
OSEK-V: Application-Specific RTOS Instantiation in Hardware
Christian Dietrich

Leibniz Universität Hannover, Germany

dietrich@sra.uni-hannover.de

Daniel Lohmann

Leibniz Universität Hannover, Germany

lohmann@sra.uni-hannover.de

ABSTRACT
The employment of a real-time operating system (RTOS) in an em-

bedded control systems is often an all-or-nothing decision: While

the RTOS-abstractions provide for easier software composition and

development, the price in terms of event latencies and memory

costs are high. Especially in HW/SW codesign settings, system de-

velopers try to avoid the employment of a full-blown RTOS as far as

possible. In OSEK-V, we mitigate this trade-o� by a very aggressive

tailoring of the concrete RTOS instance into the hardware. In-

stead of implementing generic OS components as custom hardware

devices, we capture the actually possible application–kernel inter-
actions as a �nite-state machine and integrate the tailored RTOS

semantics directly into the processor pipeline. In our experimental

results with an OSEK-based implementation of a quadrotor �ight

controller into the Rocket/RISC-V softcore, we thereby can signif-

icantly reduce event latencies, interrupt lock times, and memory

footprint at moderate costs in terms of FPGA resources.

CCS CONCEPTS
•Computer systems organization→Embedded systems; Real-
time operating systems; Special purpose systems;

KEYWORDS
application-speci�c processor design, hardware-assisted real-time

scheduling, OSEK

ACM Reference format:
Christian Dietrich and Daniel Lohmann. 2017. OSEK-V: Application-Speci�c

RTOS Instantiation in Hardware. In Proceedings of LCTES ’17, Barcelona,
Spain, June 21-22, 2017, 10 pages.

DOI: http://dx.doi.org/10.1145/3078633.3081030

1 INTRODUCTION
This paper addresses the hardware–operating-system boundary

in embedded control systems. Our modern lives are driven by a

�eet of these special-purpose systems [30]: We can already �nd

more than a hundred of them in our car [5], dozens of them in our

household appliances, and trends like the Internet of Things (IoT)

will further increase their role for everyday life.

Embedded control systems typically have to ful�ll a dedicated,

prede�ned task in a cyber-physical context, often under the con-

sideration of strong safety and timing requirements. As they are

employed in goods of mass production (such as cars), the per-unit

Application Logic System Configuration RTOS Specification

Model of the Required RTOS Semantic

System Analysis

OSEK-V CPU Model App-Specific Pipeline Design

Real-Time System with Custom Processor

Figure 1: The OSEK-V Approach with Application-Speci�c
(blue) and Generic (green, dashed) Fragments

cost pressure is high. Hence – if at all – a compile-time tailorable

real-time operating system (RTOS) is employed as system software,

but in many cases developers try to avoid the costs of even a small

RTOS kernel. Compared to bare-metal software or even discrete

hardware, solutions using an RTOS are typically less analyzable/pre-

dictable and induce much higher event latencies and memory costs.

On the other hand, the abstractions o�ered by the RTOS (e.g., priori-

tized threads, alarms, resources) signi�cantly ease the development

of more complex and composable control applications. However,

even in cases of HW/SW codesign, we often see an all-or-nothing

approach: Engineers either avoid employment of RTOS abstrac-

tions (which complicates software development) or instantiate a

complete RTOS as a (costly) standard software component.

In this paper, we resolve the all-or-nothing gap in HW/SW code-

sign settings by combining the best of both worlds: The idea is

to keep the RTOS interface for easy and composable application

development, but aggressively tailor its actual implementation to

the very speci�c usage pattern of the concrete application directly

into the hardware.

The idea to push the operating system (or parts thereof) into (cus-

tom) hardware to improve on event latencies is a long-established

�eld of research (e.g., [6, 3, 21, 24, 15, 11]). In contrast to such

previous work, we perform a much tighter tailoring of the OS and

hardware based on our whole-system approach: Instead of instanti-

ating dedicated components (such as the scheduler) as an additional

hardware device besides the CPU, we integrate the RTOS seman-
tics directly into the CPU pipeline. E�ectively, the concrete RTOS

interaction model (actually used syscalls and their call-site con-

text) becomes an e�cient and application-tailored extension of the

processor’s instruction set and register �les. This direct processor

integration avoids the costs of a full-blown RTOS, but exposes prop-

erties that are hard to achieve software-only on modern architec-

tures: Perfectly predictable timing of all RTOS interactions (which

take just a few processor cycles), no kernel-induced cache evictions,

drastically reduced interrupt lock times. From the security point

of view, the strict tailoring of the RTOS reduces its “misuse capa-

bilities”, the instantiation in hardware e�ectively eliminates the



possibility to inject code into the kernel domain. In combination

with memory protection mechanisms (not addressed in this paper),

perfect isolation without executing kernel code would be possible.

In previous work, Dietrich et al. [9] have presented a static

cross-kernel and whole-system analysis, as well as an application-

speci�c �nite-state machine (FSM)-based kernel implementation [8].

With this paper, we improve the e�ciency of the system analysis,

integrate the FSM-based representation into an actual processor

pipeline, and employ further tailoring of system components that

become possible at the hardware level. In particular, we claim the

following contributions:

• We present a method to catch the semantics of a concrete RTOS

instance as a FSM to provide for an e�cient hardware imple-

mentation.

• By application-speci�c instantiation of a standard RTOS interface

into the processor pipeline we achieve low syscall and interrupt

latencies.

• The whole tailoring process is fully automated; hardware and

software variants are generated on demand.

• Our open-sourced implementation OSEK-V covers the automo-

tive OSEK/AUTOSAR RTOS standards [23, 2] and integrates

their application-tailored semantics into the Rocket RISC-V core [17,

34].

The rest of the paper is organized as follows: Section 2 describes

the system model and gives an overview on our approach: Starting

with the application, a system state machine is derived in Section 3

and integrated into the CPU pipeline in Section 4. We evaluate our

approach in Section 5 on the example of a real-world �ight-control

application, discuss the results in Section 6, and give an overview

on further related work in Section 7 before concluding in Section 8.

2 SYSTEM MODEL AND IDEA
We assume a static real-time control system with �xed-priority

scheduling: One application is combined with a statically con�g-

ured RTOS (all threads and interrupt handlers are known/derivable

at compile time) and delivered as a system image. We furthermore

assume a static application structure (no dynamic code loading,

no invocation of syscalls via nontrivial function pointers). Note

that these requirements, while appearing harsh from the viewpoint

of general-purpose computing, are common practice and basically

ful�lled inherently by the majority of real-time control systems:

They are mandated by the dominant safety (e.g., MISRA-C [10],

ISO 26262 [13]) and RTOS industry standards anyway. For instance,

ARINC 653 partitions [1] (avionics), µITRON [28] and OSEK/AU-

TOSAR [23, 2] (automotive), but also the POSIX.4 real-time exten-

sions (with SCHED_FIFO) all prescribe �xed-priority scheduling of

a well-known set of tasks.

