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Abstract. System software typically offers a large
amount of compile-time options and variability. A good
example is the Linux kernel, which provides more than
10,000 configurable features, growing rapidly. This allows
users to tailor it with respect to a broad range of sup-
ported hardware architectures and application domains.

From the maintenance point of view, compile-time
configurability poses big challenges. The configuration
model (the selectable features and their constraints as
presented to the user) and the configurability that is
actually implemented in the code have to be kept in
sync, which, if performed manually, is a tedious and
error-prone task. In the case of Linux, this has led to
numerous defects in the source code, many of which are
actual bugs.

In order to ensure consistency between the variabil-
ity expressed in the code and the configuration models,
we propose an approach that extracts variability from
both into propositional logic. This reveals inconsistencies
between variability as expressed by the C Preprocessor
(CPP) and an explicit variability model, which manifest
themselves in seemingly conditional code that is in fact
unconditional. We evaluate our approach with the Linux,
for which our tool detects 1,776 configurability defects,
which turned out as dead/superfluous source code and
bugs. Our findings have led to numerous source-code
improvements and bug fixes in Linux: 123 patches (49
merged) fix 364 defects, 147 of which have been confirmed
by the corresponding Linux developers and 20 as fixing
a previously unknown bug.

? This work was partly supported by the German Research
Foundation (DFG) under grant no. SCHR 603/7-1 and SFB/TR
89.

1 Introduction

I know of no feature that is always needed. When
we say that two functions are almost always used
together, we should remember that “almost” is a
euphemism for “not”. David L. Parnas [1979]

Serving no user value on its own, system software has
always been “caught between a rock and a hard place”.
As a link between hardware and applications, system soft-
ware is faced with the requirement for variability to meet
the specific demands of both. This is particularly true
for operating systems, which ideally should be tailorable
for domains ranging from small, resource-constrained em-
bedded systems over network appliances and interactive
workstations up to mainframe servers. As a result, many
operating systems are provided as a software family [35];
they can (and have to) be configured at compile time to
derive a concrete operating-system variant.

Configurability as a system property includes two sep-
arate – but related – aspects: implementation and config-
uration. Kernel developers implement configurability in
the code; in most cases they do this by means of condi-
tional compilation and the C preprocessor [42], despite all
the disadvantages with respect to understandability and
maintainability (“#ifdef hell”) this approach is known
for [41, 27]. Users configure the operating system to de-
rive a concrete variant that fits their purposes. In simple
cases they have to do this by (un-)commenting #define
directives in some global configure.h file; however,
many operating systems today come with an interactive
configuration tool. Based on an internal model of features
and constraints, this tool guides the user through the
configuration process by a hierarchical / topic-oriented
view on the available features. In fact, it performs implicit
consistency checks with respect to the selected features,
so that the outcome is always a valid configuration that
represents a viable variant. In today’s operating systems,
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this extra guidance is crucial because of the sheer enor-
mity of available features: eCos, for instance, provides
more than 700 features, which are configured with (and
checked by) eCosConfig [30]; the Linux kernel is con-
figured with Kconfig and provides more than 10,000 (!)
features. This is a lot of variability – and, as we show in
this paper, the source of many bugs that could easily be
avoided by better tool support.

Our Contributions

This article is an extended and revised version of a pre-
vious conference paper [44]. In [40], we introduced the
extraction of a source-code variability model from CPP-
based software, which represents a building block for this
work. A short summary of this approach is presented in
Section 3. In [44], we extended that work by incorporat-
ing other sources of variability and automatically (cross-)
checking them for configurability-related implementation
defects in large-scale configurable system software. These
extensions enabled us to reveal and repair many configu-
ration issues in the Linux kernel. However, that approach
had some shortcomings like dealing with only a subset of
the CPP directives, using a limited subset of Kconfig
constraints, and generating very large logic formulas for
some complex cases. This work addresses these issues by
making the following contributions:

1. We show that the increasing amount of configura-
bility in system software causes serious maintenance
issues. (Section 2.2)

2. We presents a new approach to extract the constraints
from Kconfig variability models. The presented tool
deals with all Kconfig constraints and translates
them to propositional logic. (Section 4.1)

3. The presented tool checks for configurability-related
implementation defects under the consideration of
both symbolic and logic integrity. (Section 5.2)

4. This work presents a practical and scalable tool chain
that has detected 1,776 configurability-related defects
and bugs in Linux 2.6.35; for 121 of these defects
(among them 22 confirmed new bugs) our fixes have
already been merged into the mainline tree. (Sec-
tion 5.3)

This revision extends the conference version [44] by the
following contributions:

1. We show a new approach to translating CPP directives
into propositional formula that deals with the CPP
directives #define and #undef. (Section 3.2)

2. We present an algorithm that reduces the size of the
propositional formulas, which represent the variabil-
ity of conditional blocks in source code that uses
the CPP. This optimization allows us to apply our
approach to very large source files and whole compi-
lation units. (Section 3.3)

1

2

3

4

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

source files

KConfig files

config HOTPLUG_CPU
  bool "Support for ..."
  depends on SMP && ...

autoconf.h

#define CONFIG_HOTPLUG_CPU
#define CONFIG_SMP
...

auto.make

gcc

user selectionconfiguration space

Kbuild

Kconfig

implementation variantimplementation space

configuration variant

Fig. 1. Linux build process (simplified).

In the following, we first analyze the problem in further
detail before presenting our approach in Section 5. We
evaluate and discuss our approach in Section 5.3 and
Section 6, respectively, and discuss related work in Sec-
tion 7. The problem of configurability-related defects
will be introduced in the context of Linux, which will
also be the case study used throughout this paper. Our
findings and suggestions, however, should also apply to
other compile-time configurable system software.

2 Problem Analysis

Linux today provides more than 10,000 configurable fea-
tures, which is a lot of variability with respect to hardware
platforms and application domains. The possibility to
leave out functionality that is not needed (such as x86
PAE support in an Atom-based embedded system) and
to choose between alternatives for those features that
are needed (such as the default IO scheduler to use) is
an important factor for its ongoing success in so many
different application and hardware domains.

2.1 Configurability in Linux

The enormous degree of configurability of the Linux ker-
nel demands dedicated means and tools to ensure the
validity of the resulting Linux variants. Most features
are not self-contained; instead, their possible inclusion is
constrained by the presence or absence of other features,
which in turn impose constraints on further features, and
so on. In Linux, variant validity is taken care of by the
Kconfig configuration tool and the Kbuild build sys-
tem. Figure 1 shows how the relevant tools for configuring
and compiling a Linux kernel interact with each other.
The four relevant steps are explained in the following:

Ê Linux employs the Kconfig language to specify its
configurable features together with their constraints.
In version 2.6.35 a total of 761 Kconfig files with
110,005 lines of code define 11,283 features plus de-
pendencies. We call this variability specification the
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Linux configuration space. Section 4.1 gives a brief
overview over the Kconfig language.

Ë The Kconfig configuration tool implicitly enforces
all feature constraints during the interactive feature
selection process. The outcome is, by construction, the
description of a valid Linux configuration variant.
Technically, the Kconfig tool produces a C header
file (autoconf.h) and a Makefile (auto.make)
that define a CONFIG <FEATURE> preprocessor
macro and a make variable for every selected Kcon-
fig feature:

#define CONFIG_HOTPLUG_CPU 1
#define CONFIG_SMP 1

By convention all and only Kconfig flags are pre-
fixed with CONFIG_.

Ì Features are implemented in the Linux source code.
Whereas coarse-grained features are enforced by in-
cluding or excluding whole compilation units in the
build process, in this work we focus on features that
are enforced within the source files by means of con-
ditional compilation with the C preprocessor. A total
of 27,166 source files contain 82,116 #ifdef blocks.
We call this variability implementation the Linux
implementation space.

Í The Kbuild utility drives the actual variant compi-
lation and linking process by evaluating auto.make
and embedding the configuration variant definition
autoconf.h into every compilation unit via the gcc
--force-include switch.1 mechanism. The result
of this process is a concrete Linux implementation
variant

2.2 The Issue

Overall, the configurability of Linux is defined by two
separate, but related models: The configuration space
defines the intended variability, whereas the implementa-
tion space defines the implemented variability of Linux.
Given the size of both spaces – 110 KLOC for the configu-
ration space and 12 MLOC for the implementation space
in Linux 2.6.35 –, it is not hard to imagine that this is
prone to inconsistencies, which manifest as configurabil-
ity defects, many of which are bugs. We have identified
two types of integrity issues, namely symbolic integrity
issues and logic integrity issues, which we introduce in
the following by examples from Linux.

Consider the following change, which corrects a simple
feature misnaming (detected by our tool and confirmed
as a bug) in the file kernel/smp.c:2

diff --git a/kernel/smp.c b/kernel/smp.c
--- a/kernel/smp.c
+++ b/kernel/smp.c

1 implemented by the -include command-line switch
2 Shown in unified diff format. Lines starting with -/+ are being

removed/added

-#ifdef CONFIG_CPU_HOTPLUG
+#ifdef CONFIG_HOTPLUG_CPU

Patch 1. Fix for a symbolic defect

The issue, which was present in Linux 2.6.30, is an exam-
ple of a symbolic integrity violation; the implemen-
tation space references a feature that does not exist in
the configuration space, so the actual implementation
of the HOTPLUG_CPU feature is incomplete. This bug
remained undetected in the kernel code base for more
than six months. We cannot claim credit for detecting
this particular bug (it had been reported to the respective
developer just before we submitted our patch); however,
we have found 116 similar defects caused by symbolic
integrity violation that have been confirmed as new.

