
Shared Memory in the Many-Core Age

Stefan Nürnberger, Gabor Drescher, Randolf Rotta,
Jörg Nolte, and Wolfgang Schröder-Preikschat?
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Abstract. With the evolution toward fast networks of many-core pro-
cessors, the design assumptions at the basis of software-level distributed
shared memory (DSM) systems change considerably. But efficient DSMs
are needed because they can significantly simplify the implementation
of complex distributed algorithms. This paper discusses implications of
the many-core evolution and derives a set of reusable elementary opera-
tions for future software DSMs. These elementary operations will help in
exploring and evaluating new memory models and consistency protocols.

1 Introduction

Parallel algorithms are based on distributing computation tasks over multiple
execution threads. In shared memory programming models, these threads can
access the computation’s data directly in a logically shared address space. Most
parallel algorithm can be expressed easily with respect to correctness because
manual data partitioning and transfers are not necessary, c.f. [10]. Just the inter-
task data dependencies require explicit synchronisation.

However, attaining optimal performance with shared memory programming
is challenging. In fact, multi- and many-core processors are distributed shared
memory (DSM) systems that use message passing internally. They implement
the illusion of a shared memory by implicit inter-thread communication. For
performance optimisation, it is necessary to understand the distributed structure
and the behaviour of the employed consistency protocols, see for example [24].

Message passing could be used directly [19] and would provide explicit con-
trol over all communication. But this often requires a considerable effort, which
distracts from high-level optimisation. For example, optimising data access lo-
cality instead of communication locality and balancing the task decomposition is
more effective and easier with shared memory [29]. Furthermore, hardware-based
DSMs are efficient on a small scale [21]. On larger scales, software-level DSMs
can incorporate algorithm-specific knowledge for higher performance [20,7,4].
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Fig. 1. Elementary operations bridging memory models and hardware.

The first software DSMs targeted networks single-threaded computers. With
the transition to many-core architectures, the hardware evolved considerably and
became more diverse and heterogeneous. Therefore, the many-core age poses a
good opportunity to improve upon past DSM research. Examples such as the
Quarks DSM for fast networks [8,30] show that rethinking the design of software
DSMs is worthwhile. In addition, emerging memory models like in C++11 de-
mand new consistency protocols for software DSMs. A generic infrastructure is
needed in order to cope with the many possible combinations of memory models,
consistency protocols, and hardware platforms (Fig. 1). This paper presents a
set of elementary operations that serve as reusable building blocks for DSMs.

The paper is organised as follows. The design of efficient software-level DSMs
depends a lot on the underlying hardware’s structure and the interface to the
applications on top of the shared memory. Section 2 analyses the implications
of the hardware’s and software’s evolution toward many-core architectures. The
section also gives an overview of existing implementation approaches.

Thereafter, Section 3 derives a software architecture of elementary opera-
tions from the previous section’s analysis. The elementary operations serve as
building blocks for DSMs that can be reused in many implementations. They
encompass communication mechanisms, memory management operations, and
access tracking mechanisms. The final section concludes with a summary and
directions of future work.

2 Software DSMs in the Many-Core Age

DSMs provide a shared logical address space across multiple threads, which do
not necessarily have global access to all of the memory. The illusion of a shared
memory within this address space is created by forwarding access requests and
fetching data into local replica. The DSM has to implement mechanisms to
detect read and write access, to communicate changes between the replica, and
to synchronise concurrent access on behalf of the applications.

Memory models define what applications have to expect about the time and
order in which their data changes become visible to other nodes in the worst case.
Below these models, consistency protocols define how the DSMs actually achieve
a compliant behaviour. Consistency protocols usually provide much stronger
guarantees than the memory model they implement. However, programming



against a memory model ensures the portability of the applications and leaves
space for the hardware-specific optimisation of consistency protocols.

The next subsection summarises existing DSM implementations with focus on
core mechanisms. Then, the second subsection discusses the hardware’s evolution
toward many-core architectures and its impact on DSM implementations. The
last subsection discusses related memory models and consistency protocols.

