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Abstract—Because of shrinking structure sizes and operating
voltages, computing hardware exhibits an increasing susceptibility
against transient hardware faults: Issues previously only known
from avionics systems, such as bit flips caused by cosmic radi-
ation, nowadays also affect automotive and other cost-sensitive
“ground-level” control systems. For such cost-sensitive systems,
many software-based measures have been suggested to harden
applications against transient effects. However, all these measures
assume that the underlying operating system works reliably in
all cases. We present software-based concepts for constructing
an operating system that provides a reliable computing base
even on unreliable hardware. Our design is based on two pillars:
First, strict fault avoidance by static tailoring and elimination of
susceptible indirections. Second, reliable fault detection by fine-
grained arithmetic encoding of the complete kernel execution
path. Compared to an industry-grade off-the-shelf RTOS, our re-
sulting dOSEK kernel thereby achieves a robustness improvement
by four orders of magnitude. Our results are based on extensive
fault-injection campaigns that cover the entire space of single-bit
faults in random-access memory and registers.

I. INTRODUCTION

Due to shrinking transistor sizes and operating voltages,
transient hardware faults are an emerging challenge for safety-
critical real-time systems [8]. Recent functional safety standards,
such as the automotive ISO 26262 standard [19], take up
this fact and recommend explicit measures against transient
hardware faults. These recommendations include both hardware-
and software-based measures, whereby the actual choice is still
left to the manufacturer. However, in cost-sensitive domains,
such as the automotive sector, efficiency in terms of per-unit-
price is a key criterion, which limits the use of full hardware
redundancy. Here, software-based measures provide a cost-
effective and flexible alternative.

There are several approaches proposing process-level redun-
dancy [32], [36], [37] to realize software-based dependability
on the application layer. Such concepts can also be applied
to automotive real-time software [3]. However, they do not
tackle faults within the operating systems that coordinate the
execution of the replicated instances. Other approaches integrate
dependability services into the operating system [10], which
simplifies the realization of triple modular redundancy (TMR),
but does not protect the kernel itself against transient faults.
Even the existing ISO-26262–compliant real-time operating
systems ensure only strict isolation of the deployed applications
against each other (typically by employing hardware-based
memory protection [4] or hypervisor [6] technology), but not
against faults that occur in the respective kernel structures.
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In consequence, if a certain safety level has to be reached,
these systems still depend on dedicated safeguarded hardware
components that act as reliable computing base (RCB) [11].
To overcome this hardware limitation, we propose dOSEK,
a robust real-time operating system that provides a reliable
computing base, leveraging safety-critical systems even on
unreliable hardware.

II. SYSTEM AND FAULT MODEL

Our approach aims to tackle transient hardware faults
(soft errors) [24], which arise from single-event upsets, for
example caused by radiation, electromagnetic noise, or voltage
fluctuations. In principle, these effects can have an impact on
all parts of a computer system, that is, combinatorial logic,
registers, and volatile memory cells [7], [16], [31]. Here, we
concentrate on effects that become visible on the hardware–
software boundary. Thus, our concrete fault model are single-bit
flips that manifest in software-accessible memory and registers.

In this setting, dOSEK is supposed to reliably contain and
detect any such fault that occurs within the kernel sphere.
Thus, in case of a fault, the kernel may throw an exception
(fail-stop), but never silently violate the spatial or temporal
integrity of the application tasks, which thereby get strong
guarantees to take care of their own dominion by appropriate
measures [32], [36], [37]. In essence, dOSEK provides a
continuous sphere of redundancy across the kernel for a reliable
execution environment for the implementation of application-
layer dependability measures.

On the hardware side, we still have some requirements: First,
we assume that all code and all constant data can be placed in
read-only memory (ROM) that is considered to be robust against
transient faults. Given the even increasing robustness of modern
FLASH cells [18], we consider this to be a realistic assumption.
Secondly, we assume the presence of standard hardware-based
protection mechanisms for isolation in space and time, typically
provided as a memory protection unit (MPU) and a watchdog
timer. These requirements are nowadays provided by even low-
cost 32-bit microcontrollers1 and very common in automotive
control units.2 Here, they define the properties required by
dOSEK itself to provide its RCB.

III. OVERVIEW AND CONTRIBUTIONS

We present the design and implementation of dOSEK, an
OSEK/AUTOSAR-conforming [5], [27] real-time operating

1For example ARM Cortex-M3–based microcontrollers
2For example Infineon TriCore, or Freescale MPC5xx microcontrollers



system (RTOS) that serves as reliable computing base (RCB)
for safety-critical systems. We developed dOSEK from scratch
with dependability as the first-class design goal.

We describe our development approach, which is based on
two pillars: First, as described in Section IV, we aim for strict
fault avoidance3 by static tailoring of the kernel towards the
concrete application and hardware platform – without restricting
the required RTOS services. We could show in recent work
[14] that static tailoring generally leads to a higher inherent
robustness of the resulting system due to the reduction of
vulnerable run-time state. The dependability-oriented tailoring
in dOSEK minimizes such vulnerable state even further by
also condensing control-flow state within the kernel.

Any fault affecting the remaining indispensable state
information is very likely to lead to a crash, timeout or
even silent data corruptions (SDCs). Therefore, the second
step is to constructively re-integrate redundancy in form of
dependability measures to eliminate the remaining SDCs. Here,
we concentrate – in contrast to others [4], [20], [33] – on
reliable fault detection and fault containment within the kernel
execution path (Section V). We employ arithmetic encoding [12]
to realize self-contained data and control-flow error detection,
a technique we have previously applied to harden the voter
in CoRed TMR systems [15], [34]. In this paper, we use it to
harden a complete RTOS kernel.

We evaluate our hardened dOSEK against ERIKA [1],
an industry-grade open source OSEK implementation, which
received an official OSEK/VDX certification (Section VI). We
present the run-time and memory overhead as well as the results
of extensive fault-injection campaigns covering the complete
fault space of single-bit faults in registers and volatile memory.

IV. FAULT-AVOIDING OPERATING-SYSTEM DEVELOPMENT

The general susceptibility of an operating system to errors
and SDCs is to a high degree rooted in its basic design and
implementation concepts. For instance, we could show in
previous work [14] that, without any dependability-oriented
measures, a static OSEK-like RTOS (i.e., all resources are
allocated at compile time) already exhibits a five times lower
number of SDCs than a more dynamic POSIX-like RTOS (i.e.,
all resources are allocated at run time). So what are the general
design principles and implementation concepts that support
such inherent robustness against transient faults and what are
those that impair it?

