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Abstract—The Linux kernel is one of the largest configurable
open source software systems implementing static variability.
In Linux, variability is scattered over three different artifacts:
source code files, KCONFIG files, and Makefiles. Previous work
detected inconsistencies between these artifacts that led to anoma-
lies in the intended variability of Linux. We call these variability
anomalies. However, there has been no work done to analyze
how these variability anomalies are introduced in the first place,
and how they get fixed. In this work, we provide an analysis of
the causes and fixes of variability anomalies in Linux. We first
perform an exploratory case study that uses an existing set of
patches which solve variability anomalies to identify patterns for
their causes. The observations we make from this dataset allow
us to develop four research questions which we then answer in a
confirmatory case study on the scope of the whole Linux kernel.
We show that variability anomalies exist for several releases in
the kernel before they get fixed, and that contrary to our initial
suspicion, typos in feature names do not commonly cause these
anomalies. Our results show that variability anomalies are often
introduced through incomplete patches that change KCONFIG
definitions without properly propagating these changes to the
rest of the system. Anomalies are then commonly fixed through
changes to the code rather than to KCONFIG files.

Index Terms—Software Variability, Variability Anomalies,
Linux, Mining Software Repositories, GIT

I. INTRODUCTION

Software variability involves designing software to be
configurable at build time according to the user’s selection. One
of the largest open source examples of static software variability
is the Linux kernel which has over 10,000 configurable features.
This makes it an interesting subject for variability research.
Previous work (e.g., [1], [2], [3]) analyzed the variability
constraints in Linux’s feature model (KCONFIG files), source
code files and build system (KBUILD). Our previous work [4],
[5] showed that these constraints are not always consistent, and
that variability anomalies arise from them, often leading to dead
code or software bugs. Using tools such as UNDERTAKER [4],
we detected anomalies in the form of dead and undead CPP
(C preprocessor) guarded code blocks. Dead blocks are those
intended to conditionally compile according to some feature(s),
but never get compiled in any variant of the software. Similarly,
undead blocks are intended to conditionally compile, but end
up as part of every variant.

Such previous work confirmed that variability anomalies
exist, and that developers eventually fix many of them which
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indicates that it would be beneficial to avoid them from the
beginning. However, in order to avoid these anomalies, we
need to analyze how they are introduced in the first place and
how they later get fixed. This paper addresses this gap while
using Linux as a case study.

To determine how variability anomalies get introduced, we
first perform an exploratory case study [6] based on an existing
set of 106 patches that fix variability anomalies. This set of
patches has been submitted to Linux developers by some of
the authors of this paper as part of their previous work [4].
The patches received considerable feedback, with over 50% of
them being accepted. As a result of studying the responses of
developers to these patches, we are able to recognize common
problems causing these anomalies. This allowed us to develop
the following four research questions:

RQ1: Are misspellings a common cause of variability
anomalies?

RQ2: Are incomplete KCONFIG patches a common cause
of variability anomalies?

RQ3: How are variability anomalies fixed?

RQ4: How long do variability anomalies remain unfixed?

To answer these questions, we perform a confirmatory case
study [6]. By mining the patches in Linux’s GIT repository and
mapping them to affected variability anomalies, we test if the
observations we make in our exploratory dataset can be applied
to the whole kernel. Our results show that the occurrence of
misspellings is not very common. We confirm that incomplete
patches changing KCONFIG files without properly propagating
the change commonly cause of variability anomalies. We show
that these anomalies do not get fixed by KCONFIG changes,
but rather by later changing the source code. We find that these
anomalies stay in Linux for an average of 6 releases before
gettin fixed. This suggests that determining potential causes of
anomalies as soon as possible can save developers time in the
future. The contributions of this paper are as follows.

1) Qualitative analysis of previous patches submitted to the
Linux mailing list.

2) Heuristics to identify potential causes and fixes of
variability anomalies in Linux.

3) Quantitative analysis of causes and fixes of variability
anomalies in Linux.
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4) Empirical validation that incomplete patches often cause
variability anomalies and that CPP patches commonly fix
these anomalies.

The rest of this paper is organized as follows. Section II
provides background information about concepts and tools
used in this work. Section III presents our exploratory case
study, and Section IV describes the procedure we follow in our
confirmatory case study. Section V presents the results of our
confirmatory case study, and Section VII raises possible threats
to the validity of this work. Section VIII discusses previous
research related to our work, and Section IX summarizes our
results, and sketches avenues of future exploration.

II. BACKGROUND
A. Variability in the Linux Kernel

Variability in the Linux kernel is distributed across three
separate types of artifacts: KCONFIG files, KBUILD files
(Makefiles), and source code files. KCONFIG files declare all
configuration features supported by the Linux kernel, as well
as their interdependencies. KBUILD is a sophisticated build
system implemented in MAKE. Linux source code consists of
C header and implementation files, as well as other scripts.

KCONFIG features are the basis for variability implementa-
tion in Linux. When configuring an instance of the kernel, users
(such as package maintainers or advanced end users) choose the
features they want to enable. The features are then referenced
within KBUILD or the source code. In KBUILD, configuration
features control the compilation of whole source files. In
the source code files, configuration features are used in CPP
(C preprocessor) guarded code blocks to control conditional
compilation. Thus, although there are three different places
contributing to Linux’s variability, they interact together and
depend on each other, and should therefore be kept consistent.
More details about variability implementation in Linux can be
found in previous work [4], [5].

