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Abstract—Developers of embedded (real-time) systems can
choose from a variety of operating systems. While some embedded
operating systems provide very flexible APIs, e.g., a POSIX-
compliant interface for run-time management, others have a
completely static structure, which is generated at compile time by
utilizing detailed application knowledge. A prominent example
for the latter class from the domain of automotive operating
systems is OSEK/OS and its successor AUTOSAR/OS. As we have
shown in previous work, the design of the operating system has
a strong impact on its vulnerability for system failure caused by
hardware faults. This observation is gaining importance, because
there is an ongoing trend towards low-power and low-cost,
yet less reliable, hardware. This work quantifies the difference
in vulnerability for soft errors in main memory of a flexible
(dynamic) operating systems (eCos) and a static system (CiAO),
which has an OSEK-compliant structure. We also analyze the
additional degree of robustness that is achieved by hardening an
operating system with software-based and hardware-based fault-
tolerance measures and the corresponding costs. Covering this
design space gives developers a better chance for good design
decisions with respect to the trade-off between fault tolerance,
resource consumption, and interface convenience. Our results
indicate that with a combination of hardware- and software-
based fault-tolerance measures, silent data corruptions in both
operating systems can be reduced to below one percent (compared
to eCos). However, the analyzed fault-tolerance mechanisms are
expensive for the dynamic system, whereas the statically designed
operating system can be hardened at much lower price.

I. INTRODUCTION

Many innovations in recent industrial and automotive
applications rest upon elaborate and complex software sys-
tems. Their realization demands modern and fast processor
architectures at the price of being less and less reliable, due
to shrinking structure sizes, increased clock frequencies, and
reduced operating voltages [1]. In embedded control systems,
the handling of soft errors (i.e., transient bit flips in memory)
is becoming mandatory for all SIL3 or SIL4 categorized safety
functions [2], [3], [4]. Established solutions stem mostly from
the avionics domain and employ extensive hardware redundancy
or specifically hardened hardware components [5], [6] – both
of which are too costly to be deployed in commodity products.

Software-based redundancy techniques, especially the re-
dundant execution with majority voting in terms of triple mod-
ular redundancy (TMR), are well-established countermeasures
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Fig. 1. Investigated dimensions of system-software robustness in a real-
world setting: (a) OS design without explicit hardening, (b) software-based
dependability measures, (c) hardware-based fault detection.

against soft errors on the application level [7]. By combining
them with further techniques (such as, arithmetic codes) even
the voter as the single point of failure (SPOF) can be eliminated
[8]. However, all these techniques “work” only under the
assumption that the application is running on top of an soft-
error–resilient real-time operating system (RTOS).

Many partial solutions have been suggested by the systems
community to increase the resilience also of the operating-
system kernel against transient and permanent hardware faults.
Examples include using watchdog timers [9], graceful degra-
dation with respect to RAM or CPU errors [10], [11], the
fine-grained ex-post hardening of operating system (OS) data
structures [12], or the transfer of essential operating system
code to a dedicated reliable computing base [13].

A. About this Paper

In a recent workshop paper [14], we figured out that also
the RTOS design and kernel interface has a strong influence
on the sensitivity to soft errors. The design directly influences
the resulting mutable kernel state, which has to face possible
transient memory faults: In essence, a completely statically
allocated kernel state, tailored to the sole needs of a specific
application, as suggested by the automotive OSEK/AUTOSAR
OS standards [15], [16], provides a significantly higher inherent
robustness against soft errors than the dynamic organization
of kernel objects implied by a POSIX interface and employed
by the vast majority of RTOS kernels. Our experimental fault-
injection evaluation with CiAO [17], a completely statically
configured implementation of AUTOSAR OS, and eCos [18],
which offers a POSIX-compliant dynamic interface, revealed
that the dynamic eCos system is affected by four times as
many silent data corruptions (SDCs) as the static CiAO system.
However, our preliminary results in [14] have two shortcomings:
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Fig. 2. Simplified representation of the I4Copter task and resource constellation, resembling a real-world safety-critical embedded system. The system acts a
common workload scenario for all operating system variants under test.

(1) They do not reflect bit flips in the kernel’s stack memory, and
(2) we did not evaluate any explicit software-based reliability
measures that may mitigate these results.

B. Our Contribution

The main contribution of this paper is to extend these
considerations by a further dimension in terms of explicit
and well-known hardware- and software-based dependability
measures applied to the different operating system variants
(Figure 1). On the example of a real-world safety-critical system
(the I4Copter, an autonomous flight vehicle), we quantify the
effects of these measures. Here, it is worth to be noted that
we explicitly focus on the bare OS execution, rather than
considering any (still possible) dependability measures on the
application layer, which have been presented elsewhere [8].

