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Abstract

Testing a software product line such as Linux implies building
the source with different configurations. Manual approaches
to generate configurations that enable code of interest are
doomed to fail due to the high amount of variation points
distributed over the feature model, the build system and the
source code. Research has proposed various approaches to
generate covering configurations, but the algorithms show
many drawbacks related to run-time, exhaustiveness and
the amount of generated configurations. Hence, analyzing
an entire Linux source can yield more than 30 thousand
configurations and thereby exceeds the limited budget and
resources for build testing.

In this paper, we present an approach to fill the gap
between a systematic generation of configurations and the
necessity to fully build software in order to test it. By merging
previously generated configurations, we reduce the number of
necessary builds and enable global variability-aware testing.
We reduce the problem of merging configurations to finding
maximum cliques in a graph. We evaluate the approach on
the Linux kernel, compare the results to common practices in
industry, and show that our implementation scales even when
facing graphs with millions of edges.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing tools; D.2.9 [Software Engineering]:
Software configuration management

General Terms Algorithms, Experimentation, Reliability

Keywords Software Testing, Configurability, Sampling,
Software Product Lines, Linux
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“In fact our kernel configuration UI and workflow is
still so bad that it’s an effort to stay current even with a
standalone and working .config, even for experienced
kernel developers.”

Ingo Molnar (Linux kernel developer)

1. Introduction

Testing a software product line (SPL) at the scale of the Linux
kernel [1] is challenging. Kernel developers as well as ad-
vanced continuous-integration frameworks such as Intel’s
0-day infrastructure [2] run various kinds of quality assur-
ances, ranging from static analysis with Coccinelle [3, 4] to
build and run-time tests including fuzzing [5]. The latter are
particularly challenging, as it takes considerable time to build
a complete kernel. The high variability with more than 15,000
configuration options and the fast evolution [6] of the Linux
kernel increases testing complexity considerably. Even minor
changes to variability points in the feature model (FM) [7, 8],
the build system [9, 10] or the source code [11] can impact
dozens to hundreds of different product variants [12]. Thus,
testing as many potentially impacted variants as possible is
crucial for the effectiveness of detecting bugs and regressions
in general. In case of Linux, testing different variants implies
compiling the kernel with different configurations, but gener-
ating such configurations is non-trivial. Manual approaches
to assemble a set of configurations that build different vari-
ants of even one source file are barely possible, even for
experienced developers [13].

Problem Statement and Contributions Research has
proposed various solutions to automatically generate
configurations for specified source files or configuration op-
tions, which is also referred to as sampling. Although a con-
siderable amount of variability-related issues can be found
by sampling [11, 14, 15], it is practically unusable in real-
istic testing scenarios for Linux due to several drawbacks.
First, most algorithms show bad run-times when including
constraints from the feature model and the build system,
which is inherently important to avoid generating invalid
configurations. Second, analyzing the entire source code at
once (i.e., global analysis) is either not possible due to expo-
nential nature of some algorithms, or it generates too few or
too many configurations for exhaustive testing. Finally, per-



forming local analysis on many files simply yields too many
configurations and thus exceeds the limited testing resources.

In this paper we present an approach to fill the gap
between systematic approaches to generate configurations
for testing purposes, and the necessary requirement to fully
build software in order to test it. Instead of considering global
analysis to generate configurations for many source files at
once, we generate configurations on a file-local level and
merge them in a subsequent process. We abstract the problem
to finding maximum cliques in a graph and explain in detail
our algorithms to build the graph. By using our tool, Troll,
we can reduce the number of sampled configurations by more
than 90 percent compared to traditional sampling approaches
and thereby make file-based sampling tools usable for daily
industrial development and testing. In summary, we claim the
following contributions:

1. We present an approach to do global analysis using local
sampling of software at the size and scale of Linux.

2. We explain in detail how our tool, Troll, can scale even
when building graphs with hundreds of millions of edges
on simple workstations.

3. We evaluate our approach in a qualitative study on the x86
architecture and the USB subsystem in Linux v4.5 using
two well known and widely used sampling algorithms,
statement coverage and pairwise sampling.

4. We show that our approach improves the state-of-the-art
in (build) testing the Linux kernel.

Our approach can be applied to other software projects
than the Linux kernel as well. However, the Linux kernel is a
prominent example of highly configurable and variable open
source software, so that we take it as a case study to explain
and evaluate our approach in greater detail.

The remainder of the paper is structured as follows. In
Section 2, we describe how the Linux kernel implements
configurability, the importance of configurations for testing
and the state-of-the-art in industry and research to generate
configurations for testing purposes. In Section 3, we explain
our approach, the problem abstraction to find maximum
cliques, and how we designed the algorithms to scale even

when facing graphs with hundreds of millions of edges.

In Section 4, we evaluate our implementation on realistic
testing scenarios and compare our results with commonly
used approaches in industry. Before concluding in Section 7,
we discuss our results in Section 5 and the threats to the
validity of our approach in Section 6.

2. Background

In this section we briefly describe the build process of the
Linux kernel and show how a user-specified configuration
dominates this process from the coarse-grained selection of
compilation units to the fine-grained decomposition of C
source files via the C preprocessor. We further explain the

different stages of testing in the development model of the
Linux kernel, and discuss current approaches from industry
and research to generate configurations for testing purposes.