A symbolic integrity violation indicates a
configuration–implementation space mismatch with
respect to a feature identifier. However, consistency
issues also occur at the level of feature constraints.
Consider the following fix, which fixes what we call a
logic integrity violation:

diff --git a/arch/x86/include/asm/mmzone_32.h
b/arch/x86/include/asm/mmzone_32.h

--- a/arch/x86/include/asm/mmzone_32.h
+++ b/arch/x86/include/asm/mmzone_32.h
@@ -61,11 +61,7 @@ extern s8 physnode_map[];

static inline int pfn_to_nid(unsigned long pfn)
{

-#ifdef CONFIG_NUMA
return((int) physnode_map[(pfn)

/ PAGES_PER_ELEMENT]);
-#else
- return 0;
-#endif
}

/*

Patch 2. Fix for a logical defect

The patch itself does not look too complicated – the
particularities of the issue it fixes stem from the context;
in the source, the affected pfn to nid() function is
nested within a larger code block whose presence con-
dition is #ifdef CONFIG_DISCONTIGMEM. According
to the Kconfig model, however, the DISCONTIGMEM
feature depends on the NUMA feature, which means that
it also implies the selection of NUMA in any valid config-
uration. As a consequence, the #ifdef CONFIG_NUMA
is superfluous; the #else branch is dead and both are
removed by the patch. The patch has been confirmed as
fixing a new defect by the respective Linux developers
and is currently processed upstream for final acceptance
into mainline Linux.

Compared to symbolic integrity violations, logic in-
tegrity violations are generally much more difficult to
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version features #ifdef blocks source files

2.6.12 (2005) 5338 57078 15219
2.6.20 7059 62873 18513
2.6.25 8394 67972 20609
2.6.30 9570 79154 23960
2.6.35 (2010) 11223 84150 28598

relative growth (5 years) 110% 47% 88%

Table 1. Growth of configurability in Linux

analyze and fix; our experience from submitting patches
to Linux developers show that most symbolic violations
are caused by misspellings or oversight. So far we have
fixed 38 logic integrity violations that have been con-
firmed as new defects.

Note that Patch 2 does not fix a real bug – it only im-
proves the source-code quality of Linux by removing some
dead code and superfluous #ifdef statements. Some
readers might consider this as “less relevant cosmetical
improvement”; however, such “cruft” (especially if it con-
tributes to “#ifdef hell”) causes long-term maintenance
costs and impedes the general accessibility of the source.

2.3 Problem Summary

Overall, we find 1,316 symbolic + 460 logic integrity
violations in Linux 2.6.35 – numbers that speak for them-
selves. The situation becomes more severe every day,
given how quickly Linux is growing: Within the last five
years, the number of configuration-conditional blocks in
the source (#if blocks that test for some Kconfig item)
has grown by around fifty percent, the number of fea-
tures (Kconfig items) and source files have practically
doubled (Table 1).

We think that configurability as a system property
has to be seen as a significant (and so far underestimated)
cause of software defects in its own respect.

3 Extraction of Variability Models from Source
Code

The basic idea of our approach is to extract variability
from both the source code and the variability model
and translate them into comparable models. The choice
of propositional logic as “lingua franca” for the models
allows us to use standard tools like SAT-solvers for finding
inconsistencies. A first description of our approach for
extracting variability from source code has been presented
earlier in a conference paper [40]. This section reiterates
the fundamentals and enhances the extraction tool by
allowing the CPP directives #define and #undef to
appear at any place in the source code.

3.1 General Approach

For the purposes of this article, we do not need to con-
sider each and every language feature of CPP, but can

focus on the features that implement conditional compi-
lation. Therefore we have designed an algorithm [40] that
is tailored in this respect in order to be precise and have
good performance. In short, our algorithm processes the
structure and expressions of CPP conditional blocks and
produces a boolean formula that describes a source file
by means of its conditional compilation structures. In
essence, the source code is examined for lines that start
with one of the directives #ifdef, #ifndef, #if,
#elif, #else, which are the constructs responsible
for conditional compilation. As result, we receive a for-
mula that describes the presence conditions for each
conditional block. It thereby includes all flags (features)
that appear in any conditional compilation expression as
a propositional variable. We build the presence condition
PC of the conditional block bi as follows:

PC(bi) = expr(bi)∧noPredecessors(bi)∧parent(bi) (1)

Let bi be a conditional block that is nested in some other
conditional block and in the middle of a squence of #elif
blocks. The C compiler will process this block bi only if
a) its expression expr(bi) evaluates to true, b) none of its
predecessors are selected noPredecessors(bi), and c) its
enclosing #ifdef block parent(bi) is also processed. If
all these conditions are met, then the CPP will necessarily
select this block. Additionally, the reverse is true as well:
if the CPP selects the block, all these presence conditions
need to hold. This results in a biimplication: bi ↔ PC(bi).
The formula for a whole file is constructed by conjuncting
the presence conditions for all blocks:

F(f ,b) =
∧

i=1..m

bi ↔ PC(bi) (2)

In this equation, f and b are bitvectors where each bit
in f represents a CPP flag and each bit in b represents
the selection a block of in the input.

An example is shown on the right hand side of
Figure 7 on page 11: in the upper part we show the
source code, and in the lower part we show the gen-
erated formula by our algorithm; note that in this
example Fu([DISCONTIGMEM, NUMA], [b1, b2, b3]) =
PC(b1) ∧ PC(b2) ∧ PC(b3) = I

3.2 Translating CPP (re)definition statements into
propositional logic

Real-world software-projects often use a generated, cen-
tral configuration header (like config.h), in which the
configuration is represented with #define statements.
This file is then available in all compilation units by either
explicitly using the #include statement, or implicitly
with the -include compiler switch. Unfortunately, in
C this is not the only way to define CPP configuration
variables. In many software projects, we observe that
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configuration variables are also overridden in implemen-
tation files using the keywords #define and #undef.

The algorithm presented in the previous section han-
dles efficiently a subset of the CPP constructs. It was
applied to real-world projects and enabled us to reveal
serious bugs in very large code bases [40, 44]. However,
in these two publications the #define and #undef
statements were left unconsidered. This limits the use-
fulness of the tools on projects that allow the definition
of features in the solution space (source code), because
this limitation causes inaccurate presence conditions for
blocks, whose presence condition is dependent on an
earlier #define or #undef statement. This subsection
extends the previous work so that the propositional for-
mulas capture the constraints induced by #define and
#undef statements in CPP source code in a correct way.

Technically, the CPP-statements of a C program
describe a meta-program that is executed by the
C Preprocessor before the actual compilation by the
C compiler takes place. In this meta-program, the CPP
expressions (such as #ifdef – #else – #endif) cor-
respond to the conditions on the edges of a loop-free3

control flow graph (CFG); the thereby controlled frag-
ments of C-code (i.e., the bodies of #ifdef-blocks) are
the statement nodes. The major challenge for encoding
#define and #undef statements is that these redef-
inition statements change the state of a configuration
variable. As propositional logic lacks the concept of state
and control flow, we address this by identifying regions,
in which the value of the conditional variable is invariant.
This means that every redefinition statement introduces
a new region that starts at the point of the redefinition
statement and renames all dependent propositional vari-
ables. For the following example, the identified regions
are depicted in Figure 2:

1 #if X // Block 0
2 #define A
3 #endif
4

5 #if Y // Block 1
6 #undef A
7 #endif
8

9 #if A // Block 2
10 #endif

Each time a redefinition statement introduces a new re-
gion, each variable (e.g., A) is rewritten to a new variable
(e.g., A’). The remainder of this section explains how
to express the logical relationships between the original
conditional variable and its rewritten version (e.g., A and
A’), which are added as additional conjunction to the
existing presence conditions.

For the given example, the challenge for the resulting
propositional formulas is that the #define statement in

3 Leaving aside “insane” CPP meta-programming techniques
based on recursive #include, which are hardly used in practice.

#if X

#define A

#if Y

#undef A

#if A

start of file

end of file

”A” → A

”A” → A′

”A” → A′′

Fig. 2. A file with three #ifdef blocks. The upper part of each
block contains the #ifdef expression, the lower part #define and
#undef statements in the block. The basic idea for encoding a flow
of #define and #undef statements into propositional formula is
to introduce “scopes”. All references to a variable (A) that occur
after an #define or #undef statements are rewritten.

Line 2 and the #undef statement in Line 6 are effective
only under the presence conditions of Block 0 and Block 1:

1 ( B0 ↔ X ) ∧
2 ( B1 ↔ Y ) ∧
3 ( B2 ↔ A′′ ) ∧
4 ( B0 → A′ ) ∧
5 ( ¬B0 → ( A ↔ A′ ) ) ∧
6 ( B1 → ¬A′′ ) ∧
7 ( ¬B1 → ( A′ ↔ A′′ ) )

Line 1 to Line 3 represent the “basic” presence con-
ditions, which are derived directly from the #ifdef
expressions for this simple example. In Line 3 the condi-
tional variable is already rewritten to A′′. Lines 4 to 7
contain implications that control the relationships be-
tween the original and rewritten versions of a conditional
variable. For both Block 1 and Block 2, two implications
(Lines 4 and 5 for Block 1, and Lines 6 and 7 for Block 2)
describe the situation with respect to the selection of
the block: If it is selected, then the rewritten version of
the conditional variable is set to true—if not, then both
versions are equivalent.

Generally speaking, these “rewriting” rules consti-
tute an extension to the presence condition of Formula 1
from the previous subsection: Here, the helper function
expr(bi) is extended to substitute all propositional vari-
ables with the rewritten version that is active in the
“region” of the corresponding conditional block. During
the rewriting, the additional implications are conjuncted
to Fu. The resulting formula then correctly represents the
implementation variability model [40] of CPP programs
that may include the statements #define and #undef.

