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Abstract

An imminent challenge in the serverless computing landscape is
the escalating cost of infrastructure needed to handle the growing
traffic at scale. This work presents FnSched, a function-level sched-
uler designed to minimize provider resource costs while meeting
customer performance requirements. FnSched works by carefully
regulating the resource usage of colocated functions on each in-
voker, and autoscaling capacity by concentrating load on few in-
vokers in response to varying traffic. We implement a prototype of
FnSched and show that, compared to existing baselines, FnSched
significantly improves resource efficiency, by as much as 36%—-55%,
while providing acceptable application latency.

1 Introduction

Serverless computing is an emerging paradigm for running user-
specified functions on provider resources with virtually unlimited
scalability [3]. In serverless computing, the user is responsible for
writing the code and packaging it, and the cloud provider is respon-
sible for provisioning and maintaining the infrastructure, including
host servers, needed to execute the user code/program [10]. Server-
less computing can also include frameworks that cater to specific
application requirements such as BaaS (Backend as a Service) offer-
ings [3]. The pay-per-use pricing for functions, currently at about
20 cents per million invocations (per AWS Lambda [3]), makes
serverless a very lucrative choice for end-users. While the set of ap-
plications supported by serverless computing is still evolving, there
is consensus in the computing community that several classes of ap-
plications, including MapReduce-based frameworks, will eventually
run seamlessly on serverless platforms [10].

An imminent challenge that we envision in this computing land-
scape is the escalating cost of infrastructure needed to handle the
growing serverless traffic. While the more generic objective of
achieving high utilization in serverless environments has been al-
luded to by recent studies, including the position paper by RISELab
at UC Berkeley [10], the specific problem we consider in this pa-
per is centered around scheduling: how should user functions be
scheduled on bare-metal servers to minimize the provider’s expenses
at scale while providing acceptable latencies? Note that addressing
this challenge requires both (i) efficient placement of the incom-
ing workload to minimize the provider’s capital expenses, and (ii)
dynamic autoscaling of the serverless platform to minimize the
provider’s operating expenses.

Existing solution, such as schedulers designed for VM placement
or web load balancers, are not well suited for serverless scheduling.
The former requires specification of the resource request (e.g., num-
ber of cores), which is not an input that a serverless user needs to
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provide. The latter assumes that any server can execute an incom-
ing request, whereas in serverless computing, specific servers that
are already “warm” (have an active container that can serve the
incoming function) will be preferred. While container schedulers,
such as Borg, may appear to be well suited for serverless workloads,
they are not necessarily designed for short-lived functions, and
can have task placement latencies as high as 25s [17]; by contrast,
serverless functions typically have latencies ranging from millisec-
onds to few seconds [10, 13]. Kubernetes [10], another popular
solution for scheduling containers, requires resource provisioning
policy parameters to be specified by the customer, thus adding more
burden on the user.

We present FnSched, a function scheduler designed to minimize
provider expenses while providing acceptable request latencies.
FnSched takes into account the resource consumption and lifetime
patterns of serverless functions by classifying them into different
categories. FnSched then scalably determines function placement
based on the inferred class of the incoming function. To provide
acceptable latencies, FnSched mitigates the resource contention
between colocated functions by dynamically regulating their cpu-
shares at runtime.

Beyond a single host, FnSched also enables autoscaling by elasti-
cally adding and removing hosts as needed, based on the incoming
workload demand. FnSched adds an additional host when the perfor-
mance of in-service functions degrades beyond a certain threshold.
To remove hosts, FnSched greedily concentrates load on few hosts,
allowing unneeded hosts to idle and eventually be turned off.

We implement a prototype of FnSched on Apache OpenWhisk [20]
and evaluate its performance on a 10-VM serverless cluster. FnSched
is primarily implemented on the Controller component of Open-
Whisk, with less than 1,500 lines of code. Our experimental results
show that FnSched can provide acceptable latencies across a diverse
set of functions, unlike the existing baseline schedulers in Open-
Whisk and Linux. Our multi-host evaluation, using time-varying
(trace-driven) traffic, highlights the efficiency of FnSched; compared
to existing scheduling policies, FnSched handles the incoming traffic
with 36%-55% fewer hosts.