2.1 Configurability in Linux

The feature model of the Linux kernel is specified in the
Kconfig language. Kconfig offers various constructs to de-
scribe a feature model, most importantly configuration op-
tions (i.e., features). A Kconfig configuration option has a
specified type (e.g., boolean, string, integer) and optional
dependencies to describe constraints among options. Further-
more, the Linux-specific tristate type denotes features that
can be compiled as run-time loadable kernel modules. The
following Kconfig code-snippet shows the configuration op-
tion FUTEX, which can be selected by a user if she desires
to support fast userspace mutexes. Note that the option is
only visible to the user if its dependencies (i.e., EXPERT) are
met. A detailed description of the semantics of the Kconfig
language can be found in [16].

config FUTEX
bool "Enable futex support" if EXPERT
default y
select RT_MUTEXES

Figure 1 illustrates the build process of the Linux kernel.
After having parsed and evaluated the user-specified config-
uration @, the build system Kbuild includes and excludes
entire source files from the build process @ and invokes the
translation process. After preprocessing ©, the GNU C com-
piler (GCC) compiles the set of source files @, which are
finally linked @ into a bootable kernel image.

Kconfig 0 SMP=y FUTEX=n MMU=y

futex.c smp.c

fork.c

[#if SMP| [#if FUTEX|

fork.E smp.E
ccc @------- { 777777777777777777 {
fork.o smp. o

Linkere ******** k: **]*_.***:;72****
vmlinuz

Figure 1. The build process of Linux in a nutshell.

The Kbuild build system of Linux requires a user-specified
configuration file as input in order to decide which source
files will be compiled into a specific product variant, allowing
a coarse-grained decomposition of modules [17] into compi-
lation units. Before compilation, Kbuild parses the configura-
tion file and further translates it into Make syntax such that
configuration options are accessible as Make variables to the
build system. The Makefile code snippet below shows a build



rule to conditionally compile the futex . c module. Depend-
ing on the boolean configuration option FUTEX, the object
file will be added to an internal list, which either includes or
excludes its elements from the following compilation process.
Please refer to Nadi et al. [10] for a detailed description of
the Linux build process and conditional build rules.

obj-$ (CONFIG_FUTEX) += futex.o

Among other software product lines [18, 19], Linux makes
further use of the C preprocessor to allow a fine-granular
decomposition of source code in the form of C preproces-
sor (CPP) #ifdef blocks. Source code guarded by such CPP
blocks will only be part of the compilation unit if the block’s
condition (e.g., the value of a configuration option) evaluates
to true [20]. Notice that Kbuild also translates the config-
uration into a C header, which is forcefully included into
compilation to make configuration options accessible during
preprocessing. The following simplified code snippet in the
C language shows such conditional kernel code.

struct task_struct xcopy_process(...) {
#ifdef CONFIG_FUTEX
p—->robust_list = NULL;
#ifdef CONFIG_COMPAT
p—>compat_robust_list = NULL;
#endif
INIT_LIST_HEAD (&p->pi_state_list);
p—>pi_state_cache = NULL;
#endif
return p;

}

2.2 Testing the Linux Kernel

The set of tests being performed highly depends on the role
and position of the tester in the development process. In
general, a developer proposes code changes in the form of a
patch being sent via email to a development mailing list. After
review, the responsible maintainer integrates the patch into
her dedicated repository. Before such changes are merged into
the mainline repository of Linus Torvalds, the changes have
to pass a repository for continuous integration: linux-next.
New versions of the kernel are released in a rather strict
interval of two months [21]. After release of a new version,
the so-called merge window opens; in a period of around two
weeks, changes are pulled mostly from linux-next to the main
repository [22]. After the merge window is being closed, the
stabilization phase of this new kernel version starts, which
lasts around six weeks. All in all, a patch will pass at least
four instances before making it into a new version of the
kernel: developer, maintainer, linux-next and mainline.’

At each step in the path of a patch, starting from writing
the code changes to merging it into mainline, we need
to make sure that the patch (a) does not introduce any

! Notice that this process describes the path of an average patch. Security
fixes in Linux may use a fast path and can be integrated without showing up
on public mailing lists.

build warnings or errors, that (b) the patch is semantically
correct and that (c) it does not introduce other kinds of
regressions and bugs such as unintended run-time behavior or
negative impacts on performance — a global view on the
changed source is of utmost importance. In general, the
testing complexity increases the closer a patch is to being
merged into the mainline repository. Besides the potential
that merges of patches from different developers and different
development repositories lead to build warnings and errors,
new features interact for the first time with numerous impacts
on semantics and performance [23]. Thorough tests of such
feature interactions [24] are important to detect issues early
in the development process and before shipping the product
to users and customers.

In the past years, the Linux community has developed
various testing frameworks. Some of those frameworks are
directly shipped with the source code of Linux. Such is the
case of kselftest, a developer-focused test framework which
targets relatively short-running unit tests that are supposed to
terminate in a timely fashion of 20 minutes. For the purpose
of static analysis, there are currently almost 60 Coccinelle
scripts which are also used to enable collateral evolution of
the source code [25]. In addition to such kinds of tests and
to tests that are performed by the developers and maintainers
themselves, there is also an infrastructure for continuous
integration (CI). The most prominent one is the Intel’s 0-day
kernel infrastructure, also called the 0-day robot. The robot
monitors more than 600 development repositories and runs
tests on newly integrated changes. On an average day, the 0-
day robot performs more than 36,000 build tests, 20,000 boot
tests and 12,000 performance tests. All those tests require a
configuration in order to build the kernel.