B. UNDERTAKER: A Linux Anomaly Detector

UNDERTAKER [4] is a tool developed at the Friedrich-
Alexander University of Erlangen-Nuremberg to perform cross-
checking of variability constraints in the three kinds of
variability artifacts in Linux. Figure 1 illustrates how it works.
UNDERTAKER extracts logical constraints, and transcribes them
in the appropriate boolean formulas. Non-boolean constraints
are outside the scope of this paper. It then uses a satisfiability
(SAT) solver to detect conflicts that reveal variability anomalies
in the form of dead and undead CPP guarded code blocks. A
dead code block is guarded by a CPP condition that contains
a contradiction (can never be satisfied) and so the code block
is never compiled. Conversely, the condition of an undead
code block is a tautology (is always satisfied) and the block is
always included in the compiled binary.

There are several types of anomalies discovered by UNDER-
TAKER which are explained in details by Tartler et al. [4].
We discuss two of these categories here: logical anomalies
and referential anomalies. If the logical constraints in the
boolean formula are contradictory (e.g., specifying that some
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Fig. 1. Operation mode of UNDERTAKER tool. After extracting the constraints
from the different variability artifacts, UNDERTAKER combines them and
instruments a SAT solver to detect variability anomalies.

feature is defined and not defined at the same time), a logical
anomaly is detected. However, some features that appear in
these boolean formulas are undefined (i.e., do not have a
definition in KCONFIG), and can therefore never be selected by
the user. These undefined features are grounded to false in
the boolean formula. If the formula is not satisfiable afterwards,
a referential anomaly is detected. We refer to these undefined
features as missing.

In this paper, we focus on referential anomalies as they
represent a large percentage of variability anomalies. For
example, in Linux release 3.6, UNDERTAKER detects 1,077
anomalies. Out of these, 420 (39%) are referential anomalies.

As a simple example of a referential anomaly, consider the
following code:

#ifdef CONFIG_USB_SUPPORT
// Block Bl
#endif
Let us look at the first code block B1 between the #IFDEF
and the #ELSE CPP statements. This block is guarded by the
feature CONFIG_USB_SUPPORT, so it will not be compiled
unless this feature is selected. Assume there is no definition
for feature CONFIG_USB_SUPPORT in the KCONFIG files,
which means that this feature is missing causing the code block
to be dead. UNDERTAKER detects this anomaly automatically
by using a SAT solver with the boolean formula for block B1:
(B1 +» CONFIG_USB_SUPPORT)
A (= CONFIG_USB_SUPPORT)

Based on the result of the SAT checker, UNDERTAKER
generates an anomaly report (see Figure 1) which contains the
boolean formula as well as the missing features. For brevity,
we use the terms anomaly or variability anomaly throughout
the rest of the paper to refer to referential anomalies.
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C. The Linux Development Process

Changes to the Linux kernel happen through a strict review
process. A change may be adding a new functionality as
well as modifying, correcting, or removing an existing one.
Changes are first proposed in the form of a GIT commit on
focused mailing lists read by the relevant Linux subsystem
experts. These changes are then reviewed by expert developers,
and approved changes are then committed into the focused
subsystem repositories under their control.

Each GIT commit contains information such as the author
and date of the commit, a summary of the problem, a detailed
description of the commit, as well as the parch applied. The
patch contains the textual change to the modified files in
the so called unified diff format'. The modified files can
be documentation files, KCONFIG files, source code files, or
Makefiles. Since each commit implements some change and
has an associated patch transcribing this change, we use the
three terms interchangeably throughout the paper for simplicity.

In this paper, we focus on KCONFIG and CPP patches, and
define them as follows. KCONFIG patches are those which
modify a feature definition in KCONFIG. This is despite the
fact that the patch may also be modifying other types of files.
CPP patches are those which modify the CPP condition in some
source file. The commit patch is displayed in unified diff format
where lines removed are prefixed with ‘—°, while lines added
are prefixed with ‘+’. For example, the following snippet shows
an example of a patch renaming a feature in KCONFIG where
the line containing the old feature name is removed, and the
line containing the new feature name is added.

—config SPI_BFIN

+config SPI_BFIN5XX
tristate "SPI controller driver ..."

As part of our work, we analyze Linux’s history to determine
if a patch causes or fixes a variability anomaly. Linux’s
described organizational structure ensures that all code and
corresponding descriptions of changes in the master repository
have been reviewed by at least two experts. The case studies
in this paper can therefore reliably identify focused, well-
documented changes in a large-scale, expertly controlled open-
source project.

III. EXPLORATORY CASE STUDY
A. Description of Dataset

Previous work by some of the authors of this paper [4] has
used UNDERTAKER version 1.1 to detect variability anomalies
in the Linux kernel. As part of that work, they randomly chose
337 referential variability anomalies from those they detected,
and manually created patches to the Linux kernel to fix these
anomalies. This resulted in 106 patches submitted to the Linux
mailing lists to solve these 337 anomalies (some patches fixed
more than one anomaly). These patches were submitted for
anomalies detected in Linux v2.6.35 or earlier.

'A standard format for interchanging code changes that is understood by
the UNIX patch(1) tool.

TABLE 1
CATEGORIZATION OF 106 SUBMITTED PATCHES ACCORDING TO THE FIX
THEY WERE SUGGESTING.

Type Count (%)
Remove Dead Code 95  (90%)
Rename Feature Used in Code 6 (6%)
Remove Dead Code & Dead KCONFIG Features 2 (2%)
Remove Redundant Checks 2 (2%)
Remove Dead Code & Edit KCONFIG Dependencies 1 (1%)
3 Total 106 (100%)

In their work, Tartler et al. [4] did not perform an in depth
analysis of the developers’ responses they received or the
causes behind these anomalies. In this work, we make use of
the unanalyzed data they collected to determine what causes
variability anomalies, and how developers fix them. The dataset
consists of the actual patches, as well as the email conversations
that followed in response to these patches.

