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Abstract—Run-time variability is a necessary mean to adapt to
a configuration or state of a system, which can only be deter-
mined during execution. However, implementing such dynamic
variability oftentimes results in a conglomerate of a highly
branched control flow, with negative impacts on performance.
In this paper, we present an approach to dynamically adapt a
running system to a specific configuration by means of binary
patching. Instead of adding yet another architecture-dependent
binary patching technique, we implement the functionality
directly in the compiler. With specially annotated config vari-
ables, the compiler can generate multiple versions of a function
and dynamically binary patch the running system to use the
version of the current configuration. Our approach is work-in-
progress with developers at SUSE.

1. Introduction

Static configurability of software product lines (SPLs)
such as the Linux kernel is commonly used to support a
wide range of hardware architectures and platforms, as well
as software features such as scheduling [1, 2]. Although
static configurability has proved to work well to implement
variability and portability for software projects of various
domains [3], its limitations are becoming a serious threat to
the maintainability and evolution of software product lines.
Considering the ARM hardware architecture, developers
face a heterogeneous fruit salad, where devices can show
fundamental differences in their instruction sets or only minor
differences in their hardware configurations (e.g., addresses of
I/O ports). Supporting n of such devices by means of static
configurability implies building and shipping n different,
highly redundant software products – a nightmare for vendors,
who target a short time-to-market and low costs.

In recent years, Linux developers have filled the gap
between dynamic device configurations and static config-
uration with the concept of device trees (DTs) [4]. DTs
allow to describe generic and concrete hardware devices
in tree-like data structures, which can be translated into
run-time–loadable and easy to parse binary files. Instead of
statically compiling the hardware description into distinct
kernel images, the kernel loads a specified binary file at
boot time, which contains all necessary information to
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Figure 1. The evolution of CPP blocks in the ARM architecture compared
to the evolution of all architectures from Linux v2.6.33 (Feb’ 2010) to v4.6
(May 2016).

initialize and further boot the system on the current hardware
device. Currently, there are more than 800 supported ARM
hardware configurations (i.e., device trees). Device trees allow
a dynamic configuration of the system and have considerably
improved the way the Linux kernel implements variability
for the ARM architecture. As shown in Figure 1, since 2011
(i.e., the introduction of DTs) the amount of C preprocessor
#ifdef blocks is decreasing for ARM related source code
by nearly 40 percent while increasing by 25 percent in the
rest of the kernel. Notice, that other hardware architectures,
such as x86, do not make use of DTs since the variability
in terms of platforms and sub-architectures is limited (e.g.,
x86 32-bit and x86 64-bit).

Problem Statement

Although device trees enable a dynamic configuration of
the system at boot time, they are restricted to the description
of hardware and, hence, do not help in adapting to other,
even more dynamic use cases. Such dynamic use cases range
from user-configurable switches (e.g., to choose a scheduling



strategy) to variation points in the control flow of the
networking stack, which, depending on the current network
load, alter the processing of network packets. Especially
variations in the control flow have considerable performance
impacts with respect to cache behavior, branch prediction
and the amount of executed instructions. As a consequence,
developers are reluctant to replace static variability with
dynamic variability [3].

In this paper, we present a work-in-progress approach
to dynamically adapt to specific run-time configurations by
extending the C compiler to generate multiple versions of a
function, each tailored towards specific configurations of the
control flow. By means of binary patching, we can exchange
the currently used instance of a function and hence implement
dynamic reconfiguration during the system’s execution.

The remainder of the paper is structured as follows. In
Section 2, we present our multiverse approach and explain
how multiple versions of a function can be tailored towards
specific configurations, and how the system can be patched
at run-time with as little impact as possible. In Section 3,
we discuss the use-cases of our approach and explain the
advantages and limitations, for instance compared to just-
in-time compilation. We further discuss how we seek to
improve our approach in future work.

2. Approach

In a nutshell, function multiverses are a hybrid technique
between static configuration (e.g., using the C preprocessor
and #ifdef blocks) and fully dynamic configuration switches
at run-time. The compiler will emit several specialized
instances of a function that is influenced by the configuration,
while the run-time system will dynamically patch the binary
to reflect the specialized implementation. In our approach,
we will extend the C compiler and the run-time system
with function-multiverse support. We will discuss how the
compiler detects functions suitable for multiverse generation,
explain which static code fragments have to be emitted, and
how the run-time system can switch between members of
the multiverse.

The foundation of the multiverse concept are global,
boolean config variables, which are annotated by the devel-
oper. Together, the values of all config variables constitute
the dynamic configuration vector of the program. In the code,
config variables can be used to distinguish between different
critical code paths. Since they will introduce nearly no run-
time overhead, they can even be used in tight inner loops.
In Figure 2, C is a config variable that controls whether
the function F calls DoA() or DoB(). Without multiverse
support, this decision would be done at run-time every time
F is activated, even if C is rarely or never modified.