2.3 Configurations for Testing

The Linux community employs mainly two approaches to
tackle the problem of generating kernel configurations for
testing. First, it is common to use a set of previously defined
configurations that are considered to cover most configura-
tion options of a specific architecture, hardware platform,
driver or use case. For instance, there are more than 100
different so-called default configurations for the ARM archi-
tecture shipped with the Linux kernel source. Those default
configurations can be used to build and test the Linux kernel
on a specific ARM platform without redundantly configuring
the kernel by each developer. Nonetheless, a developer who is
interested in a specific driver or subsystem may maintain a set
of kernel configurations on her own to cover more variants.
As previous research stated [11], it also common to use the
build system of Linux directly to generate configurations, for
instance via ‘make allyesconfig’ which is considered
to achieve a high code coverage [11, 26].

The build system of Linux can further be used to generate
random configurations, which is the second main approach
to generate testing configurations in the Linux community.
Depending on the selected architecture, the build system



will assign random values to yet unselected configuration
options. Using random configurations for testing purposes
is considered to be comparably effective, since it generates
combinations of configuration options that a user may not
intuitively select. Melo et al. [27] confirmed the usefulness of
random configurations in a quantitative study using random
kernel configurations to catch and analyze compiler warnings.
The authors found that most random configurations (i.e., 99
percent) indeed lead to compiler warnings. Such warnings can
stem for instance from mismatches between the feature model
and the implementation [28], or complex feature interactions
spanning multiple files [14].

Modern continuous-integration frameworks such as Intel’s
0-day infrastructure use both approaches, a pre-defined set of
configurations for well known use-cases as well as random-
ized configurations. However, those approaches have several
drawbacks. First, using a pre-defined set of configurations
entails to continuously evolve and maintain those files, which
is prone to errors and demands a high expertise and hence
costs. Second, both approaches are not systematic. Especially
using randomized configurations does not give any guarantee
whether the code that is subject of testing will actually be
compiled. Moreover, Melo et al. [27] found that the random-
configuration generator of the Linux build system does not
provide a uniform distribution over the entire configuration
space.

2.4 State of Sampling Approaches

Previous research [11, 14, 26, 29, 30, 31, 32, 33] proposed
various sampling [30] algorithms to automate the task of gen-
erating configurations that systematically enable or disable
different variants of source code, or a given set of configura-
tion options.

The one-disabled sampling algorithm has been proposed
by Abal et al. [14] in a qualitative study of variability bugs
in Linux. The authors found that disabling exactly one of
n options per configuration helped to detect 40 out of 42
bugs while still being comparatively cheap. In [11], Tartler
et al. presented a tool, Vampyr, which automates the task
of generating configurations for a specified source file and
invokes static analyzers (e.g., GCC or Coccinelle?) in a
following step. The underlying sampling strategy statement
coverage is implemented in the Undertaker? tool. Statement
coverage tries to enable each C preprocessor #if block at least
once — each statement will be compiled at least once — but it
does not aim for enabling different combinations of blocks.

Medeiros et al. [15] compared a set of ten sampling al-
gorithms with respect to effectiveness in terms of fault de-
tection and how well the algorithms scale when considering
constraints, when performing global analysis and when in-
cluding header files. Although most algorithms show satis-

2 http://coccinelle.lip6.fr
3 https://undertaker.cs.fau.de

fying fault-detection capabilities, the authors made several
observations that disqualify certain algorithms for our moti-
vated goal: a systematic and scalable mechanism to generate
configurations for testing purposes.

Many algorithms disqualify since they do not scale when
considering constraints from the feature model or from the
build system of Linux. Ignoring such constraints will yield
a high rate of invalid configurations, which we consider to
be inacceptable. Only non-combinatorial algorithms, such
as one-disabled, one-enabled, statement coverage and most-
enabled-disabled have shown promising results. An optimal
solution to generate configurations for testing is so-called
global sampling, which means to sample the entirety of
variability (e.g., FM, #ifdef blocks, build system) at once.
Global pairwise sampling, for instance, builds pairs among
all available configuration options. However, global analysis
is likely to cause an exponential explosion in the number
of considered configuration options, even when sampling
only few files at once. Only the one-enabled, one-disabled,
most-enabled-disabled and randomized algorithms seemed
to scale when performing global analysis. However, the
one-enabled and one-disabled algorithms generate exactly
n configurations for n available options and thereby exceed
the testing resources for Linux with thousands of different
configuration options. We exclude randomized sampling and
most-enabled-disabled from our approach since it is already
state-of-the-art in the Linux community (i.e., randconfig,
allyesconfig and allnoconfig), which we seek to improve.

Similar to global analysis, exponential problems occur
when including header files, since the amount of distinct
configuration options increases dramatically; the average
Linux source file includes three distinct options, whereas
headers transitively add 238 distinct configuration options
on average [15]. Considering variability information from
Linux headers is desirable since developers are urged to move
#ifdefs source files to headers [34] to increase readability of
the code and avoid CPP related bugs. Nonetheless, especially
global analysis is becoming increasingly important since
configuration-related issues are likely to span over multiple
files [35]. Some kinds of statically detectable bugs, such as
linker errors, can only be revealed with build testing and thus
requiring global analysis.

Our approach avoids the aforementioned exponential prob-
lems. Instead of sampling all variability (e.g., configuration
options, #ifdef blocks) at once, we perform local sampling
and merge the generated configurations afterwards by means
of graph theory. Using such an approach, we can exploit the
qualities of local sampling strategies, most importantly the
fault-detection capabilities, while reducing the amount of
initial configurations that need to be considered for testing
purposes. In summary, we identify the following algorithms
as candidates for our approach: one-enabled, one-disabled,
pairwise sampling and statement coverage.