2.1 Our Approach In a Nutshell
Figure 1 visualizes our concept of usage-based tailoring of the

RTOS down into the hardware: First, we perform an analysis of

the speci�c application and its described system con�guration to

extract all possible interaction between application and RTOS as

a �nite-state machine. This system state machine (SSM) mimics

the semantics of the RTOS for the concrete application; it receives

input signals (synchronous system calls and interrupts), adapts

its internal state, and exposes the currently running thread as an

output signal. Second, we integrate this SSM into an application-

speci�c CPU design: the application triggers the SSM with newly-

introduced instructions and the pipeline reacts by dispatching to

another hardware thread. As the result, we get an automatically
tailored computing system for the concrete real-time application.

Of course, in the general case such a RTOS-FSM would be in-

tractable due to state explosion: The internal kernel state of an

event-triggered RTOS encompasses the ready list, thread contexts,

the running thread, and so on. Every syscall is a potential point of

rescheduling at which, depending on the chosen scheduling strat-

egy and the dynamic state of the ready list, some other thread may

be continued that, in turn, may trigger further syscalls.

Still, our approach is tractable due to two facts: �rst, we rely

on a system model with an inherently bounded number of pos-

sible system states. Second, we supply the system analysis with

application-speci�c information to reduce indeterminism as far

as possible at compile time: We exploit static knowledge about

the RTOS con�guration and its semantics in combination with a

whole-system analysis across all control �ows of the application to

�gure out how the RTOS is actually used. Thereby, we can reduce

the number of possible states drastically, as the outcome of many

scheduling decisions can be derived (or at least constrained) ahead

of time [9]. This, in turn, provides for an e�cient implementation

in hardware, where we integrate the RTOS and its tailored hard-

ware components (e.g., thread contexts or timers) directly into the

processor pipeline.

Without loss of generality, we describe our approach in the fol-

lowing on the example of the system model mandated by OSEK. Our

actual implementation named OSEK-V covers OSEK/AUTOSAR

systems [23, 2] up to conformance class ECC1.

2.2 Overview of OSEK-OS
The OSEK standard de�nes a widely used class of �xed-priority

RTOSs and has been the dominant industry standard for automotive

applications for the last two decades. Without loss of generality,

we based our approach on the RTOS interface mandated by the

OSEK-OS standard [23]. In the following, we brie�y introduce the

abstractions provided by its API.

Basically, OSEK o�ers two main control-�ow abstractions: interrupt-
service routines (ISRs) and tasks (traditionally called threads). ISRs

are activated asynchronously by the hardware and have limited ac-

cess to system services, while threads possess a statically assigned

priority and are activated synchronously by software. Threads are

allowed to use all system services and are executed according to

a �xed-priority preemptive scheduling policy. On each new ac-

tivation, threads start from the very beginning until their (self-)

termination.

Critical sections can be synchronized either by a coarse-grained

global interrupt lock, or more �ne-grained resource objects. Based

on a stack-based priority-ceiling protocol [4], OSEK resources en-

sure mutual exclusion while preventing deadlocks and unbounded

priority inversion. Furthermore, a thread can wait for an event to

be set and remains in the waiting state until another control �ow

signals the arrival of the event.



TASK(T) {

kickoff();

do_computation();

TerminateTask();

}

TASK(idle) {

while(1) {

idle();

}

}

ISR(alarm_tick) {

isr();

increase_counter(C);

if (check_alarm(C, A)) {

ActivateTask(T);

}

iret();

}

generated.c

app.c app.oil

COUNTER C {

MAXALLOWEDVALUE = 1000;

};

ALARM A {

COUNTER = C;

ACTION = ACTIVATETASK {

TASK = T;

};

AUTOSTART = TRUE {

ALARMTIME = 35;

CYCLETIME = 70;

};

};

TASK T {

PRIORITY = 10;

SCHEDULE = FULL;

};

Figure 2: Example OSEK System. The system con�guration
(app.oil) describes a single thread T and its periodic activa-
tion every 70 ticks, which automatically begins at system
boot. The application code (app.c) includes the implementa-
tion of T and the generator materialized the system descrip-
tion into generated.c

Recurring periodic as well as aperiodic thread activations or

events can be triggered with the help of statically declared alarms.
Every alarm is connected to a counter, which typically is driven

through a hardware timer. Alarms can be started with a phase/pe-

riod automatically at system startup, or dynamically at run time.

For a speci�c application, the developer declares all system ob-

jects and their parameters in a domain-speci�c con�guration �le.

Typically, a system generator derives the concrete RTOS instance

statically at compile time and links application and OS library into

a single system image.

In Figure 2, an example OSEK system with one task and one

periodic alarm is shown. The application code (app.c) contains

the task T, which executes a computation and terminates itself

afterwards. The system con�guration (app.oil) denotes that task T

has a static priority of 10, is fully preemptable (SCHEDULE = FULL).

Furthermore, a counter C is declared and connected to the alarm A,

which expires every 70 ticks after an initial phase shift of 35 ticks.

On expiration, the alarm A activates task T. During compile-time,

the system generator produces a system harness (generated.c): An

idle task runs at the lowest priority; the alarm_tick ISR handler

manages counters and alarms, when the timer interrupt occurs.

In order to explicitly anchor system behavior, we added arti�cial

syscalls (idle, isr, iret, kickoff) to the code.

In this work, we focus on the OSEK extended conformance class

1 (ECC1), which includes waiting states and resources, but excludes

multiple tasks per priority and multiple activations per task. Subse-

quently, we consider the described RTOS primitives as a markup
language for expressing the real-time system (RTS)’s behavior, and

use the terms threads (for OSEK tasks) and ISRs to distinguish

between the control-�ows types.

3 SYSTEM STATE MACHINE
Since our approach is application-speci�c, we start with a system
analysis on one speci�c RTS to extract an interaction model of

application, external environment and the RTOS. The system state
machine (SSM) captures the desired kernel behavior (i.e., reschedul-

ing sequence) in the presence of the analyzed application and the

environmental model. Dietrich et al. [9] described an application-

speci�c state-transition graph (STG) that enumerates and connects

all possible system states. In this work, we improve the e�ciency

of the STG calculation and subsequently derive the application-

speci�c SSM from it.

Within an event-triggered RTS, the RTOS receives signals from

two sides: the control application issues synchronous syscalls and

external components deliver asynchronous hardware interrupts. In

both cases, the RTOS is activated, manipulates its internal state, and

materializes the scheduling result through dispatching. The internal
syscall issue ordering is restrained by the application logic; the

possible sequences of external events is shaped by the surrounding

environment.

3.1 Application State Machines
For the system analysis, we express the internal application-structure

as a set of application-speci�c �nite state machines; every thread

and every ISR becomes an application state machine (ASM). These

state machines function as signal generators towards the operating-

system model, which, in turn, orchestrates the execution of several

ASMs. In previous work, Dietrich et al. [9] used a (condensed) CFG

to express the syscall ordering. In contrast, the ASM representa-

tion is more dense and we achieve shorter analysis times due to a

reduced number of states.