The granularity of our multiverse concept will be at the
function level. For each function, the compiler collects all
references to config variables; if at least one configuration
dependency is detected, a function multiverse is emitted into
the binary. A function multiverse contains three artifacts
that are produced during the compilation process: a generic
multiverse-member function that dynamically evaluates the

config_bool C;

void F() {
  if (C == true) {
    DoA();
  } else {
    DoB();
  } 
}

100 <F>:
100:jmp F_generic

105 <F_generic>:
  if (C == true){…}
  else {…}

void F_C_true() {
  DoA();
}

void F_C_false() {
  DoB();
}
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multiverse_data = {
 .var     = &C,
 .true    = &F_C_true,
 .false   = &F_C_false,
 .callers = {{&bar, 208}}
}

Figure 2. Overview of the compiler multiverse approach. Variables that
are marked by the developer (config_bool instruct the compiler to a)
prepend a patchable prologue to the original function body b) generate
members of the function multiverse c) include patch information into the
binary for the run-time library.

configuration vector, several multiverse-member functions
specialized for exactly one assignment of the referenced
config variables, and a multiverse descriptor used by the
run-time system to switch between specializations.

The generic function is suitable for all dynamic con-
figuration assignments. Its body is the original unmodified
function code, which references the configuration at run-time,
extended by a patch prologue. This patch prologue is large
enough to hold a single absolute-jump instruction and is
modified by the run-time system to point to other multiverse
members. The generic function is only a conservative fall
back for all places in the program that are inaccessible to
dynamic patching by the run-time system (e.g., function
pointers buried in user-defined variables). In Figure 2,
the generic function label <F> ( a , address 100) points
to the patch space, which initially jumps to the generic
implementation.

For each function multiverse, the compiler extracts a list
of referenced config variables and selects a set of assignments
for which specialized members are emitted. In a basic
multiverse implementation, the compiler will generate a
specialized member for each possible combination of values.
For each assignment, the compiler copies the body of the
original function and replaces all references to a config
variable by its currently assigned, constant value. To make
use of this additional static information within the specialized
function bodies, the compiler does another round of function
optimization (e.g., inlining, constant propagation, dead code
elimination).

In Figure 2, two specialized functions are generated ( b );
one for each assignment of the dynamic configuration
vector 〈C〉 = {〈false〉, 〈true〉}. After the read access to
C is replaced by true, respectively false, the guarding if



        Callee - Dispatch

100 <F>:
100: jmp F_C_true

105: <F_generic>:
    …

        Caller - Dispatch

200 <bar>:
    …
208: call F_C_true
    …

Figure 3. Result of a muliverse switch to C := true. The patching
proglogue in F is redirected to F_C_true; all known caller sites of F are
binary patched to call the specific multiverse member directly.

condition becomes a tautology and the dead code elimination
removes the unreachable branch within the specialized body.

As a third component, the compiler emits a descriptor
for each multiverse. The run-time library uses the descriptors
to determine what code has to be patched at run-time when
the dynamic configuration changes. Besides a pointer to the
config variable and pointers to the specialized functions, the
descriptor contains a list of all known call sites that activate
the original function. Since all call sites to a given function
are known at link-time, the list of call sites for a given
function could, for instance, be placed in a dedicated section
by the linker. In Figure 2, a simplified multiverse descriptor
for the function F is given ( c ).

Function multiverses require support from the run-time
system to switch between their different specialized members.
The run-time system, which is included in the compiler’s
support library, exposes functions to modify the current
dynamic configuration. When any configuration variable
changes, all multiverses that reference the value are updated
to reflect the changed configuration. First, the run-time
system selects among the specialized functions a compatible
one; if no suitable member is found, we fall back to using
the generic implementation. The resulting function pointer
(e.g., &F_C_true) is then used to modify the machine code
of the patch prologue and all known call sites.

In Figure 3, the situation when C is set to true is
shown. The call site in the bar() function is replaced
by a direct call to F_C_true; it will not introduce any run-
time overhead for the specialized activation. Besides these
zero-cost modifications, the patch prologue of the generic
function redirects all function pointers and undetected call
sites with an absolute jump to the specialized implementation.
Here, a single absolute, unconditional jump is introduced
into the code.

3. Discussion

As already mentioned, our approach is a hybrid between
a fully static approach of configurability, where no decision
is made at run-time, and a fully dynamic approach, where
all decisions are made at run-time. Nevertheless, other tech-
niques, like just-in-time (JIT) compilers (e.g., HotSpot [5])
can be found on this spectrum. Compared to JITs, function
multiverses are less flexible. Nevertheless, since the run-time
library is less complex than a full JIT compiler, function

multiverses have the advantage to reach application scenarios,
like deeply embedded devices, where JITs are unsuitable.

We see different benefits stemming from function mul-
tiverse support in publicly available compilers. The most
obvious one is the run-time benefit from removing dynamic
decisions that read config variables. The specialized function
body runs as efficiently as if the config variable would have
just been inserted as a constant. Even more, dead branches
are removed, the register pressure decreases, in short the
compiler can generate more efficient code. At run-time, the
data cache is not polluted with configuration values that evict
a useful cache line, even if read only once. Furthermore, since
we patch directly at the call site, no overhead is introduced
to activate the specialized implementation.