Experimental validation. Since the resulting proposi-
tional formulas of real-world source files (like whole driver
implementations in Linux) and compilation units are too
complex to validate manually, we have to automatically
validate the formulas against the actual semantics of CPP.
Therefore, we use artificial examples as test cases for vali-
dation, so that we can apply our approach on real source
code from Linux with confidence. For each file, we collect
all used configuration flags and generate all possible selec-
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tions of them. For each combination of flags, we call CPP4

and record the thereby selected blocks. As a result, we
have empirically determined the set of configuration flags
and corresponding “valid” block selections, according to
the semantics of CPP. Respectively, we call all block se-
lections that are not covered by any combination of CPP
flags “invalid”. With this as reference, we generate the
propositional formula with our approach and constrain
it with every possible permutation of block selections
(e.g., B1∧¬B2∧B3). We then check the validity of each
formula with a SAT solver.

While the complexity of the empircal validation is
exponential with the number of conditional blocks and
CPP flags, it is still a valuable asset for developing and
verifying that the generated formulas represent the CPP
semantics correctly.

Results. We show the usefulness of the presented exten-
sion of the algorithm by analyzing Linux version 3.0 for
configuration defects in form of “dead” and “undead”
Blocks [45], which are basically blocks that are only
seemingly conditional but in fact cannot be selected or
unselected under any configuration. The analysis is pre-
formed using the undertaker tool that will be presented
in detail in Section 5.3. In total, the tool processed 15,538
header and 16,202 implementation files. When ignoring
every redefinition statement (#define and #undef),
in total 76 defects (23 dead and 46 undead blocks) are
detected. Now, by properly respecting redefinition state-
ments, the number of defects increases to an impressive
total of 2,514 defects (2182 dead and 332 undead blocks).
The additional defects were confirmed by manual random
verification.

3.3 Application on Large Compilation Units

The presented extension in the previous section, which al-
lows to model the variability of CPP meta-programs with
propositional logic, adds additional conjunctions to each
block presence condition that follows a CPP redefinition
statement (i.e., #define or #undef). For real-world
software-projects such as the Linux kernel, this can be
problematic because such redefinition statements do not
necessarily occur in the same source file.

Figure 3 shows a Linux driver, which consists of
a header file driver.h and an implementation file
driver.c. The #define overrides the configuration
variable CONFIG_DRIVER_USE_NUMA only when the
variable CONFIG_NUMA is set. While in theory, this ex-
ample could have also been handled within Kconfig,
in practice this is not always the case. Therefore, for in-
cluding these non-Kconfig based extra constraints the
analysis needs to additionally process #include state-

4 Technically we define the enabled flags with the -D command
line option of CPP

#ifdef CONFIG_NUMA
#define CONFIG_DRIVER_USE_NUMA 1
#endif

(a) File: driver.h

#include "driver.h"
#ifdef CONFIG_DRIVER_USE_NUMA
\\ BLOCK 1
#endif

(b) driver.c

Fig. 3. A Linux driver consiting of header and implementation file.
The #define in the header file influences the presence condition
of Block 1 in the implementation file.

ments instead of analyzing header and implementation
files separately and individually.5

In Linux 3.0, an average of 350 #include state-
ments [23] have to be resolved per CPP file. Considering
expanded compilation units instead of just a single source
file can potentially increase the size of the resulting propo-
sitional formula tremendously. However, in practice the
propositional formulas for the conditional blocks often
share few cross constraints. By cleverly investigating
these constraints, the implementation variability model
can be sliced to the given situation, which keeps the size
of the corresponding propositional formula small.

The basic idea for “slicing” the code-constraints is
as follows: First, we identify all blocks that can influ-
ence the presence condition of the block. The resulting
smaller presence condition is then the conjunction of all
identified blocks plus the additional clauses that result
from redefinition statements (c.f. Section 3.2). Because
the C Preprocessor processes the file linearly, only blocks
that occur lexically earlier can influence a block’s presence
condition. Without the redefinition statements #define
and #undef, the algorithm for calculating the presence
condition would only need to consider blocks that enclose
a block or share a common enclosing block. We call such
a group of blocks related.

However, if redefinition statements occur in a con-
ditional block that has a non-trivial presence condition
(i.e., the redefinition statement is only conditionally in
effect), a block which uses one of the redefined variables
is also influnced by the block enclosing the redefinition
statements. So we have to add these redefining blocks to
the related block group recursivly.

From this, we devise an algorithm that collects logical
implications recursively for all blocks. It returns formu-
las that are tailored to groups of related blocks. In the
worst case, the resulting formula contains all blocks that
occur before the specific block. In fact, for code with few

5 Technically, this is done by replacing the directive with the ref-
erenced file contents. Like the regular CPP tool, header search paths
need to be resolved. However unlike the regular CPP, conditional
#include statements need to be processed as well.
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redefinition statements the resulting formulas are con-
siderably smaller. This particularly applies to the Linux
kernel, where this tailoring to related blocks allows us
to process all conditional blocks in Linux without re-
stricting the analysis to a subset of blocks. For instance,
in [40], only configuration controlled conditional blocks,
that is, blocks containing a CPP variable that starts with
CONFIG_, were considered. This shows that this model
slicing technique allows the extraction of the implemen-
tation variability model [40] to scale to the size of the
Linux kernel.

3.4 Summary

Propositional logic is a solid foundation for represent-
ing variability in source text. In this subsection, which
extends previous work [40], we have shown an ap-
proach that translates the variability as expressed by
the C Preprocessor into an implementation variability
model in form of propositional formula. A major chal-
lenge is the correct representation of the CPP redefinition
statements #define and #undef, which change the
state of a conditional variable, without extending “pure”
propositional logic. With this extension the resulting code
variability model could be significantly improved.

4 Converting the Kconfig Variability Model to
Presence Implications

There are several strategies to convert configuration space
models into boolean formulas [5, 15]. However, due to
the size of real models—the Kconfig model contains
more than 10,000 features—, the resulting boolean for-
mulas become very complex. The search for a solution to
problems that use such formulas may become intractable
(or unnecessarily slow). For Linux development, the con-
figuration space is described with the Kconfig tool and
language.

The Kconfig tool set was especially written to sup-
port the modeling of features and interdependencies of
the Linux kernel. It provides a language to describe a
variant model consisting of features (referred to as config
options) together with their constraints and dependen-
cies. Modularization of the variant model is supported
by an inclusion mechanism. In Linux kernel version 3.0,
a total of 839 Kconfig files are employed, consisting
of 121,506 lines of code that describe 7,702 Kconfig
features and their dependencies. In many respects, the re-
sulting variant model can be compared to feature models
known by the software product-line community [39].

Most of the features are shared among all 24 archi-
tectures. Naturally, the largest variability occurs in the
Hardware Abstraction Layer. For this reason, each ar-
chitecture in Linux has its own “top-level” Kconfig file
in arch/archname/Kconfig. This file references all

config HOTPLUG_CPU
bool "Support for hot-pluggable CPUs"
depends on SMP && HOTPLUG
&& SYS_SUPPORTS_HOTPLUG_CPU

Fig. 4. A simple, boolean Kconfig item

other Kconfig files with the source statement that
works similar to the CPP #include statement. This
allows the same feature definition to be shared across
architectures and have feature implementation share the
same subdirectory as their Kconfig description. Strictly
speaking, this means that Linux comes with more than
twenty distinct variability models, one for each architec-
ture. For the sake of simplicity, this work focuses on the
most relevant architecture, namely x86.

The Kconfig files feature a specific syntax for creat-
ing configuration options in a hierarchical menu structure
that is very similar to the hierarchical structure of feature
models. The syntax has evolved during the last ten years
and is now considered by the Linux community as pow-
erful and capable asset for abstracting all the inherent
complexities of the kernel configuration. For finding con-
figuration inconsistencies the constraints of the Kconfig
model need to be converted into a format that can be
combined with other sources of variability. Propositional
logic in form of presence implications is a well-understood
notation for this purpose. This section introduces the
most important language features and explains how to
translate each of them into presence implications for a
given feature.

4.1 The Kconfig language

Translation of Kconfig Features. In this paper, we define
a (Kconfig) feature to be any user configurable item in
the Kconfig frontend. They usually have a descriptive
help text and declare dependencies on other features.
They can be one of the types ’int’, ’string’, ’hex’, ’boolean’,
’tristate’ and ’choice’. In this work, we mostly ignore the
features of type ’int’, ’string’ and ’hex’, as they contribute
little to the technical variability in Linux. As this work
essentially develops a bug finding tool, this leads to a
(small) number of missed bugs (at worst).

A simple feature of type boolean is given in Figure 4.1.
Tristate features can have one of the states ’not compiled’,
’statically linked into the kernel’ or ’compiled as loadable
kernel module’. In the latter case, the build scripts take
care to compile and link the source files that implement
the feature into an kernel object (.ko) file that can be
loaded (and unloaded) at runtime. Feature dependencies
can declare constraints on the exact state of tristate
features, which need to be taken into account during
the translation of the Kconfig model into propositional
formulas.
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config MICROCODE
tristate "microcode support"
select FW_LOADER
---help---
If you say Y here, you will be able to
update the microcode. [...]
To compile this driver as a module,
choose M here.

Fig. 5. A simple tristate feature. The help text is advisory to the
user. The statement select FW LOADER means that if the user
selects the feature MICROCODE, kconfig will automatically enable
the feature FW CONFIG.

For Kconfig features of type ’int’, ’string’, ’hex’
and ’boolean’ the translation process assigns a (single,
boolean) configuration variable that represents the
user selection of the feature. For ’tristate’ features two
configuration variables are introduced, one of which by
convention ends with the suffix _MODULE. The transla-
tion process inserts artificial additional logical constraints
to prevent that both configuration variables can be en-
abled at the same time. For instance, based on the Kcon-
fig feature declarations related to microcode loading in
Linux (cf. Figure 5), the translation process produces the
following implications:

MICROCODE → ¬ MICROCODE MODULE
MICROCODE MODULE → ¬ MICROCODE ∧ MODULES
MICROCODE AMD → MICROCODE MODULE ∨ MICROCODE
MICROCODE INTEL → MICROCODE MODULE ∨ MICROCODE

Note the special option MODULES, which is true if the
kernel is configured to support loadable modules at all.