3. Approach

Our approach consists of two main steps. First, we make use
of an efficient bit-parallel algorithm to identify compatible
configurations and to build an undirected compatibility graph.
In the second step, we find and select merge candidates by
finding large cliques in the compatibility graph.

3.1 Configuration Compatibility Graph

After we have applied traditional sampling strategies
(e.g., statement coverage) locally, we are left with a large
number of configurations. In this first step, the sampling al-
gorithm incorporates constraints from the feature model, the
build system and the C preprocessor.

In the second step, we merge compatible configurations to
reduce their total number, and build the configuration com-
patibility graph (CCG): an undirected graph G = (V, E)
with one vertex v for each locally-sampled configuration.
The graph includes an edge e € E between two vertices
v1,v2 € V if the corresponding configurations are compat-
ible and do not conflict. v; and vy conflict if at least one
common configuration option has differently assigned values,
otherwise they are compatible. The algorithm to construct the
CCG looks as follows:

for all v; € V do
for all v, € V,v; # vy do
if compatibleCon figs(v1, v2) then
graph.addEdge(vy,vs)
end if
end for
end for

The resulting configuration compatibility graphs of Linux
can grow up to more than 30 thousand vertices and 340
million edges. Since our implementation needs to scale on a
single workstation in order to be useful for testing purposes,
we developed a fast and efficient algorithm to check for
configuration compatibility.

Fast and Efficient Comparison of Configurations In the
following algorithm, we mainly exploit the fact that configu-
ration options can only ship one in four values [11]: unset (0),
enabled (1), disabled (2), and run-time loadable module (3).
We consider two options compatible, if they have the same
value or at least one value is unset. Since only four values are
possible, a configuration option can be represented by two
bits, such that the compatibility check of two options a and b,
transformed into algebraic normal form, looks as follows:

compatible(a,b) = = ((apito A bpir1) X0r (apir1 A bpito))

Since this operation is easily expressible with bit opera-
tions, we can pack multiple options, with padding zero bits
in between, into a single machine word and check them all
at once. Then, the check only succeeds if all options in the
machine word are compatible.

bool compatible (word a, word b) {
return ! ((a & (b<<1l)) ©~ ((a<<l) & b);
}

Using such encoding, configurations can be represented
as equally sized arrays of machine words, whereas a config-
uration option needs to be placed at the same index and the
same offset within the indexed machine word in all arrays.
This packing does not only reduce the memory consumption
for the many thousand configurations, but also speeds up the
compatibility check.

In our implementation, we packed 21 configuration op-
tions into one 64-bit machine word to subsequently check
their compatibility in one pass. With this dense encoding and
the bit parallelism, we could reduce the single-threaded exe-
cution time to build the graph (32,060 configurations, 15,069
options) from 30 minutes down to only three minutes. Note
that we parallelized the process of building the CCG in our
final implementation to gain further speedups.

3.2 Merging Vertices in the Graph

The overall goal of our approach is to reduce the number
of configurations for testing without sacrificing the desired
coverage in terms of C preprocessor #ifdef blocks. Therefore,
we find groups of compatible configurations in the CCG and
merge their configuration options into a single configuration.
In terms of graph theory, we can only merge a set of vertices
if they build a complete subgraph (i.e., a clique). Since we
want to merge as many configurations as possible, we abstract
the problem of merging configurations to finding maximum
cliques in the CCG graph. The underlying algorithm is to
iteratively find the maximum clique, remove its vertices from
the graph and repeat until the graph is empty.

while graph.not Empty() do
clique < graph. findClique()
mergeCon figurations(clique)
graph.removeVertices(clique)
end while

Since we aim for a practical application of our tool even on
a single workstation and since finding maximum cliques in an
undirected graph is a NP-complete problem, we only search
for big cliques within the CCG. In our implementation, we
use the parallel maximum clique (PMC) library from Rossi
et al. [36], which includes heuristics to approximate solutions
of the maximum clique problem. We abort the search for a
larger clique, after PMC reports the first heuristically large
clique. In our experience, the approximated cliques reach 90+
percent of the optimum.

After we have identified a clique of compatible
configurations, the actual merge operation is to concatenate
the configurations and eliminate duplicate option assignments.
The clique members are further removed from the CCG and
the search for the next large clique is started.



3.2.1 Requirements for Merging

In order to successfully apply the presented approach — the
merging process in particular — the generated configurations
must meet the following requirements:

(a) The configurations must include all direct and transitive
dependencies (i.e., a slice of the FM) to avoid merging
invalid configurations. Finding a valid configuration for
the entire slice implies using a SAT solver.

(b) For file-based approaches, such as statement coverage, we
must further consider constraints from the build system
to avoid generating and merging invalid configurations,
since the build condition adds further constraints. Notice
that around 50 percent of configuration options in Linux
are mentioned exclusively in the build system [9]. Hence,
we argue that file-based sampling without considering
such variability is rather useless as it cannot reflect real
dependencies and constraints.

(c) The sampled configurations must assign values only
to configuration options in the slice of the variability
model (i.e., feature model and build system) and leave
all other options unset. This way, the compatibility of two
configurations is purely determined by the two slices;
all other options are unset and thus remain compati-
ble. Such configurations are also referred to as partial
configurations since only parts of the available configura-
tion options are set. Nonetheless, a partial configuration
must eventually be expanded (i.e., all unset options need
to be assigned) in order to start the build process; we use
Kconfig* directly for expansion.