To explore the dataset, we first determine the effect of each
submitted patch. Table I provides a categorization of the fix
proposed by these patches. All patches in this data set fix
referential anomalies. The majority of these patches (90%)
remove dead code caused by the missing features. Patches that
are removing dead code are important since they are removing
bad code smells [7], and tend to make the code easier to
read and more maintainable. About 6% of the patches rename
the missing feature used in the CPP condition in the code to
one that is defined in KCONFIG. Two patches (2%) remove
dead code as well as dead features from KCONFIG. The dead
features depend on an undefined feature, and could therefore
never be selected. 2% remove #IFDEF checks either because it
is a redundant check (i.e., same condition is checked twice)
or because the guarding feature is not defined, but the code
inside the block is needed. One patch (1%) removes a dead
block that depends on a missing feature while also removing
this missing feature from dependency clauses in KCONFIG.

Table II shows the status of the submitted patches. We
studied the response of developers to each submitted patch
email to determine the status of the patch. Most of the 106
patches (51%) were accepted by developers as is. There were
27 patches acknowledged as dead/undead code, but the patch
was not applied for one of three reasons: 1) a fix is already
being prepared for this problem, either in terms of a scheduled
merge or a patch under progress (12 patches), 2) developers
want a different fix than the one originally provided in the patch
(11 patches), and 3) developers would like to keep the code
block as it is because it is used in out of tree development
or for reference purposes (4 patches). There were also 21
patches (20%) that received no reply. Only a few patches (4%)
were rejected. We classify a patch as rejected if developers do
not acknowledge that a problem exists (i.e., that the code is
actually dead or undead). This happens in rare cases where
the configuration feature(s) used are not defined in KCONFIG,
but are rather set by hand in the code.

113



TABLE 11
CATEGORIZATION OF THE STATUS OF SUBMITTED PATCHES ACCORDING TO
DEVELOPERS’ RESPONSES.

Status Count (%)
Accepted 54 (51%)
Acknowledged 27 (25%)

Under progress (12)

Different fix suggested (11)

Keep code (4)
No Reply 21 (20%)
Rejected 4 (4%)
3 Total 106 (100%)

B. Observations about Exploratory Dataset

From studying the set of 106 patches and the responses of
the developers to each patch, we make two main observations.

Feature Names. There are 6 patches which are changing
the name of the feature being used in the CPP code. Out of
these patches, four were accepted. Additionally, from the set
of patches for which developers suggested a different fix or
for which they already had a fix for, there are 9 patches that
originally removed dead code because of missing features,
but developers suggested leaving the code in, and guarding
it with a different feature that is defined in KCONFIG. This
indicates that this CPP code block is not useless, but has
been guarded by an undefined feature causing it to be dead.
In four of these cases, we could tell from the developer’s
comments and the name of the suggested feature that the
undefined features being replaced were caused by a misspelling
or typo such as, using CONFIG_CPU_S3C24XX instead of
CONFIG_CPU_S3C244X (i.e., typo is putting an X instead
of the 4). For simplicity, we use the terms misspelling and typo
interchangeably throughout this paper.

Incomplete Patches. In the comments of one of the patches
for which developers suggested using a different feature in the
CPP condition, it seems that the missing feature got renamed in
KCONFIG, but developers forgot to rename it in the code. The
developer’s responses to three other accepted patches removing
dead code also suggest that the missing features were retired in
previous patches, but the code was not updated to reflect that.
These observations led us to suspect that incomplete patches
may be a common cause for variability anomalies. We use the
term incomplete to indicate that the change was not completely
propagated throughout the system.

To confirm that, we perform an in-depth analysis of 15
patches for which a different patch was suggested, or for
which the original patch was renaming the feature being used.
We manually study the history of each anomaly to understand
how it got introduced. We find that 8 patches fix anomalies that
have existed since the related code block has been introduced
(i.e., code was dead since inception). On the other hand, 7
patches fix anomalies caused by previous incomplete patches.

We provide an example for such a case. One of these
anomalies is a code block which is dead because fea-
ture CONFIG_MTD_NAND_AT91_BUSWIDTH_16 is not de-
fined in KCONFIG. After some investigation, we find that

there is a previous patch that renames this feature to
CONFIG_MTD_NAND_ATMEL BUSWIDTH_16 in KCONFIG,
but does not rename it in the CPP condition resulting in the
code block being dead because it uses an undefined feature.
Although we cannot conclude that incomplete patches are a
major source of variability anomalies from this small data
sample, the data does provide indication for that, and that this
should be further examined in the whole Linux kernel.

C. Research Questions

Based on the patterns we observe in the dataset described
above, we develop four research questions about how Linux
variability anomalies are introduced and fixed.

Our first research question is based on our first observation
that leads us to conjecture that misspellings are a cause of
missing features that in turn cause referential anomalies.

RQ1: Are misspellings a common cause of variability
anomalies?

Our second research question is based on our observation that
several anomalies are caused by previous incomplete patches.
Specifically, a patch renames or removes a feature in KCONFIG
without renaming/removing all its uses in the rest of the kernel.
We call these incomplete KCONFIG patches.

RQ2: Are incomplete KCONFIG patches a common cause
of variability anomalies?

Our observations from the exploratory dataset are mainly
concerned with what causes the anomalies. However, it is
also important to know how they eventually get fixed. To
explore this, we need to analyze how long anomalies last in
the Linux, and how they get fixed. We therefore raise the
following additional questions.