A. General Considerations

Essentially, a transient fault can lead to an error inside the
kernel only if it affects either the kernel’s control or data flow.
For this, it has to hit a memory cell or register that carries
currently alive kernel state, such as a global variable (always
alive), a return address on the stack (alive during the execution
of a system call), or a bit in the status register of the CPU (alive
only immediately before a conditional instruction). Intuitively,
the more long-living state a kernel maintains, the more prone
it is to transient faults. Thus, our first rule of fault-avoiding
OS development is: Ê Minimize the time spent in system

3Strictly spoken, we aim to avoid errors resulting from hardware faults.

calls and the amount of volatile state, especially of global
state that is alive across system calls.

However, no kernel can provide useful services without
any run-time state. So, the second point to consider is the
containment and, thus, detectability of data and control-flow
errors by local sanity checks. Intuitively, bit-flips in pointer
variables have a much higher error range than those used in
arithmetic operations; hence, they are more likely to lead to
SDCs. In a nutshell, any kind of indirection at run time (through
data or function pointers, index registers, return addresses,
and so on) impairs the inherent robustness of the resulting
system. Thus, our second rule of fault-avoiding operating-
system development is: Ë Avoid indirections in the code
and data flow.

Nevertheless, an important lesson we learned is that the
effect of dependability-oriented measures on the actual im-
plementation is difficult to assess in advance. In many cases,
additional measures turned out to do more harm than good: For
instance, extensive CRC-based consistency checks on the kernel
state can help to detect errors early. However, the overhead
in time and space also increases the amount of alive kernel
state (i.e., the “attack surface” for transient faults), so that
the number of SDCs can actually increase. Implementation
glitches that manifest only on compiler- or ISA-level can easily
lead to loopholes for transient faults in algorithms that we
considered as robust [15]. So the third rule of fault-avoiding
operating-system development is: Ì Assess the actual impact
of any dependability measure early and often.

During the development of dOSEK, we operationalized
these rules by a number of design and implementation principles
that we describe in the following sections.

B. Continuous Integration with Fault-Injection Experiments

Our development process comprises detailed code reviewing
together with continuous integration and unit testing, as it is
state of the art for safety-critical projects. We additionally
integrated automated fault-injection campaigns into this process
to uncover the (often counter-intuitive) dependability impact of
design decisions and implementation patterns (rule Ì). Such a
closely connected development cycle can prevent the selection
of adverse measures from the very beginning and assist the
developer to constantly improve the realized measures for the
concrete architecture.

C. Completely Static System Design

Most RTOSs are dynamic in the sense that all resource
allocation (of tasks, semaphores, events, ...) takes place at
run time. These systems are designed to handle a virtually
unlimited amount of system objects – even though in hard
real-time settings their number is bounded anyway. However,
such an approach makes it easy to resemble the established and
well-known POSIX system interface, which generally leads to
pointer-based data structures, such as linked lists.

The automotive industry took another route when developing
the OSEK [27] standard, which defines an RTOS interface
that leverages a fully static system design. Here, all system
objects have to be known already at compile-time: A system
configuration file [26] describes all tasks including their
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priorities, blocking behavior, potentially taken resources, and
alarm usage. This makes it possible to condense all kernel state
ahead of time in statically allocated data structures. System
objects can be addressed by constant identifiers, which values
are assigned at system generation time. This generally leads to
lower memory footprints and kernel run time (rule Ê).

The main point of the static system design is, however,
that it provides a considerable amount of a priori knowledge
regarding the application–kernel interactions. This facilitates
extensive dependability-oriented tailoring of the operating
system. In dOSEK, we use this information mainly for partial
specialization of system calls: Our system generator specializes
each system call per invocation to embed it into the particular
application code (Step a in Figure 1). As system objects
are commonly referred to by their constant identifiers, this
facilitates an aggressive folding of parameter values into the
code. Therefore, less state needs to be passed in volatile
registers or on the stack (rule Ê). Our continuous fault-injection
experiments (rule Ì) revealed that this leads to significant
robustness improvements.

Figure 2 depicts the resulting state of this analysis by
the example of a system consisting of three tasks and two
alarms: The remaining volatile state variables are subsumed
under the blocks Application, Architecture, and Kernel. The
architecture-independent minimal Kernel state is condensed
to two machine words for the current task’s priority, its id,
and one machine word per task for the task’s dynamic priority
according to the priority ceiling protocol. Depending on the
requirements of the application, the kernel maintains the current
state of additional resources: in this case two alarms (three
machine words each) and one counter (one machine word). The
Architecture blocks are related to the dispatching mechanism of
the underlying processor. In case of the IA-32, this is reduced
to the administration of one stack pointer per task.

D. Avoidance of Indirections

Besides the obviously crucial OS state, we identified
different kinds of indirection as a major catalyst for SDCs.
These include not only obvious pointers or function calls, as
defined by the programming language, but also more unapparent
indirections caused by the underlying hardware architecture
(e.g., stack pointer or interrupt context). Following rule Ë, we

aimed to eliminate as much functionally redundant code paths,
data, and indirections, as possible.

1) Data-Flow Indirections: Data structures stored in main
memory achieve their dynamic expressiveness from pointers
that can address any other structure and substructure in memory.
Regular pointers have an unbound pointing-to range. By indirect
memory accesses, arbitrary memory locations can be reached.
This unbound expressiveness causes pointers to be one of the
main sources of SDCs. Therefore the avoidance of data structure
indirection is crucial.

We achieved a pointer-less design by allocating all system
objects statically as global data structures, with the help of
a generator. In occasions where pointers would be used to
select one object out of multiple possible candidates an array
at a constant address with small indices is preferred (rule Ë).
The most frequently used (but far less visible) pointers are the
stack pointer and the base pointer. Albeit less obvious, they
are significant: A corrupted stack pointer influences all local
variables, function arguments and the return address. Here, we
eliminated the indirection for local variables by storing them
as static variables at fixed, absolute addresses, while keeping
isolation in terms of visibility and memory protection. This
design decision required extra efforts for the implementation
of reentrant functions; in our current implementation we cope
with this by uninterruptible kernel execution. Also recursive
functions are prohibited, which, however, shall be avoided
inside the kernel anyway.

2) Control-Flow Indirections: A function call pushes argu-
ments and the return address onto the stack and jumps to another
code block. The return address induces indirection controlling
the future control flow and, even worse, is stored near to
other indirectly accessed values on the stack. Additionally, all
registers that might be modified by the callee have to be stored
on the stack. These indirections lead to a significant attack
surface for errors – introduced by every single function call.