2.1 Common Software DSM Mechanisms

The most distinctive aspect of DSM systems is the handling of data replica-
tion. DSMs that always forward access requests to an owner without replication
fall into the family of Partitioned Global Address Spaces (PGAS), see for exam-
ple [11,9,14,32]. They need only little bookkeeping and their implicit communica-
tion patterns are still very easy to comprehend. On the downside, repeated access
to remote data is inefficient because it is mapped to repeated data transfers. In
contrast, replication-based DSMs manage local copies of recently accessed data,
see for example [20,7,4]. Similar to hardware-based caches, they try to exploit
spatial and temporal locality in the application’s data access patterns. While
this can speed up the execution of many algorithms, the necessary bookkeeping
can induce considerable overhead [30].

DSMs can be split into three categories with respect to the interface they pro-
vide to applications: The first category are systems aimed at unmodified legacy
shared memory programs, usually implemented as a wrapper around system
libraries or included in the operating system [2,16,15,17,20,12,18]. They usu-
ally use hardware-support to track the application’s memory accesses. Secondly,
library-based DSMs provide an explicit programming interface [7,4,30,32,25].
The applications have to call specific functions in order to prepare for data
access, commit changes, and request synchronisation. Finally, language-based
DSMs provide explicit sharing constructs [11,9,14]. In addition, the compiler
can convert shared data access into respective library calls for a library-based
DSM. In all three cases, the employed programming languages need a mem-
ory model suitable for shared memory programming. Otherwise, the compiler’s
optimisation can break the consistency by assuming a too weak model [5].

Deeply related to the application interface are mechanisms that detect and
track the application’s access to shared data. Explicit application programming
interfaces export DSM functions to the application. These have to be called tell
about read/write accesses and synchronisation requests. In high-level languages
like C++, such calls can be hidden quite well behind standard interfaces [32,1].
Language and compiler extensions can be used to convert access to shared vari-
ables into respective library calls. An especially interesting approach is abusing
transactional memory extensions because these produce detailed read/write logs
and library calls for code sections that are marked as transactions.

Another common approach are memory protection traps [25,18]. Within
page-based logical address spaces, read/write access rights can be revoked tem-
porarily for individual pages. Any access to such address ranges raises a trap,
which is then handled by the consistency protocol. Data modifications in affected



pages can be reconstructed by comparing against golden copies. Detecting the
destination of individual accesses through separate traps is possible but ineffi-
cient. An alternative are virtual machines. These apply binary code transforma-
tion and just-in-time compilers to insert DSM library calls where necessary.

Finally, high-level knowledge about memory access patterns can be exploited
directly. Some programming models, such as data flow based models, expose
coarse grained data dependency information [6]. This is used mainly to order
the execution of tasks but can be used also to replicate, update, and invalidate
data that is shared by tasks.

2.2 From Single-Core to Many Cores

Early DSM systems like Ivy [20] and Munin [7] targeted networks of single-
threaded processors. Apart from expensive high performance computing hard-
ware, the typical inter-processor networks used to be weakly coupled with low
bandwidth and very high latency relative to local memory accesses. In com-
parison to the network, the processors were quite fast and designed for high
single-thread performance.

The high latency and processing overhead of the networking hardware pe-
nalised high numbers of relatively small messages like they are exchanged by
simple consistency protocols [7]. In order to communicate with fewer and larger
messages, complex memory models allowed to manually state application-level
knowledge and the consistency protocols adapted to observed access patterns.
Because of the relatively fast processors, the implied bookkeeping overhead
was negligible. Nevertheless, manual message passing seemed to be much more
straightforward and easier to optimise [8].

The development of many-core architectures is driven by the need for higher
energy and space efficiency [3,27]. In order to increase the compute throughput
per watt for parallel computations, inefficient features that just increase the
single-thread performance are stripped away from the cores. This leads to small
efficient cores, which can be integrated in high number on a single chip. Also,
networking hardware is integrated tightly into the processors. On-chip networks
like [26] provide high throughput communication between a large number of
cores and memory controllers. Likewise low latency processor-interconnects such
as QPI, PCIe, and Infiniband are widely used now.

Many-core DSMs have to address three major aspects: Consistency islands,
mandatory parallelism, as well as diversity and heterogeneity.