For each control �ow, we calculate the ASM from the local CFG.
1

First, we partition the code into basic blocks that are not maximal,

but do contain either a single syscall or only computation code;

the later cannot in�uence the system state synchronously. For

this separation of in�uences, we demand the application structure

(CFG and syscall locations) to be known at system-generation time.

Figure 3a shows the basic-block partition for the alarm_isr handler

from Figure 2 (syscalls in dark red).

In order to generate a state machine that produces a signal for

every executed basic block, we calculate the line graph from the

CFG. Each CFG edge becomes a vertex, while each basic block

becomes an edge labeled with the block’s contents. However, since

the OS state can only be in�uenced through syscalls, we replace all

computation by ε-transitions. It is noteworthy that the transition

labels correspond to syscall sites and not syscall types. Figure 3b

shows the line graph for the alarm_tick ISR.

We remove the ε-transitions by applying standard ε-elimination

to each ASM. Furthermore, we mark thread states that are reachable

through a ε-transition as interruptible by an ISR (E) . For each ASM

state, the set of outgoing edges names those syscalls possible at

one point in the application. Figure 3c depicts the three ASMs

for the running example: when the alarm handler is in state A2,

ActivateTask and the iret syscall site can be executed next and

sent to the SSM.

1
The (thread-)local CFG connects all basic blocks reachable from the control-�ow

entry point. Function-call edges are included; the functions are virtually inlined.



isr();

increase_...

if(...)

ActivateTask(T)

iret

(a) CFG for alarm_tick ISR

isr()

ε
ε

ε Activate

Task(T)

iret()iret()

(b) Initial Line Graph

A1 A2

A3

A4

isr
iret

Activate

Task(T)

ir
et

start

T1 T2
E

T3
start

kicko�
Terminate

Task()

S1
E

start

idle

(c) ASMs: A1-4: alarm_tick ISR; T1-3: thread T; S1: idle thread

line graph

ε -elim
inatio

n

Figure 3: Application State Machines Construction for Example from Figure 2.

S1 S1

S1 T1S1S1S1 T2

S1 T2 S1 T2

S1StartOS

idle

A1E A2isr

iret

A3

A
ct

iv
at

eT
as

k(
T)

T1 iretT2 kicko�

TerminateTask

A1 E

A2

isr ir
et

A3
ActivateTask(T)

iret

Figure 4: System State Machine. Every vertex is an abstract
system state; transitions are triggered by syscalls. The cur-
rently running thread overlays the preempted threads. S:
idle thread, A: alarm, T: thread.

Currently, we use a very simplistic model to include other anal-

ysis results to restrict the external-event model. When a thread (or

a group of threads) has an implicit deadline, the triggering event

is blocked until the event processing is �nished [9]. Nevertheless,

other logic of actions on application level could be derived and used

to restrict the event model. For example, it could be de�ned, that a

“send bu�er empty” interrupt could only occur after the associated

SendMessage() function had been invoked.

The application model and the external-event model are con-

nected to an abstract operating-system model. The OS model is

instantiated with the system con�guration and adheres the OSEK se-

mantics [23]. We use the system-state enumeration (SSE) [9] method

to combine all three parts and to explicitly enumerate all possible

system states in the STG.

The STG is a directed graph of abstract system states (AbSSs),

which capture a possible system state at one point in time and

hold the information that can in�uence scheduling decisions. Par-

ticularly, each AbSS includes a vector of ASM states that indicate

the current preemption point of each control �ow. In every state,

exactly one �ow is marked as the currently running thread. For

details on the STG construction we refer you to Dietrich et al. [9].

Since every transition label in an ASM corresponds to an kernel

activation and the SSE only combines several ASMs according to the

system semantic, the STG can directly be used a SSM. In Figure 4,

the STG/SSM for the running example is given: The system starts

from the idle loop. On an interrupt (E), the alarm handler can

activate thread T or directly return to idle. If activated, thread

T is dispatched, executes the computation, and terminates itself.

Although the alarm can expire again during the computation, the

can be activated only once.

3.2 System State Machine Minimization
The resulting SSM already exposes the correct behavior, but the

number of states and transition edges is not minimal yet. However,

as state-machine minimization is a well covered and long standing

topic [22, 12], we will only investigate on the SSM speci�cs.

For the SSM minimization, we meld all states that expose the

same observable behavior into a single state. In our case, the ob-

servable behavior is the sequence of possible re-scheduling events.

For example, if two states always occur in the same sequence but

dispatching happens only after the second one, the �rst state can

be merged into the last one. One instance of such a state pair are

the A1 and A2 states in our running example (Figure 4). From a

system perspective, all A1 states, which are activated by the hard-

ware event (E), are followed by the same re-scheduling sequence as

the A2 states Therefore, the A1 state is subsumed by its respective

A2 state. We identify such equivalent states by using the Moore

algorithm [22] and merge them into one state. If a transition label

occurs only at self-loops after the merging, we can safely remove

the signal completely from the system.

3.3 Static Alarms
One bene�t of our application-speci�c hardware tailoring is the

possibility for optimized components that match the static system

con�guration. Besides the SSM, we also detect static alarms within

the application, which are very common in embedded control sys-

tems: A static alarm starts automatically at boot time, is never

recon�gured, and triggers at a constant rate. We check for these

properties by static analysis of con�guration and application code.

All non-static alarms are dynamic alarms and can, depending on

the con�guration, be driven by a timer IRQ with a lower base rate,

reducing the IRQ load.

The alarm in the running example (Figure 2) is static: It starts

automatically at boot (AUTOSTART = TRUE), has a phase of 35 ticks

and a period of 70 ticks, and is never recon�gured.



i-fetch

hart PCi-
ca

ch
e i-decode

hart regs

execute

hart syscall

mem stage

hart

commit

hart result

NPC Gen
n × PC

Reg File
n × 32 Regs

System State
Machine

current hart

Static Alarms

OSEK-V Specific Components

RTC Tick

k×signals

stall

store NPC select NPC

se
le

ct
re

gs

register write back

Figure 5: OSEK-V Pipeline

4 DERIVING THE OSEK-V PROCESSOR
In the system analysis, we gathered information to tailor a parametriz-

able processor pipeline towards the application requirements. We

map each OS thread to a hardware thread (harts) and introduce spe-

cialized instructions, which interact with the SSM component that

controls hart scheduling. Furthermore, a static-alarm component

generates periodic signals and activates the SSM asynchronously.

4.1 State Assignment and Logic Minimization
For instantiating the SSM in hardware, we have to provide an

e�cient implementation of the state-transition function: Besides

the current SSM state, it consumes one system event and returns a

new system state together with the (next) hart.

SSM : 〈system event〉 × 〈state〉 7→ 〈state〉 × 〈hart〉
The system analysis produces a SSM with symbolic signals

(e.g.“TerminateTask”, “ActivateTask(T)”) and states. For a hard-

ware implementation, we have to choose bit vectors for these sym-

bolic values (e.g., 〈ActivateTask(T )〉 = 1012). This choice, known

as the state-assignment problem, largely in�uences the minimal

required complexity of the hardware implementation. Luckily, sev-

eral methods have been proposed to solve this problem for di�erent

hardware designs [33, 7, 32].

