
UCS430-8

C-SPY® Debugging Guide

for the Texas Instruments
MSP430 Microcontroller Family

AFE1_AFE2-1:1

2
C-SPY® Debugging Guide
for MSP430

COPYRIGHT NOTICE
© 2010-2021 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Texas Instruments is a registered trademark of Texas Instruments Corporation. MSP430
is a trademark of Texas Instruments Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Eighth edition: March 2021

Part number: UCS430-8

This guide applies to version 7.x of IAR Embedded Workbench® for the Texas
Instruments MSP430 microcontroller family.

Internal reference: M23, Mym8.5, INIT

AFE1_AFE2-1:1

3

Brief contents
Tables ... 21

Preface .. 23

Part 1. Basic debugging .. 31

The IAR C-SPY Debugger ... 33

Getting started using C-SPY ... 43

Executing your application .. 57

Variables and expressions .. 81

Breakpoints .. 107

Memory and registers .. 141

Part 2. Analyzing your application 179

Trace ... 181

The application timeline .. 195

Profiling .. 225

Code coverage ... 235

Power debugging .. 241

Part 3. Advanced debugging ... 265

Interrupts .. 267

The advanced cycle counter ... 291

State storage ... 299

The sequencer ... 305

C-SPY macros ... 311

AFE1_AFE2-1:1

4
C-SPY® Debugging Guide
for MSP430

The C-SPY command line utility—cspybat 373

Part 4. Additional reference information 399

Debugger options ... 401

Additional information on C-SPY drivers .. 413

Index ... 425

AFE1_AFE2-1:1

5

Contents
Tables ... 21

Preface .. 23

Who should read this guide ... 23

Required knowledge .. 23

How to use this guide ... 23

What this guide contains ... 24

Part 1. Basic debugging ... 24

Part 2. Analyzing your application .. 24

Part 3. Advanced debugging .. 25

Part 4. Additional reference information ... 25

Other documentation ... 25

User and reference guides .. 26

The online help system .. 26

Web sites .. 27

Document conventions .. 27

Typographic conventions ... 27

Naming conventions .. 28

Part 1. Basic debugging .. 31

The IAR C-SPY Debugger ... 33

Introduction to C-SPY .. 33

An integrated environment ... 33

General C-SPY debugger features ... 34

RTOS awareness .. 35

Debugger concepts .. 36

C-SPY and target systems .. 36

The debugger .. 37

The target system ... 37

The application ... 37

C-SPY debugger systems ... 38

AFE1_AFE2-1:1

6
C-SPY® Debugging Guide
for MSP430

The ROM-monitor program ... 38

Third-party debuggers .. 38

C-SPY plugin modules ... 38

C-SPY drivers overview ... 39

Differences between the C-SPY drivers ... 39

The IAR C-SPY Simulator .. 40

Supported features .. 40

The C-SPY hardware debugger drivers .. 40

Features .. 41

Communication overview .. 41

Getting started using C-SPY ... 43

Setting up C-SPY .. 43

Setting up for debugging .. 43

Executing from reset .. 44

Using a setup macro file ... 44

Selecting a device description file ... 44

Loading plugin modules ... 45

Starting C-SPY ... 45

Starting a debug session ... 45

Loading executable files built outside of the IDE 46

Starting a debug session with source files missing 46

Loading multiple debug images .. 47

Editing in C-SPY windows .. 47

Adapting for target hardware ... 48

Modifying a device description file ... 48

Initializing target hardware before C-SPY starts 49

Using predefined C-SPY macros for device support 50

Reference information on starting C-SPY 50

C-SPY Debugger main window ... 50

Images window .. 54

Get Alternative File dialog box .. 55

Device Information window .. 56

AFE1_AFE2-1:1

Contents

7

Executing your application .. 57

Introduction to application execution ... 57

Briefly about application execution ... 57

Source and disassembly mode debugging ... 57

Single stepping ... 58

Troubleshooting slow stepping speed .. 61

Running the application ... 62

Highlighting ... 62

Viewing the call stack .. 63

Terminal input and output .. 64

Debug logging .. 64

Reference information on application execution 64

Disassembly window ... 65

Call Stack window ... 71

Terminal I/O window ... 73

Terminal I/O Log File dialog box .. 74

Debug Log window .. 75

Log File dialog box .. 77

Report Assert dialog box .. 78

Autostep settings dialog box .. 78

Cores window .. 79

Variables and expressions .. 81

Introduction to working with variables and expressions 81

Briefly about working with variables and expressions 81

C-SPY expressions ... 82

Limitations on variable information .. 84

Working with variables and expressions 85

Using the windows related to variables and expressions 85

Viewing assembler variables ... 86

Reference information on working with variables and
expressions .. 87

Auto window .. 87

Locals window ... 89

AFE1_AFE2-1:1

8
C-SPY® Debugging Guide
for MSP430

Watch window ... 91

Live Watch window ... 93

Statics window ... 96

Quick Watch window ... 99

Symbols window .. 102

Resolve Symbol Ambiguity dialog box ... 104

Breakpoints .. 107

Introduction to setting and using breakpoints 107

Reasons for using breakpoints ... 107

Briefly about setting breakpoints ... 107

Breakpoint types .. 108

Breakpoint icons .. 110

Breakpoints in the C-SPY simulator .. 110

Breakpoints in the C-SPY FET debugger driver 111

Breakpoint consumers .. 112

Setting breakpoints .. 113

Various ways to set a breakpoint ... 113

Toggling a simple code breakpoint .. 114

Setting breakpoints using the dialog box ... 114

Setting a data breakpoint in the Memory window 115

Setting breakpoints using system macros .. 116

Useful breakpoint hints .. 117

Reference information on breakpoints 118

Breakpoints window .. 119

Breakpoint Usage window ... 121

Code breakpoints dialog box .. 122

Log breakpoints dialog box .. 123

Data breakpoints dialog box .. 125

Data Log breakpoints dialog box ... 127

Immediate breakpoints dialog box ... 128

Range breakpoints dialog box .. 129

Conditional breakpoints dialog box ... 131

Advanced Trigger breakpoints dialog box 134

AFE1_AFE2-1:1

Contents

9

Enter Location dialog box .. 136

Breakpoint combiner dialog box .. 137

Resolve Source Ambiguity dialog box .. 138

Memory and registers .. 141

Introduction to monitoring memory and registers 141

Briefly about monitoring memory and registers 141

C-SPY memory zones .. 142

Memory configuration for the C-SPY simulator 143

Monitoring memory and registers .. 144

Defining application-specific register groups 144

Monitoring stack usage .. 146

Reference information on memory and registers 148

Memory window .. 149

Memory Save dialog box ... 153

Memory Restore dialog box ... 154

Fill dialog box .. 155

Symbolic Memory window .. 156

Stack window ... 159

Registers window ... 163

Register User Groups Setup window ... 166

SFR Setup window ... 168

Edit SFR dialog box ... 171

Memory Access Setup dialog box ... 173

Edit Memory Access dialog box .. 175

Memory Dump dialog box ... 176

Part 2. Analyzing your application 179

Trace ... 181

Introduction to using trace .. 181

Reasons for using trace .. 181

Briefly about trace .. 181

Requirements for using trace ... 182

AFE1_AFE2-1:1

10
C-SPY® Debugging Guide
for MSP430

Collecting and using trace data .. 182

Getting started with trace ... 182

Trace data collection using breakpoints ... 183

Searching in trace data ... 183

Browsing through trace data .. 184

Reference information on trace ... 184

Trace window ... 184

Function Trace window ... 188

Trace Start Trigger breakpoint dialog box 189

Trace Stop Trigger breakpoint dialog box 190

Trace Expressions window .. 191

Find in Trace dialog box ... 193

Find in Trace window .. 194

The application timeline .. 195

Introduction to analyzing your application’s timeline 195

Briefly about analyzing the timeline .. 195

Requirements for timeline support .. 197

Analyzing your application’s timeline .. 197

Displaying a graph in the Timeline window 198

Navigating in the graphs .. 198

Analyzing performance using the graph data 199

Getting started using data logging ... 200

Getting started using data sampling ... 201

Reference information on application timeline 201

Data Log window ... 202

Data Log Summary window .. 205

Data Sample window ... 208

Data Sample Setup window ... 209

Sampled Graphs window ... 211

Timeline window—Call Stack graph .. 215

Timeline window—Data Log graph .. 218

Viewing Range dialog box ... 222

AFE1_AFE2-1:1

Contents

11

Profiling .. 225

Introduction to the profiler .. 225

Reasons for using the profiler .. 225

Briefly about the profiler .. 225

Requirements for using the profiler ... 226

Using the profiler .. 227

Getting started using the profiler on function level 227

Analyzing the profiling data .. 228

Getting started using the profiler on instruction level 229

Reference information on the profiler .. 230

Function Profiler window .. 230

Code coverage ... 235

Introduction to code coverage ... 235

Reasons for using code coverage ... 235

Briefly about code coverage .. 235

Requirements and restrictions for using code coverage 235

Using code coverage ... 236

Getting started using code coverage .. 236

Reference information on code coverage 236

Code Coverage window ... 237

Power debugging .. 241

Introduction to power debugging .. 241

Reasons for using power debugging .. 241

Briefly about power debugging .. 241

Requirements and restrictions for power debugging 243

Optimizing your source code for power consumption 243

Waiting for device status .. 244

Software delays .. 244

DMA versus polled I/O .. 244

Low-power mode diagnostics .. 244

CPU frequency ... 245

Detecting mistakenly unattended peripherals 245

AFE1_AFE2-1:1

12
C-SPY® Debugging Guide
for MSP430

Peripheral units in an event-driven system 246

Finding conflicting hardware setups .. 247

Analog interference .. 247

Debugging in the power domain .. 248

Displaying a power profile and analyzing the result 248

Displaying the power profile on a device without EnergyTrace++ . 249

Detecting unexpected power usage during application execution ... 250

Measuring low power currents ... 250

Changing the graph resolution ... 251

Reference information on power debugging 251

Power Log Setup window .. 252

Power Log window .. 254

Timeline window—Power graph .. 257

State Log Setup window ... 258

State Log window .. 259

State Log Summary window .. 261

Timeline window—State Log graph ... 264

Part 3. Advanced debugging ... 265

Interrupts .. 267

Introduction to interrupts .. 267

Briefly about the interrupt simulation system 267

Interrupt characteristics .. 268

Interrupt simulation states .. 269

C-SPY system macros for interrupt simulation 270

Target-adapting the interrupt simulation system 271

Briefly about interrupt logging .. 271

Using the interrupt system .. 271

Simulating a simple interrupt ... 272

Simulating an interrupt in a multi-task system 273

Getting started using interrupt logging .. 274

Reference information on interrupts ... 274

Interrupt Setup dialog box .. 275

AFE1_AFE2-1:1

Contents

13

Edit Interrupt dialog box .. 277

Forced Interrupt window .. 278

Interrupt Status window ... 279

Interrupt Log window .. 281

Interrupt Log Summary window .. 284

Timeline window—Interrupt Log graph .. 287

The advanced cycle counter ... 291

Introduction to the advanced cycle counter 291

Reasons for using the advanced cycle counter 291

Briefly about the advanced cycle counter .. 291

Requirements for using the advanced cycle counter 291

Using the cycle counter applications ... 292

Counting all CPU cycles .. 292

Measuring the DMA load versus the CPU load 292

Profiling a specific part of your application 293

Measuring the Trigger hits ... 294

Measuring the number of CPU cycles for a task 294

Reference information on the advanced cycle counter 295

Advanced Cycle Counter Control window 295

State storage ... 299

Introduction to state storage .. 299

Reasons for using state storage .. 299

Briefly about state storage .. 299

Requirements ... 299

Using state storage .. 300

Setting up state storage .. 300

Reference information on state storage 301

State Storage Control window ... 301

State Storage window .. 303

The sequencer ... 305

Introduction to the sequencer .. 305

Reasons for using the sequencer .. 305

AFE1_AFE2-1:1

14
C-SPY® Debugging Guide
for MSP430

Briefly about the sequencer .. 305

Requirements for using the sequencer ... 306

Using the sequencer .. 306

Setting up the sequencer (simple setup) ... 306

Setting up the sequencer (advanced setup) 306

Using the sequencer to locate a problem ... 307

Reference information on the sequencer 309

Sequencer Control window ... 309

C-SPY macros ... 311

Introduction to C-SPY macros ... 311

Reasons for using C-SPY macros .. 311

Briefly about using C-SPY macros .. 312

Briefly about setup macro functions and files 312

Briefly about the macro language .. 312

Using C-SPY macros ... 313

Registering C-SPY macros—an overview 314

Executing C-SPY macros—an overview ... 314

Registering and executing using setup macros and setup files 315

Executing macros using Quick Watch .. 315

Executing a macro by connecting it to a breakpoint 316

Aborting a C-SPY macro ... 317

Reference information on the macro language 318

Macro functions ... 318

Macro variables ... 318

Macro parameters ... 319

Macro strings .. 319

Macro statements ... 320

Formatted output .. 321