In order to reach comprehensive results we conduct ex-
haustive fault injection (FI) campaigns, covering the entire
effective fault space of single-bit memory bit flips. In a first
step, we compare the inherent robustness of two contrasting
OS designs, similar to the experiments from [14] (this time
including bit flips in the stack space) as a baseline. Then, we
extend both kernels with proven software-based fault-detection
mechanisms to quantify their effectiveness on the robustness
of real-world, safety-critical application scenarios. In a last
step, we extend the evaluation on to hardware-based measures.
The underlying research questions are: Can the application of
proven dependability measures on a dynamic system help to
reach the level of inherent robustness of a static system design?
And, on the other hand: Can the extension of a condensed static
system with additional measures further increase its robustness,
considering the increased usage of susceptible memory?

II. APPLICATION SCENARIO AND EXPERIMENT SETUP

The evaluation scenario is based on a common workload
that all OS variants have to realize properly. The systems
under test are executed with the help of an emulation-based
fault-injection framework that allows for deterministic and
reproducible experiments.

A. Real-World Application Scenario

In order to achieve realistic system workloads, considering
all essential OS features, we chose the task setup of the I4Copter
[19], a representative for a real-world safety-critical application,
as evaluation scenario. The system, as illustrated in Figure 2,
consists of three periodically activated tasks and a group of
tasks synchronized via resources and events, interacting in

a reproducible execution order. In total 14 tasks, 13 events,
one resource and 4 alarms are defined. In our evaluation, we
evaluate 3 hyperperiods of the I4Copter application.

B. Fault Model

We systematically inject single bit flips into all relevant
bits of the kernel state, rather than choosing memory addresses
randomly. In contrast to the fault model of our previous
evaluation in [14], here, we additionally include the kernels’
stack memory. During an application’s runtime, we inject
exactly one independent bit flip at a particular time/memory-
address coordinate and observe its impact. Afterwards, the
application is restarted and the next bit flip is injected at the
succeeding point in the fault space. The evaluation scenarios
in this paper would emit 3.84 · 1013 possible faults in total. To
reach feasible campaign run times, we concentrate on faults
that can actually escalate to errors. For identifying these faults
and their injection times, we utilize the fault-space pruning
methods offered by the Fail* framework [20]. Based on a x86
CPU simulation, Fail* traces a golden run and schedules fault
injections only for memory words that are actually used. In
essence, the fault space pruning allows us to minimize the
number of ineffective faults, concentrate on actual errors, and
still cover the entire fault space of potentially effective errors,
that is failures. As a result, the overall experiment count is
reduced to a feasible amount of 106 million single experiments.

C. Result Categories

The corresponding fault-injection results are grouped into
three main categories:

1) Errors not resulting in any observable failure. The
task activation order is preserved.

2) Errors detected by hardware traps.
3) Undetected failures, silently influencing the expected

behaviour.

As already mentioned, we minimize the number of results
belonging to the first category by filtering out faults that can
be proved to not leading to any error. Nevertheless there may
still occur benign faults, for example if the flipped bit never
affects the actual system behaviour, as for example a low-order
bit that is lost in an upcoming integer division. Regarding
the resulting effective FI experiments, we further differentiate
between detected and undetected errors. Error detection occurs
in terms of hardware traps, that is, for example a division by
zero or the execution of illegal instructions. The most severe
effects arising from memory faults are the undetected silent data



#define STACKSIZE 128
cyg_uint8 stack[STACKSIZE];
cyg_thread TaskA_thread;
cyg_handle_t TaskA_handle;
cyg_mutex_t SPIBus;

void cyg_user_start(void) {
cyg_thread_create(2, & TaskA, 0,
"TaskA", TaskA_stack, STACKSIZE,
&TaskA_handle, &TaskA_thread);
cyg_mutex_init(&SPIBus);
cyg_thread_resume(TaskA_handle);

}

void TaskA(cyg_addrword_t data){
cyg_mutex_lock(&SPIBus);
...
cyg_mutex_unlock(&SPIBus);

}

Run-time

Operating System Library (os.a)

Application code (app.c)

Runtime configuration (main.c)

(a) Dynamic OS Design

RESOURCE SPIBus {
RESOURCEPROPTERY = STANDARD;

};

TASK TaskA {
AUTOSTART = TRUE;
PRIORITY = 2;
StackSize = 128;
RESOURCE = SPIBus;

};

TASK(TaskA) {
GetResource(SPIBus);
...
ReleaseResource(SPIBus);

}
Application code (app.c)

Static configuration (app.oil)

Operating System (os.c)

Compile-time Run-time

Generator

(b) Static OS Design

Fig. 3. The dynamic eCos system initializes kernel objects with static data at runtime. A static OSEK/AUTOSAR system deduces its kernel data from a
configuration file (app.oil) ahead-of-time.

corruptions (SDCs) influencing the correct functional behaviour
of the operating system, thus leading to failures. Regarding the
concrete workload, this functional behaviour is defined by the
resulting task execution in terms of completeness, order, and
activation times. We also count a terminating and correct task
execution order that writes outside of the kernel memory as a
SDC.