We use the NOVA program [33] to solve our state-assignment

problem. NOVA targets optimal encoding for two-level logic imple-

mentations and chooses bit vectors for the system calls and the SSM

states accordingly, when given a “thread id” encoding, which we

choose arbitrarily. Since NOVA internally uses a logic minimizer,

we get a minimized truth table for the transition function as a result.

With this truth table, and the static-alarm information, we proceed

to instantiate the OSEK-V processor.

4.2 The OSEK-V Processor
We built OSEK-V on top of the Rocket core [17], a 64 bit, 6-stage,

in-order pipeline. While this soft core is not primarily targeted for

embedded systems, a compatible stripped-down 32 bit variant is cur-

rently developed. The Rocket implements the RISC-V interface [34],

an ISA designed to support computer-architecture research. The

Rocket resembles a hardware product family and exposes a multi-

tude of con�guration switches to adapt the implementation towards

application requirements.

We have integrated OSEK-V into the Rocket chip generator,

which is able to generate a cycle accurate C++ simulator at the

register-transfer level. With our adaptions, it instantiates all com-

ponents according to the results of the system analysis and wires

them up into the pipeline (see Figure 5).

In order to provide fast control-�ow switching, we have extended

the pipeline to support hardware threading. The processor is en-

abled to track di�erent execution �ows (harts) and their contexts

simultaneously: Each pipeline stage has a tag to hold information

about the currently executed hart; register �le and program-counter

generator (NPC Gen) are extended to hold the execution context

for multiple hardware threads (harts). The issuing of instructions

from di�erent harts is controlled by the SSM.

In our current implementation, every OSEK task and the idle

thread is mapped as separate harts, while ISRs still execute in the

context of the current hart. This is a trade-o� between ISR acti-

vation times and hardware resource consumption, but could be

softened by using one dedicated hart to execute all ISRs.

4.3 Special Instructions and Static Alarms
Furthermore, the OSEK-V pipeline provides two new instructions to

interact with the SSM: ssm.ld and ssm.tx. The ssm.tx instruction

is used in the boot code to set the instruction pointers for all harts.

The ssm.tx instruction communicates its immediate operand as a

system event (see Section 4.1) to the SSM, which, in turn, invokes

the state-transition function on it.

When an ssm.tx instruction enters the pipeline and reaches the

execution stage, the preceding stages are stalled until memory and

commit stage have emptied. This stall ensures that all exceptions

preceding the ssm.tx instruction remain precise. The execute stage

sends the system event to the SSM. While the SSM applies the tran-

sition function and updates the “current hart” signal, the pipeline

is stalled. If a re-schedule happens, the branch-mispredict logic is

reused to �ush the pipeline and to issue an instruction fetch for the

new hart’s program counter.

Besides the ssm.tx instruction, the static-alarm component also

issues system events. Internally, it derives clock signals with di�er-

ent phases and periods from the real-time–clock tick and communi-

cates with the SSM. If one or more alarms expire, the static-alarm

component pauses the pipeline and waits for the current instruc-

tions to �nish. Afterwards, multiple system events are transmitted

atomically to ensure that alarms can trigger simultaneously. The

transmission is initiated with one 〈isr ()〉, multiple alarm actions

(e.g., 〈ActivateTask(…)〉) build the body, and the 〈iret()〉 triggers a

possible rescheduling.



Static-alarm events are handled like other external events; they

are only accepted when interrupts are currently not locked in the

processor. Therefore, all regions with locked interrupts still have a

run-to-completion semantic.

The OSEK-V functionality is incorporated into the Rocket chip

generator; con�guration parameters are encoded as JSON and di-

rectly read and interpreted by the hardware design. The parameters

include the minimized truth table of the SSM logic, the number of

harts, and the static-alarm setup. While the con�guration states

only the intentional behavior, the generator decides how implement

these requirements. For example, the static-alarm component uses

di�erent strategies to derive clock signals depending on the phase

and period of the alarm activation.

4.4 System Generation and Startup
Tailored hardware also requires the system software to be tailored.

By pushing the OS logic in hardware, only little functionality is left

to the software part of the kernel. At boot, the kernel con�gures the

program counters with the ssm.ld instruction. The stack pointer

is initialized by the thread itself as one of the �rst instructions.

When a terminated thread is reactivated, it starts executing at

the stack–setup code. The remaining dynamic alarms, as well as

regular interrupts are handled by the software kernel. Within

the application, syscall sites are replaced with ssm.tx instructions

carrying system-event identi�ers. The syscall sites have to be

enclosed by a pair of interrupt disable/enable commands, to ensure

symmetry between the re-schedule points in ISRs and threads.

We made the process of tailoring the RTOS and the hardware

fully automated. The system analysis and transformation is imple-

mented in the dOSEK framework and requires no manual interven-

tion. The Rocket generator reads in the processor con�guration and

generates the OSEK-V instance; either as cycle-accurate emulator

or as Verilog code.

5 EXPERIMENTAL RESULTS
For our evaluation scenario, we employ the I4Copter [31], a safety-

critical embedded control system (quadrotor helicopter) developed

in cooperation with Siemens Corporate Technology.

We analyzed the task setup of the I4Copter control application

(Figure 6): Threads are activated both periodically and sporadically

by three alarms and one ISR. Inter-thread synchronization is re-

alized with OSEK resources and a watchdog thread observes the

remote control communication. In total, the scenario consists of

eleven threads, three periodic events (alarms), one sporadic inter-

rupt, and one resource. One alarm, which controls the watchdog

thread and runs with a low activation rate, is recon�gured at run

time, and, therefore, is a dynamic alarm; the two others are static.

We replaced the application logic with checkpoint markers, since

we are interested in the interaction between application and kernel.

The substitution does not in�uence the analysis, but only exchanges

the contents of computation blocks. In total, the system includes

52 system-call sites.

During the SSM construction (Section 3), we used application

knowledge about implicit deadlines to restrict the external-event

model. For example, the “Sampling”, “Signal Processing”, and

“Flight Control” tasks always �nish execution before the 3-milliseconds

alarm triggers again. As described Dietrich et al. [9], this incorpo-

ration of available information eases the system analysis.

5.1 Performance
As a �rst evaluation, we ran the benchmark scenario for di�erent

degrees of tailoring and measured the required clock cycles in the

cycle-accurate simulator for di�erent system operations. We ran the

benchmark for three hyper periods and give the results in Figure 7.

The �rst two variants do not touch the underlying processor,

and are only put in place to give a context for the OSEK-V results:

The Baseline variant in Figure 7 is the standard dOSEK implemen-

tation, where all alarms are dynamic. The Specialized variant uses

the system-analysis results to replace the syscall sites with special-

ized code fragments [9]. Specialized syscalls may omit operations

(e.g., �nd the highest-priority runnable thread), if the result can be

deduced statically. In the OSEK-V–SSM variant, the pipeline is en-

riched by a tailored SSM component, while all alarms are managed

dynamically. Finally, the SSM+Alarms variant includes the SSM, as

well as a static-alarm component that manages two of three alarms.