Reference information on reserved setup macro function
names ... 323

execUserPreload ... 323

execUserExecutionStarted ... 324

execUserExecutionStopped ... 324

AFE1_AFE2-1:1

Contents

15

execUserSetup .. 324

execUserPreReset ... 325

execUserReset .. 325

execUserExit .. 325

Reference information on C-SPY system macros 325

__abortLaunch ... 328

__cancelAllInterrupts .. 328

__cancelInterrupt ... 329

__clearBreak .. 329

__closeFile ... 329

__delay ... 330

__disableInterrupts .. 330

__driverType .. 330

__enableInterrupts ... 331

__evaluate .. 331

__fillMemory8 .. 332

__fillMemory16 .. 333

__fillMemory32 .. 334

__getSelectedCore ... 335

__isBatchMode .. 335

__loadImage .. 335

__memoryRestore .. 336

__memorySave .. 337

__messageBoxYesCancel .. 338

__messageBoxYesNo .. 339

__openFile ... 339

__orderInterrupt ... 340

__popSimulatorInterruptExecutingStack .. 341

__readFile .. 342

__readFileByte ... 343

__readMemory8, __readMemoryByte .. 343

__readMemory16 ... 344

__readMemory32 ... 344

__registerMacroFile ... 345

AFE1_AFE2-1:1

16
C-SPY® Debugging Guide
for MSP430

__resetFile .. 345

__selectCore .. 345

__setAdvancedTriggerBreak ... 346

__setCodeBreak ... 347

__setConditionalBreak .. 348

__setDataBreak .. 349

__setDataLogBreak ... 351

__setLogBreak ... 352

__setRangeBreak ... 353

__setSimBreak ... 354

__setTraceStartBreak ... 355

__setTraceStopBreak ... 356

__sourcePosition .. 357

__strFind .. 357

__subString .. 358

__system1 .. 358

__system2 .. 359

__system3 .. 360

__targetDebuggerVersion .. 360

__toLower .. 361

__toString .. 361

__toUpper .. 362

__unloadImage .. 362

__wallTime_ms ... 363

__writeFile ... 363

__writeFileByte ... 364

__writeMemory8, __writeMemoryByte ... 364

__writeMemory16 ... 365

__writeMemory32 ... 365

Graphical environment for macros .. 366

Macro Registration window ... 366

Debugger Macros window ... 368

Macro Quicklaunch window .. 370

AFE1_AFE2-1:1

Contents

17

The C-SPY command line utility—cspybat 373

Using C-SPY in batch mode ... 373

Starting cspybat .. 373

Output ... 374

Invocation syntax ... 374

Summary of C-SPY command line options 375

General cspybat options ... 375

Options available for all C-SPY drivers .. 376

Options available for the simulator driver 376

Options available for the C-SPY FET Debugger driver 376

Reference information on C-SPY command line options ... 378

--allow_access_to_BSL ... 378

--allow_locked_flash_access ... 378

--application_args ... 379

--attach_to_running_target ... 379

--backend .. 380

--connection ... 380

--core .. 380

--code_coverage_file .. 381

--cycles ... 381

-d .. 382

--debug_file .. 382

--derivative ... 383

--disable_interrupts .. 383

--disable_memory_cache ... 383

--downloadonly .. 383

--eem .. 384

--erase_exclude .. 384

--erase_exclude_all .. 385

--erase_ip_protected ... 385

--erase_main ... 385

--erase_main_and_info ... 386

--erase_retain_file .. 386

AFE1_AFE2-1:1

18
C-SPY® Debugging Guide
for MSP430

--erase_retain_target ... 386

-f ... 387

--function_profiling .. 387

--hardware_multiplier .. 388

--hwmult_type .. 388

--jtag_speed .. 389

--leave_target_running ... 390

--lptx ... 390

--macro ... 390

--macro_param ... 391

--mapu .. 391

--mspdlogfile .. 392

--odd_word_check ... 392

-p .. 392

--plugin ... 393

--port ... 393

--protocol .. 394

--restore_fram_memory ... 394

--retain_fram_memory ... 394

--set_exit_breakpoint ... 395

--set_getchar_breakpoint .. 395

--set_putchar_breakpoint ... 395

--settlingtime .. 396

--silent .. 396

--timeout ... 396

--use_emulated_breakpoints .. 397

--use_virtual_breakpoints ... 397

--vccvoltage .. 397

--verify_all ... 397

AFE1_AFE2-1:1

Contents

19

Part 4. Additional reference information 399

Debugger options ... 401

Setting debugger options .. 401

Reference information on general debugger options 402

Setup ... 402

Images .. 403

Extra Options ... 404

Plugins .. 405

Reference information on the C-SPY simulator 406

Setup options for the simulator ... 406

Reference information on C-SPY hardware debugger
driver options ... 406

Setup for FET Debugger .. 407

Download ... 408

Breakpoints ... 410

Additional information on C-SPY drivers .. 413

Reference information on C-SPY driver menus 413

C-SPY driver .. 413

Simulator menu .. 414

Emulator menu ... 416

Reference information on the C-SPY simulator 419

Simulated Frequency dialog box .. 419

Reference information on the C-SPY FET Debugger
driver .. 420

General Clock Control dialog box ... 420

Extended Clock Control dialog box ... 421

Resolving problems .. 421

The device port pins do not work ... 422

Write failure during load .. 422

No contact with the target hardware .. 423

Index ... 425

AFE1_AFE2-1:1

20
C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

21

Tables
1: Typographic conventions used in this guide ... 27

2: Naming conventions used in this guide .. 28

3: Driver differences .. 39

4: C-SPY assembler symbols expressions .. 83

5: Handling name conflicts between hardware registers and assembler labels 83

6: C-SPY macros for breakpoints .. 116

7: Support for timeline information .. 197

8: Supported graphs in the Timeline window ... 197

9: C-SPY driver profiling support ... 227

10: Project options for enabling the profiler ... 227

11: Project options for enabling code coverage .. 236

12: Timer interrupt settings ... 273

13: Cycle Counter 1, combinations of start, stop, and clear reactions 297

14: Sequencer settings - example .. 308

15: State Storage Control settings—example .. 308

16: Examples of C-SPY macro variables .. 319

17: Summary of system macros .. 325

18: __cancelInterrupt return values ... 329

19: __disableInterrupts return values .. 330

20: __driverType return values ... 331

21: __enableInterrupts return values ... 331

22: __evaluate return values ... 332

23: __isBatchMode return values ... 335

24: __loadImage return values .. 335

25: __messageBoxYesCancel return values ... 338

26: __messageBoxYesNo return values ... 339

27: __openFile return values ... 340

28: __readFile return values ... 342

29: __setAdvancedTriggerBreak return values ... 347

30: __setCodeBreak return values .. 348

31: __setConditionalBreak return values .. 349

AFE1_AFE2-1:1

22
C-SPY® Debugging Guide
for MSP430

32: __setDataBreak return values ... 350

33: __setDataLogBreak return values ... 351

34: __setLogBreak return values .. 352

35: __setRangeBreak return values .. 354

36: __setSimBreak return values .. 355

37: __setTraceStartBreak return values .. 355

38: __setTraceStopBreak return values .. 356

39: __sourcePosition return values ... 357

40: __unloadImage return values .. 363

41: cspybat parameters .. 374

42: Options specific to the C-SPY drivers you are using .. 401

AFE1_AFE2-1:1

23

Preface
Welcome to the C-SPY® Debugging Guide for MSP430. The purpose of this
guide is to help you fully use the features in the IAR C-SPY® Debugger for
debugging your application based on the MSP430 microcontroller.

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the MSP430 microcontroller (refer to the
chip manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 25.

How to use this guide
Each chapter in this guide covers a specific topic area. In many chapters, information is
typically divided into different sections based on information types:

● Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

● Tasks, which lists useful tasks related to the topic area. For many of the tasks, you
can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.

● Reference information, which gives reference information related to the topic area.
Read this section for information about certain GUI components. You can easily
access this type of information for a certain component in the IDE by pressing F1.

AFE1_AFE2-1:1

24

What this guide contains

C-SPY® Debugging Guide
for MSP430

If you are new to using IAR Embedded Workbench, the tutorials, which you can find in
the IAR Information Center, will help you get started using IAR Embedded Workbench.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for MSP430.

PART 1. BASIC DEBUGGING

● The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

● Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

● Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

● Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

● Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

● Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

● Trace describes how you can inspect the program flow up to a specific state using
trace data.

● The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

● Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

● Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

AFE1_AFE2-1:1

Preface

25

● Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

PART 3. ADVANCED DEBUGGING

● Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

● The advanced cycle counter describes the advanced cycle counter for MSP430
devices, and how it can help you to profile your application or to measure how long
some tasks take.

● State storage describes how the state storage module can help you to examine how
your code is executed, and find problems in a specific stage of the execution.

● The sequencer describes the sequencer module, a simple state machine that lets you
break the execution or trigger the state storage module using a more complex
method than a standard breakpoint.

● C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

● The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

PART 4. ADDITIONAL REFERENCE INFORMATION

● Debugger options describes the options you must set before you start the C-SPY
debugger.

● Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

AFE1_AFE2-1:1

26

Other documentation

C-SPY® Debugging Guide
for MSP430

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products are available in the Installation and Licensing Quick Reference
Guide and the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for MSP430.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for MSP430.

● Programming for the IAR C/C++ Compiler for MSP430, is available in the IAR
C/C++ Compiler User Guide for MSP430.

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

● Programming for the IAR Assembler for MSP430, is available in the IAR Assembler
Reference Guide for MSP430.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for MSP430, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

● Information about project management, editing, and building in the IDE

● Information about debugging using the IAR C-SPY® Debugger

● Reference information about the menus, windows, and dialog boxes in the IDE

● Compiler reference information

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while

AFE1_AFE2-1:1

Preface

27

using the CLIB C standard library, you will get reference information for the DLIB
C standard library.

WEB SITES

Recommended web sites:

● The Texas Instruments web site, www.ti.com, that contains information and news
about the MSP430 microcontrollers.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example 430\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\430\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

28

Document conventions

C-SPY® Debugging Guide
for MSP430

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

[option] An optional part of a stack usage control directive, where [and] are
not part of the actual directive, but any [,], {, or } are part of the
directive syntax.

{option} A mandatory part of a stack usage control directive, where { and } are
not part of the actual directive, but any [,], {, or } are part of the
directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

[a|b|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for MSP430 IAR Embedded Workbench®

IAR Embedded Workbench® IDE for MSP430 the IDE

IAR C-SPY® Debugger for MSP430 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

Preface

29

IAR C/C++ Compiler™ for MSP430 the compiler

IAR Assembler™ for MSP430 the assembler

IAR XLINK Linker™ XLINK, the linker

IAR XAR Library Builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR CLIB Runtime Environment™ the CLIB runtime environment

IAR DLIB Runtime Environment™ the DLIB runtime environment

Brand name Generic term

Table 2: Naming conventions used in this guide (Continued)

AFE1_AFE2-1:1

30

Document conventions

C-SPY® Debugging Guide
for MSP430

31

Part 1. Basic debugging
This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:

● The IAR C-SPY Debugger

● Getting started using C-SPY

● Executing your application

● Variables and expressions

● Breakpoints

● Memory and registers

32

AFE1_AFE2-1:1

33

The IAR C-SPY Debugger
● Introduction to C-SPY

● Debugger concepts

● C-SPY drivers overview

● The IAR C-SPY Simulator

● The C-SPY hardware debugger drivers

Introduction to C-SPY
These topics are covered:

● An integrated environment

● General C-SPY debugger features

● RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

● Editing while debugging

During a debug session, you can make corrections directly in the same source code
window that is used for controlling the debugging. Changes will be included in the
next project rebuild.