Although the extensive specializing of functions will
clearly increase the final size of the binary, multiverses can,
in some scenarios decrease the memory consumption at run-
time. Since the code is partitioned along the config variables
into the specialized functions, the linker can co-locate code
for the same dynamic configuration. This code partitioning
along configurations allows the unmapping of entire memory
regions of dead functionality, if the dynamic configuration
settles and is known to remain static (e.g., after some program
initialization).

But function multiverses would not only impact the prop-
erties of the actual binary and the running program, but also
the overall code quality. When function multiverses became
a widely deployed feature in off-the-shelf compilers, many
performance-enabling work-arounds could be eliminated;
configurability can be expressed directly where it is intended
to act, even in an inner loop.

Furthermore, the proposed method is a controlled,
language-semantic preserving mean to express dynamic
binary patching. The Linux kernel is a good example that
this need is actually present, since it contains several live
patching mechanisms: there are at least three proposals for
live updating (ksplice, kGraft, kpatch); paravirtual opera-
tions are patched at run-time depending on the presence
of a hypervisor; ftrace patches arbitrary call sites for
tracing, static_cpu_has removes CPU feature checks
with dynamic patching; spinlocks are removed from a
multicore-enabled kernel if run on a unicore machine. In our
opinion, the compiler is the exactly right spot to place such
functionality and to replace many ad-hoc solutions; not only
in Linux, but also in many userspace programs.

Currently, we aim only for boolean-typed config variables,
since they provide a base layer of variability; features can
be enabled and disabled. In an extension to the presented
approach, we also want to include specialized implemen-
tations for enumeration-typed, and user-annotated–discrete
integer-typed config variables. One problem, we already face
with booleans, but which will become even more pressing
with other data types, is the exponential explosion of variants,
if several config variables are used within one function. We
plan to tackle this problem by restricting the multiverse size
and by selecting the most promising configuration vectors
(e.g., config variables in the inner loop are prioritized) for
specialization.



Another issue we identified for the run-time library is the
concurrency model we aim for. On the one hand, we believe
that only the application knows when it entered a safe state
where the current dynamic configuration can be applied. On
the other hand, it should be possible to use compare-and-
swap operations to concurrently patch the running program
in a thread (and interrupt-safe) manner.

4. Related Work

Dynamic reconfiguration of operating systems has been a
long-standing [6, 7, 8] and still very active [9, 10, 11, 12, 13]
field of research, even though the motivating "trends" have
changed over time: Most recent work aims at a (more or less)
disruption-free dynamic patching/updating of the operating
system, especially with respect to security fixes. The related
work addresses research kernels, such as K42 [9, 14] or
PROTEOS [13], but also aims to facilitate dynamic patching
in commodity Linux installations, such as DynaMOS [10]
and KSplice [11]. Another approach that has been suggested
for this purpose is dynamic aspect weaving [15, 16, 17].

Earlier work, in contrast, was mostly motivated by
application-/scenario-specific extension and specialisation
of the kernel at run-time, which is more related to the
multiverse goals: Synthesis [8], for instance, employs a
built-in kernel-code synthesiser (basically an early idea
of a JIT compiler) to generate optimized thread-specific
variants of kernel features; Synthetix extends this further
by means for optimistic and incremental specialisation, also
featuring a dynamic function replacer called "replugger"
[18]. Choices [19] features dynamic reconfiguration for the
concretion and conversion of kernel objects at run-time
via its object structure; earlier systems, such as DAS [7],
supported this by segment-based dynamic modification. SPIN
supports application-specific extensions (written in a type-
safe languages) to be loaded into the kernel address space
[20].

Compiler-based approaches are, however, mostly centered
around optimizing kernel performance by staged, partial
specialization. A good overview is provided in [21], which
employs Tempo [22], a partial evaluator for C programs,
and a set of specialization predicates to identify functions
automatically for specialization within the kernel.

However, with the exception of the KSplice system [11]
(used mostly for applying security fixes), none of the above
approaches has actually established as a major technique to
implement dynamic variability in system software – probably,
because they mix mechanisms and strategies and are con-
sidered by kernel developers as too implicit, heavy-weight,
architecture-dependent, and performance-critical to be carried
into the kernel. In this realm, we propose multiverses as a
light-weigt, but general mechanism to solve the most pressing
issues of the domain.

5. Conclusion

In this paper, we presented an approach to dynamically
reconfigure a running system to adapt to a defined set of

configurations. The multiverse approach extends the compiler
to generate multiple versions of a function, each tailored and
optimized towards a specific configuration. Configurations
are exposed by developer-annotated boolean-typed config
variables in the source code. The run-time system materializes
the current configuration, by dynamically binary patching
function-call sites. The presented approach is a generic
solution to express a common pattern of dynamic variability
within the semantics of the C language. Implementing func-
tion multiverse in the compiler provides a widely applicable
and portable mechanism for binary patching, and can be
used in the context of dynamic reconfiguration beyond the
Linux kernel.
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