As already sketched above, dOSEK copes with this by
partial specialization and aggressive inlining of system calls,
which effectively avoids these indirections: Spilling arguments,
register values, and especially the return address onto the stack
is no longer necessary; argument constraints known to the
compiler, especially constant values, can be propagated through
the function body. The resulting code is not only faster, but
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especially more robust, as a high amount of memory or register
accesses can be eradicated (rule Ê).

The code generator also unrolls all loops over the static
system structures. While this, again, increases the code size,
it also facilitates compiler optimization and prevents many
possible errors, such as endless looping because of a bit-flip
in an index.

Further indirections are caused by the use of hardware-based
isolation: Traps, as the standard mechanism to cross the user↔
kernel boundary, typically induce several implicit indirections
via the stack pointer or link register. Where available, dOSEK
uses architecture-specific instructions that omit this intense
stack usage and give the programmer more explicit control.4

E. Bidirectional Generative Approach

The aggressive inlining and loop unrolling is not only
realized implicitly by the compiler, but it is particularly
supported by our system generator. Generating data structures
for static operating systems is well known and widely used to
exploit static application knowledge for reducing the resource
consumption. dOSEK proceeds here even further and tailors
the kernel code very precisely to the needs of the concrete
application as well as the underlying hardware architecture
(rule Ê).

1) Application-Oriented Generation: The generator not only
implements an architecture specialization for each system call,
but also specializes each system call site (Figure 1a). This
allows exploiting more static information, since the specialized
system service can be tailored to each single system call site.
All function activations within the system call instance are
forcefully inlined. The result is a loop-free, call-free kernel
fragment. This fragment could be completely inlined into the
application. By using inline traps [9], we were able to even
keep up the spatial isolation.

2) Hardware-Oriented Generation: Usually, core kernel
functionality and the hardware abstraction are separated into
layers. Interaction between those layers does not reveal value
in itself, but helps the OS developer to have a clean design. But
this interaction leads to indirection in terms of long variable
life spans, function calls and unnecessary conditional branches.

4For example sysenter/sysexit on Intel IA-32 (64) processors.

Therefore, in dOSEK, these layers are only logical; they are
separated in the generator itself and not in the emitted code. In
the resulting dOSEK instance, these layers are mangled indis-
tinguishable together to avoid indirection. This is a long-known
principle for efficient kernel implementations: “It is the system
design which is hierarchical, not its implementation.” [13]

V. FAULT-DETECTING OPERATING-SYSTEM
IMPLEMENTATION

dOSEK’s fault-detection strategies split up into two comple-
mentary concepts: First, coarse-grained hardware-based fault-
detection mechanisms, mainly separating tasks from each
other, and from invalid accesses by the kernel. Second, fine-
grained software-based concepts that protect the kernel-internal
data/control-flows.

A. Integration of Hardware-based Isolation

Hardware-based isolation mechanisms are widely used
and a proven dependability measure. Watchdog concepts
and MPUs play an important role for safety-related aspects.
To a large extent, transient faults can be contained within
individual components and reveal a significant amount of
possible SDCs, as also shown in previous evaluations [14].
Consequently, dOSEK integrates the underlying architecture’s
mechanisms into its system design, leveraging a coarse-grained
fault detection among tasks and the kernel. With our completely
generative approach, all necessary MPU configurations can be
derived already at compile time and placed in robust ROM.
Besides the obvious separation of tasks from each other, dOSEK
especially uses the MPU to protect tasks from faults inside the
kernel (Figure 1, step b).

B. Safeguarded Kernel Execution

The execution of the dOSEK kernel itself is hardened with
a fine-grained arithmetic encoding (see also Figure 1, step c).
All kernel data structures are safeguarded using a variant of
an AN-code [12] capable of detecting both data- and control-
flow errors. The code provides a constant common key A,
allowing to uncover errors when calculating the remainder,
and a variable-specific, compile-time constant signature Bn

detecting the mix-up of two encoded values as well as the
detection of faulty control flows – the ANB-Code:
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A particular feature of arithmetic codes is a set of code-
preserving arithmetic operations, which allow for computation
with the encoded values. Thus, counter and alarm components
can be directly realized as fully encoded operations, as indicated
in Figure 2. As a result, a continuous sphere of redundancy
is spanned, as the corresponding operands remain encoded
throughout the entire kernel execution.

1) Encoded Scheduler: In addition to the existing elementary
arithmetic operations, dOSEK also requires an encoded variant
of the mandatory scheduling algorithm. Here, an automated
conversion of a plain algorithm to an ANB-encoded variant
would be possible [35]. However, such a generic implementation
would induce an immense overhead in terms of code and run
time. Instead, we realized a distinct operation tailored to the
specific demands of the scheduling algorithm, similar to our
proven concept of the Combined Redundancy (CoRed) voter
[15], [34].

The encoded scheduler is based on a simple prioritized task
list. Each tasks’ current dynamic priority is stored at a fixed
location (see also Figure 2), with the lowest possible value, an
encoded zero, representing the suspended state. To determine
the highest-priority task, the maximum task priority is searched
by comparing all task priorities sequentially.

Thus, the algorithm’s complexity in space and time is linear
to the constant number of tasks. Figure 3 shows the basic
concept for three tasks: The sequence processes a global tuple
of ANB-encoded values storing the current highest-priority task
id found so far, and the corresponding priority (〈idg, priog〉, see
Figure 2). Sequential compare-and-update operations, based
on an encoded greater-equal decision on a tuple of values
(ge_tuple), compare the tuples’ priority value and update the
global values, if necessary. The sequence consists of five steps,
as shown in Figure 3:

1) Initialize priog and idg to the first task.
2–3) For all further tasks, compare the task’s priority to priog:

If greater or equal, update 〈idg, priog〉.
4) Repeat the last step for the idle task.
5) Recode the results to their original signatures.

The idle task priority is constantly bound to an encoded zero
that is representing a suspended state. Thus, if all previous
tasks are suspended, the last comparison (in step 4) will choose
the idle task halting the system until the next interrupt.