● Setting breakpoints at any point during the development cycle

You can inspect and modify breakpoint definitions also when the debugger is not
running, and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will be
preserved between your debug sessions.

All windows that are open in the IAR Embedded Workbench workspace will stay open
when you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are
opened.

AFE1_AFE2-1:1

34

Introduction to C-SPY

C-SPY® Debugging Guide
for MSP430

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

● Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

● Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

● Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

● Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

● Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

● Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

● Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in

AFE1_AFE2-1:1

The IAR C-SPY Debugger

35

conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

● Threaded execution keeps the IDE responsive while running the target application

● Automatic stepping

● The source browser provides easy navigation to functions, types, and variables

● Extensive type recognition of variables

● Configurable registers (CPU and peripherals) and memory windows

● Graphical stack view with overflow detection

● Support for code coverage and function level profiling

● The target application can access files on the host PC using file I/O (requires the
DLIB library)

● UBROF, Intel-Standard, Intel-extended, Motorola, and TI msp430-txt input formats
supported

● Optional terminal I/O emulation

RTOS AWARENESS

C-SPY supports RTOS-aware debugging.

These operating systems are currently supported:

● CMX

● FreeRTOS, OpenRTOS, and SafeRTOS

● Micrium uC/OS-II

● Micrium uC/OS-III

● OSEK

● Segger embOS

● TI-RTOS

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

AFE1_AFE2-1:1

36

Debugger concepts

C-SPY® Debugging Guide
for MSP430

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module.

Debugger concepts
This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

These topics are covered:

● C-SPY and target systems

● The debugger

● The target system

● The application

● C-SPY debugger systems

● The ROM-monitor program

● Third-party debuggers

● C-SPY plugin modules

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

37

This figure gives an overview of C-SPY and possible target systems:

Note: In IAR Embedded Workbench for MSP430, there are no ROM-monitor drivers.

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

AFE1_AFE2-1:1

38

Debugger concepts

C-SPY® Debugging Guide
for MSP430

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints.

Typically, there are three main types of C-SPY drivers:

● Simulator driver

● ROM-monitor driver

● Emulator driver

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY
drivers and the functionality provided by each driver, see C-SPY drivers overview, page
39.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read any of the output formats provided by XLINK, such
as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, TI msp430-txt, or any other
available format. For information about which format to use with a third-party debugger,
see the user documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

● The various C-SPY drivers for debugging using certain debug systems.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

39

● RTOS plugin modules for support for real-time OS aware debugging.

● C-SPYLink that bridges IAR Visual State and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR Visual State.

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontrollers is available with drivers for these target systems and evaluation boards:

● simulator

● FET Debugger.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the C-SPY drivers:

1 With specific requirements or restrictions, see the respective chapter in this guide.

Feature Simulator FET Debugger

Code breakpoints Unlimited Yes1

Data breakpoints Yes —

Execution in real time — Yes

Zero memory footprint Yes Yes

Simulated interrupts Yes —

Real interrupts — Yes

Interrupt logging Yes —

Data logging Yes —

State logging — Yes

Live watch Yes —

Cycle counter Yes Yes1

Code coverage Yes —

Data coverage Yes —

Function/instruction profiling Yes —1

Trace Yes —

Power debugging 1 — Yes

Table 3: Driver differences

AFE1_AFE2-1:1

40

The IAR C-SPY Simulator

C-SPY® Debugging Guide
for MSP430

The IAR C-SPY Simulator
The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

SUPPORTED FEATURES

The C-SPY Simulator supports:

● Instruction-level simulation

● Memory configuration and validation

● Interrupt simulation

● Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

● You can set an unlimited number of breakpoints in the simulator.

● When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

● Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

● The simulator is not cycle accurate.

● Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY hardware debugger drivers
The C-SPY Flash Emulator Tool Debugger is a JTAG debugger that supports all Texas
Instruments’ debug probes and boards, and several third-party JTAG debug probes. It
provides automatic flash downloading and takes advantage of on-chip debug facilities.

To make the C-SPY FET Debugger work, a communication driver must be installed on
the host PC. This driver is automatically installed during the installation of the IAR
Embedded Workbench IDE. Because the hardware debugger kernel is built into the
microcontroller, no ordinary ROM-monitor program or extra specific hardware is

AFE1_AFE2-1:1

The IAR C-SPY Debugger

41

needed to make the debugging work. You can also use the debugger on your own
hardware design.

At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontrollers is available with drivers for these JTAG debug probes supported by the
FET debugger driver:

● MSP-FET430UIF

● MSP-FET

● eZFET

● eZ430

● Olimex JTAG interface

● Elprotronic JTAG interface.

FEATURES

In addition to the general features of C-SPY, the FET Debugger driver also provides:

● Execution in real time with full access to the microcontroller

● High-speed communication through a JTAG interface

● Zero memory footprint on the target system

● Hardware code breakpoints

● Built-in flash loader.

Depending on the level of Enhanced Emulation Module (EEM) support, you might also
have access to:

● State storage

● Sequencer

● Clock control.

COMMUNICATION OVERVIEW

Most target systems have a debug probe or a debug adapter connected between the host
computer and the evaluation board.

AFE1_AFE2-1:1

42

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for MSP430

The C-SPY FET Debugger driver uses the USB or parallel port to communicate with the
FET Interface module. The FET Interface module communicates with the JTAG
interface on the hardware.

For further information, refer to the documentation supplied with the FET Debugger.

When a debug session is started, your application is automatically downloaded and
programmed into flash memory. You can disable this feature, if necessary.

Recommended power-up sequence

For information about the hardware installation, see the documentation supplied with
the debug probe from Texas Instruments. The following power-up sequence is
recommended to ensure proper communication between the target board, debug probe,
and C-SPY:

1 Power up the target board, if it is not powered via the debug probe.

2 Power up the debug probe, if it is not powered via USB.

3 Start the C-SPY debug session.

C-SPY debugger
C-SPY FET Debugger driver

JTAG cable

FET interface

USB or parallel
connection

module

AFE1_AFE2-1:1

43

Getting started using
C-SPY
● Setting up C-SPY

● Starting C-SPY

● Adapting for target hardware

● Reference information on starting C-SPY

Setting up C-SPY
These tasks are covered:

● Setting up for debugging

● Executing from reset

● Using a setup macro file

● Selecting a device description file

● Loading plugin modules

SETTING UP FOR DEBUGGING

1 Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system—simulator or hardware debugger
system.

2 In the Category list, select the appropriate C-SPY driver and make your settings. For
information about these options, see Debugger options, page 401.

3 Click OK.

4 Choose Tools>Options to open the IDE Options dialog box:

● Select Debugger to configure the debugger behavior

● Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide for MSP430. See also Adapting for target hardware, page 48.

AFE1_AFE2-1:1

44

Setting up C-SPY

C-SPY® Debugging Guide
for MSP430

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset. The reset address is set by C-SPY.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 311.

For an example of how to use a setup macro file, see Initializing target hardware before
C-SPY starts, page 49.

To register a setup macro file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. Device
description files from IAR Systems are provided in the 430\config directory and they
have the filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 48.

AFE1_AFE2-1:1

Getting started using C-SPY

45

To override the default device description file:

1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select the Override default option, and choose a file using the Device description file
browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or IAR Systems representative,
or visit the IAR Systems web site, for information about available modules.

For more information, see Plugins, page 405.

Starting C-SPY
When you have set up the debugger, you are ready to start a debug session.

These tasks are covered:

● Starting a debug session

● Loading executable files built outside of the IDE

● Starting a debug session with source files missing

● Loading multiple debug images

● Editing in C-SPY windows

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

AFE1_AFE2-1:1

46

Starting C-SPY

C-SPY® Debugging Guide
for MSP430

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

1 Choose Project>Create New Project, and specify a project name.

2 To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the file type drop-down list. Locate the executable file.

3 To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Typically, you can use the dialog box like this:

● The source files are not available: Select If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there is no source file available. The
dialog box will not appear again, and the debug session will not try to display the
source code.

● Alternative source files are available at another location: Specify an alternative
source code file, select If possible, don’t show this dialog again, and then click
Use this file. C-SPY will assume that the alternative file should be used. The dialog

AFE1_AFE2-1:1

Getting started using C-SPY

47

box will not appear again, unless a file is needed for which there is no alternative
file specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have selected If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 55.

LOADING MULTIPLE DEBUG IMAGES

Normally, a debuggable application consists of a single file that you debug. However,
you can also load additional debug files (debug images). This means that the complete
program consists of several debug images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one debug image has been loaded, you will have access to the combined
debug information for all the loaded debug images. In the Images window you can
choose whether you want to have access to debug information for a single debug image
or for all images.

To load additional debug images at C-SPY startup:

1 Choose Project>Options>Debugger>Images and specify up to three additional
debug images to be loaded. For more information, see Images, page 403.

2 Start the debug session.

To load additional debug images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 313.

To display a list of loaded debug images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 54.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Symbolic Memory, Registers, Register
User Groups Setup, Auto, Watch, Locals, Statics, Live Watch, and Quick Watch
windows.

AFE1_AFE2-1:1

48

Adapting for target hardware

C-SPY® Debugging Guide
for MSP430

Use these keyboard keys to edit the contents of these windows:

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements
of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray;3

To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:

myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10–14, write:

myArray;5,10

To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:

myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

Adapting for target hardware
These tasks are covered:

● Modifying a device description file

● Initializing target hardware before C-SPY starts

● Using predefined C-SPY macros for device support

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 44. Device
description files contain device-specific information such as:

● Memory information for device-specific memory zones, see C-SPY memory zones,
page 142.

● Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these.

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

AFE1_AFE2-1:1

Getting started using C-SPY

49

● Definitions for device-specific interrupts, which makes it possible to simulate these
interrupts in the C-SPY simulator, see Interrupts, page 267.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

For information about how to load a device description file, see Selecting a device
description file, page 44.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

1 Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternalSDRAM()
{
 __message "Enabling external SDRAM\n";
 __writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
 enableExternalSDRAM();
}

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

4 Select the Use macro file option, and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

AFE1_AFE2-1:1

50

Reference information on starting C-SPY

C-SPY® Debugging Guide
for MSP430

USING PREDEFINED C-SPY MACROS FOR DEVICE SUPPORT

For some MSP430 devices, there are predefined C-SPY macros available for specific
device support, typically provided by the chip manufacturer. These macros are useful for
performing certain device-specific tasks,

You can easily access and execute these macros using the Macro Quicklaunch window.

Reference information on starting C-SPY
Reference information about:

● C-SPY Debugger main window, page 50

● Images window, page 54

● Get Alternative File dialog box, page 55

● Device Information window, page 56

See also:

● Tools options for the debugger in the IDE Project Management and Building Guide
for MSP430.

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

● A dedicated Debug menu with commands for executing and debugging your
application

● Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

● A special debug toolbar

● Several windows and dialog boxes specific to C-SPY

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar

These menus are available during a debug session:

Debug

Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

AFE1_AFE2-1:1

Getting started using C-SPY

51

C-SPY driver menu

Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 413.

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most commands are
also available as icon buttons on the debug toolbar.

These commands are available:

Go (F5)

Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Break

Stops the application execution.

Reset

Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to 'label', where label typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

AFE1_AFE2-1:1

52

Reference information on starting C-SPY

C-SPY® Debugging Guide
for MSP430

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)

Stops the debugging session and returns you to the project manager.

Step Over (F10)

Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)

Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)

Executes from the current statement up to the statement after the call to the
current function.

Next Statement

Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor

Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep

Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 78.

Set Next Statement

Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>Break on Throw

This menu command is not supported by your product package.

C++ Exceptions>Break on Uncaught Exception

This menu command is not supported by your product package.

AFE1_AFE2-1:1

Getting started using C-SPY

53

Memory>Save

Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 153.

Memory>Restore

Displays a dialog box where you can load the contents of a file in, for example
Intel-extended, TI msp430-txt, or Motorola s-record format to a specified
memory zone, see Memory Restore dialog box, page 154.

Refresh

Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Log file

Displays a dialog box where you can choose to log the contents of the Debug
Log window to a file. You can select the type and the location of the log file. You
can choose what you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 77.