In the cycle-accurate trace, we identify operations on the kernel

state that execute atomically. These operations are synchronous

syscalls, the timer ISR that manages the dynamic alarms, and the

transmission of static-alarm signals. We count the clock cycles

required for these operations, while separating cycles that actually

execute in the pipeline (a, b), from additional cache-stall cycles (c, d).

This separation allows us to discriminate the actual computational

cost of OSEK-V from the processor-speci�c cache hierarchy.

For the whole benchmark, the e�ective clock cycles, where the

processor is not in idle, decrease by specializing syscalls, and even

more by using specialized hardware components (a). The reduc-

tion stems from the shorter atomically-executed kernel activations,

which are synchronized with an interrupt lock. Shorter interrupt-

lock intervals are of special interest for real-time systems; the

responsibility of the system increases, when the interrupt latency

goes down. Without considering cache stalls, the average length

of interrupt locks for all operations decrease by about 80 percent

from 195 cycles to 41 cycles (SSM+Alarms). This decrease is mainly

driven by the timer ISR. Nevertheless, even without static alarms

the average operation takes only 138 cycles (SSM).

We distinguish instances of synchronous syscalls, as well as

ISR activations, into two classes: events that do not cause a re-

scheduling, and the ones that actual dispatch to another control �ow.

Furthermore, we consider the event with the longest processing

time as a relevant information, since we reason about real-time

capabilities. Therefore, we give not only average run times, but

also maximal run times for each operation (upper bar).

First, we consider synchronous syscalls issued by the applica-

tion code. When no re-schedule occurs, the worst-case times for

OSEK-V without static alarms decreases (−79.29%) in a similar range

as the version with specialized syscalls (−75.71 %). On average, the

tailored hardware is about 50 percent faster than the specialized soft-

ware. This di�erence is caused by the fact, that the scheduler and

dispatcher are often already eradicated through specialization for

these non-dispatching syscalls. The advantage for OSEK-V grows

for syscall operations with dispatching: The OSEK-V hardware has



Sampling

3 ms

Digital

Sensor

Analog

Sensor

Signal

Processing

Flight

Control

Actuator

Data

Actuate

9 ms

Update

Actuators

IP Stack

RC Signal

Remote RX

Copter

Control

WD

Counter

Watchdog

10 ms

PanicSteering

reset

+1 WD Counter > 25

Synchronized via Resource (Shared SPI Bus)

Task

Event

Data

Figure 6: The �ight-control application of the I4Copter quadrotor helicopter.

0

200

400

·103

a

E
xe

cu
tio

n
C

yc
le

s

0

200

400

600

800

≤ 10cyc.

b
Baseline Specialized SSM SSM+Alarms

W
ho

le

Ben
ch

mar
k

IR
Q

Bloc
ka

de

0

10

20

30

40

·103

c

C
ac

he
S

ta
ll

C
yc

le
s

Syn
c.

Sys
ca

lls

w/o
Disp

atc
h

n=
76 Syn

c.
Sys

ca
lls

w/ D
isp

atc
h

n=
61

Tim
er

IS
R

w/o
Disp

atc
h

n=
26

9 Tim
er

IS
R

w/ D
isp

atc
h

n=
11 Stat

ic
Alar

ms

0

50

100

150

200

n=27
n=1

n=10

d

Figure 7: Results for I4Copter in the Cycle-Accurate Simulator generated by the Rocket Toolchain.

at least a 75 percent bene�t over the baseline, while the average

bene�t is even over 90 percent.

In purely software-based implementations, every alarm is man-

aged dynamically through a timer ISR. We measured the executed

cycles for the whole timer ISR as a single system operation, since

the e�ect of the alarm activation manifests atomically at the iret.

Again, we distinguished between operations with and without dis-

patch of another thread. The syscall specialization has only minor

in�uence on the cycle counts, regardless of actual re-scheduling.

When a timer interrupt does not cause a rescheduling, the SSM

variant shows only a minor worst-case improvement (−12.77 %).

However, in case of a dispatch, the operation executes about twice

as fast (−47.16 %) in the worst case and causes signi�cant lesser

cache stalls on average (−72 stalls).

The usage of a static-alarm component (SSM+Alarms) results

in several changes in the system’s behavior regarding the alarm

handling. On the one hand, the number of timer interrupt requests
(IRQs) dropped from 280 to 28, since the base rate for the remaining

dynamic watchdog alarm could be lowered. This mainly drove the

drop on the interrupt-blockade times for the whole benchmark.

Additional to the reduced interrupt rate, the execution times for

the ISR dropped for the static alarm variant: Since only one alarm

had to be manged instead of three, ISRs without dispatch (−29.43 %),

as well as with re-scheduling (−59 %) executed signi�cantly faster.

Furthermore, a static alarm activation takes at most 10 cycles and

in�uences the SSM directly, without utilizing the processor.

The decrease in cache-stall cycles is proportional to the degree of

specialization and goes up to −46.79 percent (c, SSM+Alarms). For

both OSEK-V variants, the remaining cache stalls for synchronous

syscalls and static-alarm activations stem from the instruction fetch

for the application code (d). Only the dynamic-alarm handling can

lead to cache evictions that stem from executed kernel instructions.

5.2 FPGA Synthesis Cost for the OSEK-V Core
Besides the run-time and latency bene�ts of the OSEK-V approach,

we also evaluated the actual cost of having specialized hardware

components next to the pipeline. We start this evaluation with an



Example I4Copter

Generation Time Seconds 0.06 73.68

Initial SSM States 9 4834

Transitions 13 7479

Minimized SSM States 6 701

Transitions 9 1246

Transition Function Clauses 4 781

Table 1: System Analysis Results for the Benchmarks

Rocket Example I4Copter

(Baseline) (Figure 3) SSM SSM+Al.

LUT 29 460 29 216 32 041 32 341

Mem-LUT 1033 1160 2016 2016

Flip-Flops 14 208 14 117 14 129 14 196

Fmax [Mhz] 26.37 26.57 26.7 25.68

Table 2: Synthesis Results for the tailored OSEK-V Core

overview about the results of the system analysis for the I4Copter
benchmark and the running example from Figure 2. These numbers

lay the ground to understand the actual implementation costs that

arise when we synthesize the di�erent OSEK-V cores.

In Table 1, we show the results for the system analysis, which is

executed within the Python-implemented dOSEK framework on a

single Intel Core i7-2600 core. The running example from Figure 2

is a small system: its analysis is fast, the initial SSM is already small,

and the SSM minimization does not cut away much redundancy.

The resulting minimized logic block, which implements the state-

transition function, consists only of four AND clauses (four AND

gates with the outputs combined in one OR gate).

For the I4Copter benchmark, the system analysis takes more

than one minute, where the run time is mainly driven by the state-

assignment phase (96.95 %). Nevertheless, the size of initial SSM

still grows exponentially with the size of the system (#IRQs, #Tasks)

and reveals a large state machine. Compared with the previous

work [8], the size of the initial STG could be cut down signi�cantly

(−75.91 %) by the usage of ASMs instead of the control-�ow graph.