[RQ3: How are variability anomalies fixed? ]

RQ4: How long do variability anomalies remain unfixed in
Linux?

IV. CONFIRMATORY CASE STUDY

The goal of our confirmatory case study is to answer the four
research questions from Section III. In this section, we explain
the procedure we use to answer these research questions. We
describe the steps we perform to find typos as well as mappings
from anomalies to patches to identify potential causes and fixes
as illustrated in Figure 2. We analyze the variability anomalies
in 10 recent releases of the Linux kernel (v2.6.37-v3.6) which
spans a period of almost 1 year and nine months.

Our analysis is mainly implemented through several Python
scripts which we run on a machine with two quad-core Intel
Xeon 2.67GHz CPUs and 16GB RAM.

Step 1: Extract and parse patches

Step 1 identifies and analyzes the patches stored in the
GIT repository that are of interest to our analysis. These are
KCONFIG patches and CPP patches (explained in Section II-C).

114



Features removed/added

in each Patch Patches fixing feature misspellings
KP1:{+F7,-Fa4}
it KP2: {- F17} @ CP; fixes a typo from F4to F7
IE———|KPs: {+F —
©s Parse 3 {+Fa) Identify
patches  |CP4: {+ F7,-F4} typos
. Asieq A1:{F4} KP4 renames F4 to F7 causing A4
A @ Ao es @ Ay {F4,F5} @ KP, removes F47 causing Az
. ' Detect A3: €3 Extract Missing A3: { F17} Map anomalies CP1 eI F4 to F7 flxmg A1
Linux kernel
referential anomalies © Features @ to patches
Referential Missing feature(s) for Mapping of anomalies to patches

anomalies

each anomaly

Fig. 2. An overview of our analysis during the confirmatory case study to identify potential causes and fixes for referential variability anomalies. K Pp,:
KCONFIG patches, C' P,,: CPP patches, A,: Anomalies, e,: Boolean expressions, Fy,: KCONFIG features.

Box A in Figure 2 shows a representation of our extracted
patches where KCONFIG patches are denoted by K P,, and CPP
patches by C P,,. For each patch, we identify the features added
or removed found through the + and — notation described in
Section II-C. For example, the notation K Py {+F7, —F,} in
Box A means that K P; removes Feature I, and adds Feature
Fr. Similarly, K P, removes Fy7 and K P3 adds Fy while C'P;
adds F% and removes Fj; from some CPP conditions.

It is straightforward to parse KCONFIG patches. This is done
by locating feature declarations that are inserted or deleted and
transcribing them into plus and minus notation (see Box A).
It is more complicated to parse CPP patches. This is done by
searching for CPP guarded code blocks (blocks surrounded by
#IFDEF, #IFNDEF, etc.) and identifying each feature F; used
in the CPP condition (the CPP guard). If patch C Py deletes
the line containing the condition, then F; is also considered
to be deleted, so we produce output such as CP; : —F;.
Conversely, if C'P, adds the condition, we produce output
such as CPy : +F;. For cpP patches, we also record the
source file in which the CPP condition was added or removed.

If a patch removes one feature I; and then adds another F)
in the next step, we consider that F; renames F;. For example,
patch K P; in Box A renames Fj to Fr.

The extraction and parsing of patches in Step 1 is performed
only once, on the most recent kernel release (v3.7%), to
extract the whole history of the ten Linux releases examined
(v2.6.37-v3.6). We extract the KCONFIG patches and CPP
patches separately. It takes approximately 39 minutes to extract
KCONFIG patches from GIT, and 44 minutes to extract the CPP
patches. The results are saved to be queried in Steps 2 and 5.

Step 2: Identify misspelled features

Step 2 determines if typos (misspelled features) are a
common cause of variability anomalies (RQ1). It does this by
locating CPP patches that rename the feature used in the CPP
condition. Based on these renames, we develop heuristics to

2v3.7 is used to ensure that any fixes that happen to anomalies found in
v3.6 are also caught.

automatically compare the names of the old and new features
to determine if the change is correcting a typo.

We consider that the renaming is correcting a misspelling if
the first name of the pair is within one or two edit distances from
the second name (i.e., a difference of one or two characters) or
if the first name is a permutation of the words separated by un-
derscores in the second name (e.g., CONFIG_USB_SUPPORT
vs CONFIG_SUPPORT_USB). This automatic classification
provides us with a set of CPP patches that could potentially
be correcting misspelled features. For example, consider Patch
CP; in Box A; if feature F} is classified as an apparent typo
of feature F7, then we classify C'P; as correcting a misspelling
as shown in Box B.

We then manually verify each of these identified patches
by looking at the developer’s commit messages to judge if
the change was actually correcting a spelling mistake or not.
This manual verification is necessary to avoid false positives
because there are features in Linux which have similar names
(e.g., X86_32 and X86_64), but are implementing different
functionalities, and so a replacement of one feature with another
one may be an intentional logic change and not a typo. We
choose to design our analysis this way and not to match missing
features in the anomalies to possible misspellings in all defined
KCONFIG features, because there would be no way to verify
if the identified features are indeed typos or not.

Since this step, Step 2, only depends on the extracted CPP
patches, we perform it only once after extracting Linux’s history.
This takes lhr 38 minutes to run. The performance bottleneck
here is the algorithms used to detect similar words.

The following steps (3, 4 and 5) are then performed for each
kernel release examined to answer RQ2 and RQ3 dealing with
patches causing and fixing anomalies.