Caches often reduce the communication volume between threads and main
memory. The consistency of their replicated data is maintained by cache consis-
tency protocols. These can be efficient even with a large number of threads, but
most rely on a fixed upper bound of participating threads [21]. Hence, scaling out
many-core processors to larger setups, like in the DEEP project [13], does not
extend to global cache consistency. This leads to networks of consistency islands.
Each island contains many threads that can cooperate through hardware-based
cache consistency. The network between islands may provide remote memory
access and even atomics to enforce ordering. But remote data replicated in local



caches can become inconsistent because no notifications about write accesses are
communicated between islands.

In conclusion, software DSMs span multiple consistency islands and the
threads inside each island should share their data replica. Otherwise, storing
separate replica for each of the many threads would waste memory and cache
space. The additional overhead of coordinating the concurrent access to shared
replica is hopefully compensated by sharing the costs of replica management
between all threads.

Secondly, any bookkeeping overhead of software DSMs is amplified by the
slow performance of single threads. For example, remote memory access over
Infiniband links can be as fast as 2µs, which corresponds to just 8 cache misses
on the Intel Xeon Phi (280ns/miss) [24]. Frequent remote memory accesses might
be more efficient than managing local replica. In addition, it is significantly more
efficient to use 2MiB instead of 4kiB pages to describe the logical address spaces.
Thus, page-based access tracking has to process 512x larger pages.

In consequence, exploiting all types of parallelism in DSM implementations is
mandatory to fully utilise the high throughput of whole consistency islands. Just
designing simpler protocols like in the Quarks DSM [30] will not be sufficient.

Finally, DSMs have to deal with diversity between and heterogeneity inside
many-core platforms, even though they share the same instruction set and data
encoding. Depending on the application domain, different design trade offs be-
tween network bandwidth, cache size, and micro-architecture features are more
efficient. Similarly, mixing cores optimised for single-thread throughput with
cores optimised for high parallel throughput is useful for a large class of appli-
cations [13]. Hence, abstractions over the platform’s structure are needed.

2.3 Memory Models and Consistency Protocols

Memory models define the permitted reordering and elimination of concurrent
accesses to shared memory. Applications usually target the memory model of
the used programming language or software-level DSM. Compilers and DSMs
translate this onto the memory model(s) of the underlying hardware.

The strictest model, called sequential consistency, executes all accesses ex-
actly in the order that was expressed by the programmer. However, to improve
the performance, modern hardware and compilers employ optimisations that
reorder the accesses [22]. For example, the compiler can eliminate any access
to memory locations that are considered private by the compiler. Similarly, the
hardware does not have to keep modified data in caches consistent with the main
memory immediately. This results in a logical reordering of reads and writes from
the main memory’s point of view. Other common optimisation techniques include
store buffers, request queues, out-of-order execution, and speculation techniques
such as branch prediction and prefetching.

For single-threaded programs, these optimisations do not result in any ob-
servable change of program logic. But surprising effects can arise with multi-
threaded programs. Most programming languages do not state their memory
model explicitly and the compilers are free to assume a sequential execution of



the generated instructions. On processors with a relaxed memory model, ad-
ditional synchronisation instructions would be needed to regain the intended
behaviour. Newer languages with explicit support for multi-threading, such as
C++11, address this issue by defining a memory model based on sequential con-
sistency for data race free programs. There, application programmers have to
explicitly resolve data races by applying atomic operations instead of normal
read/write access.

The compilers, DSM implementations, and low-level system programmers
rely on the hardware’s memory model. Some architectures provide a formal def-
inition of their model, for example SPARC-TSO. Most architectures, for instance
x86, only provide ambiguous descriptions in prose although their models can
be specified formally [28]. These models start with very relaxed semantics and
provide memory barriers to enforce stricter models.

Another common primitive to regain control over concurrent memory access
are atomic operations. They are especially useful for the implementation of high-
level synchronisation primitives and lock-free data structures. These instructions
differ between hardware architectures but usually include variants of test-and-set
(TAS), compare-and-swap (CAS/DCAS), fetch-and-increment (FAI), and Load
Linked/Store Conditional (LL/SC). Depending on the memory model, these
operations do not provoke a full memory barrier but only give guarantees for
the affected memory addresses and direct data dependencies.

Memory models are a contract between application and system on a seman-
tic level. Below these, consistency protocols represent concrete strategies that
achieve compliant effects. Different consistency protocols can realise the same
model. Apparently, a consistency protocol for sequential consistency also satis-
fies more relaxed models and can simply ignore all memory barriers.