A natural consequence of requirement (a) is that our
approach only works on software projects exposing a feature
model, such as Kconfig in Linux. The key for merging is the
FM slice, which can be computed for any boolean expression
(e.g., presence condition of an #ifdef block or a pair of
configuration options) and basically consists of the transitive
hull around referenced configuration options. Generating the
slice can thus be done after sampling, making the presented
approach independent from the used sampling algorithm.

3.3 Workflow Overview

Our tool implementation, Troll, is just one step in a bigger
workflow depicted in Figure 2. The first step is to sample, for
instance source files, and to generate partial configurations.
Secondly, Troll parses the generated configurations and builds
the configuration compatibility graph. As aforementioned, we
developed a fast and efficient configuration-compatibility al-
gorithm in order to let Troll scale even on a single workstation.
The third step is to iteratively select cliques in the graph and
merge the corresponding configurations. By merging the pre-
viously sampled partial configurations we seek to reduce the
amount of configurations that need to be considered for test-

4KCONFIG_ALLCONFIG=$PARTIAL_CONFIG make ...

ing purposes, such as build testing or run-time performance
tests. The implementation of Troll is hosted on github’. All
source code is licensed under the terms of the GPLv3, includ-

ing scripts, compiler wrappers and a detailed README.
Sampling of Source Building the CCG

RPN

FUTEX=y
_ COMPAT=y

#endif

return p;

Troll - Merge Configurations Testing
CONFIG_FUTEX=n
CONFIG_COMPAT=n —> Variant 1
L | ] Vvariant 2
CONFIG_FUTEX=y | | variant 3

CONFIG_COMPAT=y

CONFIG_FUTEX=y
CONFIG_COMPAT=n

Figure 2. From sampling to merging configurations.

4. Evaluation

In the following evaluation we want to examine multiple
aspects of our approach, which ultimately aims at producing
a small set of testing configurations as fast as possible. Thus,
we want to investigate (a) which sampling strategies we
can use in a timely manner for differently sized samples
of interest, (b) which compression rates Troll can achieve
depending on the used sampling strategy, (c) how useful the
merged configurations are. As shown by previous research,
the fault-detection capabilities varies among the sampling
strategies [15].

4.1 Study Design

In a first qualitative study we evaluate Troll from the per-
spective of a Linux maintainer. In this context, we contacted
the maintainer of the Linux USB subsystem, Greg Kroah-
Hartman (Linux Foundation), who uses one pre-defined ker-
nel configuration for build testing his code base. In a second
scenario we evaluate Troll on an entire Linux kernel of the
x86 architecture. In both scenarios we use two sampling
strategies. The first strategy is the statement-coverage algo-
rithm, which is known to be fast while being weaker than
others at detecting faults. The second strategy is pairwise test-
ing. We chose this algorithm since combinatorial algorithms,
although being slow, allow to systematically test interactions
among configuration options (i.e., features) and perform best
at detecting faults.

Since resources for testing are usually limited, we
want to examine how useful subsets of varying sizes
of the merged configurations are. Therefore we sort the
merged configurations (top n) by the size of the clique

5 https://github.com/vrothberg/troll



(the biggest clique is top 1). We further compare the sampled
configurations with 121 randomly generated configurations,
generated with ‘make randconfig’. The randomized
configurations are sorted by the amount of enabled configura-
tion options. Moreover, we use the following two metrics to
compare the configurations:

1. Block Coverage
The amount of C preprocessor #ifdef blocks being com-
piled by a specified configuration. Block coverage is a
widely used metric to evaluate how much variable code
can be enabled with a given configuration. Notice that
this metric cannot necessarily be correlated with the fault-
detection capabilities of the used sampling strategy.

2. Sparse Warnings
Sparse® is a static analysis tool, initially developed by
Linus Torvalds to find coding faults in the Linux kernel
such as mixing pointers to user and kernel address spaces
or unexpected acquiring and releases of locks. Previous
work has shown that combinatorial sampling (e.g., t-wise
sampling) performs best at detecting coding faults [15].

To determine the block coverage of a given kernel con-
figuration, we parse all source files and headers for C pre-
processor #ifdef blocks and insert a unique CPP #warning
at the beginning of each block. Since the preprocessor will
print a unique warning for each parsed block during the build
process, we can determine exactly which #ifdef block is
compiled by a given kernel configuration. To speed up the
computation of block coverage, we implemented a wrapper
for the GNU C compiler. Instead of performing expensive
compilation such as source-code optimizations, we instru-
ment the GCC to only perform preprocessing and generate
empty dummy object-files afterwards. Using such a wrapper
can speed up the computation of block coverage by a factor
of nine.

In both evaluation scenarios we use a workstation with an
Intel Core 17-4770HQ processor, 16 GiB of RAM and a solid
state drive. For the sake of reproducibility and the ease of
evaluation, a set of analysis scripts is shipped with the source
of Troll. We use the Undertaker tool-suite in version 1.6 to
extract the variability model and to perform the statement-
coverage sampling. The pairwise sampling is performed with
a Python script, which uses Undertaker as an interface for
SAT solving and is included in the Troll repository. We further
use Sparse in version 0.4.5-rcl.

4.2 Scenario 1: USB Subsystem

In version 4.5 of the Linux kernel, there are 703 source files
and headers’ directly related to the USB subsystem, and 596
distinct configuration options mentioned in Kconfig files,
Makefiles and the source code.