Step 3: Detect referential anomalies using UNDERTAKER

In Step 3, we run the latest version of UNDERTAKER, 1.3,
to detect referential variability anomalies in the ten releases of
the Linux kernel we examine. These referential anomalies are
shown in Box C in Figure 2 where each anomaly Aj has a
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boolean expression e which is the boolean formula that was
not satisfied (see Section II-B). Detecting anomalies on the
whole Linux kernel using UNDERTAKER takes approximately
45 min for each kernel release using 4 parallel threads.

Step 4: Extract missing features

In Step 4, we analyze the boolean formula e;, for each
referential anomaly extracted to automatically identify the
missing feature causing the anomaly. This allows us to generate
a mapping from anomalies to missing features. For example, in
Section II-B, we identify CONFIG_USB_GADGET_ATI1 as
the missing feature. Box D in Figure 2 shows such mappings.
This step takes about 3 seconds for each release.

Step 5: Map anomalies to patches

Step 5 correlates anomalies with their potential causes and
fixes; see Box E in Figure 2. Since the Linux kernel has many
patches (the GIT repository contains over 300,000 commits),
we need to develop heuristics to automatically identify these
causes and fixes, which will now be described.

Our heuristics identify two causes of anomalies: renaming
and removal of KCONFIG features without reflecting these
changes in the code. The first two lines of Box E in Figure 2
illustrate these two cases. In Box D, Anomaly A; is due to the
missing feature Fj. Patch K P; renames feature F) to F7 in
KCONFIG, thus removing the definition of F; from KCONFIG,
and causing anomaly A;. Similarly, anomaly A3 in Box D
is due to the undefined feature F;;. Patch K P, removes F};
from KCONFIG making F)7 a missing feature and causing
anomaly As. In more general terms, there are two kinds of
causes of an anomaly Ay, that is due to missing feature Fj:

1) Patch K P; removes feature F; from KCONFIG.

2) Patch K P; renames feature F; in KCONFIG.

In both cases, patch K P; must occur before anomaly Ay. If
more than one matched patch occurs before the anomaly, we
choose the patch closest to the date of the occurrence of Ay.

We also identify four ways that patches can fix anomalies.
One of these is illustrated by the third line in Box E in Figure 2
which specifies that patch C'P; renames feature F to F7 in
the CPP condition thus fixing anomaly A;. A; is caused by
the undefined feature Fy. C'P; fixes this by using feature F%
instead of F in the CPP condition. Recall that the incomplete
patch K P; renames F to F% in KCONFIG without reflecting
the change in the code. Thus, C' P; completes this rename in
the code by using F; instead of F; which fixes anomaly Aj;.

Specifically, given an anomaly Aj caused by a missing
feature, F;, we identify four cases where a patch fixes this
anomaly as follows (the discussed example is the fourth kind):

1) Patch KP; adds F; to KCONFIG.

2) Patch K P; renames another feature in KCONFIG to F}.

3) Patch C'P; removes the CPP condition containing F.

4) Patch C'P; renames F}; in the CPP condition.

All types of fixes essentially aim to ensure that the features
used in the CPP conditions have a corresponding definition in
KCONFIG. In each of the four kinds of fixes, the matched patch
must occur after the anomaly Ay. If more than one such fixing

patch occurs after the anomaly, we choose the patch closest
to the date of the anomaly. Mapping anomalies to KCONFIG
patches takes approximately 13 seconds for each release, and
mapping anomalies to CPP patches takes approximately 47
seconds for each release.

V. RESULTS OF CONFIRMATORY CASE STUDY

We follow the procedure explained in the previous section
(see Figure 2) to analyze the variability anomalies in releases
v2.6.37 to v3.6. We apply Step 1 on release 3.7 to extract all
the Linux history until its latest release. We extract 10,263
KCONFIG patches and 25,410 cpp patches from the GIT
repository. We report the results of our analysis in this section.
We structure our results to answer the four research questions,
and then provide interpretation of our findings.

A. RQI: Are Misspellings a Common Cause of Variability
Anomalies?

Out of the 25,410 extracted CPP patches, only 1,412 patches
rename features in CPP conditions (i.e., patch changes the
feature being used in the condition). From these patches, we
use our spelling checker heuristics (Section IV, Step 2) to
automatically find 203 patches (14%) where the replacement
feature seems to be correcting a misspelling of the original
feature. We manually verify all 203 patches by checking
developers’ commit messages to judge if this patch is indeed
correcting a misspelling. We are able to confirm that 54 out of
the 203 patches (27%) are indeed correcting misspellings (the
high number of false positives are due to similar features like
X86_32 and X86_64 as explained in Step 2 of Section IV).
This means that only 4% (54 out of 1,412) of CPP patches
renaming features are dealing with misspelled features.

Finding 1: Typos are not a common cause of variability
anomalies. Only 4% of CPP patches changing the feature
used in the CPP condition are correcting misspellings.

B. RQ2: Are Incomplete KCONFIG Patches a Common Cause
of Variability Anomalies?

Table III summarizes the results for the mapped anomalies
in each release studied. In each release, the table shows the
number of anomalies mapped to causing and fixing patches.
The second column of the table shows the number of referential
anomalies detected by UNDERTAKER in each release. The third
column shows the number of anomalies which we were able
to automatically map to a causing KCONFIG patch in the GIT
history. That is, a patch that occurs before the date of this
release removes or renames the missing feature in KCONFIG
without reflecting this change in the anomalous file. Since
a referential anomaly can be due to more than one missing
feature, the same anomaly may be matched to several historic
patches based on the different missing features. However, we
only count the unique number of anomalies for which we
could find a causing patch. We note that an anomaly may
span multiple releases of the Linux kernel. Since we count
the number of matches in each release, and not throughout all
release, we avoid multiple countings of the same anomaly.
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TABLE 111
NUMBER OF REFERENTIAL ANOMALIES IN EACH RELEASE THAT ARE CAUSED BY INCOMPLETE KCONFIG PATCHES AS WELL AS THOSE FIXED BY KCONFIG
AND CPP PATCHES. PERCENTAGES ARE SHOWN IN PARENTHESIS.