III. THE OS DESIGN PARADIGM DIMENSION

Real-time operating systems provide a common ground
of basic features, such as priority-based thread scheduling,
management of time, and synchronization primitives to model
interdependencies between threads. These functions can be
realized in different ways, depending on the design concepts of
the particular operating system. For our study, we chose the off-
the-shelf operating system eCos [18] as a typical representative
of a dynamic embedded operating system, and a fully static
implementation of the OSEK specification in terms of the CiAO
[17] RTOS. Figure 3 contrasts both OS concepts on behalf of
a small application with two kernel objects (a task TaskA and
a mutex SPIBus).

A. Dynamic Operating System: eCos (POSIX)

Most RTOS are conceived as dynamic: All kernel objects,
such as threads, semaphores, or timers, are set up at run time;
their number is considered as unbounded. Dynamic systems
typically implement data structures in the form of linked lists
and make high use of pointer-based data structures. Especially
regarding embedded systems, it is often up to the developer
to allocate all necessary resources and hand them over to
the operating system, to avoid dynamic memory allocation
within the kernel. Moreover, this allocation is typically carried
out only once within an initialization phase, while the rest
of the system’s lifetime, the number of resources remains
unchanged. Nevertheless, the system still has to cope with
the dynamic allocation strategy, which in fact is a heritage
of POSIX semantics, and provide appropriate data structures.
Figure 3a illustrates such a dynamic OS design: The eCos
operating system requires some startup code to initialize all
kernel state at run time (main.c). These kernel objects are then
identified by their run-time address and passed as pointers to
the kernel.

eCos (embedded configurable operating system), as the
name implies, is designed for configurability, allowing to select
and configure various system components like file systems,
networking, and many more at compile time. Anyhow at run
time eCos still manages dynamic data structures in form of
data pointers and linked lists. Yet, an interesting aspect is the
possibility to configure kernel internals, which have different
resilience behaviors regarding to soft errors. Here, the essential
system component is the scheduler [12]. eCos offers different
real-time schedulers to choose from: a multi-level queue (MLQ)
scheduler and a bitmap scheduler.

The multi-level queue scheduler implements an array of
pointers to list headers. Each array element represents a priority
level, whereby each level comprises a dynamic number of
threads within a linked list. This allows for an arbitrary number
of threads within each priority level.

The bitmap scheduler variant, on the other hand, realizes the
ready “list” in terms of a map, each bit position representing
an index, which also corresponds to the priority, in an array
of thread pointers. Consequently, the number of threads is
fixed and each priority can only be applied to a single thread.
Nevertheless the systems interface remains the same and
suggests an unbounded number of threads per priority.

B. Static Operating System: CiAO (OSEK)

While the dynamic allocation of kernel objects provides
a flexibility that clearly makes sense for uncritical interactive
applications, it is hardly ever needed for embedded real-time
control systems. An alternative design is suggested by the
automotive OSEK/AUTOSAR operating system standards [15],
[16], which describe a completely statically configured RTOS:
All kernel objects have to be declared and configured at compile
time; their number is implicitly bounded. Hence, all objects
can be allocated (and to a large degree also initialized) at
system generation time. This allows to make high use of static
data representations, which can be condensed in tailored arrays
offering constant indexing of data. As all needed resources are
known at compile time, the data structures can be initialized
before run time. Static configuration data can be put into read-
only memory and the remaining kernel structures are more
robust. For the automotive industry, the driving motivation
for such a static design concept has been to keep memory
requirements (i.e., hardware costs) as low as possible. However,



TABLE I. EXECUTION ANALYSIS OF THE GOLDEN RUNS.