3 Elementary Operations for Many-Core DSMs

Future distributed shared memory programming should look more like current
shared memory programming on relaxed memory models. The shared memory
abstraction needs a flexible definition of its memory consistency model. Relax-
ations in this model are the key point for performance improvements exploiting
implementation freedoms. This is analogous to the memory models provided by
hardware. However, the semantics of these models must be defined rigorously [31]
in order to be useful and to prove their correctness. There is an ongoing process
defining the memory models for shared memory architectures. The semantics of
the distributed models must be treated equally.

Most programmers should not need to care about the underlying hardware
memory model. Instead, a useful abstraction should let them state the needed
guarantees in the form of an explicit memory consistency model. This explicit
model is provided by the implementation of a consistency protocol. The im-
plementations of custom protocols benefit from reuse of common functional-
ity. Elementary mechanisms map this functionality to fitting operations on the
underlying hardware model. In distributed shared memory, such as clusters of
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Fig. 2. Architectural overview of memory consistency support for parallel run-
times. The architecture provides basic mechanisms supporting the implementa-
tion of a consistency protocol.

many-cores, this hardware model is most likely heterogeneous, forming consis-
tency islands on which more efficient mappings exist. When consistency related
events are restricted to such an island, more efficient implementations of these
mechanisms can be used.

Whereas past DSM systems provided the programmer with a distinct pro-
gramming model, we rather treat DSM as an optimizing feature to existing
programming models. The envisioned use case is an augmentation of parallel
runtime environments through replication.

In combinations like these, consistency guarantees for programmers must be
based on data-race-freedom. Providing fixed guarantees without race freedom
requires tight control over the whole stack of programming language, compiler
optimizations, and hardware architecture while it significantly inhibits perfor-
mance optimization. Providing a guatanteed consistency model for data-race-free
programs is possible in a compiler-agnostic way.

3.1 Communication Mechanisms

The basic shared memory abstraction provided by a given programming model
needs to provide a means by which memory can be managed and accessed. A
basic communication mechanism is needed for coordination. It should provide
the following features:

Data Transfer as a mechanism to read and write memory contents in a dis-
tributed memory system. This will be used by the remote memory function-
ality and to create and manage replicas of memory locations.

Event Notification as very lightweight mechanism to notify hardware threads
of consistency related events like invalidations. Also preemptive notifications
are needed to interrupt applications when necessary.

Thread Groups are a basic feature to group the propagation of events. They
reflect the overall system topology and are used to bootstrap efficient repli-



cation across consistency islands. Groups are dynamic and identify partakers
in sharing that need to be involved in consistency related action.

Collective Events must be provided that efficiently disseminate events in a
group.

3.2 Memory Management, Replication, and Remote Access

With the global coordination in place, shared memory can be managed. There is
no strong requirement on the user-visible interface to this memory, but the run-
time is expected to provide some notion of a global address space. The common
memory management mechanisms are:

Allocators for globally coordinated memory. They provide the mapping mech-
anism for named entities of shared memory from which all shared memory
operation needs to be bootstrapped. Through this call, a sharing participant
is registered and its address space has to be adapted accordingly.

Annotation mechanism to configure the semantics of a shared memory range
at runtime. This can be used to provide features like the current ownership
declaration from MYO. Many shared-memory systems do not employ this
feature since they pertain to exactly one set of semantics.

Replica management is the key aspect of performance improvements in a
distributed memory system. Each replica is a locally cached version of the
shared-memory location. Caching is the single most important feature in re-
ducing access times to shared memory. Giving guarantees on the actuality
of cached data is the concern of consistency model semantics. Operations
provided in replica management include creation, update, and invalidation
of single replicas and groups. An acknowledgement mechanism must be pro-
vided to check for the successful invalidation or update of replicas. Replica
management is a background task based on asynchronous messages.

Remote Memory Access used for direct access and modification of a re-
motely available memory location where replication is not beneficial. Remote
memory can be implemented through address space manipulation, mapping
areas of remote physical memory on the PCIe bus, or hardware provided
RDMA in InfiniBand networks. Whenever such hardware support is not
available, the remote memory operations must resort to explicit message
passing. Also the GASPI abstraction can be employed as an implementation
technique here. However, remote memory operations and their interleaving
with local operations on the same memory may have semantics that are hard
to describe. Coherence may not be available on some hardware architectures
when memory is accessed locally through the processor and concurrently
through e.g. an InfiniBand controller. These memory semantics will require
additional fences for correct operation. Alternatively, implementations can
tunnel local access through the remote access channel, thereby forcing a
serialization point with the remote events.