Choices. In Kconfig the choice construct allows
grouping of features. Our translation process models
these groupings as regular features. However as choice
constructs are only implicitly declared in the Kconfig
language, the translation process assigns the correspond-
ing configuration variable a name that contains a running
number so that different choices are distinguishable. For
instance, the following Kconfig fragment offers the user
a choice between two config items:

choice " High Memory Support "
config HIGHMEM4G [...] # These are 2
config HIGHMEM64G [...] # alternatives

endchoice

From this, we deduce the following presence implications:

CHOICE 0 → XOR(HIGHMEM4G, HIGHMEM64G)

Alternatively, a choice can be declared as optional :

choice " High Memory Support "
optional
config HIGHMEM4G [...] # These are 2
config HIGHMEM64G [...] # alternatives

endchoice

In this case, the cardinality constraints of the feature
group is changed so that no member of the group needs
to be selected.

Kconfig features 7702 dependencies 7339
– boolean 2757 selects 4105
– tristate 4700 choices 57
– other (int, hex, ...) 245 features in choices 201

Table 2. Statistics of Kconfig features and constraints types in
Linux 3.0, x86 Architecture.

select. The keyword select allows a programmer to
trigger the automatic selection of a Kconfig item in cer-
tain situations. This is a straight-forward way to express
cross-tree constraints, which can be restricted by further
conditions. Consider the following example:

config X86
select HAVE_ARCH_GDB
select GENERIC_PENDING_IRQ if SMP

This feature gets translated to the configuration variable
X86 with the following presence implications:

X86 → HAVE ARCH GDB
X86 → (SMP → GENERIC PENDING IRQ)

This subsection shows only the most commonly used
language features and are by no means complete. The
formal semantics of the Kconfig language has been
studied elsewhere [48, 6]; such formalisms describe in
detail how to correctly derive the feature constraints
with even more precision.

4.2 Analysis of the Kconfig Model

For Linux 3.0 our tools translate 7,702 Kconfig features
with 7,339 dependencies into 12,217 presence implications
for the x86 architecture. Table 2 summarizes the results:

We consider a feature that cannot be selected under
any selection of other features unselectable or short: a
dead feature. Using the extracted presence implication
IF for a feature F , the following formula checks if the
feature F is dead or alive:

(F ∧ IF ) ∨ (F MODULE ∧ IF )

F and F_MODULE are two configuration variables for
the same feature F . The formula consists of two parts.
The first part checks if the feature can be compiled in
statically. The second checks whether the feature can be
compiled as module. If the query fails then the feature
cannot be selected and has to be considered as dead—at
least on the analyzed architecture.

An analysis on the x86 architecture model for Linux
3.0 (Table 3) reveals 1,520 features that cannot be se-
lected on x86; however 1,445 of them are selectable on
another architecture. This leaves 75 features that can-
not be selected on any architecture. Sixty of them are
dead because they depend on Kconfig features that
are not declared in any Kconfig file in the analyzed
source tree. Possible explanations for this phenomenon
are discussed in Section 6.1. The remaining 15 are under
futher investigation.
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Require: S initialized with an initial set of items
1: R := S
2: while S 6= ∅ do
3: item := S.pop()
4: ϕ′ := presenceImplication(item)
5: for all i that are referenced in ϕ′ do
6: if i /∈ R then
7: S.push(i)
8: R.push(i)
9: end if

10: end for
11: end while
12: return R

Fig. 6. Algorithm for configuration model slicing

4.3 Slicing on the Presence Implications

In order to efficiently analyze configuration derived in-
consistencies, it makes sense to not consider the whole
Kconfig model at once, but only the subset that is
relevant for a given analysis. Therefore, we devise an
algorithm that implements model slicing for Kconfig.
This allows us to generate sub-models from the original
model that are smaller than the complete model. To illus-
trate, suppose we want to check if a specific block of the
source code can be enabled by any valid user configura-
tion. This is expressed by the satisfiability of the formula
V ∧ BlockN . With a full model, the term V would con-
tain all user-visible features as logical variables; for the
Linux kernel it would have more than 10,000 variables.
However, not all features influence the solution for this
specific problem. The key challenge is to find a sufficient –
and preferably minimal – subset of features that can pos-
sibly influence the selection of the analyzed source code.
That is, a model V ′ where V ′ |= V for the operations of
interest, for example: V ′ ∧ BlockN |= V ∧ BlockN .

Our slicing algorithm for this purpose is depicted
in Figure 6. The goal is to find the set of configuration
items that can possibly affect the selection of one or more
given initial items. (In our tool, which we will present in
Section 5.3, this initial set of items will be taken from
the #ifdef expressions.) The basic idea is to check the
presence implications of each item for additional rele-
vant items. Both direct and indirect dependencies from
the initial set of features are thus taken into account
such that the resulting set contains all features that can
influence the features in the initial set. The algorithm
basically requires (1) the initial set of features, and (2)
the set V of presence implications for all features. The
logical constraints ϕ′ for the item feature is accessed
by the helper function presenceImplication(feature)) in
Figure 6. The set V is calculated by translating the Kcon-
fig features into propositional formulas as described in
Section 4.1. Each member of the set V has the form:
feature → ϕ′. By this, the constraints for a subset of
features can by conveniently constructed by conjuncting
presence implications. The following description explains

how to determine which presence implications have to
be conjuncted for a given set of features.

The algorithm Figure 6 returns the set of all fea-
tures for the sub-model V ′ of V that contains the feature
implications for all features in the “slice”. In the first
step (Line 1) the resulting set R is initialized with the
list of given features. Then, the algorithm iterates until
the working stack S is empty. The number of iterations
depends on the given set of feature implications in V.
In each iteration (Lines 2–11), a feature is taken from
the stack and its presence implication ϕ′ is returned by
the helper function presenceImplication(feature). This
formula represents the constraints that apply when the
feature item is selected in a configuration. All features i
that appear in ϕ′ and have not already been processed
(Line 6), are added to the working stack S and the re-
sult set R. The resulting set R always contains all items
that are initially given, plus the items that (recursively)
appear in each iteration. At Line 12, R holds the items
that have already been processed and, consequently, con-
tains the set of returned items. This algorithm always
terminates; in the worst case, it will return all features
and the slice will be exactly like the original model.

To illustrate, consider the following feature defined
in the Kconfig language:

config DISCONTIGMEM
def_bool y
depends on (!SELECT_MEMORY_MODEL &&

ARCH_DISCONTIGMEM_ENABLE) ||
DISCONTIGMEM_MANUAL

The presence implication for the feature DISCONTIGMEM
is simply the selection of the feature itself and the ex-
pression of the depends on option. If a feature has
several definitions of prompts and defaults, the feature
implies the disjunction of the condition of each option
that control its selection.

Using this algorithm, a smaller (sliced) model can
be built by conjuncting the presence implications for
configuration variables that have been identified. This
process is best explained by an example, which comes
the situation depicted in Figure 7:

DISCONTIGMEM →
( !SELECT MEMORY MODEL ∧
ARCH DISCONTIGMEM ENABLE) ∨

DISCONTIGMEM MANUAL
DISCONTIGMEM MANUAL → ARCH DISCONTIGMEM ENABLE
ARCH DISCONTIGMEM ENABLE → true
EFI → ACPI

In this example model the two configuration vari-
ables DISCONTIGMEM and DISCONTIGMEM_MANUAL
”imply” ARCH_DISCONTIGMEM_ENABLE. The pres-
ence implication for the configuration variable
ARCH_DISCONTIGMEM_ENABLE itself is a tautology.
Additionally, EFI implies ACPI. For the presence
implication of DISCONTIGMEM we can safely ignore the
latter and the tautology. This allows to simplify the
resulting conjunction to:
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Kconfig features 7,514 configuration variables 12,217
– selectable (x86) 5,994 – slice for a variable 114.7
– unselectable (x86) 1,520 logic clauses 202,809

– selectable (other) 1,445 – slice for a variable 2,326.19

Table 3. Statistics of the translated Kconfig model for Linux 3.0
on the x86 Architecture.

(DISCONTIGMEM →
( !SELECT MEMORY MODEL ∧

ARCH DISCONTIGMEM ENABLE) ∨
DISCONTIGMEM MANUAL)

∧ (DISCONTIGMEM MANUAL →
ARCH DISCONTIGMEM ENABLE)

Size of the slices and correctness. The effectiveness of
model slicing on the Linux Kconfig model for the x86
architecture can be seen in Table 3. In total the transla-
tion process produces 12,217 configuration variables, for
which the corresponding propositional formulas consist
of 202,809 clauses in total. When applying the slicing
algorithm for each variable, the resulting formula con-
tains on average 115 configuration variables and 2,326
clauses. From these figures we conclude that in average
only 0.94% of the configuration variables (1.14% of the
clauses) are important for the presence condition of a sin-
gle configuration variable. While these impressive figures
apply for Linux only, a similar effectiveness for config-
uration models of other operating systems and system
software can be expected as well.

We validate our slicing algorithm by writing test-cases.
To verify their correctness the same reasoning operation
is applied twice, one with the original whole model V
and one with the V ′. Naturally, both analyses have to be
consistent. The only allowed difference is the time that it
takes to perform the operations as the models in general
have different sizes. By doing so on defects that our tool
reveals, we confirm that the slicing algorithm does not
introduce false negatives.

As an more theoretical alternative explanation con-
sider the following situation: Let V ′ be an incomplete
subset of V, which lacks a necessary implication m from
the original model V . This lacking implication m regards
the configuration variable v. If no other implication in V ′

references this variable v, then v would be a free variable
without influence on other implications. On the other
hand, some other implication does reference the variable
v, then the algorithm would have missed to include m in
V ′. However, since all variables in V ′ are resolved recur-
sively, m cannot be missing by construction. This case
is effectively impossible. Therefore V ′ always includes
all implications that influence the presence implications
for the given configuration variables and cannot miss
implication that would introduce false negatives.