Logging>Set Terminal I/O Log file

Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal I/O Log File dialog box, page 74

C-SPY windows

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

● C-SPY Debugger main window

● Disassembly window

● Memory window

● Symbolic Memory window

● Registers window

● Watch window

● Locals window

● Auto window

● Live Watch window

● Quick Watch window

● Statics window

AFE1_AFE2-1:1

54

Reference information on starting C-SPY

C-SPY® Debugging Guide
for MSP430

● Call Stack window

● Trace window

● Function Trace window

● Timeline window, see Reference information on application timeline, page 201

● Terminal I/O window

● Code Coverage window

● Function Profiler window

● Images window

● Stack window

● Symbols window

Additional windows are available depending on which C-SPY driver you are using.

Images window
The Images window is available from the View menu.

This window lists all currently loaded debug images (debug files).

Normally, a source application consists of a single debug image that you debug.
However, you can also load additional images. This means that the complete debuggable
unit consists of several debug images. See also Loading multiple debug images, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

C-SPY can use debug information from one or more of the loaded debug images
simultaneously. Double-click on a row to make C-SPY use debug information from that
debug image. The current choices are highlighted.

This area lists the loaded debug images in these columns:

Name

The name of the loaded debug image.

AFE1_AFE2-1:1

Getting started using C-SPY

55

Core N

Double-click in this column to toggle using debug information from the debug
image when that core is in focus.

Path

The path to the loaded debug image.

Related information

For related information, see:

● Loading multiple debug images, page 47

● Images, page 403

● __loadImage, page 335

Get Alternative File dialog box
The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

See also Starting a debug session with source files missing, page 46.

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

AFE1_AFE2-1:1

56

Reference information on starting C-SPY

C-SPY® Debugging Guide
for MSP430

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 46.

Device Information window
The Device Information window is available from the Emulator menu.

Displays information about the target hardware being used.

Requirements

The C-SPY FET Debugger driver.

AFE1_AFE2-1:1

57

Executing your application
● Introduction to application execution

● Reference information on application execution

Introduction to application execution
These topics are covered:

● Briefly about application execution

● Source and disassembly mode debugging

● Single stepping

● Troubleshooting slow stepping speed

● Running the application

● Highlighting

● Viewing the call stack

● Terminal input and output

● Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

AFE1_AFE2-1:1

58

Introduction to application execution

C-SPY® Debugging Guide
for MSP430

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 61 for some tips.

The step commands

There are four step commands:

● Step Into

● Step Over

● Next Statement

● Step Out

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 78.

AFE1_AFE2-1:1

Executing your application

59

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g(n-1):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g(n-2) function
call, which is not a statement on its own but part of the same statement as g(n-1). Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

AFE1_AFE2-1:1

60

Introduction to application execution

C-SPY® Debugging Guide
for MSP430

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

Single-stepping and flash memory in the C-SPY FET Debugger

When you use the FET Debugger driver, be aware that single-stepping over instructions
that manipulate the flash memory might cause some unexpected side-effects.

Multiple internal machine cycles are required to clear and program the flash memory.
When single-stepping over instructions that manipulate the flash memory, control is
given back to C-SPY before these operations are complete. Consequently, C-SPY will

AFE1_AFE2-1:1

Executing your application

61

update its memory window with erroneous information. A workaround to this behavior
is to follow the flash access instruction with a NOP instruction, and then step past the NOP
before reviewing the effects of the flash access instruction.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up
stepping:

● If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY FET debugger driver, page 111
and Breakpoint consumers, page 112.

● Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

● Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
144.

● Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

● Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

● Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

AFE1_AFE2-1:1

62

Introduction to application execution

C-SPY® Debugging Guide
for MSP430

● If possible, increase the communication speed between C-SPY and the target
board/emulator.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

AFE1_AFE2-1:1

Executing your application

63

Code coverage

From the context menu in the Code Coverage window, you can toggle highlight colors
and icons in the editor window that show code coverage analysis for the source code,
see Code Coverage window, page 237.

These are the colors and icons that are used:

● Red highlight color and a red diamond: the code range has not been executed.

● Green highlight color: 100% of the code range has been executed.

● Yellow highlight color and a red diamond: parts of the code range have been
executed.

This figure illustrates all three code coverage highlight colors:

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

AFE1_AFE2-1:1

64

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the IAR
Assembler Reference Guide for MSP430.

Note: For highly optimized code, C-SPY might not be able to identify all calls. This
means that for highly optimized code, the call stack is not entirely trustworthy.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

● If your application uses stdin and stdout

● For producing debug trace printouts

For more information, see Terminal I/O window, page 73 and Terminal I/O Log File
dialog box, page 74.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it, see Log File dialog box, page 77. The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts.

● The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Reference information on application execution
Reference information about:

● Disassembly window, page 65

● Call Stack window, page 71

● Terminal I/O window, page 73

● Terminal I/O Log File dialog box, page 74

● Debug Log window, page 75

AFE1_AFE2-1:1

Executing your application

65

● Log File dialog box, page 77

● Report Assert dialog box, page 78

● Autostep settings dialog box, page 78

● Cores window, page 79

See also Terminal I/O options in the IDE Project Management and Building Guide for
MSP430.

Disassembly window
The C-SPY Disassembly window is available from the View menu.

This figure reflects the C-SPY simulator.

This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:

1 Choose Tools>Options>Debugger.

2 Set the default color using the Source code color in disassembly window option.

AFE1_AFE2-1:1

66

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 57.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Toggle Mixed-Mode

Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information

AFE1_AFE2-1:1

Executing your application

67

Display area

The display area shows the disassembled application code. This area contains these
graphic elements:

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Green highlight color Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line
in the Disassembly window, click the line. Alternatively,
move the cursor using the navigation keys.

Yellow highlight color Indicates a position other than the current position, such
as when navigating between frames in the Call Stack
window or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 107.

Green diamond Code coverage icon—indicates code that has been
executed.

Red diamond Code coverage icon—indicates code that has not been
executed.

Red/yellow diamond (red
top/yellow bottom)

Code coverage icon—indicates a branch that is never
taken.

Red/yellow diamond (red left
side/yellow right side)

Code coverage icon—indicates a branch that is always
taken.

AFE1_AFE2-1:1

68

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

These commands are available:

Move to PC

Displays code at the current program counter location.

Run to Cursor

Executes the application from the current position up to the line containing the
cursor.

Code Coverage

Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off. Code
coverage is indicated by a red, green, and red/yellow
diamonds in the left margin.

Clear Clears all code coverage information.

AFE1_AFE2-1:1

Executing your application

69

Instruction Profiling

Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Toggle Breakpoint (Code)

Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 122.

Toggle Breakpoint (Log)

Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 123.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start Trigger breakpoint dialog box, page 189.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop Trigger breakpoint dialog box, page 190.

Next Different
Coverage >

Moves the insertion point to the next line in the
window with a different code coverage status than
the selected line.

Previous Different
Coverage <

Moves the insertion point to the closest preceding
line in the window with a different code coverage
status than the selected line.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

AFE1_AFE2-1:1

70

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Enable/Disable Breakpoint

Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint

Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement

Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents

Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode

Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Find in Trace

Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 39.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

AFE1_AFE2-1:1

Executing your application

71

Call Stack window
The Call Stack window is available from the View menu.

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 63.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

72

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Display area

Each entry in the display area is formatted in one of these ways:

Context menu

This context menu is available:

This figure reflects the C-SPY simulator.

These commands are available:

Go to Source

Displays the selected function in the Disassembly or editor windows.

Show Arguments

Shows function arguments.

Run to Cursor

Executes until return to the function selected in the call stack.

Copy Window Contents

Copies the contents of the Call Stack window and stores them on the clipboard.

function(values)*** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

***, if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the IAR C/C++ Compiler User
Guide for MSP430.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.

AFE1_AFE2-1:1

Executing your application

73

Toggle Breakpoint (Code)

Toggles a code breakpoint.

Toggle Breakpoint (Conditional)

Toggles a conditional breakpoint.

Toggle Breakpoint (Advanced Trigger)

Toggles an Advanced Trigger breakpoint.

Toggle Breakpoint (Log)

Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint

Enables or disables the selected breakpoint

Terminal I/O window
The Terminal I/O window is available from the View menu.

Use this window to enter input to your application, and display output from it.

AFE1_AFE2-1:1

74

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

To use this window, you must:

1 Link your application with the option With I/O emulation modules.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

See also Terminal input and output, page 64.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Input

Type the text that you want to input to your application.

Ctrl codes

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

Options

Opens the IDE Options dialog box where you can set options for terminal I/O. For
information about the options available in this dialog box, see Terminal I/O options in
IDE Project Management and Building Guide for MSP430.

Terminal I/O Log File dialog box
The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 64.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

Executing your application

75

Terminal I/O Log Files

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal I/O log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

Debug Log window
The Debug Log window is available by choosing View>Messages>Debug Log.

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. This output is only available during a debug
session. When opened, this window is, by default, grouped together with the other
message windows, see IDE Project Management and Building Guide for MSP430.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>):<message>
<path> (<row>,<column>):<message>

See also Debug logging, page 64 and Log File dialog box, page 77.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

76

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

All

Shows all messages sent by the debugging tools and drivers.

Messages

Shows all C-SPY messages.

Warnings

Shows warnings and errors.

Errors

Shows errors only.

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Clears the contents of the window.

AFE1_AFE2-1:1

Executing your application

77

Log File dialog box
The Log File dialog box is available by choosing Debug>Logging>Set Log File.

Use this dialog box to log output from C-SPY to a file.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Enable log file

Enables or disables logging to the file.

Include

The information printed in the file is, by default, the same as the information listed in
the Debug Log window. Use the browse button, to override the default file and location
of the log file (the default filename extension is log). To change the information logged,
choose between:

Errors

C-SPY has failed to perform an operation.

Warnings

An error or omission of concern.

User

Messages from C-SPY macros, that is, your messages using the __message
statement.

Info

Progress information about actions C-SPY has performed.

AFE1_AFE2-1:1

78

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

Report Assert dialog box
The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

Abort

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug

C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Autostep settings dialog box
The Autostep settings dialog box is available by choosing Debug>Autostep.

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands, see Single stepping, page 58.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Delay (milliseconds)

Specify the delay between each step in milliseconds.

AFE1_AFE2-1:1

Executing your application

79

Cores window
The Cores window is available from the View menu.

This window displays information about the executing core, such as its execution state.
This information is primarily useful for IAR Embedded Workbench products that
support multicore debugging.

AFE1_AFE2-1:1

80

Reference information on application execution

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

81

Variables and expressions
● Introduction to working with variables and expressions

● Working with variables and expressions

● Reference information on working with variables and expressions

Introduction to working with variables and expressions
This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

● Briefly about working with variables and expressions

● C-SPY expressions

● Limitations on variable information

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

● Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

● The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

● The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

● The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

● The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

● The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

AFE1_AFE2-1:1

82

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for MSP430

● The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

● The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

● The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

● The Data Sample window displays samples for up to four different variables. You
can also display the data samples as graphs in the Sampled Graphs window. By
using data sampling, you will get an indication of the data value over a length of
time. Because it is a sampled value, data sampling is best suited for slow-changing
data.

For more information about these windows, see The application timeline, page 195.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

● C/C++ symbols

● Assembler symbols (register names and assembler labels)

● C-SPY macro functions

● C-SPY macro variables

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i + j
i = 42
myVar = cVar
cVar = myVar + 2
#asm_label
#R2
#PC
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function::variable to specify which variable to monitor.

AFE1_AFE2-1:1

Variables and expressions

83

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof(unsigned char volatile __memattr *)

However, this line will be accepted:

sizeof(unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 48.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 163.

Example What it does

#PC++ Increments the value of the program counter.

myVar = #SP Assigns the current value of the stack pointer register to your
C-SPY variable.

myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = &#label7 Sets myptr to an int * pointer pointing at label7.

Table 4: C-SPY assembler symbols expressions

Example What it does

#PC Refers to the program counter.

#’PC’ Refers to the assembler label PC.

Table 5: Handling name conflicts between hardware registers and assembler labels

AFE1_AFE2-1:1

84

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for MSP430

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 312.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 318.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

AFE1_AFE2-1:1

Variables and expressions

85

Consider this example:

myFunction()
{
 int i = 42;
 ...
 x = computer(i); /* Here, the value of i is known to C-SPY */
 ...
}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should use the lowest optimization level during compilation, that is, None.