Aside from the actual compare-and-update operation on
fully encoded values, the ge_tuple function additionally
integrates control-flow error detection. For each step, all
signatures of the input operands (Bid,s1..s4,Bprio,s1..s4) and
the signature of the operation itself (Bge1..4) are merged
into the resulting encoded values of the global tuple. Each
corresponding signature of a step is then applied in the next
operation accordingly. Thus, the dynamic values of the result
tuple accumulate the signatures of all preceding operations. As
the combination of these compile-time constant signatures is
known before run time, interspersed assertions can validate the
correctness of each step. Even after the final signature recode

recode prioT1,Bprio,s1 − Bprio,T1

idT1,Bid,s1 − Bid,T1
priog

idg

ge_tuple 〈Bid,s1,Bprio,s1〉,Bge1

〈idg, priog〉, 〈idT2, prioT2〉
〈Bid,s2,Bprio,s2〉
〈idg, priog〉

assert((idg + priog) mod A == (Bid,s2 + Bprio,s2))

ge_tuple 〈Bid,s2,Bprio,s2〉,Bge2

〈idg, priog〉, 〈idT3, prioT3〉
〈Bid,s3,Bprio,s3〉
〈idg, priog〉

assert((idg + priog) mod A == (Bid,s3 + Bprio,s3))

ge_tuple 〈Bid,s3,Bprio,s3〉,Bge3

〈idg, priog〉, 〈idTidle, prioTidle〉
〈Bid,s4,Bprio,s4〉
〈idg, priog〉

assert((idg + priog) mod A == (Bid,s4 + Bprio,s4))

recode priog,Bprio,g − Bprio,s4

idg,Bid,g − Bid,s4
priog

idg

1
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Fig. 3: General sequence of the encoded scheduling operation
on the example of three tasks (T1, T2, T3). All operations on
signatures B are calculated already at compile time.

operation (step 5) any control-flow error is still detectable by
the dynamic signature. Thus, the correctness of the encoded
global tuple can be validated at any point in time. In effect,
fault detection is ensured, as all operations are performed on
encoded values. Further details on the ge_tuple function can
be found in Appendix A.

2) Architecture-specific Dependability Measures: The re-
maining dynamic state highly depends on the underlying ar-
chitecture. Regarding the currently implemented IA-32 variant,
we were able to reduce this run-time state to an array storing
the stack pointers of preempted tasks, and an corresponding
index variable, as shown in Figure 2. The variables are
used within each interrupt entry as well as during the actual
dispatch operation. As they are not involved in any arithmetic
calculations, but only read and written, we can avoid the
overhead of the ANB-encoding in these cases and protect
them by DMR or parity checks, respectively.

VI. EVALUATION

During the development phase, frequent fault-injection
campaigns were necessary to identify weak spots that were
not covered by fault avoidance and protection mechanisms yet.
For evaluating our progress in reducing silent data corruptions
(SDCs), we compared various dOSEK variants in terms of
code size, run time and SDC count against a mature OSEK
implementation.

A. ERIKA Enterprise: An Open-Source OSEK

For comparison, we chose ERIKA Enterprise [1], an
industry-grade (i.e., formally certified) open-source implemen-
tation of the automotive OSEK standard [27].5

Similar to dOSEK, ERIKA puts a distinct amount of read-
only data into ROM sections to exploit the static system design.

5In previous work – before ERIKA Enterprise became available – we
compared our solution against proprietary commercial implementations, which
made it harder than necessary to reproduce our results.
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However, this optimization is mainly done for economizing
main memory on small, embedded devices, instead of explicit
dependability reasons.

B. Evaluation Scenario: I4Copter

The evaluation is based on a realistic system workload
scenario considering all essential OS services. Here, we revive
a setup, already presented in previous work [14], resembling
a real-world safety-critical embedded system in terms of a
quadrotor helicopter control application (cf. Figure 4). The
scenario consists of eleven tasks, which are activated either
periodically or sporadically by one of four interrupts. Inter-
task synchronization is done with OSEK resources and a
watchdog task, observing the remote control communication.
We evaluated several variants of ERIKA and dOSEK, all
running the same task set:

ERIKA (base) Standard version of ERIKA without sanity
checking of system state.

ERIKA (checks) ERIKA with additional sanity checks that
result in the call of an error hook. Calling the error hook
is counted as a detected error.

dOSEK (base) For the dOSEK base version only the indi-
rection avoidance and the generative approach are used
against SDCs. Code for spatial isolation is included,
whereby the memory protection unit (MPU) is disabled.

dOSEK (mpu) Spatial isolation is enabled. Protection faults
are counted as detected errors.

dOSEK (enc) The safeguarded kernel execution with encoded
operations is enabled, MPU disabled.

dOSEK (enc+mpu) Both, isolation mechanisms, as well as
safeguarded kernel execution are in place.

The application flow is augmented with 172 checkpoints.
Every OS under test executes the application for three hyper
periods, while, at the same time a trace of visited checkpoints is
recorded. It is the mission of the systems under test to reproduce
this sequence, without corrupting the application state. If the
sequence silently diverges in the presence of faults, we record
a silent data corruption. The application state (task stacks) is
checked for integrity at each checkpoint. To evaluate the fault
containment within the kernel execution, we further recorded
an SDC in case of violated integrity. Both SDC detection
mechanisms were realized externally by the fault-injection
framework without influencing the run-time behavior of the
systems under test.

The aforementioned external SDC detection and fault
injection is implemented with the FAIL* [30] framework. Its

elaborate fault-space pruning techniques allow to cover the
entire space of effective faults, while keeping the total number
of experiments manageable. Since FAIL* has the most mature
support for IA-32, we choose this architecture as our evaluation
platform. The evaluated fault space includes all single-bit faults
in the main memory, in the general-purpose registers, the stack
pointer and flags registers, as well as the instruction pointer.
This represents the architectural view from the software’s
perspective. In this evaluation we did not consider lower levels,
including caches and pipelines, as they are not simulated by
the underlying emulator.6 We focused the evaluation on the
generally accepted single-error single-bit assumption. This
means that for a certain experiment, a fault occurs at any
point in time, but only once and is limited to a single register
or memory word. Summarizing all variants, the total effective
fault space covers 4.95 · 1011 single-bit faults (before pruning),
with 3.52 · 107 actually conducted experiments (after pruning
idempotent faults).

C. Fault-Injection Results

We can partition the experiment outcomes into three coarse
categories. Benign faults are mitigated and do not influence
the expected activation sequence. Another class of faults leads
to traps or isolation faults and is handled explicitly by the
OS. In the presented results, we focus on the third and most
dangerous category: silent data corruptions.

All OS variants differ in code size, run time and memory
consumption – parameters that directly influence the number
of effective injected faults. Thus, to directly compare the
robustness, independent of any other non-functional properties,
we concentrate on the resulting absolute SDC count, which
represents the number of cases in which the RTOS did not
provide the expected functional behavior that is any alteration
of the execution of the workload in terms of completeness,
order, and activation time.

With the help of the simulation-based fault injection
framework FAIL*, a robustness evaluation covering the entire
effective fault space was done for every variant. Figure 5 shows,
on a logarithmic scale, the absolute number of faults that led
to an SDC. For each variant, the SDC count is given for three
different fault-injection targets: the instruction pointer, general
purpose registers including the stack pointer and flags, and the
accessed main memory.