Golden Run
Memory Usage Statistics

Unhardened CRC32 Hardened CRC32 + Stack protection

CiAO-BM eCos-BM eCos-MLQ CiAO-BM eCos-BM eCos-MLQ eCos-BM eCos-MLQ

Text Segment Size (Bytes) 17,056 24,697 26,169 20,207 58,205 65,181 60,125 67,037
Number of Kernel Instructions 1,122 1,072 1,285 1,494 4,183 4,951 4,454 5,218

Executed Kernel Instructions 58,329 80,742 88,456 325,327 1,815,457 2,078,016 1,897,093 2,163,250
Time in Kernel 0.1 % 0.1 % 0.1 % 0.5 % 2.8 % 3.2 % 2.9 % 3.3 %
Executed Instructions per Syscall 100.7 122.9 134.6 561.9 2,763.3 3,162.9 2,887.5 3,292.6

Allocated Kernel Memory (Bytes) 838 1,992 2,308 884 3,880 4,616 3,880 4,616
Accessed Kernel Memory (Bytes) 491 857 949 829 2,267 2,987 2,271 2,991
Kernel Memory Reads per Syscall (Avg. Bytes) 49.5 77.3 83.9 1,706.2 3,182.3 3,509.4 3,226.4 3,563.6
Kernel Memory Writes per Syscall (Avg. Bytes) 39.3 39.1 41.9 76 1,413.9 1,646.1 1,415.3 1,647.6

compared to dynamic systems, this can also lead to less mutable
kernel state and fewer error-prone indirections with beneficial
impacts on the robustness of the system [14].

Figure 3b exemplifies this design concept with the CiAO
operating system implementing the OSEK specification. Here,
all kernel objects have to be specified in a dedicated OSEK Im-
plementation Language (OIL) [21] configuration file (app.oil),
which is evaluated at compile-time by a generator that creates
a tailored kernel. Kernel objects are identified and passed to
the kernel by compile-time constants. The CiAO operating
system is, similar to eCos, designed for extensive configurability,
and additionally aims for fully static configuration and data
allocation. With the help of Aspect Oriented Programming
(AOP) [22], the system can be tailored to the sole requirements
of the application, without the need for dynamic data structures
within the kernel, as all necessary system information can
be described before run time using the OIL description. The
automatic tailoring process allocates statically a task control
block (TCB) for each thread and sorts them into an array ordered
by the (static) thread priority. The ready state of each thread
is represented by a single bit position in a bitmap scheduler.
Since all tasks are defined statically, most configuration data,
like the entry point of the task or its preemption behavior, is
stored in a read-only data section.

C. System Configurations

The task and resource constellation of the evaluation
scenario can be directly mapped to both eCos and CiAO. Three
different system configurations with different gradations of
allocation strategies are evaluated:

1) The eCos default configuration comprising only dy-
namic data structures, implementing a MLQ scheduler,
alarm and resource lists (eCos-MLQ).

2) The same eCos default variant, but with a static bitmap
scheduler (eCos-BM), and

3) a completely static CiAO system, also providing a
bitmap scheduler (CiAO-BM).

We chose these system configurations to examine how the
design of the operating system design influences the resilience
to soft errors. The default MLQ variant of eCos is the most
flexible one in terms of tasks per priority. All configurations
have been tailored as close a possible to the application
scenario. Both eCos variants only provide the bare minimum
requirements, leaving out all additional drivers and components.

Where possible, configurable maximum values of resources
have been reduced to a feasible minimum value.

IV. RESULTS OF THE UNHARDENED OS DESIGNS

Before evaluating the FI results of the unhardened OS
variants, we first consider the memory usage statistics gathered
from the golden runs.

A. Memory and Time Requirements

Table I shows the impact of the differing OS designs on
the concrete kernel memory usage. Regarding the unhardened
variants, the bare number of kernel instructions in the text
section lies at a similar level. However, the total number of
executed kernel instructions within the golden run of the eCos
variants shows an 38.4 % (resp. 51.6 %) increase compared
to CiAO. The increased amount of instructions per system
call further reflects the inherent, more complex nature of
eCos. Nevertheless, concerning the application run time, the
unhardened kernel execution is still neglectable for all variants.

The eCos variants allocate at least 2.4 times as much kernel
memory as the CiAO system. Nevertheless, the actually accessed
memory at runtime shows at most an increase of 93.3 percent,
both for reading and writing accesses. CiAO utilizes more than
a half of its previously allocated kernel memory (491 of 838
Bytes), while the eCos variants touch less than 41 percent.
Here, the impact of the strong tailoring facility of the static
CiAO system comes to light, condensing the necessary kernel
state to the bare requirements of the application.

B. Fault-injection Results

The FI results shown in Table II confirm our findings
from [14] to a large extent. Without any explicit dependability
measures applied, the detected errors of the unhardened variants
can be directly related to CPU hardware traps. Error hook
events, signaling a detected error by a software measure, cannot
occur.