Atomic Operations provide write atomicity enforcement, a guarantee that
the write operation can be seen either by all other threads, or none. They



are a special case of remote memory operations. As far as atomic update
operations are concerned, LL/SC should be provided because it can be im-
plemented on asynchronous messages (and is allowed to fail), yet it enables
implementation of all other atomic operations (FAI, TAS, CAS, DCAS).

3.3 Access Tracking

Consistency protocols share a couple of additional requirements. These can also
be provided as basic mechanisms to ease implementation of new protocols. They
concern the connection of application behavior and consistency related events.
The proposed mechanisms are:

Access Tracking provides a mechanism to track read and write access to repli-
cas. Depending on the shared memory API and desired memory model se-
mantics this can possibly be made explicit, e.g. using object-oriented pro-
gramming. In the worst case it must be possible to track every single memory
access. Ususally only the first write to a valid replica or read access to an
invalid replica needs to be detected. Obvious implementation choices include
traps through virtual memory mapping protection mechanisms (i.e. Segmen-
tation Fault handlers), low level virtualization, or compiler instrumentation.

Diff/Merge for memory locations is used in order to weaken exclusive write
access, and implement multiple writer protocols. This has been implemented
in a variety of distributed shared memory systems to avoid overhead through
false sharing. It can also be used to offer lightweight updates of larger sharing
units in order to decrease communication bandwidth. The mechanism must
offer shadows or transparent copies of affected memory locations (e.g. pages)
and an efficient coding for generating, storing and applying a difference mask.
This is a prime example for work that should be delegated to helper threads
on many-core architectures.

(Versioned) Modification Tracking per replica is needed in a basic form to
trigger consistency related actions without explicit calls from the API (see
access tracking above). Through additional versioning an implementation
of restricted transactional memory can enable lock elision techniques like
provided in current off-the-shelf multi-core processors.

The described mechanisms are employed to build the semantics of the desired
memory consistency model. Depending on the placement of threads that take
part in the sharing of a memory location, the implementation details of the
single mechanisms can or rather must vary. If sharing is restricted to a single
consistency island, e.g. only among threads of a single accelerator card, some
consistency requirements may be provided by hardware directly. As soon as
sharing stretches across more than one island, implementations must be adapted
to the new situation. Strategic placement of tasks will therefore stay a significant
tool for optimized performance in a shared memory system, just like it is with
today’s ccNUMA architectures.



4 Conclusions and Future Directions

In this paper, the benefits and challenges of distributed shared memory systems
were examined with respect to networks of many-core processors. The many-
core age provides good opportunities to improve upon past DSM research. For
instance, the underlying hardware evolved much from the loose networks of fast
single-threaded nodes to the tightly coupled networks of consistency islands with
many relatively slow threads. Likewise, the application domains evolved far be-
yond the first numerical simulation codes. The need for increasingly complex
data structures and parallel algorithms pushes toward new parallel languages,
programming models, and memory models.

However, implementing efficient DSMs became more challenging. Exploiting
effectively, for example, consistency islands and their internal parallelism, raises
the effort for basic DSM infrastructure. Fortunately, the memory models and
their consistency protocols share many common mechanisms. The paper derived
an architecture of elementary operations as building blocks for future DSMs.
These help mapping the application’s memory model to efficient consistency
protocols while reusing common infrastructure.

The Consistency Kernel (CoKe) project evaluates the presented elementary
operations in detail. This includes efficient hardware abstractions even on hard-
ware without cache coherence like the experimental Intel SCC many-core proces-
sor and clusters of Intel Xeon Phi processors. A part of the OctoPOS project [23]
at the collaborative research center for invasive computing explores memory
models for invasive computing. This effort targets processors with multiple con-
sistency islands and reuses the elementary operations. Finally, the Many Threads
Operating System (MyThOS) project researches minimal operating system com-
ponents for many-core accelerators. While focusing on lightweight thread man-
agement for HPC applications, generic system services can be shared with CoKe.
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