Release  Referential Anomalies caused Anomalies fixed by
Anomalies ll)(ycl(r;;(:;épl:;i:mes KCONFIG Patches  CPP Patches
2.6.37 706 56 (8%) 22 (3%) 383 (54%)
2.6.38 688 62 (9%) 21 (3%) 354 (51%)
2.6.39 658 61 (9%) 28 (4%) 317 (48%)
3.0 618 67 (11%) 12 2%) 193 (31%)
3.1 528 96 (18%) 12 2%) 129 (24%)
3.2 478 T4 (15%) 12 (3%) 99 (21%)
33 490 73 (15%) 42 (9%) 84 (17%)
3.4 485 86 (18%) 4 (1%) 39 (8%)
3.5 425 87 (20%) 5 (1%) 21 (5%)
3.6 420 83 (20%) 0 (0%) 3 (1%)
Mean 75 (14%) 16 (3%) 162 (26%)
Median 74 (15%) 12 (3%) 114 (23%)

Table III shows that a mean of 14% of the referential
anomalies in each release are caused by incomplete KCONFIG
patches with one release having values as high as 20%. We
could not automatically map the rest of the anomalies to a
causing KCONFIG patch. A quick manual analysis of these
unmapped anomalies suggests that many of these code blocks
have been anomalous since their inception in the code which
suggests that the code block has always been dead/undead.

Column 3 in Table III also shows that the percentage of
anomalies with matched causing patches is higher in more
recent releases. This is because as we examine more recent
releases, we have more previous history to analyze, and thus
a higher chance to find patches that occur before the current
release that can be identified as causes. Although we cannot
conclude that incomplete KCONFIG patches are the only cause
of referential anomalies, our results suggest that they are a
common cause.

inding 2: Incomplete KCONFIG patches often cause refer-
ential anomalies. An average of 14% of referential anomalies
are caused by changes to KCONFIG that are not completely
ropagated to the source code.

C. RQ3: How are Variability Anomalies Fixed?

We now study patches that fix referential anomalies in order
to answer RQ3. A referential anomaly is caused by a feature
that appears in the boolean formula of the code block, but has
no definition in KCONFIG. Therefore, such an anomaly would
either be fixed by (1) adding the feature’s definition in the
KCONFIG files (either by adding a new feature or renaming
another feature), or (2) removing that feature from the code
block (either by deleting the whole code block, or using another
defined feature instead).

With respect to the first possibility, the fourth column in
Table III shows the number of anomalies in each release which
are fixed by KCONFIG patches. We can see that a very small
percentage of referential anomalies (average of 3%) get fixed by
future KCONFIG patches. This suggests that although changes
to KCONFIG introduce these anomalies, not many of them also
get fixed by changes to KCONFIG.

We now look at the second possibility of future CPP patches
fixing referential anomalies. The last column in Table III shows
the number of anomalies in each release that are fixed by CPP
patches. As shown, an average of 26% of the anomalies are
fixed by CPP patches. In some releases (2.6.37-2.6.39), these
percentages are as high as 48%-54%. When we analyze those
fixes, we find that the majority of them remove the dead code
block itself or the CPP condition from around undead code
blocks. This indicates that these code blocks should have been
originally removed in previous patches (i.e., the incomplete
ones) since this is indeed how they got fixed later on. On the
other hand, a few CPP fixes rename the features used in the
code to be consistent with those in KCONFIG.

The last column in Table III shows that the percentage
of anomalies fixed by CPP patches is decreasing over time.
This is because with more recent releases, there is not much
history beyond that release to be able to identify potential
fixes. The only exception is the number of KCONFIG patches
fixing anomalies (Column 3) in release 3.3. The reason
for the high number of matches is due to a patch that
renamed CONFIG_SPI_BFIN to CONFIG_SPI_BFIN5XX
in KCONFIG. This simultaneously fixed 31 anomalies that
were due to the missing feature CONFIG_SPI_BFINS5SXX in
different files under the blackfin architecture in Linux.

[Finding 3: Referential anomalies are commonly (26% ojj

the time) fixed by CPP patches.

D. RQ4: How Long do Variability Anomalies Remain in Linux?

We have identified that referential anomalies are commonly
fixed through CPP patches. We now look at how long it usually
takes for developers to fix these anomalies. Since the location of
a code block may change over time (thus changing the location
of the anomaly), we need a method to track the anomaly’s
location as it changes. We use Herodotos [8] to accomplish that.
Herodotos tracks bugs over different versions of a software
system by considering the lines added and removed in patches
such that it can find the location of a particular code block in
a different version of the system. Using Herodotos, we track
the referential anomalies detected to determine when they are
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no longer detected in the system. We identify the version that
introduces an anomaly and the version that fixes it.

We find that on average, referential anomalies remain in
Linux for 6 releases (approx. 10 months). Since some anomalies
are still not fixed in the last release examined, we consider
that the minimum lifetime for those anomalies (i.e., 1 release).
The standard deviation of the lifetime of an anomaly is 3.