Again, according to our previous results, the OS design
has a considerable influence on the number and explicit
manifestation of silent data corruptions. Errors within the
condensed kernel state of the CiAO system directly lead to
differing task activations, while the pointer-based kernel data of
the eCos variants also suffer from many timeouts after invalid
memory reads. At the same time, the partly static eCos-BM
variant shows an increased inherent robustness, compared to



TABLE II. OVERALL FAULT-INJECTION RESULTS SHOWING TOTAL NUMBERS ALSO FACTORING IN PRUNED EXPERIMENTS.

Fault Injection Results
(in 109 Errors)

Unhardened CRC32 Hardened CRC32 + Stack protection

CiAO-BM eCos-BM eCos-MLQ CiAO-BM eCos-BM eCos-MLQ eCos-BM eCos-MLQ

No influence 36,476.26 37,888.9 38,000.11 36,139.54 38,276.54 38,412.09 37,732.19 37,864.55

Detected Error 24.24 140.29 171.07 409.91 897.44 1,147.69 1,457.57 1,708.57
Hardware Traps 24.24 140.29 171.07 2.71 167.69 219.23 113.63 159.68
Error Hook – – – 407.20 729.75 928.46 1,343.94 1,548.89

Silent Data Corruption 36.98 181.62 204.06 14.65 36.24 34.76 20.83 21.83
Invalid Memory Write 0.59 1.72 1.74 0.73 1.53 1.44 0.01 0.02
Execution Timeout 16.23 57.57 53.85 9.81 29.02 29.01 20.56 21.55
Differing Task Activation 20.16 122.33 148.46 4.11 5.69 4.32 0.26 0.26

the fully dynamic eCos-MLQ implementation. Nevertheless, on
an overall basis, the total number of SDCs of the eCos systems
exceeds the SDCs of CiAO by a factor of five. Notably, the
additional stack memory injection, that was omitted in [14], has
a higher negative influence on the SDCs of the eCos variants,
than on the CiAO system.

V. SOFTWARE-BASED DEPENDABILITY MEASURES

Dealing with memory faults, we chose the established 32-bit
cyclic redundancy check (CRC) as error-detection mechanism
for both the static CiAO, as well as the dynamic eCos variants.
Both software implementations utilize the crc32 instruction,
implemented by the SSE4.2 instruction set extension provided
by recent x86 processors.

A. Hardening eCos

The robustness of the eCos kernel against memory faults is
improved by Generic Object Protection [12]. In-memory kernel
objects are enriched by a CRC32 error-detecting code, which is
allocated together with each instance of a kernel data structure,
such as the scheduler and thread objects. The object-oriented
software structure of eCos allows that the CRC code is checked
only before function calls to so protected objects, because data
access is restricted to member functions only. After a member
function of a CRC-protected kernel object has executed (and
certainly modified its data), the CRC code is updated. By these
rules, all memory faults that accumulate while a kernel object
is not in-use are detectable.

We implemented the Generic Object Protection by means
of Aspect Oriented Programming (AOP), which allows for a
completely modular implementation separated from the eCos
source code. An aspect compiler, in our case AspectC++

aspect GenericObjectProtection {
pointcut protectedClasses() = "Cyg_%"; // eCos’ kernel classes
advice protectedClasses() : slice class { // class extension
unsigned int crc32;
void check() { MemberIterator<JoinPoint, Check>::exec(this); }
void update() { MemberIterator<JoinPoint, Update>::exec(this); }

};
advice construction(protectedClasses()) || call(protectedClasses())
: after() { tjp->target()->update(); } // calculate crc32

advice call(protectedClasses())
: before() { tjp->target()->check(); } }; // detect errors

Fig. 4. Simplified implementation of the Generic Object Protection, as applied
to all the eCos’ kernel data structures (prefixed with "Cyg_"), shown in the
programming language of AspectC++.

[23], automatically inserts the protection rules at compile time.
Thus, every function call to a protected kernel object can be
instrumented with minimal effort from the programmer. Fig-
ure 4 shows a simplified1 aspect comprising these protection
rules in the language of AspectC++. The pointcut expression
quantifies all kernel data structures, that is, all C++ classes that
match the name pattern "Cyg_%"2, such as Cyg_Scheduler and
Cyg_Alarm. These classes are extended via slice introductions
by the crc32 field as well as functions to calculate and
check the CRC code for that particular data structure. The
aforementioned rules to check/update the CRC code on function
calls to kernel objects are specified by the remaining pieces
of advice. Thereby, the built-in function tjp->target() of
AspectC++ yields the instances to be checked/updated.