6 https://sparse.wiki kernel.org/index.php/Main_Page

7 /drivers/usb/*, /include/linux/usb/* and ./include/linux/usb.h

Amount of Sampled Configurations Sampling the 703
USB-related source files and headers yields 776 partial
configurations with the statement coverage algorithm and
took around 8 seconds. The pairwise sampling script gener-
ated 1,779 partial configurations in around 2.5 minutes. Thus,
statement coverage generates 1.1 partial configurations per
file, pairwise sampling generates 2.53 partial configurations
per file.

Merging Configurations Using Troll we can merge the
776 partial configurations from the statement coverage to
121 configurations, and thereby reach a compression rate
of around 85 percent. Figure 3 shows how many cliques of
which size have been merged by Troll. We can see that there
are many cliques of small sizes and one big clique of size 424.
Hence, the biggest clique includes nearly 55 percent of the
initial 776 partial configurations that we merged with Troll.
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Figure 3. Size of merged configurations (sampled with
statement coverage) in the USB subsystem of Linux v4.5.

The 1,779 pairwise sampled partial configuration can
be merged to 186 configurations with Troll, showing a
compression rate of 90.6 percent. Similar to the previous
results of statement coverage, there are many cliques of small
sizes and few big ones (see Figure 4). The biggest clique has
a size of 458 and thus includes around 25 percent of the initial
1,779 partial configurations from pairwise sampling.
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Figure 4. Size of merged configurations (pairwise sampled)
in the USB subsystem of Linux v4.5.

Coverage and Sparse Warnings Table 1 compares the
merged configurations of Troll with the 121 automatically ran-
domized ones, which we generated using the built-in Linux
make target ‘randconfig’. We further take the pre-defined
kernel configuration of USB maintainer Greg Kroah-Hartman
as a baseline that we seek to improve. We can see that the



top 1 clique from statement-coverage (stmt), as well as from
pairwise sampling (pair), cover considerably more blocks
than the top 1 randomized configuration (rand). The top 1
configurations from Troll further yield considerably more
Sparse warnings (35 and 42) than the first random configura-
tion (15) and instantly outperform the baseline (23) as indi-
cated with the bold font. The top 2 and top 3 configurations
from Troll beat the baseline in terms of covered blocks. No-
tice that there are 186 merged configurations from pairwise
sampling, but only the top 121 are displayed in Table 1. How-
ever, the numbers in terms of covered blocks and Sparse
warnings do not change between using the top 121 or top 186
configurations.

Config Covered Blocks Sparse Warnings | Builds
stmt pair rand| stmt pair rand| (const.)
top 1 1,161 1,207 35 35 42 15 1n
top 2 1,163 1,307 437 | 35 43 30 2n
top 3 1,426 1,421 448 | 47 50 30 3n
top 10 1,438 1,441 1,140| 47 50 36 10n
All (121) | 1,495 1,486 1,516| 47 50 55 121n

[Base | 1,238 [ 23 [ In ]

Table 1. Evaluation of drivers/usb/.

4.3 Scenario 2: x86 Kernel

In this evaluation scenario we use Troll on a bigger scale
and sample configurations for all source files and headers
related to an entire x86 kernel.® This is a realistic use case
for continuous-integration systems, which face commits that
potentially change huge parts of the source code.

Amount of Sampled Configurations The statement-
coverage sampling generated 30,327 partial configurations
for 29,887 files related to x86 (i.e., 1.01 configurations per
file) in 15 minutes. Sampling the 29,887 files pairwise took
around two hours and yielded 134,173 partial configurations
(i.e., 4.49 configurations per file).

Merging Configurations Using Troll we merged the ini-
tial 30,327 partial configurations from statement coverage to
1,973 configurations within three minutes, reaching a com-
pression of 93 percent. The resulting graph has more than
340 million edges and a total size of 2.3 GiB in the matrix
market exchange format (MTX).? As previously observed in
the USB subsystem, there are many small cliques and few big
ones. In fact, 1,473 cliques have a size of one which means
that those configurations could not be merged. On the con-
trary, the biggest clique has a size of 18,727 — 62 percent of
the initial graph.

Merging the 134,173 pairwise sampled partial
configurations took 740 minutes and yielded 4,997
configurations with a compression rate of 96.3 percent. The
resulting graph has 5.5 billion edges and a size of 17 GiB in
the MTX format. Due to the pure size of the graph we needed

8 Jarch/x86/ and all remaining subsystems including drivers
9 http://math.nist.gov/MatrixMarket/formats. html#MMformat

another machine with 128 GiB of RAM for merging. Again,
there are many small cliques and few big ones, whereas each
of the first two cliques includes nearly 20 percent of the initial
partial configurations.

Coverage and Sparse Warnings Table 2 compares the
top 10 merged configurations from statement coverage and
pairwise sampling with the top 10 randomized configurations.
The baseline is the x86 allyesconfig, which is widely consid-
ered to achieve a high coverage in terms of code and #ifdef
blocks and is commonly used for bug and fault-detection
purposes in the Linux community. We can read from the table
that randomized configurations perform worse, both in terms
of coverage and fault detection (i.e., Sparse warnings). We
can see that the merged configurations from both sampling
algorithms can beat the baseline (i.e., allyesconfig) with the
top 1 to top 4 configurations, depending on the algorithm and
metric. The table also emphasizes the differences between
and the strengths of both algorithms. In terms of coverage,
both algorithms show comparable results with few merged
configurations but differ strongly in the top 10, where state-
ment coverage covers 1.17 times more blocks than pairwise
sampling. Regarding Sparse, pairwise sampling yields con-
sistently more warnings than statement coverage; the top 10
yield 1.26 more warnings.