1) ERIKA: Most SDCs stem from faults in memory or in
general-purpose registers. The memory faults lead to more

6Bochs - http://bochs.sourceforge.net/
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Fig. 5: SDC distribution for the evaluated variants of the I4Copter scenario on a logarithmic scale; pruned experiments are
factored in. The encoded dOSEK system achieves an improvement in the SDC count by four orders of magnitude compared to
ERIKA (base). Enabling memory protection dOSEK (enc+mpu) further halves the total amount of SDCs.

SDCs, since a comparably high amount of OS data structures
lie unprotected in memory while the OS is inactive. Faults in
the instruction pointer are a minor problem, as they lead to
an invalid-instruction trap in most cases. The sanity checks in
ERIKA (checks) are not intended for increasing the robustness
but for detecting API usage errors and protocol violations; they
still reduce the total SDC count by 15 percent.

2) dOSEK (base, mpu): In the unencoded variants of
dOSEK, the memory SDC count for dOSEK is dominant and
almost twice as large as in both ERIKA variants. This originates
mostly from the fact that we did not optimize the unencoded
scheduler but matched it to the structure of the encoded
scheduler as accurately as possible. However, we already see
that the SDCs in registers are significantly decreased compared
to ERIKA – an effect of the avoidance of indirections. As
already observed in previous work [14], the usage of an MPU
does not improve the overall dependability significantly, when
a pointer-less design was applied beforehand. Nevertheless,
utilizing the MPU still decreases the instruction pointer errors
by 72 percent.

3) dOSEK (enc, enc+mpu): By far, the safeguarded kernel
execution of dOSEK (enc), especially the encoded scheduler,
has the most effect on the SDC rate. It avoids nearly all SDCs
in main memory, without increasing the other fault classes
significantly. Although the encoding induces additional code,
the SDC rate caused by instruction pointer faults is only slightly
increased by 37 percent compared to the unprotected dOSEK
(base) variant. This drawback can be effectively neutralized by
additionally enabling the MPU (dOSEK enc+mpu). Compared
to dOSEK (enc), the total SDC count is further halved.

As ERIKA does not provide MPU protection for this
architecture yet, we compare only the non-MPU case of dOSEK
to the best ERIKA variant and achieve an improvement in the
SDC count by four orders of magnitude (109→ 105).

D. Overhead

Since dOSEK relies on a generative approach performing
system call specialization, it has to be noted that optimizing

code size was no primary design goal. Likewise, the run-time
overhead for the fully protected kernel, conducting complex
arithmetic operations and regular checking, has to be examined.
For reasons of clarity, the non-MPU variants of dOSEK are
left out here, as they are identical in terms of code size and
run time and just differ in a globally disabled or enabled MPU.

For the overhead rates (see Table I and Table II) we
examined five kinds of system calls in our evaluation scenario.
ActivateTask (AT) and TerminateTask (TT) are system calls
that either start another task or terminate the current task,
consequently calling the scheduler. The GetResource (GR)

system call acquires a lock and enters a critical region in
the application. As OSEK specifies a priority ceiling protocol,
this operation never leads to a waiting state or to rescheduling.
The critical region is left by ReleaseResource (RR), which is
again a point of rescheduling. Finally, the SetRelAlarm (SR)

system call interacts with the alarm subsystem and sets up an
alarm relative to the current time. Table I also shows the total
size of the operating systems for the evaluated scenario.

Regarding dOSEK, the code size for each system call
can be directly determined, since for each call site a distinct
code fragment is generated. To make this measure comparable
to ERIKA, which uses classical code reuse, the size of all
visited functions during a system call was summed up. This
approximates the aggressive inlining approach of dOSEK.
Observing the run time for dOSEK, we have to keep in mind
that switching the privileged mode is always done with a
trap, even if the MPU protection is not enabled; dOSEK has
a constant code size and run-time penalty here. The main
cause of the high overhead is the encoded scheduler, which
requires a high amount of arithmetic operations. Therefore
the maximal overhead can be observed with ActivateTask

(4.2×) and TerminateTask (2.4×). On the other hand, the fully
protected GetResource in dOSEK even outperforms ERIKA –
a fortunate side-effect of rules Ê and Ë.

It is important to mention that the overall code overhead for
dOSEK has to be multiplied by the number of system call sites,
while the code size of ERIKA does not further increase with
a higher number of system calls. However, the code size of



TABLE I: Code size per system call site in bytes. The total code size in ERIKA is the sum of all executed functions during a
system call. dOSEK grows for every system call site (∆ / syscall) in the application. The total OS size for the evaluation system
includes the remaining system calls not shown here.

Code size in bytes ActivateTask TerminateTask GetResource ReleaseResource SetRelAlarm I4Copter
(7 call sites) (10 call sites) (3 call sites) (3 call sites) (1 call site) Benchmark

∆ / syscall Total ∆ / syscall Total ∆ / syscall Total ∆ / syscall Total ∆ / syscall Total Total OS size

ERIKA (base) – 548 – 933 – 148 – 408 – 314 3,782
ERIKA (checks) – 661 – 959 – 207 – 389 – 383 3,782
dOSEK (mpu) 617 4,319 642 6,416 62 186 601 1,803 118 118 15,385
dOSEK (enc+mpu) 2,301 16,107 2,282 22,822 98 294 2,202 6,606 318 318 57,342

both systems grows when the number of system objects (tasks
and alarms) increases due to the unrolling of code. The total
code-size for the evaluation scenario is 57,342 bytes for dOSEK
with MPU and encoded operations (worst case), while ERIKA
used only 3,782 bytes (best case). On the other hand, caused
by the condensed system state, dOSEK (enc+mpu) utilizes only
172 bytes of volatile kernel memory, while ERIKA requires
512 bytes.

The run-time costs are measured in executed instructions of
the mere system calls, according to the execution trace of the
golden run. As shown in Table II, the unencoded version of
dOSEK compared to ERIKA (base) is increased by 56 percent
in the worst case. The remaining results range from a factor of
0.6× to 6.3×. Again the encoded scheduling operation makes
up the upper bound of the run time in ActivateTask (6.3×)
and TerminateTask (4.7×).

Summing up, dOSEK has a code size and run time penalty
at each point of rescheduling, which even scales with the
number of tasks. However, in a real-world setup, the comparably
high run time of the application tasks would typically exceed
the number of executed kernel instructions of all variants by
multiple orders of magnitude.

TABLE II: Mean and worst-case run time of different system
call activations in executed instructions.