4.4 Summary

Kconfig is a sophisticated language and tooling that
allows the users of Linux to configure over 10,000 features.
It has been adopted for a number of other open source
projects, such as busybox,6 coreboot7 and many more.
The size and the great success of the Linux kernel makes
this tooling highly relevant for research.

In this section, we have shown our approach to trans-
late the constraints of features in Kconfig into propo-
sitional formulas with configuration variables as atoms.
While we do not aim at encoding the whole model into
a single holistic formula, features can still be queried
individually for satisfiability, which alone is useful for in-
stance for finding dead (i.e., unselectable) features. In the
next section, we use this representation for crosschecking
the variability from Kconfig with the extracted model
from the implementation.

5 Crosschecking Implementation with the
Explicit Variability Model

The problem analysis in Section 2.2 points out that many
configurability-related defects are caused by inconsis-
tencies that result from the fact that configurability is
defined by two (technically separated, but conceptually
related) models: the configuration space, and the im-
plementation space. For Linux, both are described in
Section 3 and Section 4.

The general idea for finding configuration consistency
defects is to extract all configurability-related informa-
tion from both models into a common representation (a
propositional formula), which is then used to cross-check
the variability exposed within and across both models in
order to find inconsistencies. We call these inconsistencies
configurability defects:

A configurability defect (short: defect) is a
configuration-conditional item that is either
dead (never included) or undead (always in-
cluded) under the precondition that its parent
(enclosing item) is included.

Examples for items in Linux are: Kconfig options,
build rules, and (most prominent) #ifdef blocks. The
CONFIG_NUMA example discussed in Section 2.2 (see Fig-
ure 7) bears two defects in this respect: Block2 is undead
and Block3 is dead. Defects can be further classified as:

Confirmed – a defect that has been confirmed as un-
intentional by the corresponding developers. If the
defect has an effect on the binary code of at least one
Linux implementation variant, we call it a bug.

6 http://busybox.net
7 http://coreboot.org

http://busybox.net
http://coreboot.org
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MEMORY MODEL

FLATMEM

DISCONTIGMEM

SPARSEMEM NUMA

depends on

#ifdef CONFIG DISCONTIGMEM

// Block1

static . . . int pfn_to_mid(. . .)

# ifdef CONFIG NUMA

// Block2

# else
// Block3

# endif
#endif

C = (FLATMEM → MEMORY MODEL)

∧ (DISCONTIGMEM → MEMORY MODEL)

∧ (SPARSEMEM → MEMORY MODEL)

∧ (NUMA → MEMORY MODEL)

∧ (DISCONTIGMEM → NUMA)

I = (Block1 ↔ DISCONTIGMEM)

∧ (Block2 ↔ Block1 ∧ (NUMA)

∧ (Block3 ↔ Block1 ∧ ¬Block2)

implementation space constraints

implementation space

configuration space constraints

configuration space

dead? sat(C ∧ I ∧ BlockN )

undead? sat(C ∧ I ∧ ¬BlockN

∧ parent(BlockN ))

configurability defects

Fig. 7. Our approach at a glance: The variability constraints defined by both spaces are extracted separately into propositional formulas,
which are then examined against each other to find inconsistencies we call configurability defects.

Rule violation – a defect that, even though it breaks a
generally accepted development rule, has been con-
firmed as intentional by the corresponding developers.

Patch 1 discussed in Section 2.2 fixes a bug, Patch 2 a
confirmed defect. In the case of Linux a rule violation is
usually the use of the CONFIG_ prefix for preprocessor
flags that are not (yet) defined by Kconfig. We will
discuss the source of rule violations more thoroughly in
Section 6.1.

Essential for the analysis of configurability problems
is a common representation of the variability that spreads
over different software artifacts. The idea is to individ-
ually convert each variability source (e.g., source files,
Kconfig, etc.) to a common representation in form of
a sub-model and then combine these sub-models into a
model that contains the whole variability of the software
project. This makes it possible to analyze each sub-model
as well their combination in order to reveal inconsistencies
across sub-models.

Most of the constructs that model the variability
both in the configuration and implementation spaces can
be directly translated to propositional logic; therefore,
propositional logic is our abstraction means of choice. As
a consequence, the detection of configuration problems
boils down to a satisfiability problem.

Linux (and many other systems) keep their config-
uration space (C) and their implementation space (I)
separated. The variability model (V) can be defined as:

V := C ∧ I (3)

V 7→ {0, 1} is a boolean formula over all features of the
system; C and I are the boolean formulas representing
the constraints of the configuration and implementation
spaces, respectively. Properly capturing and translating

the variability of different artifacts into the formulas C
and I is crucial for building the complete variability
model V. Once the model V is built we use it to search
for defects.

With this model, we validate the implementation for
configurability defects, that is, we check if the conditions
for the presence of the block (BlockN ) are fulfillable in
the model V . For example, consider Figure 7: The formula
shown for dead blocks is satisfiable for Block1 and Block2,
but not for Block3. Therefore, Block3 is considered to be
dead ; similarly the formula for undead blocks indicates
that Block2 is undead.

5.1 Challenges

In order to implement the solution sketch described above
in practice for real-world large-scale system software, we
face the following challenges:

Performance. As we aim at dealing with huge code bases,
we have to guarantee that our tools finish in a rea-
sonable amount of time. More importantly, we also
aim at supporting programmers at development time
when only a few files are of interest. Therefore, we
consider the efficient check for variability consistency
during incremental builds essential.

Flexibility. Projects that handle thousands of features
will eventually contain desired inconsistencies with
respect to their variability. Gradual addition or re-
moval of features and large refactorings are examples
of efforts that may lead to such inconsistent states
within the lifetime of a project. Also, evolving projects
may change their requirements regarding their vari-
ability descriptions. Therefore, a tool that checks for
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configuration problems should be flexible enough to
incorporate information about desired issues in or-
der to deliver precise and useful results; it should
also minimize the number of false positives and false
negatives.

In order to achieve both performance and flexibility, the
implementation of our approach needs to take the partic-
ularities of the software project into account. Moreover,
the precision of the configurability extraction mechanism
has direct a impact on the rate of false positive and false
negative reports. As many projects have developed their
own, custom tools and languages to describe configura-
tion variability, the configurability extraction needs to
be tightly tailored.

5.2 Crosschecking Among Variability Spaces

Our approach converts the different representations of
variability to a common format so that we can check for
inconsistencies, the configurability defects. Defects appear
in two ways, either as dead, that is, unselectable blocks,
or undead, that is, always present blocks. Both kinds of
defects indicate code that is only seemingly conditional.
They can be found within single models as presented in
the previous two sections in isolation as well as across
multiple models.

Within a single model we have implementation-
only defects, which represent code blocks that cannot
be selected regardless of the systems’ selected features;
the structure of the source file itself contains contradic-
tions that impede the selection of a block. This can be
determined by checking the satisfiability of the formula
sat(bi ↔ PC(bi)). Configuration-only defects repre-
sents features that are present in the configuration-space
model but do not appear in any valid configuration of the
model, which means that the presence condition of the
feature is not satisfiable. We can check for such defects
by solving: sat(feature → presenceCondition(feature)).

Across multiple models we have configuration-
implementation defects, which occur when the rules
from the configuration space contradict rules from the im-
plementation space. We check for such defects by solving
sat((bi ↔ PC(bi)) ∧ V). Referential defects are caused
by a missing feature (m) that appears in either the con-
figuration or the implementation space only. That is,
sat((bi ↔ PC(bi)) ∧ V ∧ ¬(m1 ∨ · · · ∨mn)) is unsatisfi-
able.

We categorize all identified defects as either logic or
symbolic. Logic defects are those that can only be found
by determining the satisfiability of a complex boolean
formula. Symbolic defects are referential defects where
the expression of the analyzed block exp(bi) is an atomic
formula, that is, the expression consists of a single CPP
flag.

KConfig
files

config HOTPLUG_CPU
  bool "Support for ..."
  depends on SMP && ...

DEFECT
REPORTS
defect
reports

undertaker

CPP
Parser

SAT
Engine

KConfig
Parser

crosscheck

#ifdef CONFIG_HOTPLUG_CPU
...
#endif

Linux
source

Fig. 8. Principle of Operation

5.3 Implementation for Linux

In order to evaluate our approach, we have developed a
prototype tool for Linux and a workflow to submit our
results to the kernel developers. We started submitting
our first patches in February 2010, at which time Linux
version 2.6.33 has just been released. Most of our patches
entered the mainline kernel tree during the merge window
of version 2.6.36. In the following, we describe our tool
and summarize the results.

We named our tool undertaker, because its task is
to identify (and eventually bury) dead and undead CPP-
Blocks. Its basic principle of operation is depicted in Fig-
ure 8: The different sources of variability are parsed and
transformed into propositional formulas. For CPP parsing,
we use the Puma [47] parsing library; for proper parsing
of the Kconfig files, we have implemented the extrac-
tion tool as modification of the original Linux Kconfig
implementation. The outcome of these parsers is fed into
the crosschecking engine as described in Section 5.2 and
solved using the picosat.8 package. The tool itself is
published as Free Software and available on our website.9

Our tool scans each .c and .h file in the source tree
individually. This allows developers to focus on the part of
the source code they are currently working on and to get
instant results for incremental changes. The results come
as defect reports per file: For each file all configurability-
related CPP blocks are analyzed for satisfiability, which
yields the defect types described in the previous section.
For instance, the report produced for the configuration-
implementation defect from Figure 7 looks like this:

Found Kconfig related DEAD in arch/parisc/include
/asm/mmzone.h,

line 40: Block B6 is unselectable, check the SAT
formula.