Covered Blocks Sparse Warnings | Builds
stmt pair rand | stmt pair rand| (const.)

top 1 57,489 51,212 23,069| 4,779 5,306 2,123 1n
top 2 59,713 56,368 34,004| 4,813 6,014 2,861 2n
top 3 60,393 60,407 40,206| 4,887 6,733 3,358| 3n
top 4 60,632 61,119 40,886| 5,332 6,758 3,394| 4n
top 10 | 75,065 64,274 49,973| 5548 7,007 4,485 10n

Base | 59,042 ] 5,126 [ In ]

Config

Table 2. Evaluation of an entire x86 Linux kernel.

5. Discussion

In the following section we will reflect on our results, discuss
the usefulness of our tool and analyze weaknesses of our
approach.

Suitability of Sampling Strategies When it comes to test-
ing in the context of continuous integration we face sys-
tems with limited resources in terms of time and throughput
(i.e., builds per commit). Thus, a key criteria to a success-
ful adaption of our approach is the time it takes to generate
configurations for testing. We deduce from the results of
our evaluation that statement-coverage sampling can be used
even on an entire x86 Linux kernel with nearly 30 thousand
source files and headers. However, pairwise sampling should
be preferred whenever possible. As previous studies have
shown, such combinatorial sampling strategies show better
fault-detection capabilities, which aligns with our results. But
due the combinatorial nature and the quadratic amount of SAT
calls, pairwise sampling should only be used on rather small
inputs. The overall run-time of pairwise sampling is deter-



mined (a) by the amount files to parse, and (b) the amount of
pairs to check with the SAT solver. We consider 2.5 minutes
for pairwise sampling the USB subsystem to be acceptable
with around 700 files and 2,718 pairs (18.12 pairs per second).

Merging Big Graphs As we have shown in the evaluation,
Troll can build and merge graphs with more than 30 thousand
vertices and 430 million edges in around three minutes,
what we consider to be reasonably fast. However, when
facing bigger graphs of more than 100 thousands vertices
(e.g., pairwise sampling on x86 Linux) the NP-hard problem
of finding cliques yields unacceptable run-times of over 700
minutes and increases the hardware requirements to more
than 120 GiB of RAM. When facing such graphs, it is
possible to partition the graph by grouping configurations
regarding their subsystem and iteratively merge them in a
subsequent step.

Global Analysis and Header Inclusion As stated before,
global analysis is too time consuming [15] when sampling
multiple source files at once, if even possible. Our approach
avoids such scalability issues by doing local sampling first,
and merging the generated configurations in a following
process with Troll. If a resulting configuration subsumes
more than one local result, it provides a more global view on
the analyzed system. In the evaluation of the x86 kernel, we
could merge 62 percent of the initial partial configurations
into one big, global configuration.

Including headers when sampling a source file is also
known to fail due to the high number of (transitively) in-
cluded headers and the entailed exponentially higher vari-
ability. Similarly to global analysis, we avoid such scalabil-
ity impairments by doing local analysis on each header, and
adding the sampled configurations of all headers to the config-
uration compatibility graph, such that they can subsequently
be merged. Hence, we include header-induced variability in
our configurations. However, our current approach does not
consider #includes, which would be possible using a directed
configuration compatibility graph and merge configurations
following the actual include graph.

Comparison to Randomized Configurations Our data
confirms one of our initial claims that randomized
configurations cannot give any guarantee if the code of in-
terest will actually be compiled and hence tested. In con-
trast to randconfig, our approach is able to give certain
guarantees. Since the process of merging does not alter any
option—value pair, all file-local results are to be found in the
merged configurations; our results are neither better nor worse
than the sampled configurations. In other words, the merged
configurations compile exactly the same source files and
achieve the same block coverage than the input configurations.
For example, using Undertaker’s statement-coverage sam-
pling we can achieve around 90 percent block coverage of an
x86 Linux kernel [11]. However, we cannot make a statement
about the fop n merged configurations.

Detecting Bugs in the FM Much to our surprise, we
could not detect any compiler warning with our merged
configurations in the USB subsystem, which indicates a high
quality of USB-related source code. However, we found 16
warnings from Kconfig complaining about the selection of
configuration options with unmet dependencies. The problem
behind this warning lies in the semantics of the ‘select’
statement of the Kconfig language, which allows to forcefully
enable a configuration option even when its dependencies
are not satisfied. The select issue is a natural consequence
of the absence of a SAT checker in Kconfig and developers
consider such cases as illegal and are advised to use the select
statement only for options without prompts and for options
with no dependencies. We further investigated the 16 Kconfig
warnings and found that they all relate to the configuration
option SND_SST_TIPC_ACPI whose dependencies were
poorly designed, and even lead to build errors. This issue
has now been fixed' by changing the constraints in the
feature model. We deduce that our approach can help to
detect such bugs in the FM. Notice that Linux developers
and fellow researches are currently working to add SAT-
checking capabilities to Kconfig in order to solve the select
issue and to define clear and meaningful semantics in the
Kconfig language.'!