Working with variables and expressions
These tasks are covered:

● Using the windows related to variables and expressions

● Viewing assembler variables

See also Analyzing your application’s timeline, page 197.

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of these windows, except the Trace
window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the

AFE1_AFE2-1:1

86

Working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Locals window, data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

AFE1_AFE2-1:1

Variables and expressions

87

Reference information on working with variables and expressions
Reference information about:

● Auto window, page 87

● Locals window, page 89

● Watch window, page 91

● Live Watch window, page 93

● Statics window, page 96

● Quick Watch window, page 99

● Symbols window, page 102

● Resolve Symbol Ambiguity dialog box, page 104

See also:

● Reference information on trace, page 184 for trace-related reference information

● Macro Quicklaunch window, page 370

Auto window
The Auto window is available from the View menu.

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

88

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

AFE1_AFE2-1:1

Variables and expressions

89

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Locals window
The Locals window is available from the View menu.

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

90

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

AFE1_AFE2-1:1

Variables and expressions

91

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Watch window
The Watch window is available from the View menu.

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very large arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

92

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

See also Editing in C-SPY windows, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

Remove All

Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

AFE1_AFE2-1:1

Variables and expressions

93

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Live Watch window
The Live Watch window is available from the View menu.

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

See also Editing in C-SPY windows, page 47.

Requirements

The C-SPY simulator.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

94

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Display area

This area contains these columns:

Expression

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value

The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type

The data type of the variable.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

AFE1_AFE2-1:1

Variables and expressions

95

Remove All

Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

96

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Statics window
The Statics window is available from the View menu.

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.

See also Editing in C-SPY windows, page 47.

To select variables to monitor:

1 In the window, right-click and choose Select Statics from the context menu. The
window now lists all variables with static storage duration.

2 Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select Statics from the context menu to
toggle back to normal display mode.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

Variables and expressions

97

Display area

This area contains these columns:

Variable

The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

Value

The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location

The location in memory where this variable is stored.

Type

The data type of the variable.

Module

The module of the variable.

AFE1_AFE2-1:1

98

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Variables and expressions

99

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves the content of the Statics window to a log file.

Select Statics

Selects all variables with static storage duration; this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All

Selects all variables.

Select None

Deselects all variables.

Select All in module

Selects all variables in the selected module.

Select None in module

Deselects all variables in the selected module.

Quick Watch window
The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,

AFE1_AFE2-1:1

100

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 47.

To evaluate an expression:

1 In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.

Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

4 Click the Recalculate button to calculate the value of the expression.

For an example, see Using C-SPY macros, page 313.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove

Removes the selected expression from the window.

AFE1_AFE2-1:1

Variables and expressions

101

Remove All

Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As

Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 86.

Save to File

Saves content to a file in a tab-separated format.

Options

Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

102

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Symbols window
The Symbols window is available from the View menu.

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

You can drag the contents of cells in the Symbol, Location, and Full Name columns
and drop in some other windows in the IDE.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

<filter by name>

Type the first characters of the symbol names that you want to find, and press
Enter. All symbols (of the types you have selected on the context menu) whose
name starts with these characters will be displayed. If you have chosen not to
display some types of symbols, the window will list how many of those that
were found but are not displayed.

Use the drop-down list to use old search strings. The search box has a history
depth of eight search entries.

Clear

Cancels the effects of the search filter and restores all symbols in the window.

AFE1_AFE2-1:1

Variables and expressions

103

Display area

This area contains these columns:

Symbol

The symbol name.

Location

The memory address.

Full name

The symbol name; often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Module

The program module where the symbol is defined.

Type

The symbol type, whether it is a function, label, or variable.

Click the column headers to sort the list by symbol name, location, full name, module,
or type.

Context menu

This context menu is available:

These commands are available:

Functions

Toggles the display of function symbols on or off in the list.

Variables

Toggles the display of variables on or off in the list.

Labels

Toggles the display of labels on or off in the list.

AFE1_AFE2-1:1

104

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

Add to Watch

Adds the selected symbol to the Watch window.

Add to Live Watch

Adds the selected symbol to the Live Watch window.

Copy

Copies the contents of the cells on the selected line.

Resolve Symbol Ambiguity dialog box
The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Row Copies all contents of the selected line

Symbol Copies the contents of the Symbol cell on the selected line

Location Copies the contents of the Location cell on the selected line

Full Name Copies the contents of the Full Name cell on the selected line

Module Copies the contents of the Module cell on the selected line

Type Copies the contents of the Type cell on the selected line

AFE1_AFE2-1:1

Variables and expressions

105

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

AFE1_AFE2-1:1

106

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

107

Breakpoints
● Introduction to setting and using breakpoints

● Setting breakpoints

● Reference information on breakpoints

Introduction to setting and using breakpoints
These topics are covered:

● Reasons for using breakpoints

● Briefly about setting breakpoints

● Breakpoint types

● Breakpoint icons

● Breakpoints in the C-SPY simulator

● Breakpoints in the C-SPY FET debugger driver

● Breakpoint consumers

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will

AFE1_AFE2-1:1

108

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for MSP430

appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 112.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping. For more information about the precision, see Single stepping, page
58.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

For the C-SPY FET Debugger driver, a code breakpoint can be either a hardware or a
software breakpoint.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start/Stop Trigger breakpoints

Trace Start Trigger and Trace Stop Trigger breakpoints start and stop trace data
collection—a convenient way to analyze instructions between two execution points.

AFE1_AFE2-1:1

Breakpoints

109

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Data Log breakpoints

Data log breakpoints are triggered when a specified memory address is accessed. A log
entry is written in the Data Log window for each access. Data logs can also be displayed
on the Data Log graph in the Timeline window, if that window is enabled.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are two bytes
or less. If you specify a data log breakpoint on a memory location that cannot be
accessed by one instruction, for example a double or a too large area in the Memory
window, the result might not be what you intended.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

Range breakpoints

Range breakpoints can be set on a data or an address range, and the action can be
specified to occur on an access inside or outside the specified range. These breakpoints
are only available if you are using a device that supports the Enhanced Emulation
Module at the required level.

Advanced trigger breakpoints

Advanced trigger breakpoints can be set with various operators on the address bus, the
data bus, or on a register, to be triggered by a certain kind of access. These breakpoints

AFE1_AFE2-1:1

110

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for MSP430

are only available if you are using a device that supports the Enhanced Emulation
Module at the required level.

Conditional breakpoints

Conditional breakpoints can be set with various operators on the address bus, the data
bus, or on a register, to be triggered by a certain kind of access. You can also specify a
conditional value. These breakpoints are only available if you are using a device that
supports the Enhanced Emulation Module at the required level.

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
MSP430.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types. The number of breakpoints is
unlimited.

AFE1_AFE2-1:1

Breakpoints

111

BREAKPOINTS IN THE C-SPY FET DEBUGGER DRIVER

Using the C-SPY drivers for the C-SPY FET debugger, you can set code breakpoints. If
you are using a device that supports the Enhanced Emulation Module at the required
level, you also have access to an extended breakpoint system with support for:

● breakpoints on addresses, data, and registers

● defining which type of access that should trigger the breakpoint: read, write, or
fetch

● setting conditional breakpoints

● triggering different actions: stopping the execution, or starting the state storage
module

● emulated breakpoints.

The Enhanced Emulation Module (at the required level) also gives you access to the
sequencer module which is a state machine that uses breakpoints for triggering new
states.

Hardware breakpoints

To set breakpoints, the C-SPY FET Debugger uses the hardware breakpoints available
on the device. The number of hardware breakpoints is limited, and when all hardware
breakpoints have been used, C-SPY can use software breakpoints.

For information about the number of available hardware breakpoints for each device, see
the release notes or the hardware documentation.

Software breakpoints

There are two types of software breakpoints: virtual breakpoints and emulated
breakpoints. For information about how to specify which type to use, see Breakpoints,
page 410.

When virtual breakpoints are used, C-SPY is forced into single-step mode after all
hardware breakpoints have been used. However, if your device supports the Enhanced
Emulation Module at the required level, you can use emulated breakpoints for access to
an unlimited number of breakpoints.

When emulated breakpoints are used, the instruction where the breakpoint is set will be
replaced by a special instruction that the debugger recognizes. When the debugger
encounters such an instruction, it stops. This mechanism uses one hardware breakpoint
to emulate an unlimited number of breakpoints.

To prevent the debugger from executing in single-step mode if you do not use emulated
software breakpoints, you can disable the use of virtual breakpoints and—in the CLIB
runtime environment—fine-tune the use of breakpoint consumers. This will increase the

AFE1_AFE2-1:1

112

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for MSP430

performance of the debugger, but you will only have access to the available number of
hardware breakpoints. For information about the breakpoint consumers of the debugger
system, see Breakpoint consumers, page 112.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

● The linker option With I/O emulation modules has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

In the CLIB runtime environment, C-SPY will set a breakpoint if:

● the library functions putchar and getchar are used (low-level routines used by
functions like printf and scanf)

● the application has an exit label.

You can disable the setting of system breakpoints on the putchar and getchar
functions and on the exit label, see Breakpoints, page 410.

When the Run to option is selected and all hardware breakpoints have already been
used, a virtual breakpoint will be set even if you have deselected the Use virtual
breakpoints option. When you start the debugger under these conditions, C-SPY will
prompt you to choose whether you want to execute in single-step mode or stop at the
first instruction.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.

AFE1_AFE2-1:1

Breakpoints

113

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:

1 Choose Tools>Options>Stack.

2 Deselect the Stack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

Setting breakpoints
These tasks are covered:

● Various ways to set a breakpoint

● Toggling a simple code breakpoint

● Setting breakpoints using the dialog box

● Setting a data breakpoint in the Memory window

● Setting breakpoints using system macros

● Useful breakpoint hints

VARIOUS WAYS TO SET A BREAKPOINT

You can set a breakpoint in various ways:

● Toggling a simple code breakpoint.

● Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

● Setting a data breakpoint on a memory area directly in the Memory window.

● Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

AFE1_AFE2-1:1

114

Setting breakpoints

C-SPY® Debugging Guide
for MSP430

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

● Click in the gray left-side margin of the window

● Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

● Choose Edit>Toggle Breakpoint

● Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

3 On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types are available.

4 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

AFE1_AFE2-1:1

Breakpoints

115

To modify an existing breakpoint:

1 In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.

3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and

AFE1_AFE2-1:1

116

Setting breakpoints

C-SPY® Debugging Guide
for MSP430

write accesses. All breakpoints defined in this window are preserved between debug
sessions.

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

These breakpoint macros are available:

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 325.

C-SPY macro for breakpoints Simulator FET Debugger

__setAdvancedTriggerBreak — Yes

__setCodeBreak Yes Yes

__setConditionalBreak — Yes

__setDataBreak Yes —

__setLogBreak Yes Yes

__setRangeBreak — Yes

__setDataLogBreak Yes —

__setSimBreak Yes —

__setTraceStartBreak Yes —

__setTraceStopBreak Yes —

__clearBreak Yes Yes

Table 6: C-SPY macros for breakpoints

AFE1_AFE2-1:1

Breakpoints

117

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 313.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

● Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

● You can use the assert macro in your problematic function, for example:

int MyFunction(int * MyPtr)
{
 assert(MyPtr != 0); /* Assert macro added to your source
 code. */
 /* Here comes the rest of your function. */
}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only slightly affected, but the drawback is that you will get a small
extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

● Instead of using the assert macro, you can modify your function like this:

int MyFunction(int * MyPtr)
{
 if(MyPtr == 0)
 MyDummyStatement; /* Dummy statement where you set a
 breakpoint. */
 /* Here comes the rest of your function. */
}

You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

AFE1_AFE2-1:1

118

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count()
{
 my_counter += 1;
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Using breakpoints when programming flash memory

When programming the flash memory, do not set a breakpoint on the instruction
immediately following the write to flash operation. A simple work-around is to follow
the write to flash operation with a NOP instruction, and set a breakpoint on the instruction
following the NOP instruction.