2 Background and Motivation

In this section we provide an overview of serverless computing and
highlight the challenges in scheduling serverless applications.

Serverless computing. In a serverless computing platform, the
user writes a cloud function in a high-level language and create the
trigger (events from the back-end, http end-points) [3] to run the
function. The serverless provider is then responsible for the infras-
tructure that will execute the user function every time the function
is triggered. In particular, the provider is responsible for the re-
source management — instance selection, scaling, deployment, fault
tolerance, etc. [10]. Typically the serverless platform uses contain-
ers or other sandboxing approaches to host the functions [18]. In
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Figure 1: Illustration of a typical serverless platform.

this paper, we assume that the serverless platforms use containers,
similar to Google Cloud Run [19] and Apache OpenWhisk [20].

Figure 1 illustrates a typical serverless platform environment.
The incoming user function is sent to the scheduler via an HTTP
front-end. The scheduler then chooses an invoker on which the
function can run. Depending on the application, a function may use
additional back-end services, such as a database, object store, etc. In
this work, we use the terms invoker, node, and host interchangeably,
and all of them refer to the server or VM which hosts the container
of a serverless function. Likewise, we use the terms application,
function, and workload interchangeably.

Scheduling user functions in serverless environments. In the
serverless environment, the provider must decide how to schedule
incoming user functions, that is, which invoker should handle the
incoming user function. One of the challenges of scheduling in
serverless platforms is the diversity in the set of user applications.
The advantages of serverless platforms — no explicit provisioning,
automatic and virtually unlimited scaled, and being billed on usage
— have attracted interest from different application communities,
including high-performance computing [16]. This diversity necessi-
tates application-specific scheduling of functions as different appli-
cations have vastly different resource consumption patterns, such
as short-lived applications, applications with intermittent activity,
and embarrassingly parallel services [2, 9, 10].

Another challenge in scheduling serverless functions is the use of
containers to host applications. While containers help in packaging
the application and ease the function invocation process, they do
have an undesirable performance impact. When processing the
function of a new application allocated to a host, the following
steps are involved (assuming the container of the application is
not already present on the host): (i) launching a new container, (ii)
setting up the runtime environments, and (iii) application-specific
initialization; the latency for these steps is collectively termed as
cold start latency [10, 18]. In our experiments, the cold start latency
typically ranges from 3 to 6 seconds; by contrast, function execution
can take as little as 0.5 seconds. Clearly, cold start of the container is
undesirable, as also noted in prior works [7]. While recent advances,
such as AWS Firecracker [1], reduce the latency of launching a new
container (or microVM), the application and runtime initialization
latencies still remain, and can dwarf the former [10].

Scheduling challenges also extend to multi-host scenarios where
the incoming functions must be scheduled across multiple invokers.
Popular load balancing solutions, such as Round Robin, are designed
to spread the load among available hosts, and so naturally tend to
use all available hosts (regardless of whether they are all needed or
not), resulting in potential under-utilization. Further, in serverless
environments, hosts that already have an application’s container
running on them are preferred over other hosts to avoid the cold
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start latency; thus, a scheduler must take into account the contents
of each invoker while scheduling incoming functions. Finally, a
scheduler must ensure that sufficient capacity is available at all
times to handle bursts of function requests, given that serverless
platforms tout their ability to handle any scale of requests [3].

3 Design of FnSched

To address the challenges outlined above, we begin our investiga-
tion with the following two questions: (i) how to efficiently use a
single invoker without significantly impacting function latency, and
(ii) how to autoscale the number of invokers in response to change
in workload demand? In addressing these questions, we consider
a serverless environment as illustrated in Figure 1 with a tier of
homogeneous invoker nodes. We consider multiple applications,
possibly belonging to different users, that issue function requests;
thus, functions can be heterogeneous in nature. Each invoker hosts
application-specific containers, that in turn serve incoming func-
tions for their application. The scheduler decides which invoker
(and container) handles the incoming function, and also decides on
the containers to be instantiated on each invoker and the number
of invokers to be used.

In serverless platforms, the user expects a certain level of accept-
able service from the provider, in terms of the latency of executing
the user function. We capture this requirement as a Service Level Ob-
jective (SLO) which dictates the allowable latency degradation for
a user function, latencyThd. Specifically, if the latency of function
execution when run in isolation on a dedicated host is isoLatency,
then the SLO dictates that the latency in the serverless environment
should be no more than (isoLatency - latencyThd).