Finding 4: Referential anomalies remain unfixed in Linux
for an average of 6 releases.

VI. DISCUSSION
A. Interpretation of Our Findings

Finding 4 suggests that many referential anomalies remain
unfixed in Linux for an average of 6 releases. A standard
deviation of 3 for the anomaly lifetime suggests that there are
anomalies that are easier to find and fix than others. Fixed
anomalies provide us insight to how Linux developers address
such problems. We attribute the low number of corrections that
fix misspellings (4%), found in Finding 1, to the strict Linux
review process each change has to undergo before its integration.
Anomalies not caused by misspellings are harder to catch by
developers during their review process since other places such
as KCONFIG files may also need to be checked, which explains
the higher percentage of anomalies (14%) caused by incomplete
KCONFIG changes found in Finding 2.

There are two explanations for Finding 3 which suggests
that Linux developers tend to fix referential anomalies on
the variability implementation (the source code), and rather
seldom on the variability declaration side (KCONFIG). First,
changes to the variability declaration occur less often than code
additions because they are less often necessary. This is also
seen in the small number of KCONFIG patches (10,263) in
Linux’s repository (i.e., those changing feature definitions in
KCONFIG) when compared to the number CPP patches changing
the features used in CPP conditions (25,410). Second, changes
to KCONFIG have (potentially) wide cross-cutting effects on the
Linux code base. Previous work by Eaddy et al. [9] has shown
that a high amount of cross-cutting concerns in a software
system increases the number of defects. Keeping in mind that
Linux is a very large collaborative project, a developer that edits
a KCONFIG feature definition potentially changes the behavior
of some code that he does not know about, which introduces the
anomaly. It, therefore, makes sense that changes to CPP code
are later necessary to fix this anomaly, and make it consistent
with the KCONFIG change. This makes the understanding of
KCONFIG changes, and the required manual code review, much
harder than the more focused changes in C source files.

These findings along with the the observation that many of
these anomalies have existed since the code was created provide
an indication that tools to aid programmers in understanding the
mapping from feature declaration to variability implementation
are necessary. Running such tools when making changes
in Linux can make sure that variability information is kept
consistent. However, further investigation into what difficulties
developers have in maintaining this consistency are also needed.

This can include surveys or interviews of developers to better
identify the problems they face with maintaining variability in
order to further improve the tools researchers provide them.

B. Beyond Referential Anomalies and Linux

We currently focus on referential variability anomalies
since they are the most common types of anomalies, and
finding their causes and fixes can be automated. The generated
boolean formulas are usually very long and complicated which
makes them impossible to study manually. The challenge with
studying logical anomalies not caused by missing features (see
Section II-B) is that when a boolean formula fails, it is not easy
to automatically identify the conflict which caused the failure.
Even when such a conflict is identified, it is often difficult to
identify the fix needed to remove the conflict. Let us take the
following simple formula for a dead block as an example.

(B1 +» CONFIG_X) A (CONFIG_X — CONFIG_Y A CONFIG_Z)
A(CONFIG_Z — —-CONFIG_Y A CONFIG_W)

Bl is dead because the formula is not satisfiable since
CONF IG_Y cannot be defined and undefined at the same time.
Several changes can be made in order to fix this anomaly.
In CONFIG_X’s KCONFIG definition, the dependency on
CONFIG_Z can be removed which will allow the formula to
be satisfiable. Alternatively, the dependencies in the KCONFIG
definition of CONFIG_Z can be changed by either removing
the negation of CONFIG_Y or removing the dependency on
CONFIG_Y altogether. Such solutions cannot be automatically
captured which is why analyzing logical anomalies requires a
lot of manual effort.

A possible solution for this is to follow a technique similar
to that proposed by Sliwerski et al. [10] where you can identify
the release that fixed the problem (i.e., a release where the
anomaly no longer appears in), and then analyze the changes
that occurred between these releases. The challenge here is
since we are dealing with multiple artifacts, a change that
introduces or fixes the anomaly may not necessarily be in the
code, but may be in a related KCONFIG or Makefile. Heuristics
can be applied to limit the search space a bit. However, more
investigation in this direction is needed.

Although our study is limited to Linux, we are convinced
our techniques and results can be applied to other systems.
Inconsistencies arise from scattered information, and changes
that are not properly propagated to all parts of the system
contributing to variability. This applies to many software
systems. Additionally, several systems use CPP to control
variability, and also use KCONFIG as their variability model
(e.g., BusyBox, BUILDROOT). Since these systems are
similarly structured to Linux, it seems likely that the same
observations may apply. Additionally, other systems which
implement variability differently (e.g., ECOS) may also have
inconsistencies caused by incomplete changes since variability
information is still divided among more than one place.
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VII. THREATS TO VALIDITY
A. Internal Validity

Mining GIT. Our work relies on mining the GIT repository
in Linux. We only analyze the master repository maintained
by Linux Torvalds. This ensures that the commits we analyze
have been thoroughly reviewed and that we avoid many of the
perils of GIT branching discussed by Bird et al. [11].

Mapping Accuracy. Our results rely on the automatic
mapping scheme we have developed. Since we focus on
investigating our raised research questions, and not on providing
any tools to be directly used by Linux developers, we develop
conservative heuristics to avoid false positives in our mapping
of anomalies to patches. This explains the large number of
unmapped anomalies. However, we manually verify many of the
detected mappings to confirm they are correct. Since removed
and added features in each patch can be accurately identified
from the + and — diff notation, we believe our mappings are
accurate.