Reference information on breakpoints
Reference information about:

● Breakpoints window, page 119

● Breakpoint Usage window, page 121

● Code breakpoints dialog box, page 122

● Log breakpoints dialog box, page 123

● Data breakpoints dialog box, page 125

AFE1_AFE2-1:1

Breakpoints

119

● Data Log breakpoints dialog box, page 127

● Immediate breakpoints dialog box, page 128

● Range breakpoints dialog box, page 129

● Conditional breakpoints dialog box, page 131

● Advanced Trigger breakpoints dialog box, page 134

● Enter Location dialog box, page 136

● Breakpoint combiner dialog box, page 137

● Resolve Source Ambiguity dialog box, page 138

See also:

● Reference information on C-SPY system macros, page 325

● Reference information on trace, page 184

Breakpoints window
The Breakpoints window is available from the View menu.

This window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

AFE1_AFE2-1:1

120

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

Go to Source

Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit

Opens the breakpoint dialog box for the breakpoint you selected.

Delete

Deletes the breakpoint. Press the Delete key to perform the same command.

Enable

Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable

Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.

Enable All

Enables all defined breakpoints.

Disable All

Disables all defined breakpoints.

Delete All

Deletes all defined breakpoints.

AFE1_AFE2-1:1

Breakpoints

121

New Breakpoint

Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoint Usage window
The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:

● Identifying all breakpoint consumers

● Checking that the number of active breakpoints is supported by the target system

● Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY FET debugger driver, page 111.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

AFE1_AFE2-1:1

122

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Code breakpoints dialog box
The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 114.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 136.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will be set automatically, typically to 1.

Manual

Specify the size of the breakpoint range in the text box.

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 117.

AFE1_AFE2-1:1

Breakpoints

123

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 82.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Log breakpoints dialog box
The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 114.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

124

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 136.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 321.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 82.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

AFE1_AFE2-1:1

Breakpoints

125

Data breakpoints dialog box
The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 114. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.

Requirements

The C-SPY simulator.

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 136.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write

Reads from or writes to location.

Read

Reads from location.

Write

Writes to location.

AFE1_AFE2-1:1

126

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto

The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual

Specify the size of the breakpoint range in the text box.

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 117.

Conditions

Specify simple or complex conditions:

Expression

Specify a valid C-SPY expression, see C-SPY expressions, page 82.

Condition true

The breakpoint is triggered if the value of the expression is true.

Condition changed

The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count

The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

AFE1_AFE2-1:1

Breakpoints

127

Data Log breakpoints dialog box
The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

This figure reflects the C-SPY simulator.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 114.

See also Data Log breakpoints, page 109 and Getting started using data logging, page
200.

Requirements

The C-SPY simulator.

Break At

Specify a memory location as a variable (with static storage duration) or as an address.

Access Type

Selects the type of access to the variable that generates a log entry:

Read/Write

Read and write accesses from or writes to location of the variable.

Read

Read accesses from the location of the variable.

Write

Write accesses to location of the variable.

AFE1_AFE2-1:1

128

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Immediate breakpoints dialog box
The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

In the C-SPY simulator, you can use the Immediate breakpoints dialog box to set an
immediate breakpoint, see Setting breakpoints using the dialog box, page 114.
Immediate breakpoints do not stop execution at all; they only suspend it temporarily.

Requirements

The C-SPY simulator.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 136.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read

Reads from location.

Write

Writes to location.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 117.

AFE1_AFE2-1:1

Breakpoints

129

Range breakpoints dialog box
The Range breakpoints dialog box is available from the context menu in the
Breakpoints window and the Memory window.

Use the Range breakpoints dialog box to set a range breakpoint.

Range breakpoints are available for the C-SPY FET Debugger driver on devices that
support the Enhanced Emulation Module at the required level.

Requirements

The C-SPY FET Debugger driver.

Start value

Specify the start value for the range breakpoint in the Start value text box; an
expression, an absolute address, or a source location. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 136.

Range delimiter

Sets the end location of the range. Choose the type of delimiter and specify the value in
the text box:

End value

The same type of value as for the Start value.

Length

The length of the range in bytes (in hexadecimal notation).

AFE1_AFE2-1:1

130

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Automatic

Bases the range automatically on the type of expression the breakpoint is set on.
For example, if you set the breakpoint on a 12-byte structure, the range of the
breakpoint will be 12 bytes.

Type

Selects which breakpoint type to use:

Address (MAB)

Sets a breakpoint on a specified address, or anything that can be evaluated to
one. The breakpoint is triggered when the specified location is accessed. If you
have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will stop exactly before the instruction will be
executed.

Data (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Access type

Selects the type of access that triggers the selected breakpoint:

Read

Read from location.

Write

Write to location.

Read/Write

Read from or write to location.

Fetch

At instruction fetch.

Action

Selects the action that occurs when the breakpoint is triggered:

Break

The execution stops when the breakpoint is triggered.

State Storage Trigger

Defines the breakpoint as a state storage trigger. To control the behavior of the
state storage module, see State Storage Control window, page 301.

AFE1_AFE2-1:1

Breakpoints

131

Action when

Selects when the action shall occur:

Inside range

The action occurs at an access inside the specified range.

Outside range

The action occurs at an access outside of the specified range.

Conditional breakpoints dialog box
The Conditional breakpoints dialog box is available from the context menu in the
Breakpoints window and the Disassembly window.

Use the Conditional breakpoints dialog box to set a conditional breakpoint.

Conditional breakpoints are available for the C-SPY FET Debugger driver on devices
that support the Enhanced Emulation Module at the required level.

Requirements

The C-SPY FET Debugger driver.

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box, see Enter Location dialog box, page
136.

Type

Selects which breakpoint type to use:

AFE1_AFE2-1:1

132

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Address bus (MAB)

Sets a breakpoint on the address specified in the Break At text box, or anything
that can be evaluated to one. The breakpoint is triggered when the specified
location is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop exactly
before the instruction will be executed.

Data bus (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Register

Sets a breakpoint on a register. Specify the register, or anything that can be
evaluated to such, in the Break At text box. In the Register Value text box, type
the value that should trigger the breakpoint.

Operator

Selects a condition operator for when the breakpoint should be triggered:

==

Equal to.

>=

Greater than or equal to.

<=

Less than or equal to.

!=

Not equal to.

Access

Selects the type of access that triggers the selected breakpoint:

Read

Read from location.

Write

Write to location.

Read/Write

Read from or write to location.

Fetch

At instruction fetch.

AFE1_AFE2-1:1

Breakpoints

133

Mask

Specify a bit mask value that the breakpoint address or value will be masked with. (On
the FET hardware the mask is inverted, but this is not the case in the FET Debugger
driver.)

Condition

Optionally, specify an additional condition to a conditional breakpoint. This means that
a conditional breakpoint can be a single data breakpoint or a combination of two
breakpoints that must occur at the same time. These settings can be specified for the
additional condition:

Value

The extra conditional data value.

Mask

The bit mask value that the breakpoint value will be masked with.

Operator

The operator of condition, either ==, >=, <=, or !=.

Access

The access type of the condition, either Read, Write, or Read/Write.

Action

Selects the action that occurs when the breakpoint is triggered:

Break

The execution stops when the breakpoint is triggered.

State Storage Trigger

State storage starts when the breakpoint is triggered. To control the behavior of
the state storage module, see State Storage Control window, page 301.

Cycle Counter Trigger

Starts, stops, resets, or counts the Cycle counter 1. To control the behavior of the
cycle counter, see The advanced cycle counter, page 291.

AFE1_AFE2-1:1

134

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Advanced Trigger breakpoints dialog box
The Advanced Trigger breakpoints dialog box is available from the context menu in
the Breakpoints window and the Disassembly window.

Use the Advanced Trigger breakpoints dialog box to set an advanced trigger
breakpoint.

Advanced trigger breakpoints are available for the C-SPY FET Debugger driver on
devices that support the Enhanced Emulation Module at the required level.

Requirements

The C-SPY FET Debugger driver.

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box, see Enter Location dialog box, page
136.

Type

Selects which breakpoint type to use:

Address bus (MAB)

Sets a breakpoint on a specified address, or anything that can be evaluated to
one. The breakpoint is triggered when the specified location is accessed. If you
have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will stop exactly before the instruction will be
executed.

AFE1_AFE2-1:1

Breakpoints

135

Data bus (MDB)

Sets a breakpoint on a specified value. It is the value on the data bus that triggers
the breakpoint.

Register

Sets a breakpoint on a register. Specify the register, or anything that can be
evaluated to such, in the Break At text box. In the Value text box, type the value
that should trigger the breakpoint.

Operator

Selects a condition operator for when the breakpoint should be triggered:

==

Equal to.

>=

Greater than or equal to.

<=

Less than or equal to.

!=

Not equal to.

Mask

Specify a bit mask value that the breakpoint address or value will be masked with. (On
the FET hardware the mask is inverted, but this is not the case in the FET Debugger
driver.)

Value

Specify the data value in the specified register that should be triggered.

Access type

Selects the type of access that triggers the selected breakpoint.

Action

Selects the action that occurs when the breakpoint is triggered:

Break

The execution stops when the breakpoint is triggered.

AFE1_AFE2-1:1

136

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

State Storage Trigger

State storage starts when the breakpoint is triggered. To control the behavior of
the state storage module, see State Storage Control window, page 301.

Cycle Counter Trigger

Starts, stops, resets, or counts the Cycle counter 1. To control the behavior of the
cycle counter, see The advanced cycle counter, page 291.

Enter Location dialog box
The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type

Selects the type of location to be used for the breakpoint, choose between:

Expression

A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
82.

AFE1_AFE2-1:1

Breakpoints

137

Absolute address

An absolute location on the form zone:hexaddress or simply hexaddress
(for example Memory:0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
142.

Source location

A location in your C source code using the syntax:
{filename}.row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3 sets a breakpoint on the third character
position on row 22 in the source file prog.c. Note that in quoted form, for
example in a C-SPY macro, you must instead write
{C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations in code
breakpoints. Depending on the C-SPY driver you are using, Source location might not
be available for data and immediate breakpoints.

Breakpoint combiner dialog box
The Breakpoint combiner dialog box is available from the Emulator menu.

Use this dialog box to combine two already defined breakpoints.

AFE1_AFE2-1:1

138

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

Select a breakpoint and right-click to display a list of breakpoints to combine it with.
When two breakpoints have been combined, the defined action will not occur until both
breakpoints have been reached.

Note: Only available for devices that support the Enhanced Emulation Module at the
required level. The settings are not saved when the debug session is closed.

Requirements

The C-SPY FET Debugger driver.

Resolve Source Ambiguity dialog box
The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

To resolve a source ambiguity, perform one of these actions:

● In the text box, select one or several of the listed locations and click Selected.

● Click All.

All

The breakpoint will be set on all listed locations.

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

AFE1_AFE2-1:1

Breakpoints

139

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for MSP430.

AFE1_AFE2-1:1

140

Reference information on breakpoints

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

141

Memory and registers
● Introduction to monitoring memory and registers

● Monitoring memory and registers

● Reference information on memory and registers

Introduction to monitoring memory and registers
These topics are covered:

● Briefly about monitoring memory and registers

● C-SPY memory zones

● Memory configuration for the C-SPY simulator

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, most of them
available from the View menu:

● The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

● The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

● The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

AFE1_AFE2-1:1

142

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
for MSP430

● The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

● The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about, both
factory-defined (retrieved from the device description file) and custom-defined
SFRs. If required, you can use the Edit SFR dialog box to customize the SFR
definitions.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic Memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. The MSP430

AFE1_AFE2-1:1

Memory and registers

143

architecture has only one zone, Memory, which covers the whole MSP430 memory
range.

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

Device-specific zones

Memory information for device-specific zones is defined in the device description files.
When you load a device description file, additional zones that adhere to the specific
memory layout become available.

See the device description file for information about available memory zones.

These zones are available, depending on the device description file you are using: SFR,
RAM, INFO, and Flash. Some devices have FRAM instead of Flash.

If your hardware does not have the same memory layout as any of the predefined device
description files, you can define customized zones by adding them to the file.

For more information, see Selecting a device description file, page 44 and Modifying a
device description file, page 48.

MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

The C-SPY simulator provides various mechanisms to improve the configuration
further:

0xFFFFFFFF

 SFR

 Default zone Memory Additional zones for MSP430F149

0xFFFF

0x0200

0x0000

0xFFFF

0x0000

RAM

0x1100

0x0A00

 Flash

AFE1_AFE2-1:1

144

Monitoring memory and registers

C-SPY® Debugging Guide
for MSP430

● If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:

● The zones predefined in the device description file

● The section information available in the debug file

● Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that
you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

● For each memory address range, you can specify an access type. If a memory access
occurs that does not agree with the specified access type, C-SPY will regard this as
an illegal access and warn about it. In addition, an access to memory that is not
defined is regarded as an illegal access. The purpose of memory access checking is
to help you to identify memory access violations.