Based on this information, the developer now revisits the
Kconfig files. The basis for the report is a formula that
is falsified by our SAT solver. For this particular example
the following formula was created:

8 http://fmv.jku.at/picosat/
9 http://vamos.informatik.uni-erlangen.de/

http://fmv.jku.at/picosat/
http://vamos.informatik.uni-erlangen.de/
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1 #B6:arch/parisc/include/asm/mmzone.h:40:1:logic:undead

2 B2 &
3 !B6 &

4 (B0 <-> !_PARISC_MMZONE_H) &
5 (B2 <-> B0 & CONFIG_DISCONTIGMEM) &
6 (B4 <-> B2 & !CONFIG_64BIT) &
7 (B6 <-> B2 & !B4) &
8 (B9 <-> B0 & !B2) &

9 (CONFIG_64BIT -> CONFIG_PA8X00) &
10 (CONFIG_ARCH_DISCONTIGMEM_ENABLE -> CONFIG_64BIT) &
11 (CONFIG_ARCH_SELECT_MEMORY_MODEL -> CONFIG_64BIT) &
12 (CONFIG_CHOICE_11 -> CONFIG_SELECT_MEMORY_MODEL) &
13 (CONFIG_DISCONTIGMEM -> !CONFIG_SELECT_MEMORY_MODEL &

CONFIG_ARCH_DISCONTIGMEM_ENABLE |
CONFIG_DISCONTIGMEM_MANUAL) &

14 (CONFIG_DISCONTIGMEM_MANUAL -> CONFIG_CHOICE_11 &
CONFIG_ARCH_DISCONTIGMEM_ENABLE) &

15 (CONFIG_PA8X00 -> CONFIG_CHOICE_7) &
16 (CONFIG_SELECT_MEMORY_MODEL -> CONFIG_EXPERIMENTAL |

CONFIG_ARCH_SELECT_MEMORY_MODEL)

This formula can be deciphered easily by exam-
ining its parts individually. The first line shows
an “executive summary” of the defect; here,
Block B6, which starts in Line 40 in the file
arch/parisc/include/asm/mmzone.h, is a
logical configuration defect in form of a block that
cannot be unselected (“undead”). Lines 4 to 8 show
the presence conditions of the corresponding blocks
(cf. Section 3 and [40]); they all start with a block
variable and by construction cannot cause the formula
to be unsatisfiable. From the structure of the formula,
we see that Block B0 implements the CPP “include
guard” and therefore encloses all other blocks. Moreover,
the way the Blocks B4 on Line 6 and B6 on Line 7
reference B2 indicate that B2 encloses B4 and B6.
Lines 9 et seqq. contain the extracted implications
from Kconfig (cf. Section 4). In this case, it turns
out that the Kconfig implications from Line 9 to
16 show a transitive dependency from the Kconfig
item CONFIG DISCONTIGMEM (cf. Block B2, Line 5) to
the item CONFIG 64BIT (cf. Block B4, Line 6). This
means that the Kconfig selection has no impact on
the evaluation of the #ifdef expression and the code
can thus be simplified. We have therefore proposed the
following patch to the Linux developers:10

1 diff --git a/arch/parisc/include/asm/mmzone.h b/arch/
parisc/include/asm/mmzone.h

2 --- a/arch/parisc/include/asm/mmzone.h
3 +++ b/arch/parisc/include/asm/mmzone.h
4 @@ -35,6 +35,1 @@ extern struct node_map_data node_data

[];
5

6 -#ifndef CONFIG_64BIT
7 #define pfn_is_io(pfn) ((pfn & (0xf0000000UL >>

PAGE_SHIFT)) == (0xf0000000UL >> PAGE_SHIFT))
8 -#else
9 -/* io can be 0xf0f0f0f0f0xxxxxx or 0xfffffffff0000000 */

10 -#define pfn_is_io(pfn) ((pfn & (0xf000000000000000UL >>
PAGE_SHIFT)) == (0xf000000000000000UL >> PAGE_SHIFT))

11 -#endif

Please note that this is one of the more complicated
examples. Most of the defects reports have in fact only a
few lines and are much easier to comprehend.

10 http://lkml.org/lkml/2010/5/12/202

subsystem #ifdefs logic symbolic total
arch/ 33757 345 581 926
drivers/ 32695 88 648 736
fs/ 3000 4 13 17
include/ 7241 6 11 17
kernel/ 1412 7 2 9
mm/ 555 0 1 1
net/ 2731 1 49 50
sound/ 3246 5 10 15
virt/ 53 0 0 0
other subsystems 601 4 1 5∑

85291 460 1316 1776
fix proposed 150 (1) 214 (22) 364 (23)
confirmed defect 38 (1) 116 (20) 154 (21)
confirmed rule-violation 88 (0) 21 (2) 109 (2)
pending 24 (0) 77 (0) 101 (0)

Table 4. Upper half: #ifdef blocks and defects per subsystem in
Linux version 2.6.35; Lower half: acceptance state of defects (bugs)
for which we have submitted a patch

Results. Table 4 (upper half) summarizes the defects
that undertaker finds in Linux 2.6.35, differentiated
by subsystem. When counting defects in Linux, some
extra care has to be taken with respect to architectures:
Linux employs a separate Kconfig-model per architec-
ture that may also declare architecture-specific features.
Hence, we need to run our defect analysis over every
architecture and intersect the results. This prevents us
from counting, for example, MIPS-specific blocks of the
code as dead when compiling for x86. The the code be-
low arch/ is architecture-specific by definition and only
checked against the configuration model of the respective
architecture.

Most of the 1,776 defects are found in arch/ and
drivers/, which together account for more than 75 per-
cent of the configurability-related #ifdef-blocks. For
these subsystems, we find more than three defects per hun-
dred #ifdef-blocks, whereas for all other subsystems
this ratio is below one percent (net/ below two per-
cent). These numbers support the common observation
(e.g., [16]) that “most bugs can be found in driver code”,
which apparently also holds for configurability-related
defects. They also indicate that the problems induced by
“#ifdef-hell” grow more than linearly, which we con-
sider as a serious issue for the increasing configurability
of Linux and other system software.

Even though the majority of defects (74%) are caused
by symbolic integrity issues, we also find 460 logic in-
tegrity violations, which would be a lot harder to detect
by “developer brainpower”.

Performance. We have evaluated the performance of
our tool with Linux 2.6.35. A full analysis of this kernel
processes 27,166 source files with 82,116 configurability-
conditional code blocks. This represents the information
from the implementation space. The configuration space
provides 761 Kconfig files defining 11,283 features.

A full analysis that produces the results as shown
in Table 4 takes around 15 minutes on a modern Intel

http://lkml.org/lkml/2010/5/12/202
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< 0.5 s 93.69%

< 5 s 99.65%

< 30 s 100%

Fig. 9. Processing time for 27,166 Linux source files

quadcore with 2.83 GHz and 8 GB RAM. However, the
implementation still leaves a lot of room for optimization:
Around 70 percent of the consumed CPU time is system
time, which is mostly caused by the fact that we fork()
the SAT solver for every single #ifdef block.

Despite this optimization potential, the runtime of
undertaker is already appropriate to be integrated into
(much more common) incremental Linux builds. Figure 9
depicts the file-based runtime for the Linux source base:
Thanks to our slicing algorithm, 94 percent of all source
files are analyzed in less than half a second; less than one
percent of the source files take more than five seconds and
only four files take between 20 and 30 seconds. The upper
bound (29.1 seconds) is caused by kernel/sysctl.c,
which handles a very high number of features; changes
to this file often require a complete rebuild of the kernel
anyway. For an incremental build that affects about a
dozen files, undertaker typically finishes in less than
six seconds.

5.4 Evaluation of Findings

To evaluate the quality of our findings, we have given our
defect reports to two undergraduate students to analyze
them, propose a change, and submit the patch upstream
to the responsible kernel maintainers. Figure 10 depicts
the whole workflow.

The first step is defect analysis: The students have
to look up the source-code position for which the defect
is reported and understand its particularities, which in
the case of logical defects (as in the CONFIG NUMA exam-
ple presented in Figure 7) might also involve analyzing
Kconfig dependencies and further parts of the source
code. This information is then used to develop a patch
that fixes the defect.

Based on the response to a submitted patch, we im-
prove and resubmit and finally classify it (and the defects
it fixes) in two categories: accept (confirmed defect) and
reject (confirmed rule violation). The latter means that
the responsible developers consider the defect for some
reason as intended ; we will discuss this further in Sec-
tion 6.1. As a matter of pragmatics, these defects are
added into a local whitelist to filter them out in future
runs.

In the period of February to July 2010, the students
have submitted 123 patches. The submitted patches focus
on the arch/ and driver/ subsystems and fix 364 out
of 1,776 identified defects (20%). 23 (6%) of the analyzed
and fixed defects were classified as bugs. If we extrapolate
this defect/bug ratio to the remaining defects, we can

defect
reports

whitelist
filter reject

rule violation

defect
analysis

document
in whitelist

submit
patch

upstream

accept
confirmed bug

improve
and

resubmit

Fig. 10. Based on the analysis of the defect reports, a patch is
manually created and submitted to kernel developers. Based on
the acceptance, we classify the defects that are fixed by our patch
either as confirmed rule violation or confirmed defect.

< 1 hour 28.74%
< 1 day 72.41%
< 1 week 90.8%

Fig. 11. Response time of 87 answered patches

expect to find another 80+ configurability-related bugs
in the Linux kernel.

Reaction of Kernel Maintainers. Table 5 lists the state
of the submitted patches in detail; the corresponding
defects are listed in Table 4 (lower half). In general, we
see that our patches are well received: 87 out of 123 (71%)
have been answered; more than 70 percent of them within
less than one day, some even within minutes (Figure 11).
We take this as an indication that many of our patches
are easy to verify and in fact appreciated.

