jobs Against Live Production Systems. In 2015
USENIX Annual Technical Conference (USENIX ATC 15). USENIX Associ-
ation, Santa Clara, CA, 459–471. https://www.usenix.org/conference/
atc15/technical-session/presentation/goder

[15] Google Cloud Platform. 2021. Cloud Run. https://cloud.google.com/
run.

[16] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan C.
Nachiappan, Mahmut Taylan Kandemir, and Chita R. Das. 2020. Fifer:
Tackling Resource Underutilization in the Serverless Era. In Proceedings
of the 21st International Middleware Conference (Delft, Netherlands)
(Middleware ’20). Association for Computing Machinery, New York,
NY, USA, 280–295. https://doi.org/10.1145/3423211.3425683

[17] Intel. 2016. Introduction to Cache Allocation Technology.
https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-cache-allocation-technology.html.

[18] Intel. 2019. Introduction to Memory Bandwidth Allocation.
https://software.intel.com/content/www/us/en/develop/articles/
introduction-to-memory-bandwidth-allocation.html.

[19] Intel. 2021. Intel RDT software package. https://github.com/intel/intel-
cmt-cat.

[20] Intel. 2021. Intel Resource Director Technology Framework.
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html.

[21] Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. 2018. PerfIso: Performance
Isolation for Commercial Latency-Sensitive Services. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association,
Boston, MA, 519–532. https://www.usenix.org/conference/atc18/
presentation/iorgulescu

[22] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muhammad Wajahat,
and Anshul Gandhi. 2019. Scavenger: A Black-Box Batch Workload
Resource Manager for Improving Utilization in Cloud Environments.
In Proceedings of the ACM Symposium on Cloud Computing (Santa Cruz,
CA, USA) (SoCC ’19). Association for ComputingMachinery, New York,
NY, USA, 272–285. https://doi.org/10.1145/3357223.3362734

[23] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and Christos
Kozyrakis. 2020. Leveraging Application Classes to Save Power in
Highly-Utilized Data Centers. In Proceedings of the 11th ACM Sympo-
sium on Cloud Computing (SoCC ’20). Virtual Event, USA, 134–149.

[24] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark
suite and evaluation methodology for latency-critical applications.
In 2016 IEEE International Symposium on Workload Characterization
(IISWC). 1–10. https://doi.org/10.1109/IISWC.2016.7581261

[25] Jeongchul Kim and Kyungyong Lee. 2019. Practical Cloud Work-
loads for Serverless FaaS. In Proceedings of the ACM Symposium
on Cloud Computing (Santa Cruz, CA, USA) (SoCC ’19). Associa-
tion for Computing Machinery, New York, NY, USA, 477. https:
//doi.org/10.1145/3357223.3365439

[26] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral
Storage for Serverless Analytics. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (Carlsbad,
CA, USA) (OSDI’18). USENIX Association, USA, 427–444.

[27] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA ’15).

https://www.usenix.org/conference/osdi20/presentation/ambati
https://www.usenix.org/conference/osdi20/presentation/ambati
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://arxiv.org/abs/2012.14132
https://arxiv.org/abs/2012.14132
https://doi.org/10.1145/3132747.3132772
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/2248487.2150982
https://doi.org/10.1145/2248487.2150982
https://www.usenix.org/conference/atc19/presentation/fouladi
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://www.usenix.org/conference/atc15/technical-session/presentation/goder
https://www.usenix.org/conference/atc15/technical-session/presentation/goder
https://cloud.google.com/run
https://cloud.google.com/run
https://doi.org/10.1145/3423211.3425683
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-cache-allocation-technology.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-memory-bandwidth-allocation.html
https://github.com/intel/intel-cmt-cat
https://github.com/intel/intel-cmt-cat
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://www.usenix.org/conference/atc18/presentation/iorgulescu
https://doi.org/10.1145/3357223.3362734
https://doi.org/10.1109/IISWC.2016.7581261
https://doi.org/10.1145/3357223.3365439
https://doi.org/10.1145/3357223.3365439


ServerMore: Opportunistic Execution of Serverless Functions in the Cloud SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Association for Computing Machinery, New York, NY, USA, 450–462.
https://doi.org/10.1145/2749469.2749475

[28] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance
in Current High Performance Computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newsletter, 19–
25.

[29] mediawiki.org. 2021. memcached. http://www.mediawiki.org/wiki/
Memcached.

[30] Joydeep Mukherjee and Diwakar Krishnamurthy. 2020. PRIMA:
Subscriber-Driven Interference Mitigation for Cloud Services. IEEE
Transactions on Network and Service Management 17, 2 (2020), 958–971.

[31] Hai Duc Nguyen, Chaojie Zhang, Zhujun Xiao, and Andrew A. Chien.
2019. Real-Time Serverless: Enabling Application Performance Guar-
antees. In Proceedings of the 5th International Workshop on Serverless
Computing. Davis, CA, USA, 1–6.

[32] NLANR. [n.d.]. National Laboratory for Applied Network Research.
Anonymized access logs. ftp://ftp.ircache.net/Traces/.

[33] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan Kostic,
and Ricardo Bianchini. 2013. Deepdive: Transparently identifying and
managing performance interference in virtualized environments. In
Proceedings of 2013 USENIX Annual Technical Conference (ATC ’13). San
Jose, CA, USA, 219–230.