Runtime AT (max) TT (max) GR (max) RR (max) SR (max)

ERIKA (base) 60 (93) 93 (98) 43 (43) 56 (87) 99 (99)
ERIKA (checks) 61 (95) 95 (100) 47 (47) 59 (89) 100 (100)
dOSEK (mpu) 94 (107) 95 (104) 48 (48) 100 (104) 59 (59)
dOSEK (enc+mpu) 380 (456) 436 (451) 86 (86) 437 (449) 141 (141)

VII. DISCUSSION AND FUTURE WORK

Our experimental results show that system tailoring, indi-
rection avoidance and extensive fault detection are the main
keys to a robust OS acting as a reliable computing base.

A. Threats to Validity

Our main threat to internal validity is the IA-32 port
of ERIKA, which was contributed by the same researchers
that work on dOSEK. For the porting we had to implement
a hardware abstraction layer (1,024 lines of code), which
we derived from the corresponding dOSEK components and
ERIKA templates. The port was carried out by two experienced
OS engineers. It was reviewed and revised by the ERIKA
maintainers and will become an integral part of the next official

ERIKA release. Therefore, we are confident about the quality
of our port as a comparison target.

The fact that we choose IA-32 as our evaluation platform
exposes another threat to validity: IA-32 is not a commonly
used architecture in automotive real-time systems and provides
a powerful CISC instruction set that differs significantly
from the strict load–store RISC model employed in most
microcontrollers. This may impair the transferability of our
results. The register-centric characteristics of a RISC-based
architecture will clearly lead to a differing result distribution.
We are currently working on a dOSEK variant for a RISC-
based architecture (ARM Cortex-A9) which will allow to
evaluate this in more detail. However, as we inject faults in
ISA-accessible registers and memory and then test for correct
results of complex instruction sequences, we believe that the
net effect – an overall robustness improvement – will be similar
on other platforms.

In our experiments, we assumed the watchdog timer, the
MPU, and the interrupt controller to be free of faults. While
the attack surface of most peripherals is relatively small (a few
registers that are updated frequently), especially the current
MPU state may be long-living and, thus, vulnerable. However,
a bit flip inside the MPU that shrinks the accessible memory
region does not pose a problem, as it can never lead to a SDC.
But even if the memory protection is weakened by the fault, a
SDC could only occur in conjunction with a second fault that
causes the kernel to access exactly this accidentally extended
memory region – a violation of the single fault assumption.
The same line of argument holds for the watchdog timer: A
fault inside the watchdog timer can only lead to a SDC if it
coincidences with a second fault in the same hyper period.

The chosen single-error fault-model exposes an external
threat to validity. Even though the single-bit assumption is
assumed to cover 95 percent of the overall soft-error rate [21],
[23] other researchers came to the conclusion that it can not be
considered as realistic for real-world systems [25]. Fact is that
“realistic” fault models are still a big topic of research, rarely
available, and depend to a high degree on the (often oblique)
internals of the hardware architecture. However, our chosen
implementation measures, especially ANB-Codes, have shown
to work also well in case of multi-bit faults [15]. Also we
do not see how our design measures, especially avoidance of
indirections, could potentially cause more harm than good with
other fault models. Hence, we believe that our qualitative results
regarding the reduction of SDCs also hold under more specific
fault models. Quantifying these benefits, however, remains a
topic of further research.



B. Benefits of the Approach

Our main contribution is the reduction of SDCs for a
realistic evaluation scenario by four orders of magnitude
(109→ 105) compared to ERIKA. We see ERIKA as an
adequate competitor, since it reveals a comparable number of
SDC than our dOSEK (base) system. The usage of sanity checks
in ERIKA does, against our first intuition, not decrease SDCs
significantly. Further, the improvement of the safeguarded kernel
execution is almost independent of MPU usage. Therefore, we
conclude, that we can gain similar robustness improvements
for very low-cost embedded systems that do not offer an MPU.

C. Limitations of the Approach

The current dOSEK system provides high reliability: The
remaining 108,694 SDCs of the fully safeguarded dOSEK
(enc+mpu) result from a total of 114,589,564,640 potentially
effective bit flips in the evaluation scenario. Nevertheless, one
may ask where these remaining SDCs occur and if they could,
somehow, be detected as well?

We identified these remaining SDCs to be caused by faults
that take place in (a) the unavoidable indirections imposed
by the MPU and (b) the short vulnerable interval before the
kernel is left, that is, when decoded values have to be used. The
latter refers to the few instructions between restoring a decoded
register value (for a context switch or a return-from-interrupt)
up to the actual return instruction that leaves the kernel. In
Appendix B we illustrate these issues on the example of the
dOSEK context-switch code and a more detailed analysis of the
remaining faults. In those architecture-induced and unavoidable
intervals, we see the fundamental limitations of our work and
purely software-based approaches in general.

However, a reduction of SDCs by a factor of 10,000 may
already be good enough. If not, we are convinced that only
relatively little hardware support is actually needed to cover the
remaining cases as well. This is a subject of further research.

D. Real-Time and Functional Safety

dOSEK implements the OSEK RTOS [27] standard and
fulfills all of its mandated real-time requirements, such as
strict priority-based scheduling and the stack-based priority
ceiling protocol. Because of its static design and the purely
generative approach with loop unrolling, aggressive inlining,
and avoidance of indirections, all operations are inherently
bounded and dOSEK systems are particularly easy to analyze
with respect to their timing properties.

However, predictable and timely task execution is only one
aspect of functional safety in the domain of embedded control
systems [17]. The system has to show predictable behavior
also in the presence of transient hardware faults. By its high
robustness, dOSEK provides this up to the level of the RTOS.
It thereby establishes a reliable computing base (RCB) for
the implementation of application-specific dependability and
recovery mechanisms.

E. Future Work: Cross-Kernel Optimization

Currently, the main disadvantage of our approach is the high
ROM overhead. The avoidance of indirections by aggressive
inlining is especially expensive for the encoded scheduling

operation. With respect to code-size overhead and robustness,
we are currently working on whole-system optimizations for the
kernel fragments we emit for each call site: The basic idea is that
from the scheduling rules mandated by OSEK, one can often
constrain or even predict the outcome of a scheduling operation
already at generation time. For instance, an ActivateTask()

on a higher-priority run-to-completion task could be replaced
by a plain procedure call or even the complete inlining of this
task, eradicating the need to embed the expensive scheduling
code. Other points of rescheduling may be shortened by only
considering tasks that are known to be potentially ready to run,
according to the static analysis.