Additionally, we provide a second aspect-oriented mech-
anism that protects the runtime stacks of preempted threads.
When a thread is preempted, a CRC32 code for its used stack
memory is stored until the thread is scheduled again, which
triggers a check of the stored CRC code. We evaluate hardened
variants of the eCos kernel both with and without Preempted
Thread Protection.

These aspect-oriented dependability measures had been care-
fully chosen because they allow for the automated hardening
of the roughly 1 million lines of legacy C/C++ code found in
eCos – a manually implemented protection would be infeasible.

B. Hardening CiAO

The Generic Object Protection, which is used for eCos, is
not directly applicable to CiAO since AspectC++ is currently not
capable of recursive code insertion. CiAO itself is constructed
mostly with aspects [17], and in the current implementation
of AspectC++, aspect code cannot be augmented by further
aspects. Since this problem disallows automated hardening, a
much more coarse-grained approach was applied.

For the hardened CiAO all kernel objects are also enriched
by CRC error-detecting codes. Every time the kernel is entered,
all CRC codes (i.e., the complete kernel state) are checked for
forged data. After the control flow returns to the application
(or into the idle loop), the CRC codes are updated, again for
the complete kernel state. This ensures that the data remains
protected during the application execution as well as the system
idle time.

1The complete implementation consists of about 1,800 lines of code.
2In AspectC++, "%" serves as a wildcard for any number of characters.



In contrast to the Generic Object Protection, the data
structures are not only vulnerable during the time a specific
kernel object is used, but during the whole kernel execution.
This approach is also only applicable to small kernel states to
keep the constant overhead for entering the kernel low. As a
benefit from checking the integrity of all objects every time,
faults in seldom used kernel objects can be detected earlier,
decreasing the overall fault latency.

C. Memory and Time Requirements of the Hardened Systems

The fine-grained Generic Object Protection applied to the
eCos variants is directly reflected by a considerably increased
number of kernel instructions, as shown in Table I. While
the CiAO variant only emits a CRC check around the entire
system call, the dependability aspects intersperse the whole
eCos kernel execution with loop-unrolled CRC-calculation code.
In consequence, the kernel execution time of the hardened
eCos system has a more considerable impact, compared to the
application run time.

The coarse-grained CRC applied to CiAO only slightly
increases the allocated kernel memory, as only few CRC codes
are generated for major data chunks. Accordingly, the number
of memory writes per system call, to additionally store these
CRC codes, remain near to the level of the unhardened variant.

The fine-grained Generic Object Protection applied to eCos,
on the other hand, roughly doubles the kernel-memory usage.
Further, checking more but smaller data chunks, both reads and
writes increase considerably. The additional stack protection
aspect, covering the used stack space of the respective threads is
rather coarse-grained, compared to the kernel object protection.
Therefore, the respective overhead remains low in this case.

D. Fault-injection Results

The results of the fault-injection campaign are shown in
Table II. The coarse-grained hardening of the CiAO system
reduces the amount of SDCs by 60.4 percent mainly detecting
errors affecting the concrete execution behavior, that is differing
task activations and execution timeouts. Clearly, the fine-
grained hardening of the eCos systems directly manifests
in a respectively high amount of detected errors. But, more
important, the Generic Object Protection also effectively
reduces the amount of SDCs by 83 percent. While differing
task activations are detected to a large extent, the dynamic
eCos systems still suffer from a certain amount of undetected
execution timeouts. Surprisingly, the more complex eCos-
MLQ system gains a greater benefit from the Generic Object
Protection than the eCos-BM variant. This is due to the fact, that
the pointer-based list implementation of the multi-level queue
algorithm handles self-contained thread objects, performing
CRC code calculations on each particular access. The bitmap
scheduler, on the other hand, maintains a thread pointer array,
which is checked as a whole on entry and exit of any scheduler
method. Thus, during the method execution, more kernel data
is left unprotected for a longer period of time. Here, the object-
oriented MLQ design perfectly utilizes the strengths of the
Generic Object Protection.

The additional stack protection further reduces differing
task activation effectively, but the fully-fledged eCos variants,
providing CRC protection for all kernel objects and stacks, can

TABLE III. THE SYSTEM DESIGN, SOFTWARE PROTECTION AND USED
HARDWARE FEATURES HAVE A MAJOR INFLUENCE ON THE NUMBER OF

UNDETECTABLE ERRORS.