3.1 Scheduling for a Single Invoker

We start with the case of a single invoker where the goal of FnSched
is to manage the containers and their cpu-shares to ensure that the
SLO is met for all incoming user functions. The key challenge to
address in the single invoker case is mitigating resource contention
among different application containers in an effort to maximize
the number of functions that can be simultaneously served at the
invoker without violating the SLOs. In our experiments, the CPU
is often under contention, so we focus on mitigating CPU con-
tention. To regulate CPU usage of containers, FnSched leverages
cpu-shares [4], which specifies the relative share of CPU time avail-
able to the container. Note that cpu-shares is a soft limit enforced
only when CPU cycles are constrained.

In general, the CPU requirements of a function depend on the
underlying application. For example, an embarrassingly parallel
application will require many more CPU cycles compared to a short-
lived script. Consequently, a long-running application may be able
to tolerate a few milliseconds of CPU contention without much
impact on latency, unlike a short-lived, cpu-intensive application.
Thus, FnSched takes into account the nature of the application
when regulating its cpu-shares. We classify serverless applications
into two broad categories — Edge Triggered (ET), and Massively
Parallel (MP) - based on their runtime and resource usage. ET refers
to applications which are typically short-lived and/or triggered
based on events, e.g., streaming analytics and IoT back-end [3]. MP
applications are resource intensive and are typically embarassingly
parallel, e.g., data mining [5], MapReduce [14], etc.
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numUpdates+=1;

latencyRatio = latency/isoLatency;

if latencyRatio > updateLatencyThd then

if numUpdates > numUpdatesThd then

if curShares < perContainerMax then

toAddShares = cpuSharesStep * numConts;

if (totShares+toAddShares) < maxCpuShares then
curShares = curShares + cpuSharesStep ;

totShares = totShares + toAddShares
else
toReduceShares =

(toAddShares/numOtherConts);
rebalanceCpuShares(toReduceShares);
deltaShares = (maxCpuShares - totShares) /

numConts ;
curShares = curShares + deltaShares ;
totShares = maxCpuShares
end

end

end
end
Algorithm 1: APPLICATION-AWARE CPU-SHARES REGULATION.

Regulating cpu-shares. FnSched’s application-aware, cpu-shares
regulation policy is shown in Algorithm 1. The algorithm is em-
ployed at runtime, and updates the allotted cpu-shares of active con-
tainers. FnSched monitors the average latency of applications over a
moving-window (10 requests, in our case). If the latency for an appli-
cation starts to approach the SLO (isoLatnecy-latencyThd), FnSched
increases its cpu-shares. In particular, FnSched increases an applica-
tion’s cpu-shares if its moving-average latency exceeds isoLatnecy -
updateLatencyThd, where updateLatencyThd < latencyThd; the
updateLatencyThd acts as an early warning sign to prevent SLO
violations. For example, in our experimental evaluation, we set
latencyThd = 1.15 (meaning no more than 15% degradation) and
set updateLatencyThd = 1.10.

FnSched increments cpu-shares of all containers of the applica-
tion in steps of cpuSharesStep, to ensure that the cpu allocation
of containers is increased gradually. If the increase in cpu-shares
will exceed the total cpu-shares of the invoker (1024 cpu-shares
per core), FnSched rebalances the shares from the other application
containers. After increasing cpu-shares for an application, FnSched
waits for numUpdatesThd iterations (or requests) before evaluat-
ing the application’s latency again, to ensure that the newly set
cpu-shares value has fully taken effect. We perform a sensitivity
analysis of the various algorithm parameters in Section 4.4.

3.2 Multi-Invoker Scheduling

When the load exceeds the capacity of one invoker, FnSched must
scale out to add more invokers and maintain acceptable latencies.
Likewise, when the load decreases, FnSched must reduce the num-
ber of invokers to scale capacity (and operating expenses) with
demand, also referred to as autoscaling [8].

To autoscale invoker capacity, FnSched employs a greedy algo-
rithm. The central idea, based on the AutoScale data center power
management policy [8], is to index all invokers, say from 1 to n, and
try to pack requests as efficiently as possible on lower-numbered
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invokers; consequently, higher-numbered invokers, if not needed,
will be idle and can be turned off after some duration of inactivity.
Specifically, an incoming request is sent to the lowest-numbered
invoker that can accommodate it.