[34] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 57–70. https://www.usenix.org/conference/
atc18/presentation/oakes

[35] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[36] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193–206. https://www.
usenix.org/conference/nsdi19/presentation/pu

[37] Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What Serverless Computing
is and Should Become: The next Phase of Cloud Computing. Commun.
ACM 64, 5 (April 2021), 76–84. https://doi.org/10.1145/3406011

[38] Amazon Web Services. 2020. AWS Lambda now supports
10 GB of memory and 6 vCPU cores for Lambda functions.
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-
lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/.

[39] Amazon Web Services. 2021. Using Lambda Insights in Amazon Cloud
Watch. https://docs.aws.amazon.com/lambda/latest/dg/monitoring-
insights.html.

[40] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, 205–218. https://www.usenix.org/
conference/atc20/presentation/shahrad

[41] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. 2020. Serverless Linear Algebra. In SoCC ’20 (Virtual
Event, USA). Association for Computing Machinery, New York, NY,
USA, 281–295. https://doi.org/10.1145/3419111.3421287

[42] Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019. Archipelago: A Scalable Low-Latency Server-
less Platform. CoRR abs/1911.09849 (2019). arXiv:1911.09849
http://arxiv.org/abs/1911.09849

[43] Amoghvarsha Suresh and Anshul Gandhi. 2019. FnSched: An Efficient
Scheduler for Serverless Functions. In Proceedings of the 5th Interna-
tional Workshop on Serverless Computing (Davis, CA, USA) (WOSC ’19).
Association for Computing Machinery, New York, NY, USA, 19–24.
https://doi.org/10.1145/3366623.3368136

[44] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan,
Veerendra Ramesh Kakarla, Hima Upadhyay, and Anshul Gandhi. 2020.
ENSURE: Efficient Scheduling andAutonomous ResourceManagement
in Serverless Environments. In 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS). 1–10.
https://doi.org/10.1109/ACSOS49614.2020.00020

[45] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling Quality-of-Service in Serverless Com-
puting. In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC ’20). Virtual Event, USA, 311–327.

[46] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling Quality-of-Service in Serverless Com-
puting. In SoCC ’20 (Virtual Event, USA). Association for Computing
Machinery, New York, NY, USA, 311–327. https://doi.org/10.1145/
3419111.3421306

[47] The Apache Software Foundation 2021. Apache OpenWhisk. The
Apache Software Foundation. https://openwhisk.apache.org/

[48] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the Tenth European
Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 18,
17 pages. https://doi.org/10.1145/2741948.2741964

[49] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 133–146. https://www.usenix.org/
conference/atc18/presentation/wang-liang

[50] YawenWang, Kapil Arya,Marios Kogias,Manohar Vanga, Aditya Bhan-
dari, Neeraja J. Yadwadkar, Siddhartha Sen, Sameh Elnikety, Christos
Kozyrakis, and Ricardo Bianchini. 2021. SmartHarvest: Harvesting
Idle CPUs Safely and Efficiently in the Cloud. In Proceedings of the
Sixteenth European Conference on Computer Systems (Online Event,
United Kingdom) (EuroSys ’21). Association for Computing Machinery,
New York, NY, USA, 1–16. https://doi.org/10.1145/3447786.3456225

[51] Cong Xu, Karthick Rajamani, Alexandre Ferreira, Wesley Felter, Juan
Rubio, and Yang Li. 2018. DCat: Dynamic Cache Management for
Efficient, Performance-Sensitive Infrastructure-as-a-Service. In Pro-
ceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys
’18). Association for Computing Machinery, New York, NY, USA, Arti-
cle 14, 13 pages. https://doi.org/10.1145/3190508.3190555

[52] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale,
and John Wilkes. 2013. CPI2: CPU Performance Isolation for Shared
Compute Clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems. Prague, Czech Republic, 379–391.

https://doi.org/10.1145/2749469.2749475
http://www.mediawiki.org/wiki/Memcached
http://www.mediawiki.org/wiki/Memcached
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/atc18/presentation/oakes
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/nsdi19/presentation/pu
https://doi.org/10.1145/3406011
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-insights.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-insights.html
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://doi.org/10.1145/3419111.3421287
https://arxiv.org/abs/1911.09849
http://arxiv.org/abs/1911.09849
https://doi.org/10.1145/3366623.3368136
https://doi.org/10.1109/ACSOS49614.2020.00020
https://doi.org/10.1145/3419111.3421306
https://doi.org/10.1145/3419111.3421306
https://openwhisk.apache.org/
https://doi.org/10.1145/2741948.2741964
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://doi.org/10.1145/3447786.3456225
https://doi.org/10.1145/3190508.3190555

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation and Challenges
	3.1 CPU interference
	3.2 LLC interference
	3.3 Memory Bandwidth interference

	4 Design of ServerMore
	4.1 Inferring the application performance of black-box customer VMs
	4.2 Characterizing serverless functions
	4.3 Dynamic resource management for safely colocating serverless functions
	4.4 Selectively admitting serverless functions
	4.5 Sensitivity analysis for algorithm parameters

	5 Evaluation Results
	5.1 Experimental methodology
	5.2 Colocation with a single VM
	5.3 Colocation with multiple VMs
	5.4 Significance of ServerMore's resource regulation

	6 Acknowledgment
	References