Reducing the Number of Builds By using Troll, we could
reduce the amount of configurations and hence the number
of builds by up to 96 percent compared to local sampling.
We argue that using our approach can significantly reduce
the number of builds, which either gives more time to per-
form additional tests or further reduces the high requirements
regarding resources (e.g., number and performance of ma-
chines, energy consumption, etc.). Nonetheless, testing more
than a hundred configurations per commit may exceed today’s
systems. In build-restricted environments we recommend us-
ing the fop n merged configurations. As we have shown in
the evaluation, the top 1 to top 4 merged configurations are
sufficient to increase the number of covered C preprocessor
blocks as well as the number of Sparse warnings in both
evaluation scenarios compared to the baseline.

Compression Rates We expected a much higher compres-
sion rate than 85 percent (statement coverage) in case of the
USB subsystem, since configuration options of drivers can
usually be selected without constraining others, but 77 of
121 cliques are of size 1 and thus can not be merged. We
blame the model slicing in combination with SAT solving to
generate rather “exotic” configurations in some cases, result-
ing in incompatible configurations. We believe that avoiding
such “exotic” configurations can yield higher compression
rates, and we plan to address the issue by coming up with a
topology of model slices, such that common sub-slices are
equally assigned.

10 https://patchwork kernel.org/patch/9168611/
T http://kernelnewbies.org/KernelProjects/kconfig-sat



6. Threats To Validity

Extracted Variability Model Errors or inaccuracies in
the extracted models could lead to inaccurate or even in-
valid configurations with respect to the actual constraints,
which further affects the computed feature model slices.
El-Sharkawy et al. [16] have shown that the feature mod-
els extracted by Undertaker’s dumpconf, among other tools,
do not accurately reflect the semantics of Kconfig. However,
at the current state the impact of the models’ inaccuracies on
analysis as such performed in this study is unclear; some un-
supported cases affect only certain versions of the Linux ker-
nel or do not practically impact its models (e.g., the option
module case [16]). In case of Linux, we can extract more
than 95 percent of all build-system constraints [9].

Feature Model Slice Computing the feature model slice is
not trivial, since an underapproximation can lead to invalid
merged configurations, an overapproximation can lead to bad
compression rates. We have evidence that the configurations
used in our study are not invalid, since we tested all merged
configurations without encountering any errors from Kconfig.
The absence of invalid configurations makes us confident
that (a) the quality of the extracted variability models is
sufficient for our approach, and that (b) the slicing algorithm
to find transitive dependencies implemented in the Undertaker
generates reliable results.

Detecting Cliques As described in Section 3, we make use
of the PMC library from Rossi et al. [36]. Bugs in the PMC
library can lead to mistakenly merged configurations, which
further lead to invalid configurations. However, the PMC
library has been successfully applied to graphs represent-
ing various problems in different domains, from biological
to information networks.!? The absence of invalid merged
configurations is further indicating reliable results from PMC.

Compression Rate Since finding the maximum clique in a
graph is a NP-complete problem, our implementation heavily
relies on the heuristics [36] implemented in the PMC library.
In fact, we do not compute the optimum but approximate with
potentially negative impact on the achieved compression rate.
Figure 5 shows the time to compute cliques of increasing
sizes up to the maximum clique in the configuration compati-
bility graph of the USB subsystem of Linux v4.5 with around
16 thousand vertices. In total, the computation of the maxi-
mum clique with 11,050 vertices takes nearly 6,000 seconds.
However, Figure 5 also shows that the default maximum-
clique heuristics implemented in PMC work remarkably well.
After 0.33 seconds a clique of size 10,850 is found. Thus,
finding the actual maximum clique takes more than 18,000
times longer than the first approximation, while increasing
the size of the clique only by a factor of 1.07. We consider
the negative impact of our approximation to be acceptable
when comparing it to the decrease of execution time.

12 http://ryanrossi.com/pmc/download.php

6,000 |- B
(%]
]
@ 4,000 (- :
£
© 2,000 - B
S
b= 0.33 sec

of | ! ! L
A0 ?’50 A0 900 A0 960 AA 900 AA 950
size of clique

Figure 5. The computation time to find cliques of increasing
sizes with the PMC solver.

Generalizability of the Approach In this paper, we used
the Linux kernel in version 4.5 (March 2016) as a case study.
Although Linux might be the biggest available highly variable
software project, our approach can easily be ported to other
software projects exposing a feature model (e.g., via Kconfig)
and build-system constraints. Previous work has already
successfully applied sampling to the L4/FIASCO p-kernel,
the Busybox coreutils generator for embedded systems [11],
and many more software projects of varying domains [15].
Our approach is further independent from the employed
sampling algorithm. However, having a variability model
at hand is a key precondition for the sampling algorithm to
generate partial configurations that meet the requirements
formulated in Section 3.2.1.

7. Conclusion and Future Work

In this paper we presented an approach that can lift file-local
sampling to global analysis of variable software of the size
and complexity of the Linux kernel. Instead of considering
global analysis as sampling multiple source files at once, we
use local sampling and merge the generated configurations
in a subsequent step. Our results show compression rates of
more than 90 percent and that the top 1 to 5 configurations
suffice to considerably improve the state-of-the-art in Linux
in terms of the amount covered #ifdef blocks and Sparse
warnings. We believe that investing into further research on
achieving scalable sampling approaches will pay off. We
are especially interested in the problem of including headers
when sampling, which also faces exponential explosions. By
using information from a variability-aware include graph [37],
we can transform the configuration compatibility graph into
a directed graph and consequently merge configurations of
transitively included headers.
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