To check whether an invoker can accommodate an incoming
application request, FnSched checks the available memory (if a new
container needs to be created), available admission capacity, and
the moving-average latency of the application on that invoker, as
explained below. The admission capacity is equal to the number of
idle cores in the invoker and is used as a proxy for the additional
number of requests that can be supported on the invoker. The
latency of the application is classified into three operating zones —
safe: less than 50% of SLO, warning: between 50-75% of SLO, and
unsafe: greater than 75% of SLO. An invoker is considered eligible
to run a request in either safe or warning zone. When the latency
of an application in a host enters the warning zone, we halve the
host’s admission capacity. If an invoker enters the unsafe zone, we
do not admit any more requests from the application for a brief
period of time (2 seconds in our case). After this period, the invoker
is moved into the warning zone and the latency moving-window is
reset so that the appropriate operating zone can be inferred.

A key advantage of FnSched’s greedy algorithm, in the context of
serverless scheduling, is that by preferring lower numbered invok-
ers, FnSched tends to reuse previously used invokers, thus avoiding
cold starts. To further avoid cold starts and reserve capacity for
workload bursts, when we first use a given invoker for an applica-
tion, say invoker with index n, we proactively spawn a container
of this application on a new invoker, indexed (n + 1), thereby scal-
ing out capacity. We periodically send a heartbeat request to this
proactively spawned container to keep it warm.

4 Evaluation

We now present our evaluation of FnSched. We start by detailing
our prototype implementation of FnSched, and then describe our
experimental setup and evaluation methodology. Finally, we present
our experimental evaluation results for FnSched under the single-
invoker and multi-invoker settings.

4.1 Implementation of FnSched

We implement FnSched on top of Apache OpenWhisk [20], an open-
source serverless cloud platform. OpenWhisk has a REST interface
to accept requests and provide a response to them. The Controller
component is responsible for processing the HTTP method and
executing the function on the invoker, which in turn creates the
Docker container. We implement our cpu-shares regulation algo-
rithm (Algorithm 1) at each invoker, and implement our greedy
autoscaling algorithm in the Controller. In total, we add about 1,500
lines of code in Scala to implement FnSched.

4.2 Experimental Setup

We host OpenWhisk on a cluster with 10 VMs, each with 4 cores and
8GB of memory. The HTTP front-end runs on a dedicated VM and
the remaining OpenWhisk components, including the Controller,
run on a different VM. The remaining 8 VMs serve as invokers.
The applications hosted on these invokers are deployed on Docker
containers, with the inactivity timeout for the containers set to 1
minute. To support the applications we employ (see below), we also
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Figure 2: Latency degradation when ET application is colocated with MP applications on a single invoker.

use dedicated hosts for back-end services — distributed filesystem
(3 servers), database (3 servers), and Apache Kafka (1 server).

Applications. We use two edge triggered (ET) and two massively
parallel (MP) applications in our experiments. We implemented all
of these applications in Python 3.5.

o Image Resizing (IR) accepts an input image, which is read from a
distributed file system, resizes it into three different image sizes,
and stores them back into the distributed file system.

o Streaming Analytics (SA) accepts a batch of messages, processes
them, and conditionally writes them to the database.

e Nearest Neighbor (NN) is an MP application whose MPI imple-
mentation has been ported from Rodinia [5], a GPU benchmark
suite. To exchange data, NN uses a distributed file system.

e Computational Fluid Dynamics (CFD) is an MP application whose
MPI implementation has also been ported from Rodinia [5]. To
exchange data, CFD uses a distributed file system.

Both the ET applications are modeled from the Lambda reference
architecture examples [2]. The applications use Ceph Distributed
filesystem, working as an Object Store (similar to AWS S3), to read
and store the data (when applicable). Streaming Analytics uses
Apache Kafka to read the streaming data and Redis database to
store the data. All applications use 256 MB of reserved memory,
expect CFD, which uses 512 MB of memory.

4.3 Evaluation Methodology

Metrics. We use two key metrics to evaluate the performance of
different scheduling policies in our experiments.