Contribution to Linux. Table 5 also classifies the sub-
mitted patches as critical and noncritical, respectively.
Critical patches fix bugs, that is, configurability defects
that have an impact on the binary code. We did not
investigate in detail the run-time observable effects of
the 23 identified bugs. However, what can be seen from
Table 5 is that the responsible developers consider them
as worth fixing: 16 out of 17 (94%) of our critical patches
have been answered; 9 have already been merged into
Linus Torvalds’ master git tree for Linux 2.6.36.

The majority of our patches fix defects that affect
the source code only, such as the examples shown in
Section 2.2. However, even for these noncritical patches
57 out of 106 (54%) have already reached acknowledged
state or better. These patches clean up the kernel sources
by removing 5,129 lines of configurability-related dead
code and superfluous #ifdef statements (“cruft”). We
consider this as a strong indicator that the Linux com-
munity is aware of the negative effects of configurability
on the source-code quality and welcomes attempts to
improve the situation.

Figure 12 depicts the impact of our work on a time-
line of Linux kernel releases. To build this figure, we ran
our tool on previous kernel versions and calculated the
number of configurability defects that were fixed and
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Fig. 12. Evolution of defect blocks over various Kernel versions.
Most of our work was merged after the release of Linux version
2.6.35.

patch status critical noncritical
∑

submitted 17 106 123
unanswered 1 35 36
ruleviolation 1 14 15
acknowledged 1 14 15
accepted 5 3 8
mainline 9 40 49

Table 5. Critical patches do have an effect on the resulting binaries
(kernel and runtime-loadable modules). Noncritical patches remove
text from the source code only.

introduced with each release. Most of our patches entered
the mainline kernel tree during the merge window of
version 2.6.36. Given that the patch submissions of two
students have already made such a measurable impact,
we expect that a consequent application of our approach,
ideally directly by developers that work on new or ex-
isting code, could significantly reduce the problem of
configurability-related consistency issues in Linux.

6 Discussion

Our findings have yielded a notable number of config-
urability defects in Linux. In the following, we discuss
some potential causes for the introduction of defects
and rule violations, threats to validity, and the broader
applicability of our approach.

6.1 Interpretation of the Feedback

About 57 of the 123 submitted patches were accepted
without further comments. We take this as an indica-
tion that experts can easily verify the correctness of our
submissions. Because of the distributed development of
the Linux kernel, drawing the line between acknowledged
and accepted (i.e., patches that have been merged for the

next release), is challenging. We therefore count the 87
patches for which we received comments by Linux main-
tainers that maintain a public branch on the internet or
are otherwise recognized in the Linux community as a
confirmation that we identified a valid defect.

Causes for Defects. We have not yet analyzed the
causes for defects systematically; doing this (e.g., using
Herodotos [33]) remains a topic for further research.
However, we can already name some common causes, for
which we need to consider how changes get integrated
into Linux:

Logical defects are often caused by copy and paste
(which confirms a similar observation in [16]). Appar-
ently code is often copied together with an enclosing
#ifdef-#else block into a new context, where either
the #ifdef or the #else branch is always taken (i.e.,
undead) and the counterpart is dead.

The most common source for symbolic defects is
spelling mistakes, such as the CONFIG HOTPLUG exam-
ple in Patch 1. Another source for this kind of defects
is incomplete merges of ongoing developments, such as
architecture-specific code that is maintained by respec-
tive developer teams who maintain separate development
trees and only submit hand-selected patch series for inclu-
sion into the mainline. Obviously, this hand selection does
not consider configurability-based defects – despite the
recommendations in the patch submission guidelines:11

6: Any new or modified CONFIG options don’t muck up the
config menu.

7: All new Kconfig options have help text.
8: Has been carefully reviewed with respect to relevant

Kconfig combinations. This is very hard to get right
with testing -- brainpower pays off here.

Our approach provides a systematic, tool-based approach
for this demanded checking of Kconfig combinations.

Reasons for Rule Violations. On the other hand, we
count 15 patches that were rejected by Linux maintain-
ers. For all these patches, the respective maintainers
confirmed the defects as valid (in one case even a bug!),
but nevertheless prefer to keep them in the code. Reasons
for this (besides carelessness and responsibility uncertain-
ties) include:

Documentation. Even though all changes to the Linux
source code are kept in the version control system
(git), some maintainers have expressed their prefer-
ence to keep outdated or unsupported feature imple-
mentations in the code in order to serve as a reference
or template (e.g., to ease the porting of driver code
to a newer hardware platform).

Out-of-tree development. In a number of cases, we find
configurability-related items that are referenced from
code in private development trees only. Keeping these
symbolic defects in the kernel seems to be considered
helpful for future code submission and review.

11 Documentation/SubmitChecklist in the Linux source
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While it is debatable if all of the above are good rea-
sons or not, of course we have to accept the maintainers
preferences. The whitelist approach provides a pragmatic
way to make such preferences explicit – so that they are
no longer reported as defects, but can be addressed later
if desired.

6.2 Threats to Validity

Accuracy. A strong feature of our approach is the ac-
curacy with which configurability defects can be found.
In our approach, false positives are conditional blocks
that are falsely reported as unselectable. This means
that there is a Kconfig selection for which the code is
seen by the compiler. By design, our approach operates
conceptually exact. So with exact models we would find
all defects. However, since the exact extraction of con-
straints from languages without well-defined semantics
(there is no formal semantic of Kconfig available, only
the implementation) is unfeasible, we focus on constraints
that we have verified against the implementation. This
avoids false positives (minus implementation bugs), so
the major threat to validity is the rate of false negatives,
that is, the rate of the remaining, unidentified issues.

In fact, we have found for 2 (confirmed) defects ex-
plicit #error statements in the source that provoke com-
pilation errors in case an invalid set of features has been
selected. In our experiment, we classified these defects
as confirmed rule violations. On top of that, we can
find 28 similar #error statements in Linux 2.6.35. This
indicates some distrust of developers in the variability
declarations in Kconfig, which our tool helps to mitigate
by checking the effective constraints accurately.

Coverage. The current implementation does not yet
analyze nonpropositional expressions in #ifdef state-
ments, like comparisons against the integral value of
some CONFIG_ flag. This affects about 2% out of 82,116
#ifdef blocks. We are currently looking into improving
our implementation to reduce this number even further
by rewriting the extracted constraints and process them
using a satisfiability modulo theories (SMT) or constraint
solving problem (CSP) engine.

An important, yet not considered source of feature
constraints is the build system (makefiles). 91 percent
of the Linux source files are feature-dependent, that is,
they are not compiled at all when the respective feature
has not been selected. Incorporation of these additional
constraints into our approach is straight-forward: they
can simply be added as further conjunctions to the vari-
ability model. These additional constraints could possibly
restrict the variability even further, and thereby lead to
false negatives.

Subtle semantic details and anachronisms of the
Kconfig language and implementation [48, 6] made our
engineering difficult and contributed to the number of
false negatives. At the time we conducted the experiment

in Section 5.3, our implementation did not completely
support the Kconfig features default value and select.
Since then, we have fixed these issues in the undertaker,
which increases the raw number of defects from 1,776 to
2,972.

In no case did our approach result in a change that
proposes to remove blocks that are used in production.
However, in one case12 we stumbled across old code that
is useful with some additional debug-only patches that
have never been merged. It turned out that the patches in
question are no longer necessary in favor of the new trac-
ing infrastructure. Our patch therefore has contributed to
the removal of otherwise useless and potentially confusing
code.

6.3 General Applicability of the Approach

Linux is the most configurable piece of software we are
aware of, which made it a natural target to evaluate
accuracy and scalability of our approach. However, the
approach can be implemented for other software families
as well, given there is some way to extract feature identi-
fiers and feature constraints from all sources of variability.
This is probably always the case for the implementation
space (code), which is generally configured by CPP or
some similar preprocessor. Extracting the variability from
the configuration space is straight-forward, too, as long
as features and constraints are described by some semi-
formal model, such as Kconfig. The configurability of
eCos, for instance, is described in the configuration de-
scription language (CDL) [30], whose expressiveness is
comparable to Kconfig.

Kconfig itself is employed by more and more soft-
ware families besides Linux. Examples include Open-
WRT13 and BusyBox.14 For these software families our
approach could be implemented with minimal effort.

However, even if the system software is configured
by a simple configure script (such as in FreeBSD or
GNU/autoconf projects), it would still be possible to ex-
tract feature identifiers and, hence, use our approach to
detect symbolic configurability defects. As our Linux case-
study in Section 5.3 shows—74 percent of all defects were
symbolic—this means a considerable number of defects.
Feature constraints, on the other hand, are more difficult
to extract from configure files, as they are commonly
given as human-readable comments only. A possible solu-
tion might be to employ techniques of natural language
processing to automatically infer the constraints from
the comments, similar to the approach suggested in [43].

In a more general sense, our approach could be com-
bined with other tools to make them configurability aware.
For instance, modifications on in-kernel APIs and other

12 http://kerneltrap.org/mailarchive/linux-ext4/
2010/2/8/6762333/thread
13 http://www.openwrt.org
14 http://www.busybox.net

http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/6762333/thread
http://kerneltrap.org/mailarchive/linux-ext4/2010/2/8/6762333/thread
http://www.openwrt.org
http://www.busybox.net
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larger refactorings are commonly tool assisted (e.g., [32]).
However, refactoring tools are generally not aware of code
liveness and suggest changes in dead code. Our approach
contributes to avoiding such useless work.

6.4 Variability-Aware Languages

The high relevance of static configurability for system
software gives rise to the question if we need better pro-
gramming languages. Ideally, the language and compiler
would directly support configurability (implementation
and configuration), so that symbolic and semantic in-
tegrity issues can be prevented upfront by means of
type-systems or at least be checked for at compile-time.