To enable such optimizations, we are currently working
on the automatic static analysis of all inter-task interactions
to obtain a whole-system model that offers a holistic, cross-
kernel control-flow graph (CFG) for each core. First results of
applying these techniques reveal promising improvements: For
the encoded I4Copter scenario, we can thereby cut the code
size by half. The run-time overhead induced by encoding is
reduced from 450 percent down to 74 percent. Integrating the
results of the cross-kernel CFG as run-time assertions, before
and after system calls, further reduces the remaining SDCs
by 50 percent in our evaluation scenario. Here, we plan to
extend these assertions to a recovery mechanism detecting and
repairing faulty kernel executions.

VIII. RELATED WORK

While most work from the dependable systems community
still assumes the OS itself to be too hard to protect, the topic of
RTOS reliability in case of transient faults has recently gained
attention: The C3 µ-kernel tracks system-state transitions at the
IPC level to be able to recover system components in case of a
fault [33]. Their approach, however, assumes that the fault will
be detected immediately, that is, there are no SDCs, and that
the recovery functionality itself is part of the RCB. L4/Romain
[10] employs full system-call interception to provide transparent
thread-level TMR, which mitigates the detection issue, but still
requires the µ-kernel to be reliable. The hypervisor approach
of Quest-V [22] reduces the software-part of the RCB even
further – at the price of increasing the hardware-part for the
required virtualization support. In the end, however, all these
approaches depend on the early and reliable detection of faults
and their strict containment inside the RCB. Our approach
provides exactly that.

The concept of AN-encoding has been known for quite a
while [12]; it has been taken up in recent years in compiler-
and interpreter-based solutions [29], [35]. Yet, these generic
realizations are not practicable for realizing a RCB – not only
due their immense run time overhead of a factor of 103 up
to 105, but also due to the specific nature of low-level system
software. Thus, following our proven CoRed concept [15], [34],
we concentrate the encoded execution to the minimal necessary
points, to keep the overhead on a bearable level.

IX. CONCLUSION

Current software-based dependability measures aim to span
a continuous sphere of redundancy over the safety-critical
applications. Yet, the effectiveness of these measures highly
depends on a reliable computing base (RCB), in terms of a



dependable operating system. dOSEK aims to provide this RCB
and even extends the sphere of redundancy from the application
throughout the kernel execution.

To achieve this, dOSEK provides a reliable fail-stop
behavior avoiding silent data corruptions (SDCs) through
three main principles: (1) A static system design revealing a-
priori application knowledge, which enables fine-grained system
tailoring. (2) Fault-avoidance strategies condensing the volatile
system state, as well as reducing indirections, as far as possible.
(3) Reliable fault detection of the remaining vulnerable state,
in terms of coarse-grained isolation and fine-grained arithmetic
encoding. By applying these principles rigorously, we achieved
an SDC count reduction by four orders of magnitude, compared
to an off-the-shelf OSEK operating system. dOSEK pays this
robustness improvement, in terms of increased run time and
code size. However, we are confident to reduce this overhead,
and to improve the robustness even further, by more extensive
system tailoring utilizing further detailed application knowledge.

Implementation and further details:

https://www4.cs.fau.de/Research/dOSEK
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APPENDIX A
IMPLEMENTATION: ge_tuple()

The encoded greater-equal-tuple operation (Figure 6) is
the main component the encoded scheduler is built upon.
It compares two encoded tuples, consisting of task ID and
dynamic task priority, and overwrites the first tuple with the
higher-priority input tuple. During its operation, it recodes the
encoded first tuple from the signature pair 〈Bid,1,Bprio,1〉 to the
new signatures 〈Bid,2,Bprio,2〉. The new signatures incorporate
all incoming signatures to detect control-flow errors.

ge_tuple
〈Bid,1,Bprio,1〉,Bge1

〈idA, prioA〉, 〈idB, prioB〉

〈Bid,2,Bprio,2〉

〈idA, prioA〉

Fig. 6: Basic operation of ge_tuple()

The ge_tuple implementation (Figure 7) is based on the
ANB less-or-equal operation as presented by Schiffel [28, p. 68].
Instead of returning an encoded boolean comparison result, the
ge_tuple method is extended to change both the compared
variable (prioA) and a corresponding variable (idA).

1: diff← (prioB − prioA)
2: sigcond ← diff mod A
3: Bpos ← Bprio,B − Bprio,1
4: Bneg ← (232 + Bpos) mod A

5: comp← ((prioA − Bprio,1) ≤ (prioB − Bprio,B))
6: if comp then
7: prioA ← Bprio,1 + (prioB − Bprio,B) + (Bge1 − Bpos)
8: idA ← Bid,1 + idB + Bge1
9: else

10: prioA ← prioA + (Bpos − Bneg) + (Bge1 − Bpos)
11: idA ← idA + (Bpos − Bneg) + Bid,B + Bge1
12: end if

13: prioA ← prioA + sigcond
14: idA ← prioA + sigcond

15: Bprio,2 ← Bprio,1 + Bge1
16: Bid,2 ← Bid,1 + Bge1 + Bpos + Bid,B

Fig. 7: The ge_tuple() algorithm updates 〈idA, prioA〉 with the
maximum task priority and ID

The algorithm consists of three steps: It calculates a
signature sigcond from the incoming priorities prioA and prioB.
The actual comparison is unencoded, but changes the result
tuple 〈idA, prioA〉. If the new priority prioB is greater or equal
than prioA, we update 〈idA, prioA〉 to 〈idB, prioB〉, otherwise
only the signatures are adjusted.

Line 1–4 For the encoded if condition, it is necessary to derive
a signature sigcond from the input values, which has a
known, fixed constant value for both the positive (Bpos)
and negative (Bneg) comparison result.
This signature is based on the difference of prioA and
prioB (line 1). As such a subtraction of unsigned 32 bit
integers can underflow, the following values can result:

diff =
{

prioB − prioA, prioA ≤ prioB

232 − (prioA − prioB), prioA > prioB

The signature sigcond is the remainder of this difference
divided by the encoding constant A (line 2). This way,
the resulting values only depend on the static signatures,
not actual run-time values:

sigcond =
{
Bpos = Bprio,B − Bprio,1, prioA ≤ prioB

Bneg = (232 + Bpos) mod A, prioA > prioB

As these values for Bpos and Bneg are constants, the
calculations in line 3 and 4 are performed by the compiler,
not at run-time. To prevent underflows in these values, the
ge_tuple method requires that Bprio,B > Bprio,1.

Line 5–6 The actual branch is chosen by an unencoded
comparison of prioA and prioB after subtracting their
static signatures. The resulting AN-encoded values can be
compared directly, as they differ only by the factor A to
the unencoded value.