(1) Latency degradation: this is the average percentage latency
degradation of an application compared to its standalone la-
tency, isoLatency. We set the SLO to be 15% over the isoLatency;
thus, latencyThd = 1.15 (see Section 3). Thus, at most 15% degra-
dation is allowed, over an application’s standalone latency.
Invokers used: this is the time-average number of invokers used
by a scheduler over the duration of the experiment, and acts as
a proxy for the provider’s expenses. An invoker is considered to
be “in use” if it has at least one live container. Since all invokers
are homogeneous in our setup, invoker count serves as a proxy
for the cost metric. This metric is relevant for the multi-invoker
experiments.

All reported metrics are averaged across 3 runs of an experiment.
To compute the standalone latency, isoLatency, of an application we
use a dedicated host and launch a warm container of the application
and profile its latency in isolation.

Workload and traces. For the applications we employ, the stan-
dalone latency, or isoLatency, is as follows: 0.67s for IR, 0.73s for

SA, 7.2s for NN, and 19.2s for CFD. Unless otherwise mentioned,
we use a request rate of 1 req/s for IR, 0.5 req/s for SA, 0.25 req/s
for NN, and 0.17 req/s for CFD. Since NN and CFD are massively
parallel applications, we issue requests in batches (of 4).

For single invoker evaluation (Section 4.4), the experiments have
a warm up phase wherein we spawn a container per core per appli-
cation, followed by 15 minutes of constant load, as dictated by the
above mentioned request rates. For multi-invoker evaluation, we
use synthetic and real-world traffic traces to drive the time-varying
load, as detailed in Section 4.5. For real-world traffic traces, we
employ network traffic traces from WITS [21], suitably scaled to
our testbed capacity, as a proxy for serverless traffic.

4.4 Evaluating Single Invoker Scheduling

We start by evaluating FnSched under a single invoker. Recall from
Section 3.1 that the key challenge when scheduling in a single
invoker is the resource (cpu) contention among functions. For each
experiment, we compare FnSched with the following baselines.

(1) OpenWhisk default: OpenWhisk sets cpu-shares for each con-
tainer proportional to its requested memory capacity [20]. Spec-
ifically, if m is the memory requested by a container, and M and
C are respectively the total memory and cpu-shares capacity
of the invoker, the container is provided m - C/M cpu-shares.
This policy will maximize the number of containers that can
be spawned in a host, since both memory and cpu are being
proportionally allocated.

(2) Linux default: Linux’s cpu-shares policy allocates every con-
tainer with one CPU core worth of cpu-shares (i.e., 1024 shares).

Sensitivity analysis. FnSched’s cpu-shares regulation policy em-
ploys Algorithm 1, which has three parameters — numUpdatesThd,
cpuSharesStep, and maxCpuShares. To determine appropriate val-
ues for these parameters, we conduct a sensitivity analysis using
FnSched by colocating different ET and MP applications together
on one core. We experiment with the following ranges for each
parameter: numUpdatesThd — 1, 3 and 5; cpuSharesStep — 64 and
128; maxCpuShares — 256, 512, 768, and 1024 (a full CPU core).
The maxCpuShares parameter determines the ceiling of the cpu-
shares for an application. Based on our sensitivity analysis experi-
ments, we find that a maxCpuShares value of 768 for ET and 256 for
MP works well to accommodate containers of MP and ET on a single
core. Since maxCpuShares is high for ET and low for MP, we find
that cpuSharesStep of 128 and 64 work well for ET and MP, respec-
tively. The numUpdatesThd parameter determines the minimum
number of iterations required before we consider updating cpu-
shares again. For numUpdatesThd, we find that values of 5 and 3
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work well for ET and MP, respectively. We use the above parameter
values when employing FnSched for the rest of our experiments.

Colocating two applications. Figures 2(a) and 2(b) show our re-
sults when colocating IR with NN and CFD, respectively. In both
cases, FnSched satisfies the 15% latency degradation SLO. By con-
trast, the SLO is violated for IR under both comparison baselines;
under the OpenWhisk default scheduler, the latency degradation
can be as high as 47.4%.