Still, the state-machine minimization can remove 85.5 percent of

the states. The resulting state-transition function takes a 15 bit

input vector (state: 10 bits, system event: 5 bits) and produces a 14

bit output signal (hart id: 4 bits).

We used the Xilinx Vivado 2015.2 toolchain to synthesize the

di�erent OSEK-V cores for the Zynq-7020 FPGA chip, which is

integrated into the ZedBoard platform. The Rocket’s pipeline was

constrained to run with at least 25 Mhz, while the FPGA features a

Fmax of 100 Mhz for a single logic unit.

As expected, the Figure 2 example resulted (see Table 2) only

in a small increase in FPGA resource usage (+127 memory LUTs),

when compared with the baseline Rocket core. This increase mainly

stems from the doubled register �le, since the synthesis tool uses

distributed RAM cells to implement the second register �le for the

additional hart (idle thread, thread T).

The I4Copter benchmark results in a quite larger core. Without

static-alarms, 9 percent more look-up tables (LUTs) are required;

these LUTs are mainly used for the SSM component (76.09 %). The

bytes Baseline SSM SSM+Al.

Text Segment (kernel) 14 368 8669 8393

Data Segment (w/o stacks) 1908 410 354

Table 3: Required Flash and RAM Space for the I4Copter

983 additionally required memory LUTs were used mostly for the

register �le (96.24 %) to hold the additional hart contexts. These

increased FPGA-resource requirements are directly connected to

the decreased memory consumption within the system image (see

Table 3); the SSM avoids most kernel code and the expanded register

�les avoid RAM consumption for the thread contexts.

When we add the static-alarm component (SSM+Alarms), the

FPGA resource consumption increases only negligible compared

to the variant without this additional hardware component. The

static memory consumption for the system image changed not

signi�cantly. For all variants, the Xilinx synthesis tool took at

least 10 minutes and was always able to ful�ll the 25 MHz timing

constraint for the pipeline.

6 DISCUSSION
Compared to other HW/SW codesign approaches, we focus on a

single application instead of a small class of applications to unveil

emergent system properties. Our narrowed focus exposes unique

properties, but we will also discuss the consequential limits.

6.1 Specialization vs. Standardization
We target real-time control systems based on customizable hard-

ware designs, where either a FPGA is employed or a custom chip

(ASIC) is intended. This appears to be in stark contrast with the

current industry trend of the domain to reduce HW/SW develop-

ment costs by consolidating custom designs into high-volume (and,

thus, cheaper) Commercial o�-the-shelf (COTS) platforms.

We are convinced, however, that the increasing degree of automa-

tion on all levels of the customization process will partly reverse

this trend – on the longer term an “ASIC on demand” industry will

drastically reduce development and per-unit costs of custom hard-

ware. This is already happening, as Patterson and Nikolić outline

in a recent EETimes blog post [25]. OSEK-V goes well with this

vision as we stay completely compatible on the software side: The

application is developed against a standard RTOS interface – but

the automatically derived optimized implementation can optionally

be pushed into the hardware.

6.2 Application Domain and Scalability
Our approach is applicable, when the in�exibility of static tailoring,

culminated in application-speci�c chips, is tolerable. An OSEK-V

chip manifests the internal solution structure in silico; an employed

ASIC cannot be updated but can only be replaced. For a FPGA

system the situation is di�erent, there the OSEK-V processor would

become part of the deployed system update. Nevertheless, an update

of the OSEK-V core is only required if the application structure

(system con�guration and ASMs) changes; other updates can be

deployed as usual. Also, a partial push-down in hardware is possible

with a hierarchical scheduling scheme: high-priority threads can

be directly mapped to harts, while low-priority might be combined



in one hart and managed in software. This would provide low

latencies in critical situations and preserve �exibility otherwise.

The main scalability challenge is the state explosion of the STG.

In theory, a system could have an exponentially higher amount

of states compared to the number of threads and interrupts. Even

when feasible, this burden would precipitate in long analysis and

construction times. Nevertheless, we could show that our prototyp-

ical implementation handles real-world scenarios faster than the

resulting hardware description could be synthesized.

The hardware scalability is determined by two cost factors: the

register �le and the SSM logic. Since the register �le has to hold n
thread contexts, we must allocate the storage capacity. However, it

scales linearly with the number of hardware threads and it could

be placed in the FPGA’s block RAM. The SSM logic scales with

the application complexity and the external indeterminism the

system has to face. Small systems that come with a large knowledge

about the surrounding environment will bene�t the most from the

instantiation of the RTOS semantic in hardware.

Besides the classic real-time control systems used in industry, we

see the emerging IoT �eld as a possible application domain. When

small control systems become ubiquitous, the trade-o� between

specialization and �exibility will be renegotiated. IoT systems are

sold in large numbers, strive a high price pressure, and are tightly

coupled to the task and the life span of the employed device. We

believe that application-speci�c highly tailored chips are a good �t

with these changing design factors.

6.3 Restrictions on Semantic and Application
Besides scalability issues, the restriction we put on (1) the RTOS

semantics and (2) the application structure is a threat to the gen-

eral applicability of our semantic extraction. In essence, the STG

includes the inherent determinism that is available at compile time

due to the RTOS semantics and its utilization by the application;

even in the presence of external interrupts. While this works rea-

sonably well for �xed-priority scheduling, the usefulness is limited

on systems that o�er signi�cantly less determinism, such as an

RTOS with an earliest deadline �rst (EDF) scheduler or any other

scheduler that performs online acceptance tests. On the application

side, all interactions with the RTOS have to be detectable at compile

time. This forbids any sort of dynamic code loading, the invocation

of syscalls via function pointers, and syscall arguments that are not

computable at compile time.

Nevertheless, for many domains these restrictions impose little

impact in practice – they are prescribed and demanded by the rele-

vant industry and real-time safety standards anyway: EDF sched-

uling, for instance, is barely used in embedded control systems;

the relevant industry standards (such as OSEK/AUTOSAR [23, 2],

ARINC 653 [1], µITRON [28], but also POSIX.4) all employ �xed-

priority scheduling; the usage of function pointers and any sort

of dynamic code modi�cations is discouraged by the relevant cod-

ing and safety standards (e.g., [10, 13]). In summary, most of our

requirements have to be ful�lled anyway by embedded control

systems that needs to pass certi�cation.

6.4 Predictable RTOS Implementation
Real-time developers use worst-case execution time (WCET) anal-

ysis to give upper bounds to the execution budget a job requires.

Tight bounds will simplify the provisioning required to obtain a

timing-predictable system. We can foster our predictive power by

improving the analysis itself, or by making the underlying plat-

form more predictable in the �rst place. Like the T-CREST/Patmos

project [27], OSEK-V provides a more predictable processor plat-

form for real-time applications.