% of SDCs eCos-MLQ eCos-BM CiAO-BM

w/o Protection 100.00 89.01 18.12
with CRC(coarse) – – 7.18

with CRC (fine) 17.04 17.76 –

with CRC (fine), Stack 10.70 10.21 –

with Watchdog 73.61 60.79 10.17

with MPU 71.31 68.86 16.80
with MPU, Watchdog 52.43 48.81 8.88

w/ CRC
with Watchdog 0.14 0.13 2.38

with MPU 0.84 0.44 5.70
with MPU, Watchdog 0.06 0.06 1.00
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still not reach the low level of SDCs of the hardened CiAO
system. Nevertheless, most of the remaining SDCs manifest as
execution timeouts, which might be detectable with additional
hardware-based measures.

VI. ENABLING HW-BASED MEASURES

In Table III the influence of the different measures is shown
relative to the number of SDCs for the unhardened eCos-MLQ
variant. The static system design of CiAO has only 18.12
percent SDCs, which can be further decreased to 7.18 percent
by using a coarse-grained error-correcting CRC code. For the
eCos systems, hardened with CRC for all kernel objects and
stacks, the SDC reduction is equally effective, but does not fall
below 10 percent. A more detailed examination of the SDCs for
the hardened eCos reveals, that, not the differing task activations
account for the this lower limit, but execution timeouts (see
Table II) caused by faults injected in virtual function pointers.
Such pointers are generated by the C++ compiler, as needed for
Generic Object Protection, and are invisible to the programmer,
but could be protected in software as well by Virtual Function
Pointer Protection [24].

These virtual function pointer failures are also easily caught
by dedicated hardware, such as a memory protection unit
(MPU), which detects roughly 31 percent of the SDCs affecting
the unhardened eCos. On the other hand, the unhardened
CiAO only improves by 1.32 percent using the MPU. This is
certainly the result of the static system design avoiding indirect
memory accesses via pointers as far as possible. However, both
unhardened operating systems share a significant amount of
timeouts causing SDCs. A hardware watchdog timer detects
such timeouts effectively in both systems (see middle part of
Table III). Still, the unhardened dynamic eCos, using hardware
MPU and watchdog timer, fails almost three times more often
than the unhardened CiAO without any hardware protection.

The combination of these hardware measures together with
the CRC software measures is depicted in the lower third of
Table III. The CRC-hardened CiAO benefits mostly from the
watchdog timer, while the MPU reduces the SDCs only by less
than two percent. The other way around, the fully protected



eCos – all kernel objects and stacks covered by CRC – benefits
again largely from both the MPU and the watchdog timer. Either
hardware measure independently detects the control-flow errors
caused by faults in virtual function pointers, which manifest
as execution timeouts after an invalid memory read. Finally,
considering full hardware and software protection, the SDCs
for CiAO are reduced by 99.00 percent and by 99.94 percent
for the eCos variants. Thus, the stack protection applied to
eCos provides a true advantage over the software hardening
applied to CiAO.

VII. DISCUSSION

Common dynamic system designs clearly profit from their
high flexibility and often provide the programmer with the
well-known POSIX interface and semantics. But this comfort is
won at the expense of robustness against memory faults, while
the flexibility remains generally unused for real-time systems.
On the other hand, static system designs (like OSEK) make it
easy to condense kernel state and to avoid complex operations.
This was already discussed earlier [14], where we found the
dynamic system to be affected by four times as many SDCs.
When also considering the execution stack, as we do in this
work, this factor increases even to five.

However, choosing a static system design is not the only
tool in the toolbox of software-based measures. Applying active
detection through Generic Object Protection and protected stack
frames results in an resilience improvement against SDCs of 90
percent for eCos-MLQ, while not touching the scheduled task
set. This brings the dynamic system even above the inherent
robustness of an unhardened static design. But this catch-up is
bought at the price of 23 times more executed kernel instructions
(compared to the unhardened versions) and a doubled kernel-
memory consumption. However, most applications spend only
very little of their computation time in the kernel, so regarding
CPU utilization these numbers are less dramatic in practice: In
the I4Copter scenario, the hardened eCos-MLQ variant spends
less than four percent of the total CPU time inside the kernel.
Moreover, the Generic Object Protection approach could be
applied to the most critical kernel objects only, to trade off
reliability for performance. Clearly, the overhead scales with the
number of protected kernel objects, but we have not quantified
this opportunity, yet. But also the static system approach can
be further improved by checking the kernel objects for integrity
– at a generally much lower overhead.

Applying additionally hardware-based methods, like an
MPU and a watchdog timer, nearly eliminates SDCs in the eCos
system. Together with the fine-grained CRC aspects, even the
coarse-grained checking of the CiAO system is outperformed.
This is caused by the fact, that the fine-grained protection
leaves behind much smaller vulnerability intervals, while with
the coarse-grained approach a big interval remains intact for
every system call. Errors in the condensed kernel state of CiAO
during this interval directly affect the system behavior, where
errors in the pointer-based dynamic system lead more often to
execution timeouts after invalid memory reads. Hence, dynamic
systems benefit supremely from hardware-based protection.