Under FnSched, both IR and NN quickly stabilize at their respec-
tive maximum cpu-shares. Subsequently, when there is contention,
IR gets higher preference (since it has a maxCpuShares value of
768 compared to 256 for NN) and so its latency degradation is mini-
mized. Under the Linux default baseline, IR and the MP application
are allocated the same cpu-shares value, making the short-lived
IR application vulnerable to resource pressure from the longer-
running, cpu-intensive MP applications. Under the OpenWhisk
baseline, which allocates cpu-shares proportional to the memory
requirements of the application, IR gets equal preference when
colocated with NN, but gets lower preference when colocated with
CFD since CFD uses 512MB of memory compared to the 256MB
used by IR. Consequently, IR is unable to avoid the cpu contention
with the MP application, resulting in severe latency degradation.

The result of colocating SA with NN and CFD is shown in Fig-
ure 2(c) and 2(d). Results are similar, with FnSched complying with
the latency SLO in all cases, unlike the other baselines.

Colocating three applications. We also experiment with colocat-
ing the ET applications with more than one MP application. Of the
4 cores on the invoker, we colocate the ET application with NN on
2 of them and with CFD on the other 2. Figures 2(e) and 2(f) shows
the resulting latency degradation when using IR and SA as the ET
applications. FnSched consistently meets the SLO requirements of
all applications in all cases. By contrast, the latency degradation of
the ET application is much higher under the Linux and OpenWhisk
baselines, with the degradation violating the SLO in most cases. As
before, by prioritizing the ET application, FnSched protects the per-
formance of the short-lived functions. While the MP applications,
which are not prioritized, can have higher latency under FnSched
as compared to the other baselines, the latency degradation is still
within the SLO requirements.

We also experimented with other potential colocation combina-
tions, such as ET with ET, and ET with ET and MP. In these cases,
we found that all policies perform similarly.

4.5 Evaluating Multi-Invoker Scheduling
We now evaluate the performance of FnSched in multi-invoker sce-
narios. As mentioned in Section 3, the objective for multi-invoker
scheduling is to autoscale capacity, that is, minimize the average
number of invokers employed while ensuring acceptable applica-
tion latencies. For evaluating FnSched in such scenarios, we com-
pare its performance with the following baseline schedulers:
(1) Round Robin spreads the load evenly among invokers by sending
successive requests to different invokers in a cyclic manner.
(2) Least Connections sends the incoming request to the least loaded
(fewest in-flight requests) invoker.
For all baselines, and FnSched, we employ the superior cpu-
shares policy identified in Section 4.4, namely, FnSched’s Algo-
rithm 1, with the parameters identified by our sensitivity analysis.
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Figure 3: Performance of different multi-invoker schedulers
under different load levels of IR.

Since our focus in the multi-invoker evaluation is on autoscaling
abilities, we discuss our results under the following experimental
conditions. First, we consider the case where there is only one
application, IR; then, we consider the case where requests for two
different applications, IR and NN, are being received. For both cases,
we experiment with time-varying load.

Scaling with a single application. To drive the load for our ex-
periments, we employ three synthetic traces with the load gradually
building up from 0 and going up to a maximum of 2X, 4X, and 8%
of the single invoker load, respectively. For example, under 8x load,
the peak request rate for IR is 8 X 1 = 8 req/s (see Section 4.3). The
gradual build up happens over 1-3 minutes duration, and then the
peak load is sustained for 5 minutes.

Our results for single application scaling are shown in Figure 3,
where the x-axis represents the peak load of the synthetic trace
(relative to the single invoker load). We see from Figure 3(a) that
FnSched meets the SLO in all cases, similar to the other baselines.
Figure 3(b) highlights the crucial resource savings enabled by Fn-
Sched as it employs fewer invokers, on average, compared to Round
Robin (RR) and Least Connection (LC). Since RR cycles incoming
requests among invokers, it keeps all invokers busy, that is, each
invoker has at least 1 live container on it; thus, RR uses 8 invokers
on average. LC tends to use all invokers at peak load, but uses
fewer invokers during low load, resulting in slightly less than 8
invokers in use, on average. By contrast, by packing requests on few
containers, FnSched significantly reduces the number of invokers
used, while still meeting the SLO requirements; we find that the
proactively-spawned invoker under FnSched helps to meet the la-
tency SLO when packing requests. Across all three traces, FnSched
reduces the average number of invokers employed by about 62%
and 31%, respectively, compared to RR and LC.