Line 7–8 If the task’s priority prioB is greater or equal than the
current maximum prioA, the new value is stored in prioA
(line 7). The previous value of prioA must be overwritten
in this case, but any previous errors in this value would
be propagated and detected through sigcond.
To calculate the new value of prioA, prioB is stripped from
its own signature. It is encoded with the current signature
of idA (Bprio,1) and the ge_tuple-signature Bge1 is added.
If the maximum in prioA is replaced, idA must also be
updated to idB. As before, the new value idA is the current
signature (Bid,1) and the full encoded value of idB and the
ge_tuple-signature Bge1. The signatures Bprio,B and Bpos
are included in the new value for idA, because then the
output signatures include all input signatures, as required
to detect errors.

Line 10–11 If the task’s priority prioB is less than the current
maximum prioA, the encoded values of prioA and idA
remain unchanged and only their signatures are adjusted.
Both values must subtract the expected value Bneg of the
condition signature sigcond and add the value of the other
possible branch (Bpos). The unique working signature Bge1
of this ge_tuple invocation is added as well.
For prioA, no further adjustments are necessary as the
signature of prioB is subtracted in the other branch. For
idA however, the signature Bid,A has to be added to result
in the same static signature as the addition of idB in the
other branch.



Line 13–14 The calculations in the branches use the corre-
sponding constant (Bpos or Bneg) in place of the dynamic
sigcond to derive a common result signature. After the
control flow of both branches merges again, the condition
signature sigcond is added to both result values (prioA
and idB). If the wrong branch was taken or a value was
corrupted, this addition does not result in the expected
value, which allows the error to be detected.

Line 15–16 After the algorithm is finished, the static signatures
of prioA and idA are changed to include the compared
values. These changes are performed at run-time in lines
7–8 or 10–11. The new signatures Bprio,2 and Bid,2 for
the values for prioA and idA are known to the compiler
afterwards.

APPENDIX B
ANALYSIS OF THE REMAINING FAULTS

dOSEK (base) dOSEK (enc) dOSEK (enc+mpu)
0

20,000

40,000

60,000

80,000

100,000
> 109

30
,9

11

30
,2

45

26
,7

54

26
,2

71

11
,3

99

4,
13

6

1,
45

3

S
ile

nt
D

at
a

C
or

ru
pt

io
ns

Dispatcher AST
Timer IRQ
Reschedule AST

Fig. 8: SDCs plotted against operating-system component.

The remaining SDCs in dOSEK mostly stem from errors
injected immediately before the kernel is left, that is, when
dOSEK has to restore and use decoded register values.

Figure 8 shows the three most vulnerable fault locations of
this type, which together cover 36 percent of the overall SDC
rate of the dOSEK (enc+mpu) variant. Listing 1 exemplifies
the issues with the kernel → user transition on the example of
the dispatching trap handler. Presented is the assembler code
as emitted by the compiler.7

Line 1–13 The dispatcher loads and decodes the ANB-encoded
task id, which was elected by the scheduler beforehand
(stored in idg, see also Figure 1). Starting with line 13,
the decoded idg in register %eax is susceptible to errors,
as indicted by the ragged line.

Line 14–17 The decoded task id is replicated and stored as a
double modular redundant index to the current running
task (see Figure 1). Any bit flip affecting register %eax

during line 13 or 14 would corrupt both values and render
the DMR stored value ineffective.

Line 18–19 The page table of the next task is loaded config-
uring memory protection – still, the plain id is used and
vulnerable to faults.

7clang/llvm version 3.4 [-O2 -inlinehint-threshold=∞]. The dOSEK source
code can be found at https://github.com/danceos/dosek

Line 20–32 The decoded id is used to determine the stack
pointer (SP) and instruction pointer (IP) of the task to
be dispatched. After line 20, the life span of idg ends
and the SP and IP values are loaded. At this point, the
parity checks of SP and IP can also detect a corrupted
idg that was used as indirection. Nevertheless, there is
a 50 percent probability that a falsely loaded value still
provides a valid parity bit by chance.

Line 22–36 End-of-interrupt (EOI) is signaled to the interrupt
controller and the cpu flags are configured as needed by
the task. The final sysexit switches over to the previously
set instruction pointer (in %edx) and loads the stack pointer
to the value provided in register %ecx. Again, as indicated
by the ragged lines, these values are susceptible to errors
which, in effect, would directly influence the control-flow
(when affecting %edx) or data-flow (%ecx).

In theory (i.e., by manual micro-optimization), the remain-
ing error-prone variable life spans (Listing 1) could be shortened
by a few instructions. Also, the validity of the task id could
be reevaluated right before its usage (e.g., before line 18) and
the parity checks may be repeated right before the sysexit.

However, the fundamental limitation remains: The error-
prone periods cannot be eliminated entirely – at some point
we have to decode registers and addresses into the vulnerable
format implied by the hardware. At this point, software-based
dependability measures reach their limits. Nevertheless, these
limits may not be severe: The remaining 108,694 SDCs of
the fully safeguarded dOSEK (enc+mpu) result from a total
of 114,589,564,640 potentially effective bit flips – less than
0.0001 percent.

1: mov 0x20e034,%ecx ; Load next task id
2: add $0xffffffd6,%ecx ; Substract signature
3: ...+10 instructions ; Check ANB encoded id

13: movzwl %dx,%eax ; Load decoded id

14: mov %eax,%ecx
15: shl %0x10,%ecx
16: or %eax,%ecx ; Store id using DMR
17: mov %ecx, 0x20e030 ; Save for next schedule

18: mov 0x117128(,%eax,4),%ecx;Load page table
19: mov %ecx,%cr3 ; Setup MPU for next task

20: mov $0x1170f0(,%eax,4),%eax
21: mov 0x8(%eax),%ecx ; Load next SP
22: popcnt %ecx,%edx ; Parity check saved SP
23: test $0x1,%dl
24: jne 26
25: ud2 ; Stackpointer fault detected
26: and $0x7ffffff,%ecx ; Clear parity bit

27: mov -0x4(%ecx),%edx; Load saved IP from Stack
28: popcnt %edx,%eax ; Parity check saved IP
29: test $0x1,%al
30: jne 32
31: ud2 ; IP fault detected
32: and $0x7ffffff,%edx ; Clear Parity IP

33: movl $0x0, 0xfee000b0 ; EOI to LAPIC
34: push $0x3000 ; IO Priv 3, disable IRQs
35: popf ; Load flags
36: sysexit ; SP in %ecx, IP in %edx

Listing 1: dOSEK dispatching code. The serrated lines indicate
periods where the relevant values (task id, stack pointer,
instruction pointer) are decoded and prone to errors.
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