With respect to the RTOS robustness impact of the three
analysed dimensions (1) OS design, (2) software measures, and
(3) hardware measures we conclude:

(1) The OS design has a major influence on the robustness
of a system. Considering the unhardened systems, the statically
designed CiAO revealed 4.9 times fewer SDCs than the
dynamic eCos-BM.

(2) It is, however, possible to compensate for this initial "design
penalty" by automated software measures: A hardened
dynamic system can reach (and even outperform) the inherent
robustness of a static design. To reach 8.7 times fewer SDCs
in eCos-BM, fine-grained – and therefore costly – software
measures are necessary. Compared to the unhardened CiAO,
the hardened eCos-BM requires 3.5 times more code bytes, 4.6
times more kernel data (RAM), and 32.5 times more executed
kernel instructions.

(3) Much cheaper in terms of memory and run-time (but not
necessarily hardware costs) is the application of hardware-
based measures. In the case of the eCos system, applying
MPU-based memory protection and in particular a hardware
watchdog can significantly decrease the SDCs.

The major thread to validity of these findings is that they
are based on single case study only. The flight control of our
I4Copter quadrocopter is a real-world safety-critical system, so
we consider it as a good representative for these kind of control
applications. Nevertheless, the exact quantitative findings will
be different for other applications or RTOSs. However, given
the order of the numerical differences between the static and
the dynamic system, we are convinced that our qualitative
findings regarding the robustness and cost impact of (1) OS
design, (2) software measures, and (3) hardware measures can
be generalized.

VIII. RELATED WORK

There is a limited number of works that investigated how
faults effect operating systems.

Koopmann et al. [25] focused on N-version software at
the OS level. They examined fifteen Commercial off-the-shelf
(COTS) POSIX conform operating systems together with
various standard C library implementations. In contrast to
the presented work, their evaluation concentrates on software
inherent robustness with regard to parameter plausibility and
API conformance.

Madeira et al. [26] focused on physically induced errors
to evaluate the use of COTS systems for space applications.
Randomly distributed faults have been injected into both
registers and memory of a system running LynxOS, a POSIX
conform RTOS. In the course of this paper, we focus on the
operating system and evaluate specific hardened variants.

Ferreira and colleagues [27] discussed operating-system
vulnerability to memory errors in the context of HPC. Compa-
rable to our results, they conclude that a lightweight operating
system might be less vulnerable and easier to harden. They base,
however, their observations solely on source-code statistics.

Aidemark et al. [28] compared the effects of transient faults
affecting two variants of a custom small-sized embedded real-
time kernel. The evaluated variants are a kernel comprising
conventional dynamic data structures, namely linked lists,
and a kernel using static arrays, additionally extended with
spare information enabling fault detection, and triple modular



redundant execution of the application tasks. While Aidemark
et al. did a substantial evaluation by injecting 26,000 single bit
flips into the address and data registers, they did this randomly.
Furthermore, the conducted experiments compare hardened
static data structures with unhardened list implementations. We,
in contrast, compare vanilla and hardened variants of a static
and a dynamic RTOS on the base of systematic fault injection
during kernel execution that covers the complete fault space of
3.84 · 1013 possible bit flips.

IX. CONCLUSIONS

There is an ongoing development towards more and more
sophisticated applications in the area of embedded systems
with the automotive sector as a trendsetter. This development
forces the use of modern and fast processor architectures that
are less reliable due to shrinking structure size, increased
clock frequencies, and reduced operating voltages than their
predecessors. To ensure safe operation of the RTOS, resilient
software designs and software-based measures are mandatory.

We have analyzed three dimensions regarding their impact
on the robustness of the RTOS: (1) OS design, (2) software
measures, and (3) hardware measures. Our results show that
the OS design has a major influence on the robustness of a
system – the static OSEK-like CiAO revealed five times fewer
SDCs than the dynamic POSIX-like eCos. However, we could
also show that it is possible to compensate for this initial
"design penality" by further and automated software measures:
A hardened dynamic system can reach (and even outperform)
the inherent robustness of a static design – at the price of much
higher run times and memory consumption. If these software
measures are furthermore combined with additional hardware-
based protection facilities (MPU, watchdog) the number of
SDCs can be reduced to 0.06 percent. However, in general a
statically designed RTOS can be hardened at much lower price.

In retrospect, the automotive industry’s choice for static
systems, originally driven by resource and cost constraints,
pays also off tackling the present and future challenge of more
and more unreliable hardware.
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