For more information, see Memory Access Setup dialog box, page 173.

Monitoring memory and registers
These tasks are covered:

● Defining application-specific register groups

● Monitoring stack usage

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

AFE1_AFE2-1:1

Memory and registers

145

To define application-specific register groups:

1 Choose View>Registers>Register User Groups Setup during a debug session.

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 166.

2 Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

3 Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

4 As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

5 When you are done, your new group is now available in the Registers windows.

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

Note: If a certain SFR that you need cannot be added to a group, you can register your
own SFRs. For more information, see SFR Setup window, page 168.

AFE1_AFE2-1:1

146

Monitoring memory and registers

C-SPY® Debugging Guide
for MSP430

MONITORING STACK USAGE

These are the two main use cases for the Stack window:

● Monitoring stack memory usage

● Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the segment holding the stack. If
you, for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the segment definition in the linker configuration
file accordingly, otherwise the Stack window cannot track the stack usage. For more
information, see the IAR C/C++ Compiler User Guide for MSP430.

To monitor stack memory usage:

1 Before you start C-SPY, choose Tools>Options. On the Stack page:

● Select Enable graphical stack display and stack usage tracking. This option also
enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

● Note also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.

2 Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

3 Choose View>Stack>Stack 1 to open the Stack window.

AFE1_AFE2-1:1

Memory and registers

147

Note that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

4 Start executing your application.

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

See also the IAR C/C++ Compiler User Guide for MSP430.

To monitor the stack memory content:

1 Before you start monitoring stack memory, you might want to disable the option
Enable graphical stack display and stack usage tracking to improve performance
during debugging.

2 Start C-SPY.

3 Choose View>Stack>Stack 1 to open the Stack window.

Note that you can access various context menus in the display area from where you can
change display format, etc.

4 Start executing your application.

AFE1_AFE2-1:1

148

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Reference information on memory and registers
Reference information about:

● Memory window, page 149

● Memory Save dialog box, page 153

● Memory Restore dialog box, page 154

● Fill dialog box, page 155

● Symbolic Memory window, page 156

● Stack window, page 159

● Registers window, page 163

● Register User Groups Setup window, page 166

● SFR Setup window, page 168

● Edit SFR dialog box, page 171

● Memory Access Setup dialog box, page 173

● Edit Memory Access dialog box, page 175

● Memory Dump dialog box, page 176

AFE1_AFE2-1:1

Memory and registers

149

Memory window
The Memory window is available from the View menu.

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

See also Editing in C-SPY windows, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Context menu button

Displays the context menu.

AFE1_AFE2-1:1

150

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Update Now

Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

Live Update

Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Yellow Indicates data that has been read.

Blue Indicates data that has been written

Green Indicates data that has been both read and written.

AFE1_AFE2-1:1

Memory and registers

151

Context menu

This context menu is available:

These commands are available:

Copy
Paste

Standard editing commands.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

8x Units

Displays the memory contents as 8-byte groups.

Little Endian

Displays the contents in little-endian byte order.

AFE1_AFE2-1:1

152

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Big Endian

Displays the contents in big-endian byte order.

Data Coverage

Choose between:

Enable toggles data coverage on or off.

Show toggles between showing or hiding data coverage.

Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find

Displays a dialog box where you can search for text within the Memory
window; read about the Find dialog box in the IDE Project Management and
Building Guide for MSP430.

Replace

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string; read about the Replace dialog box in the
IDE Project Management and Building Guide for MSP430.

Memory Fill

Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 155.

Memory Save

Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 153.

Memory Restore

Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 154.

Set Data Breakpoint

Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the breakpoint dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 115.

AFE1_AFE2-1:1

Memory and registers

153

Set Data Log Breakpoint

Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted; you can see, edit, and
remove it in the breakpoint dialog box. The breakpoints you set in this window
will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page
109 and Getting started using data logging, page 200.

Memory Save dialog box
The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Use this dialog box to save the contents of a specified memory area to a file.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Start address

Specify the start address of the memory range to be saved.

End address

Specify the end address of the memory range to be saved.

File format

Selects the file format to be used, which is msp430-txt by default.

AFE1_AFE2-1:1

154

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Filename

Specify the destination file to be used. A browse button is available.

Save

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box
The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Use this dialog box to load the contents of a file in Intel-extended, Motorola S-record,
or TI msp430-txt format to a specified memory zone.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Filename

Specify the file to be read. A browse button is available.

Restore

Loads the contents of the specified file to the selected memory zone.

AFE1_AFE2-1:1

Memory and registers

155

Fill dialog box
The Fill dialog box is available from the context menu in the Memory window.

Use this dialog box to fill a specified area of memory with a value.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Start address

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Length

Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Value

Type the 8-bit value to be used for filling each memory location.

Operation

These are the available memory fill operations:

Copy

Value will be copied to the specified memory area.

AND

An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR

An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

AFE1_AFE2-1:1

156

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

OR

An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Symbolic Memory window
The Symbolic Memory window is available from the View menu during a debug
session.

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 47.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to

The memory location or symbol you want to view.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

AFE1_AFE2-1:1

Memory and registers

157

Previous

Highlights the previous symbol in the display area.

Next

Highlights the next symbol in the display area.

Display area

This area contains these columns:

Location

The memory address.

Data

The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable

The variable name; requires that the variable has a fixed memory location. Local
variables are not displayed.

Value

The value of the variable. This column is editable.

Type

The type of the variable.

There are several different ways to navigate within the memory space:

● Text that is dropped in the window is interpreted as symbols

● The scroll bar at the right-side of the window

● The Next and Previous toolbar buttons

● The Go to toolbar list box can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

AFE1_AFE2-1:1

158

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

Next Symbol

Highlights the next symbol in the display area.

Previous Symbol

Highlights the previous symbol in the display area.

1x Units

Displays the memory contents as single bytes. This applies only to rows that do
not contain a variable.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

Add to Watch

Adds the selected symbol to the Watch window.

Add to Live Watch

Adds the selected symbol to the Live Watch window.

Default format

Displays the memory contents in the default format.

Binary format

Displays the memory contents in binary format.

AFE1_AFE2-1:1

Memory and registers

159

Octal format

Displays the memory contents in octal format.

Decimal format

Displays the memory contents in decimal format.

Hexadecimal format

Displays the memory contents in hexadecimal format.

Char format

Displays the memory contents in char format.

Stack window
The Stack window is available from the View menu.

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 112.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for MSP430.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

160

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Toolbar

The toolbar contains:

Stack

Selects which stack to view. This applies to microcontrollers with multiple
stacks.

The graphical stack bar

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area

This area contains these columns:

Location

Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data

Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed; as a 1-,
2-, or 4-byte group of data.

Variable

Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value

Displays the value of the variable.

Type

Displays the data type of the variable.

AFE1_AFE2-1:1

Memory and registers

161

Frame

Displays the name of the function that the call frame corresponds to.

Context menu

This context menu is available:

These commands are available:

Show variables

Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show offsets

Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units

Displays the memory contents as single bytes.

2x Units

Displays the memory contents as 2-byte groups.

4x Units

Displays the memory contents as 4-byte groups.

AFE1_AFE2-1:1

162

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Options

Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for
MSP430.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Memory and registers

163

Registers window
The Registers windows are available from the View menu.

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allow you to edit the contents of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is convenient for keeping track
of different register groups.

See also Editing in C-SPY windows, page 47.

To enable predefined register groups:

1 Select a device description file that suits your device, see Selecting a device description
file, page 44. These files contain predefined register groups.

2 Display the registers of a register group by selecting it from the Group drop-down
menu on the toolbar, or by right-clicking in the window and choosing View Group
from the context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 144.

AFE1_AFE2-1:1

164

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Find

Specify the name, or part of a name, of a register (or group) that you want to
find. Press the Enter key and the first matching register, or group with a
matching register, is displayed. User-defined register groups are not searched.
The search box preserves a history of previous searches. To repeat a search,
select it from the search history and press Enter.

Group

Selects which predefined register group to display. If some of your SFRs are
missing, you can register your own SFRs in a Custom group, see SFR Setup
window, page 168. Additional predefined registers are defined in a specific
register definition file—with the filename extension sfr—which is included
from the register section of the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral
units on the MSP430 microcontrollers.

Display area

Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Name

The name of the register.

Value

The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click on the register and modify its
value. Press Esc to cancel the change.

To change the display format of the value, right-click on the register and choose
Format from the context menu.

AFE1_AFE2-1:1

Memory and registers

165

Access

The access type of the register. Some of the registers are read-only, while others
are write-only.

Note: When the FET Debugger is used, the cycle counter registers can only be used
while single-stepping in the Disassembly window.

For the C-SPY Simulator (and some C-SPY hardware debugger drivers), these
additional support registers are available in the CPU Registers group:

Context menu

This context menu is available:

These commands are available:

View Group

Selects which predefined register group to display.

View User Group

Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 144.

CYCLECOUNTER Cleared when an application is started or reset, and is
incremented with the number of used cycles during
execution.

CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.

CCTIMER1 and
CCTIMER2

Two trip counts that can be cleared manually at any given
time. They are incremented with the number of used cycles
during execution.

AFE1_AFE2-1:1

166

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Open User Groups Setup Window

Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 166.

Save to File

Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

Find Next Register

Finds the predefined register or register group that comes immediately after
what your search found. After the last register was found, this search wraps
around and finds the first register again.

Find Previous Register

Finds the matching predefined register or register group that comes immediately
before what your search found. After the first register was found, this search
wraps around and finds the last register again.

Register User Groups Setup window
The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

AFE1_AFE2-1:1

Memory and registers

167

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Group

The names of register groups and the registers they contain. Clicking on <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Format

Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:

These commands are available:

Format

Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove

Removes the register or group you clicked on.

Clear Group

Removes all registers from the group you clicked on.

Remove All Groups

Deletes all user-defined register groups from your project.

AFE1_AFE2-1:1

168

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Save to File

Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

SFR Setup window
The SFR Setup window is available from the Project menu.

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use the Edit SFR dialog box to customize the SFR definitions, see
Edit SFR dialog box, page 171. For factory-defined SFRs (that is, retrieved from the ddf
file in use), you can only customize the access type.

To quickly find an SFR, drag a text or hexadecimal number string and drop in this
window. If what you drop starts with a 0 (zero), the Address column is searched,
otherwise the Name column is searched.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Registers window. Your custom-defined SFRs are
saved in projectCustomSFR.sfr. This file is automatically loaded in the IDE when
you start C-SPY with a project whose name matches the prefix of the filename of the
sfr file.

You can only add or modify SFRs when the C-SPY debugger is not running.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Status

A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.

AFE1_AFE2-1:1

Memory and registers

169

C, a factory-defined SFR that has been modified.

+, a custom-defined SFR.

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name

A unique name of the SFR.

Address

The memory address of the SFR.

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Size

The size of the register, which can be any of 8, 16, 32, or 64.

Access

The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.

Color coding used in the display area:

● Green, which indicates that the corresponding value has changed

● Red, which indicates an ignored SFR.

AFE1_AFE2-1:1

170

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

Show All

Shows all SFR.

Show Custom SFRs only

Shows all custom-defined SFRs.

Show Factory SFRs only

Shows all factory-defined SFRs retrieved from the ddf file.

Add

Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 171.

Edit

Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 171.

Delete

Deletes an SFR. This command only works on custom-defined SFRs.

Delete/revert All Custom SFRs

Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

AFE1_AFE2-1:1

Memory and registers

171

Save Custom SFRs

Opens a standard Save dialog box to save all custom-defined SFRs.

8|16|32|64 bits

Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None

Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the context menu in the SFR Setup window.

Definitions of the SFRs are retrieved from the device description file in use. Use this
dialog box to either modify these factory-defined definitions or define new SFRs. See
also SFR Setup window, page 168.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Name

Specify the name of the SFR that you want to add or edit.

AFE1_AFE2-1:1

172

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

Address

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Zone

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

AFE1_AFE2-1:1

Memory and registers

173

Memory Access Setup dialog box
The Memory Access Setup dialog box is available from the C-SPY driver menu.

Use this dialog box to specify which set of memory address ranges to be used by C-SPY
during debugging.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 175. See also Memory configuration for the C-SPY simulator,
page 143.