With OSEK-V, the in�uence of the RTOS on the timing behavior

is minimized. An SSM activation requires only a few cycles, which

are dominated by the instruction-fetch delay for a re-scheduled

hart. The SSM execution itself does not evict any cache lines; only

the required pipeline �ush in�uences the application. Furthermore,

the static-alarm component o�oads periodic system orchestration

and, thereby, reduces the interrupt load.

Though timeliness is an important aspect of predictability, secu-

rity becomes more and more of an issue, especially when control

systems are connected to a (public) network. An OSEK-V core in-

herits only the required RTOS semantic, cuts down on the trusted

code base, and pushes the controlling component into the more

trustable domain of hardware implementations. When combined

with tailored memory protection, where a hart switch implies a

protection-domains switch, perfect isolation could be achieved

without executing a single kernel instruction. However, that is a

topic of further research.

7 RELATEDWORK
Interpreting the OS interface as an extension to the actual processor

interface that de�nes a hierarchical machine [29] is an established

view in the systems community. Therefore, it is nearby to resolve

the partial interpretation of syscalls by moving the OS (or parts

thereof) into the (custom) hardware to improve on di�erent non-

functional properties.

HybridThreads [3] accomplishes low run-time overhead and fast

interrupt handling by placing OS component besides the actual pro-

cessor. Scheduling decisions are dispatched in software through an

ISR. Sloth [11] achieves similar advantages for OSEK on standard

hardware by delegating all scheduling and dispatching to the inter-

rupt hardware. The FlexPRET processor [35], which also exposes

a RISC-V instruction set architecture, achieves a predictable exe-

cution of mixed-criticality systems through �ne-grained hardware

multithreading, while inter-thread dependencies and synchroniza-

tion are not considered. The ReconOS project [18], in contrast,

provides a uni�ed OS interface, resembling POSIX, for threads and

hardware components; coordination and synchronization is still

done in software. Mooney and Blough [21] instantiate OS com-

ponents in hardware to provide an application-speci�c platform;

the developer can manually select pre-built components, which are

orthogonal to the core services. In contrast to all these approaches,

OSEK-V performs an in-depth tailoring of the RTOS: We catch the

RTOS semantic from the viewpoint of a speci�c application instead

of reproducing a (generic) software implementation in hardware.

Furthermore, we directly integrate components into the processor

pipeline to achieve �ne-grained and application-speci�c tailoring.



In essence, OSEK-V derives its tailored RTOS semantic by a com-

plete specialization of each syscall at each call site. This somewhat

resembles the path-speci�c syscall optimization known from Syn-

thesis [26, 19] or partial specialization as provided by the Tempo

[20] framework. Both of these, however, specialize at run time,

which (a) requires expensive run-time support and (b) facilitates

probabilistic optimizations that can be reverted when necessary. In

contrast, OSEK-V is tailored at compile-time, so all specializations

have to be sound and complete in the sense that the resulting RTOS

instance can be represented as an FSM.

The usage of FSMs as a whole-system model has also been pro-

posed for deeply embedded sensor nodes to enhance simplicity and

energy e�ciency: SenOS [14] is a software event dispatcher and

executor for multiple manually-encoded state machines. Kothari

et al. [16] derive compact state machines (< 16 states) from TinyOS

programs by symbolic execution to foster understanding of existing

applications.

8 CONCLUSION
With OSEK-V, we explore the HW/SW design space for event-

triggered �xed-priority real-time systems at the hardware–OS bound-

ary. Starting from a single application and the standardized OSEK-
OS API, we extract the actual used RTOS behavior as a �nite-state

machine. This system state machine is triggered by syscalls and

interrupts and controls the thread dispatching. The OSEK-V core

maps each RTOS thread to a hardware thread and is accompa-

nied by application-speci�c hardware components that implement

the extracted RTOS semantic. Thereby, we unveil desirable non-

functional properties, like low event latencies (−79 % average IRQ

lock times), interference-reduced RTOS execution (−47% cache

stalls in the kernel), and fast thread re-scheduling (−81% cycles

for dispatching syscalls). These improvements come at moderate

FPGA cost of 10 percent more LUTs and 86 distributed memory

cells per mapped RTOS thread.

ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for their feedback.

This work has been supported by the German Research Founda-

tion (DFG) under the grants no. LO 1719/1-3, SFB/Transregio 89

“Invasive Computing” (Project C1), and LO 1719/4-1.

The source code of OSEK-V is available at:
https://gitlab.cs.fau.de/osek-v

REFERENCES
[1] AEEC. Avionics Application Software Standard Interface (ARINC Speci�cation

653-1). ARINC Inc, 2003.

[2] AUTOSAR. Speci�cation of Operating System (Version 5.1.0). Tech. rep. Auto-

motive Open System Architecture GbR, 2013.

[3] Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed Komp, Ron Sass,

Fabrice Baijot, and Jim Stevens. “Run-Time Services for Hybrid CPU/FPGA

Systems on Chip”. In: RTSS ’06. 2006. doi: 10.1109/RTSS.2006.45.

[4] H. Almatary, N.C. Audsley, and A. Burns. “Reducing the Implementation Over-

heads of IPCP and DFP”. In: RTSS ’15. 2015. doi: 10.1109/RTSS.2015.35.

[5] Manfred Broy. “Challenges in Automotive Software Engineering”. In: ICSE ’06.

2006. doi: 10.1145/1134285.1134292.

[6] Wayne P. Burleson, Jason Ko, Douglas Niehaus, Krithi Ramamritham, John

A. Stankovic, Gary Wallace, and Charles C. Weems. “The Spring Scheduling

Coprocessor: A Scheduling Accelerator”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 7.1 (1999). doi: 10.1109/92.748199.

[7] S. Devadas, Hi-Keung Ma, A.R. Newton, and A. Sangiovanni-Vincentelli. “MUS-

TANG: state assignment of �nite state machines targeting multilevel logic

implementations”. In: Computer-Aided Design of Integrated Circuits and Sys-
tems, IEEE Transactions on 7.12 (1988). doi: 10.1109/43.16807.

[8] Christian Dietrich, Martin Ho�mann, and Daniel Lohmann. “Back to the Roots:

Implementing the RTOS as a Specialized State Machine”. In: OSPERT ’15. 2015.

[9] Christian Dietrich, Martin Ho�mann, and Daniel Lohmann. “Cross-Kernel

Control-Flow-Graph Analysis for Event-Driven Real-Time Systems”. In: LCTES
’15. 2015. doi: 10.1145/2670529.2754963.

[10] Guidelines for the Use of the C Language in Critical Systems (MISRA-C). 2004.

[11] Wanja Hofer, Daniel Lohmann, Fabian Scheler, and Wolfgang Schröder-Preikschat.

“Sloth: Threads as Interrupts”. In: RTSS ’09. (Dec. 1–4, 2009). 2009. doi: 10.1109/

RTSS.2009.18.

[12] John Hopcroft. An n logn algorithm for minimizing states in a �nite automaton.

Tech. rep. Computer Science Department, University of California, 1971.

[13] ISO 26262-4. ISO 26262-4:2011: Road vehicles – Functional safety – Part 4: Product
development at the system level. 2011.