Misspellings. We conclude that misspellings are not a
common cause of variability anomalies. This is based on the
fixes we analyzed. However, due to the conservative way we
designed our analysis, we would miss any anomalies caused
by misspellings, but which have not yet been fixed.

Detected Anomalies. Despite the fact that variability anoma-
lies discussed in this paper do not break the code in a direct way,
they do lead to unexpected behavior such as not having some
functionality even though it is chosen by the user. This is why
we opted to use the term anomaly to describe this phenomenon,
which is similar to the idea of bad code smells [7].

B. Construct Validity

The dataset we use to develop our research questions has
been created by some of the authors of this paper in their
previous work [4]. To avoid researcher expectancies or over
familiarity with the data, the first author of the paper, who
was not involved in the original work, studied this dataset to
develop the research questions.

Since our study focuses on referential anomalies, the fact that
the exploratory dataset we examine only contains referential
anomalies does not bias our results. We study all 106 patches
solving referential anomalies in the exploratory dataset, and
thus avoid the need to do any data sampling. The 337 anomalies
for which the patches have been created for have been randomly
sampled from all detected referential anomalies, and thus, the
dataset does not suffer from any sampling bias.

C. External Validity

This work provides a case study of a single software system,
Linux, which does not allow us to generalize our results to
other software systems. However, Linux is one of the largest
and commonly studied open source software systems that
support software variability, and has also been previously
studied in terms of variability anomalies. We believe that this
case study provides a methodology which can be followed to
study causes and fixes of variability anomalies in other systems
implementing variability through CPP directives and feature

selection such as those discussed by Liebig et al. [12] and
Spinellis [13] (e.g., Apache, FreeBSD).

VIII. RELATED WORK
A. Variability in Linux

The analysis of variability in Linux is an important research
topic due to its large size and the large number of variants it
can produce. Variability in the Linux kernel has been studied
in terms of its feature model (or variability model) manifested
in the KCONFIG files [1], [2]. KCONFIG features then get used
in CPP directives in the source code to control source code
compilation. Several studies focused on studying variability
in the source code [4], [14], and how the source code can be
statically parsed to analyze these variability points [15].

The build system (KBUILD) also uses KCONFIG features to
control source file compilation. By including the constraints
from the source code, KCONFIG, and KBUILD together,
previous work has been able to detect variability anomalies in
the Linux kernel [5], [16]. Tartler et al. [4] have also provided
patches to fix some of these detected variability anomalies.
However, to the best of our knowledge, there has not been any
comprehensive work done to understand the causes and fixes
of these variability anomalies. Studying the origin of these
variability anomalies is important in order to provide tools that
support more proactive anomaly prevention.

B. Bug-Introducing Changes

It is a common belief that changes to a system often introduce
bugs. Our finding that incomplete KCONFIG patches cause
variability anomalies aligns with this belief. Identifying bug-
introducing changes is a well researched topic (e.g., [17], [18],
[19], [20]). Most of these techniques rely on first identifying
bug-fixing changes by looking for keywords such as fix or for
a bug number in the report. These identified changes are then
used to train models that can be used to predict future bug
introducing changes. We choose not to follow such techniques
for several reasons. First, we are interested in a specific category
of problems which are variability anomalies, and so looking at
all bug-fixing changes is unnecessary. Second, since there has
not been much work in determining the causes and fixes of
variability anomalies, we had to first find the patterns we need
to look for. We did this by our exploratory study which allowed
us to develop criteria for determining causes and fixes. Finally,
as pointed out by previous research [21], the automatically
identified bug-fix datasets commonly result in unbalanced
datasets since they heavily rely on developers including the
linkage information between bugs and fixes in their commit
messages. Our work is also different from previous research in
that we do not only focus on source code changes, but rather
we relate changes in one part of the system (KCONFIG) to
anomalies in a different part (source code).

IX. CONCLUSIONS AND FUTURE WORK

This paper addresses the gap between detecting variability
anomalies in software systems, and understanding how these
anomalies occur and get fixed. We use the Linux kernel as a
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case study, and analyze causes and fixes of referential anomalies
(i.e., those caused by undefined KCONFIG features) detected
in the kernel. By performing an exploratory case study on
an existing set of 106 patches which fix previously detected
referential variability anomalies, we develop four research
questions about the causes and fixes of variability anomalies.
We then study several releases of the whole Linux kernel to
answer these questions in a confirmatory case study.

We find that variability anomalies typically stay in Linux
for an average of 6 releases (=~ 10 months) before they get
fixed which suggests that detecting these anomalies is not
trivial, and that fixing them as soon as they are introduced is
important. Our findings show that referential anomalies are
often (14% of the time) introduced by incomplete patches which
change KCONFIG files without fully reflecting these changes in
the corresponding source code. This indicates that automated
anomaly detection, such as that provided by UNDERTAKER,
should be incorporated into the change process to detect these
inconsistencies as soon as the patches are applied. We find that
in 26% of the time, these anomalies get fixed by CPP patches
that remove the defective code block or rename the undefined
feature being used in it. This indicates that KCONFIG changes
often have wide cross-cutting effects on the code that are not
detected till later, and must be fixed through CPP changes.

The patterns for anomaly causes and fixes we found can help
Linux developers avoid such problems in the future. They also
allow consistency checking tool designers to automatically
identify causes of their detected anomalies, and provide
suggestions to fix them. Additional studies to investigate other
types of variability anomalies (e.g., logical anomalies) as well
as analyzing further causes (e.g., code cloning) are needed. We
also hope to analyze systems other than Linux to be able to
generalize our results, and find general patterns of causes and
fixes of variability anomalies.
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