Scaling with multiple applications. We now consider the case of
multi-invoker scheduling with multiple applications. We start with
synthetic traces, shown by the solid lines (left y-axis) in Figure 4(a),
with requests from two applications — IR and NN. Here, the relative
load denotes the multiple of request rate compared to the single
invoker experiments. The number of invokers used by different
policies is shown on the right y-axis. All policies meet the SLO, but
the average number of invokers employed varies significantly. Fn-
Sched closely follows the load, resulting in more responsive scaling
of invokers. By contrast, RR and LC generously employ invokers,
resulting in higher usage. Over the length of the experiment, Fn-
Sched reduces the average number of invokers employed by about
46% and 32%, respectively, compared to RR and LC.
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Figure 4: Load and the number of hosts used in colocation
of multiple applications scaling experiments.

We now consider experiments where the load is driven by real-
world (WITS [21]) traffic traces. We employ three different sets
of traces to drive the load for IR and NN; one of these scenarios
is shown in Figure 4(b) with the load for IR and NN illustrated
by the solid lines. For all traces, while all policies meet the SLO,
the number of invokers employed varies across the policies. As
shown in Figure 4(b), FnSched typically uses about 40%—-50% fewer
invokers compared to RR and LC. On average, across all traces,
FnSched employs about 55% and 36% fewer invokers compared to
RR and LC, respectively.

5 Prior Work

Serverless platform characterization: A performance study was
conducted by Wang et al. [18] on the serverless offerings of AWS,
Azure and Google. The study finds that AWS uses bin-packing-like
strategy to maximize VM memory utilization and that severe con-
tention between functions can arise in AWS and Azure. A similar
characterization was conducted by Lloyd et al. [11], revealing that
container initialization burdens serverless computing platforms.
The authors found that extra infrastructure is provisioned to com-
pensate for initialization overhead of cold service requests, moti-
vating the need for resource efficiency in serverless environments.

Scheduling: While scheduling approaches have been studied for
decades, to the best of our knowledge, we have not found any prior
works specific to serverless scheduling for cloud providers. Rausch
et al. [15] propose a serverless platform for operating edge Al ap-
plications in edge clouds. The authors envision a hybrid edge/cloud
platform, and show that the task placement latency of the Kuber-
netes default scheduler is unacceptable when the cluster has a large
number of nodes.

Existing request-level schedulers, such as Sparrow [12], typically
consider requests that have similar execution patterns. By contrast,
serverless requests can take anywhere from a few milliseconds (ET
applications) to multiple seconds or even minutes (MP applications)
to complete. As such, FnSched also regulates the resource usage of
the requests at a fine-grained level (via cpu-shares) to mitigate con-
tention. For cluster-level schedulers, such as Quasar [6], the focus
is typically on scheduling (VM-hosted) applications; by contrast,
in our work, the focus is on scheduling individual requests across
application containers.

Kubernetes, a technology that simplifies management of server-
ful computing [10], is a reasonable option to schedule containers.
However, while Kubernetes can schedule serverless containers (cur-
rently available as Knative service), it requires the scaling policy
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parameters to be specified by the user. By contrast, FnSched moni-
tors resource usage and scales resources (invokers) automatically to
meet SLO requirements, without introducing too much complexity
in the scheduling design. We believe that FnSched can be integrated
with Knative, which we plan on pursuing as part of future work.

6 Conclusion
This paper presents our ongoing efforts on serverless scheduling.

Our experience with FnSched suggests that the design of serverless
schedulers should take into account the diversity in resource con-
sumption and lifetime of functions. Further, to achieve efficiency
at scale, load should be “unbalanced”, contrary to existing load
balancing policies. With this paper, we also aim to highlight the
scheduling problem, and its challenges, in the context of serverless.

One of the limitations in the current design of FnSched is the
assumption that function execution times are not variable, and
can thus be estimated via profiling for determining cpu-shares. In
public clouds, this assumption may not hold true; we are working on
enhancing FnSched to address this limitation. A second limitation
that we plan on addressing is the (currently) manual classification
of functions into ET and MP categories. Finally, while this work
assumes homogeneous invokers, we plan to extend FnSched to
heterogeneous invokers, such as those in the public cloud [18], as
part of future work.
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