[14] Tae-Hyung Kim and Seongsoo Hong. “State Machine Based Operating System

Architecture for Wireless Sensor Networks”. In: Parallel and Distributed Com-
puting: Applications and Technologies. Vol. 3320. LNCS. 2005. doi: 10.1007/978-

3-540-30501-9_158.

[15] Paul Kohout, Brinda Ganesh, and Bruce Jacob. “Hardware Support for Real-

Time Operating Systems”. In: CODES+ISSS ’03. 2003. doi: 10 .1145/944645 .

944656.

[16] Nupur Kothari, Todd Millstein, and Ramesh Govindan. “Deriving State Ma-

chines from TinyOS Programs Using Symbolic Execution”. In: IPSN ’08. 2008.

doi: 10.1109/IPSN.2008.62.

[17] Yunsup Lee, A. Waterman, R. Avizienis, H. Cook, Chen Sun, V. Stojanovic,

and K. Asanovic. “A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V

processor with vector accelerators”. In: European Solid State Circuits Conference
(ESSCIRC), ESSCIRC 2014 - 40th. 2014. doi: 10.1109/ESSCIRC.2014.6942056.

[18] Enno Lübbers and Marco Platzner. “ReconOS: Multithreaded Programming for

Recon�gurable Computers”. In: ACM Trans. Embed. Comp. Syst. 9.1 (2009). doi:

10.1145/1596532.1596540.

[19] Henry Massalin and Calton Pu. “Threads and Input/Output in the Synthesis

Kernel”. In: SOSP ’89. 1989. doi: 10.1145/74850.74869.

[20] Dylan McNamee et al. “Specialization Tools and Techniques for Systematic

Optimization of System Software”. In: ACM Trans. Comp. Syst. 19.2 (2001). doi:

10.1145/377769.377778.

[21] Vincent J. Mooney and Douglas M. Blough. “A Hardware-Software Real-Time

Operating System Framework for SoCs”. In: IEEE Journal on Design and Test of
Computers 19.6 (2002). doi: 10.1109/MDT.2002.1047743.

[22] Edward F. Moore. “Gedanken-experiments on sequential machines”. In: Au-
tomata studies. Annals of mathematics studies, no. 34. 1956.

[23] OSEK/VDX Group. Operating System Speci�cation 2.2.3. Tech. rep. http://portal.

osek-vdx.org/files/pdf/specs/os223.pdf, visited 2014-09-29. OSEK/VDX Group,

2005.

[24] Arnaldo SR Oliveira, Luís Almeida, and António B Ferrari. “The ARPA-MT

embedded SMT processor and its RTOS hardware accelerator”. In: Industrial
Electronics 58.3 (2011). doi: 10.1109/TIE.2009.2028359.

[25] David Patterson and Borivoje Nikolić. Agile Design for Hardware. EE|Times

blog post. 2015. url: http://www.eetimes.com/author.asp?section_id=36&doc_

id=1327291.

[26] Calton Pu, Henry Massalin, and John Ioannidis. “The Synthesis Kernel”. In:

Computing Systems 1.1 (1988).

[27] Martin Schoeberl et al. “T-CREST: Time-predictable multi-core architecture

for embedded systems”. In: Journal of Systems Architecture 61.9 (2015). doi:

10.1016/j.sysarc.2015.04.002.

[28] Hiroaki Takada and Ken Sakamura. “µ ITRON for Small-Scale Embedded Sys-

tems”. In: IEEE Micro 15.6 (1995). doi: 10.1109/40.476258.

[29] Andrew S. Tanenbaum. Structured Computer Organization. Fifth. 2006.

[30] David Tennenhouse. “Proactive Computing”. In: CACM (2000).

[31] Peter Ulbrich, Rüdiger Kapitza, Christian Harkort, Reiner Schmid, and Wolf-

gang Schröder-Preikschat. “I4Copter: An Adaptable and Modular Quadrotor

Platform”. In: SAC ’11. 2011.

[32] D. Varma and E.A. Trachtenberg. “A fast algorithm for the optimal state assign-

ment of large �nite state machines”. In: ICCAD ’88. 1988. doi: 10.1109/ICCAD.

1988.122483.

[33] T. Villa and A. Sangiovanni-Vincentelli. “NOVA: State Assignment of Finite

State Machines for Optimal Two-level Logic Implementations”. In: 26th ACM/IEEE
Design Automation Conference. DAC ’89. 1989. doi: 10.1145/74382.74437.

[34] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. The
RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Tech. rep.

UCB/EECS-2014-54. EECS Department, University of California, Berkeley,

2014.

[35] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee. “FlexPRET:

A processor platform for mixed-criticality systems”. In: RTAS ’14. 2014. doi:

10.1109/RTAS.2014.6925994.

https://gitlab.cs.fau.de/osek-v
https://doi.org/10.1109/RTSS.2006.45
https://doi.org/10.1109/RTSS.2015.35
https://doi.org/10.1145/1134285.1134292
https://doi.org/10.1109/92.748199
https://doi.org/10.1109/43.16807
https://doi.org/10.1145/2670529.2754963
https://doi.org/10.1109/RTSS.2009.18
https://doi.org/10.1109/RTSS.2009.18
https://doi.org/10.1007/978-3-540-30501-9_158
https://doi.org/10.1007/978-3-540-30501-9_158
https://doi.org/10.1145/944645.944656
https://doi.org/10.1145/944645.944656
https://doi.org/10.1109/IPSN.2008.62
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1145/1596532.1596540
https://doi.org/10.1145/74850.74869
https://doi.org/10.1145/377769.377778
https://doi.org/10.1109/MDT.2002.1047743
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
http://portal.osek-vdx.org/files/pdf/specs/os223.pdf
https://doi.org/10.1109/TIE.2009.2028359
http://www.eetimes.com/author.asp?section_id=36&doc_id=1327291
http://www.eetimes.com/author.asp?section_id=36&doc_id=1327291
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/40.476258
https://doi.org/10.1109/ICCAD.1988.122483
https://doi.org/10.1109/ICCAD.1988.122483
https://doi.org/10.1145/74382.74437
https://doi.org/10.1109/RTAS.2014.6925994

	Abstract
	1 Introduction
	2 System Model and Idea
	2.1 Our Approach In a Nutshell
	2.2 Overview of OSEK-OS

	3 System State Machine
	3.1 Application State Machines
	3.2 System State Machine Minimization
	3.3 Static Alarms

	4 Deriving the OSEK-V Processor
	4.1 State Assignment and Logic Minimization
	4.2 The OSEK-V Processor
	4.3 Special Instructions and Static Alarms
	4.4 System Generation and Startup

	5 Experimental Results
	5.1 Performance
	5.2 FPGA Synthesis Cost for the OSEK-V Core

	6 Discussion
	6.1 Specialization vs. Standardization
	6.2 Application Domain and Scalability
	6.3 Restrictions on Semantic and Application
	6.4 Predictable RTOS Implementation

	7 Related Work
	8 Conclusion