With respect to the implementation of configurabil-
ity it is generally accepted that CPP might not be the
right tool for the job [41, 27]. Many approaches have
been suggested for a better separation of concerns in con-
figurable (system) software, including, but not limited
to: object-orientation [10], component models [18, 37],
aspect-oriented programming (AOP) [12, 28], or feature-
oriented programming (FOP) [2]. However, the systems
community tends to be reluctant to adopt new program-
ming paradigms, mostly because we fear unacceptable
run-time overheads and immature tools. For instance,
C++ was ruled out of the Linux kernel for exactly these
reasons.15 The authors certainly disagree here (in previ-
ous work with embedded operating systems we could show
that C++ class composition [8] and AOP [29] provide
excellent means to implement overhead-free, fine-grained
static configurability). Nevertheless, we have to accept
CPP as the still de-facto standard for implementing static
configurability in system software [42, 27].

With respect to modeling configurability, feature mod-
eling and other approaches from the product line engi-
neering domain [13, 36] provide languages and tooling
to describe the variability of software systems, including
systematic consistency checks. Kconfig for Linux or
CDL for eCos fit in here. However, what is generally
missing is the bridge between the modeled and the im-
plemented configurability. Hence tools like undertaker
remain necessary.

7 Related Work

This work discusses the (static) analysis of a high-profile
and widely deployed software project, the Linux kernel.
Due to its sheer size, importance, and source-code avail-
ability, Linux has been a first-class evaluation subject for
approaches and tools for static analyses in the the systems
as well as the software engineering communities. This
section discusses the related from different communities
in sequence.

15 Trust me – writing kernel code in C++ is a BLOODY
STUPID IDEA Linus Torvalds [2004], http://www.tux.org/
lkml/#s15-3

Analysis of CPP variability So far, there have been pro-
posed several approaches for analyzing conditional com-
pilation usage. In 2000 Hu et al. [21] proposes to analyze
conditional compilation with symbolic execution. This ap-
proach maps conditional compilation to execution steps:
Inclusion of headers map to calls, alternative blocks to
branches in a CFG, which is then processed with tradi-
tional symbolic execution techniques. Lattendresse [25]
improves this technique by using rewrite systems in or-
der to find presence conditions for every line of code.
Similarly to our approach, the presence conditions of all
conditional blocks are calculated during the process as
well. However, our extraction variability from CPP source
code trades performance and practicality over theoretical
soundness and completeness. In essence, we “simulate”
the mechanics of CPP using propositional formulas, so
that we can easily integrate further constraints from the
configuration space. Our lightweight approach does scale
(the algorithm for generating the boolean formula grows
linearly with respect to the number of blocks) to code
bases of millions of code, as presented by our evaluation
on the Linux kernel in Section 5.3.

Analyzing large scale software projects with trans-
formation systems are related to our approach; DMS [3]
proposed by Baxter is probably the most renowned one.
In context of this framework, an approach has been pub-
lished [4] that aims at simplifying CPP statements by
detecting dead code and simplifying CPP expressions.
Unlike our approach, this work uses concrete configura-
tions to evaluate the expressions partially [22]. In contrast
to that, our work does not require concrete values for
CPP identifiers, but produces a logical model in form
of a propositional formula that can either be evaluated
directly or can be combined with further constraints like
the ones extracted from the feature model. We believe
that our approach would fit great in the DMS framework.

Other approaches extend the grammar of the C/C++
parser by CPP directives. Badros et al. [1] propose the
PCp3 framework to integrate hooks into the parser in
order to perform many common software-engineering
analyses. However, the focus is on mapping between un-
processed and preprocessed code, whereas our work aims
at mapping towards higher level models. Garrido [19] ex-
tends the lexer with the concept of conditional abstract
syntax trees (ASTs) which enables preprocessor-aware
refactorings on CPP-based source files. A more sound im-
plementation, a technique coined variability aware pars-
ing that avoids using heuristics, is presented by Kästner
et al. [23] These works basically integrate the CPP vari-
ability into tools for static analysis and thus, allow vari-
ability aware type-checking in the parser. Mainly because
of implementation challenges, TypeChef focuses on a sub-
set of Linux (namely arch-x86) and requires assistance
in form of additional constraints by tools like [7] or this
work presented in this article.

http://www.tux.org/lkml/#s15-3
http://www.tux.org/lkml/#s15-3
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Model Checking and Type Systems The evaluation of
variability from models is also related to our work. Czar-
necki et al. [15] present an approach to transform logic
formulas into feature models. With this as theoretical
basis, the same group of researchers extends this work to
show the semi-automatic reverse engineering of feature
models from source code. [38]. Our approach does not
require manual interaction for extracting the variability
models. Generalized feature models [15], that is, feature
models without domain-specific structural ordering, are
sufficient for our cross-checks.

Benavides et al. [5] present several techniques for
reasoning on feature models after transforming them
into boolean formulas. Combined with reverse engineered
feature models [38], these reasonings could be integrated
with our work to enhance the crosscheckings.

The crosschecking between different variability models
is heavily related to our work. Metzger et al. [31] present
several formalizations that allow for consistency checks
between variability models. Czarnecki et al. [14] present
an approach to checking the consistency of feature-based
model templates, that is, checking consistency of feature
models and model templates. Thaker et al. [46] present
an approach to the safe composition of product lines, it
is much related to our idea of crosschecking. However, all
these approaches rely on novel programming paradims,
such as feature-oriented software development or similar
concepts. Our approach aims at allowing these concepts
to be applied on legacy software, which in general does
not use such novel techniques.

Tools for automatic finding of Bugs Automated bug de-
tection by examining the source code has a long tradition
in the systems community. Many approaches have been
suggested to extract rules, invariants, specifications, or
even misleading source-code comments from the source
code or execution traces [43, 24, 26, 17, 16]. Basically, all
of these approaches extract some internal model about
what the code should look like/behave and then match
this model against the reality to find defects that are po-
tential bugs. For instance, iComment [43] employs means
of natural language processing to find inconsistencies
between the programmer’s intentions expressed in source-
code comments and the actual implementation; [24] and
colleagues use logic and probability to automatically infer
specifications that can be checked by static bug-finding
tools. However, none of the existing approaches take con-
figurability into account when inferring the internal model.
In fact, the existing tools are more or less configurability
agnostic – they either ignore configuration-conditional
parts completely, fall back to simple heuristics, or have
to be executed on preprocessed source code. Thereby,
important information is lost. Our analysis framework
could be combined with these approaches to make them
configurability-aware and to systematically improve their
coverage with respect to the (extremely high) number of
Linux variants. However, we also think that configurabil-

ity has to be understood as a significant source of bugs
in its own respect. Our approach does just that.

An interesting evolutionary analysis about source
code defects in Linux has been given by Palix et al.
in [34]. That work tries to reproduce a ten year old anal-
ysis on the Linux kernel [11] in order to investigate the
evolutionary development of Linux across the last decade.
As the old experiment did not state the exact configura-
tion that was used, the old environment could only be
approximated. The paper shows that configuration can
(and does) affect the results of static analysis tools con-
siderably. We take this anecdote as motivational lesson to
further work on integration of configuration consistency
checks into source-code analysis tools.

A reason that most existing source-code analysis
tools for automated bug finding ignore configurability
(more or less) might be that conditionally-compiled code
tends to be hard to analyze in real-world settings. Many
approaches for analyzing conditional-compilation usage
have been suggested, usually based on symbolic execu-
tion. However, even the most powerful symbolic execution
techniques (such as Klee [9]) would currently not scale
to the size of the Linux kernel. Hence, several authors
proposed to apply transformation systems to symboli-
cally simplify CPP code with respect to configurability
aspects [4, 21]. Our approach is technically similar in the
sense that we also analyze only the configurability-related
subset of CPP. However, by “simulating” the mechan-
ics of the CPP using propositional formulas [40], we can
more easily integrate (and check against) other sources
of configurability, such as the configuration-space model.

So far we have submitted 123 patches to the Linux
community, which is a reasonably high number to con-
firm many observations of [20]: Patches for actively-
maintained files are a lot more likely to receive responses.
It really is worth the effort to figure out who is the
principal maintainer (which is not always obvious) and
to ensure that patches are easy reviewable and easy to
integrate.

8 Summary and Conclusions

#ifdef’s sprinkled all over the place are neither
an incentive for kernel developers to delve into the
code nor are they suitable for long-term mainte-
nance.16

To cope with a broad range of application and hardware
settings, system software has to be highly configurable.
Linux 2.6.35, as a prominent example, offers 11,283 config-
urable features (Kconfig items), which are implemented
at compile time by 82,116 conditional blocks (#ifdef,
#elif, . . . ) in the source code. The number of features

16 Linux maintainer Thomas Gleixner in his ECRTS ’10
keynote “Realtime Linux: academia v. reality”. http://lwn.net/
Articles/397422

http://lwn.net/Articles/397422
http://lwn.net/Articles/397422
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has more than doubled within the last five years! From the
maintenance point of view, this imposes big challenges,
as the configuration model (the selectable features and
their constraints) and the configurability that is actually
implemented in the code have to be kept in sync. In the
case of Linux, this has led to numerous inconsistencies,
which manifest as dead #ifdef-blocks and bugs.

We have suggested an approach for automatic con-
sistency checks for compile-time configurable software.
Our implementation for Linux has yielded 1,776 config-
urability issues. Based on these findings, we so far have
proposed 123 patches (49 merged, 8 accepted, 15 ac-
knowledged) that fix 364 of these issues (among them 20
confirmed new bugs) and improve the Linux source-code
quality by removing 5,129 lines of unnecessary #ifdef-
code. The performance of our tool chain is good enough
to be integrated into the regular Linux build process,
which offers the chance for the Linux community to pre-
vent configurability-related inconsistencies from the very
beginning. We are currently finalizing our tools in this
respect to submit them upstream.

The lesson to learn from this paper is that configura-
bility has to be seen as a significant (and so far underesti-
mated) cause of software defects in its own respect. Our
work is meant as a call for attention on these problems –
as well as a first attempt to improve on the situation.
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