Requirements

The C-SPY simulator.

Use ranges based on

Specify if the memory configuration should be retrieved from a predefined
configuration. Choose between:

Device description file

Retrieves the memory configuration from the device description file that you
have specified. See Selecting a device description file, page 44.

AFE1_AFE2-1:1

174

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

This option is used by default.

Debug file segment information

Retrieves the memory configuration from the debug file, which has retrieved it
from the linker configuration file. This information is only available during a
debug session. The advantage of using this option is that the simulator can catch
memory accesses outside the linked application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, click New to specify a new memory address range, or select an existing
memory address range and choose Edit to modify it. For more information, see Edit
Memory Access dialog box, page 175.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for:

● Access type violation

● Access to unspecified ranges

Action selects the action to be performed if an access violation occurs. Choose between:

● Log violations

● Log and stop execution

Any violations are logged in the Debug Log window.

Buttons

These buttons are available for manual ranges:

New

Opens the Edit Memory Access dialog box, where you can specify a new
memory address range and associate an access type with it, see Edit Memory
Access dialog box, page 175.

Edit

Opens the Edit Memory Access dialog box, where you can edit the selected
memory address range. See Edit Memory Access dialog box, page 175.

Delete

Deletes the selected memory address range definition.

AFE1_AFE2-1:1

Memory and registers

175

Delete All

Deletes all defined memory address range definitions.

Edit Memory Access dialog box
The Edit Memory Access dialog box is available from the Memory Access Setup
dialog box.

Use this dialog box to specify your memory address ranges for which you want to detect
illegal accesses during the simulation, and assign an access type to each range.

Requirements

The C-SPY simulator.

Memory range

Defines the memory address range specific to your device:

Zone

Selects a memory zone, see C-SPY memory zones, page 142.

Start address

Specify the start address for the memory address range, in hexadecimal
notation.

End address

Specify the end address for the memory address range, in hexadecimal notation.

Access type

Selects an access type to the memory address range. Choose between:

● Read and write

AFE1_AFE2-1:1

176

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

● Read only

● Write only.

Memory Dump dialog box
The Memory Dump dialog box is available from the Emulator menu.

Use this dialog box to write memory contents to a file.

Requirements

The C-SPY FET Debugger driver.

Dump File Name

Specify the name of the destination file where the contents of the selected part of the
memory will be saved in text format. You can find the file using the Browse button.

Start Address

Specify the start address for the memory section you want to save to a file.

Dump Length

Specify the length of the memory section you want to save to a file, in hexadecimal
notation. The maximum length is FFFF, which limits the number of bytes that can be
written to 65535. Consequently, you cannot write memory from address 0x0000 to
0xFFFF, inclusive, as this would require a length specifier of 65536 bytes (0x10000).

AFE1_AFE2-1:1

Memory and registers

177

Add address information

Adds address information to the file.

Append register contents

Appends register contents to the file. Choose between:

Program Counter (R0)

Stack Pointer (R1)

Status Register (R2)

Register R4 to R15

Format

Selects format for the text that is written to the file. Choose between:

Word

Byte

AFE1_AFE2-1:1

178

Reference information on memory and registers

C-SPY® Debugging Guide
for MSP430

179

Part 2. Analyzing your
application
This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:

● Trace

● The application timeline

● Profiling

● Code coverage

● Power debugging

180

AFE1_AFE2-1:1

181

Trace
● Introduction to using trace

● Collecting and using trace data

● Reference information on trace

Introduction to using trace
These topics are covered:

● Reasons for using trace

● Briefly about trace

● Requirements for using trace

See also:

● Getting started using data logging, page 200

● Power debugging, page 241

● Getting started using interrupt logging, page 274

● Profiling, page 225

● Using state storage, page 300

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

BRIEFLY ABOUT TRACE

To use trace in C-SPY requires that your target system can generate trace data. Once
generated, C-SPY can collect it and you can visualize and analyze the data in various
windows and dialog boxes.

Trace data is a continuously collected sequence of every executed instruction for a
selected portion of the execution.

AFE1_AFE2-1:1

182

Collecting and using trace data

C-SPY® Debugging Guide
for MSP430

Trace features in C-SPY

In C-SPY, you can use the trace-related windows—Trace, Function Trace, Timeline,
and Find in Trace.

Depending on your C-SPY driver, you:

● Can set various types of trace breakpoints to control the collection of trace data.

● Have access to windows such as the Interrupt Log, Interrupt Log Summary,
Data Log, and Data Log Summary.

In addition, several other features in C-SPY also use trace data, features such as
Profiling, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

Trace data cannot be collected from the hardware debugger systems.

Collecting and using trace data
These tasks are covered:

● Getting started with trace

● Trace data collection using breakpoints

● Searching in trace data

● Browsing through trace data

GETTING STARTED WITH TRACE

1 After you have built your application and started C-SPY, open the Trace window—
available from the driver-specific menu—and click the Activate button to enable
collecting trace data.

2 Start the execution. When the execution stops, for example because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 184.

AFE1_AFE2-1:1

Trace

183

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints.

Choose between these alternatives:

● In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start Trigger or Trace Stop Trigger breakpoint from the context
menu.

● In the Breakpoints window, choose New Breakpoint>Trace Start Trigger or
Trace Stop Trigger from the context menu.

● The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start Trigger breakpoint dialog
box, page 189 and Trace Stop Trigger breakpoint dialog box, page 190, respectively.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

1 On the Trace window toolbar, click the Find button.

2 In the Find in Trace dialog box, specify your search criteria.

Typically, you can choose to search for:

● A specific piece of text, for which you can apply further search criteria

● An address range

● A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 193.

3 When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 194.

AFE1_AFE2-1:1

184

Reference information on trace

C-SPY® Debugging Guide
for MSP430

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and Disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows
will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace
Reference information about:

● Trace window, page 184

● Function Trace window, page 188

● Trace Start Trigger breakpoint dialog box, page 189

● Trace Stop Trigger breakpoint dialog box, page 190

● Trace Expressions window, page 191

● Find in Trace dialog box, page 193

● Find in Trace window, page 194

Trace window
The Trace window is available from the C-SPY driver menu.

This window displays the collected trace data.

See also Collecting and using trace data, page 182.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

Trace

185

Trace toolbar

The toolbar in the Trace window and in the Function Trace window contains:

Enable/Disable

Enables and disables collecting and viewing trace data in this window. This
button is not available in the Function Trace window.

Clear trace data

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Toggle source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window.

Find

Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 193.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Edit Settings

In the C-SPY simulator, this button is not enabled.

Edit Expressions (C-SPY simulator only)

Opens the Trace Expressions window, see Trace Expressions window, page
191.

Progress bar

When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

AFE1_AFE2-1:1

186

Reference information on trace

C-SPY® Debugging Guide
for MSP430

Display area

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data for expressions.

This area contains these columns for the C-SPY simulator:

#

A serial number for each row in the trace buffer. Simplifies the navigation within
the buffer.

Cycles

The number of cycles elapsed to this point.

Trace

The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Expression

Each expression you have defined to be displayed appears in a separate column.
Each entry in the expression column displays the value after executing the
instruction on the same row. You specify the expressions for which you want to
collect trace data in the Trace Expressions window, see Trace Expressions
window, page 191.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

AFE1_AFE2-1:1

Trace

187

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Enable

Enables and disables collecting and viewing trace data in this window.

Clear

Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source

Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse

Toggles browse mode on or off for a selected item in the Trace window.

Find All

Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 193. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see
Find in Trace window, page 194.

Save

Displays a standard Save As dialog box where you can save the collected trace
data to a text file, with tab-separated columns.

Open Trace Expressions Window

Opens the Trace Expressions window, see Trace Expressions window, page
191.

AFE1_AFE2-1:1

188

Reference information on trace

C-SPY® Debugging Guide
for MSP430

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug
session.

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window shows:

● The functions called or returned to, instead of the traced instruction

● The corresponding trace data.

Requirements

The C-SPY simulator.

Toolbar

For information about the toolbar, see Trace window, page 184.

Display area

There are two sets of columns available, and which set is used in your debugging system
depends on the debug probe and which trace sources that are available:

● The available columns are the same as in the Trace window, see Trace window,
page 184.

● For debugProbe1 and debugProbe2 and depending on the trace source, these
columns are available:

Cycles

The number of cycles elapsed to this point according to the timestamp in the
debug probe.

Address

The address of the executed instruction.

Call/Return

The function that was called or returned to.

AFE1_AFE2-1:1

Trace

189

Trace Start Trigger breakpoint dialog box
The Trace Start Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Use this dialog box to set a Trace Start Trigger breakpoint where you want to start
collecting trace data. If you want to collect trace data only for a specific range, you must
also set a Trace Stop Trigger breakpoint where you want to stop collecting data.

See also Trace Stop Trigger breakpoint dialog box, page 190 and Trace data collection
using breakpoints, page 183.

To set a Trace Start Trigger breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Start Trigger from
the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start
Trigger.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

190

Reference information on trace

C-SPY® Debugging Guide
for MSP430

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 136.

Trace Stop Trigger breakpoint dialog box
The Trace Stop Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Use this dialog box to set a Trace Stop Trigger breakpoint where you want to stop
collecting trace data. If you want to collect trace data only for a specific range, you might
also need to set a Trace Start Trigger breakpoint where you want to start collecting data.

See also Trace Start Trigger breakpoint dialog box, page 189 and Trace data collection
using breakpoints, page 183.

To set a Trace Stop Trigger breakpoint:

1 In the editor or Disassembly window, right-click and choose Trace Stop Trigger from
the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop
Trigger.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

AFE1_AFE2-1:1

Trace

191

Requirements

The C-SPY simulator.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 136.

Trace Expressions window
The Trace Expressions window is available from the Trace window toolbar.

Use this window to specify, for example, a specific variable (or an expression) for which
you want to collect trace data.

Requirements

The C-SPY simulator.

Display area

Use the display area to specify expressions for which you want to collect trace data:

Expression

Specify any expression that you want to collect data from. You can specify any
expression that can be evaluated, such as variables and registers.

Format

Shows which display format that is used for each expression. Note that you can
change display format via the context menu.

Each row in this area will appear as an extra column in the Trace window.

AFE1_AFE2-1:1

192

Reference information on trace

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

These commands are available:

Move Up

Moves the selected expression upward in the window.

Move Down

Moves the selected expression downward in the window.

Remove

Removes the selected expression from the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Trace

193

Find in Trace dialog box
The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing
the View>Messages command, see Find in Trace window, page 194.

See also Searching in trace data, page 183.

Requirements

The C-SPY simulator.

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT, Int, and so on.

Match whole word

Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf, and so on.

Only search in one column

Searches only in the column you selected from the drop-down list.

AFE1_AFE2-1:1

194

Reference information on trace

C-SPY® Debugging Guide
for MSP430

Address range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you have also specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window
The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 193.

See also Searching in trace data, page 183.

Requirements

The C-SPY simulator.

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

AFE1_AFE2-1:1

195

The application timeline
● Introduction to analyzing your application’s timeline

● Analyzing your application’s timeline

● Reference information on application timeline

Introduction to analyzing your application’s timeline
These topics are covered:

● Briefly about analyzing the timeline

● Requirements for timeline support

See also:

● Trace, page 181

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

● As different graphs that correlate with the running application in relation to a shared
time axis.

● As detailed logs

● As summaries of the logs.

Depending on the capabilities of your hardware, the debug probe, and the C-SPY driver
you are using, timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 71 and Function Trace
window, page 188, respectively.

AFE1_AFE2-1:1

196

Introduction to analyzing your application’s timeline

C-SPY® Debugging Guide
for MSP430

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

● In the Timeline window, as a graph of how the values change over
time.

● In the Data Log window and the Data Log Summary window.

Interrupt
logging

Based on interrupt logs collected by the trace system. Choose to display
the interrupt logs:

● In the Timeline window, as a graph of the interrupt events during
the execution of your application.

● In the Interrupt Log window and the Interrupt Log Summary
window.

Interrupt logging can, for example, help you locate which interrupts you
can fine-tune to make your application more efficient.

For more information, see the chapter Interrupts.

Power
logging

Based on logged power measurement samples generated by the debug
probe or associated hardware. Choose to display the power logs:

● In the Timeline window, as a graph of the power measurement
samples. You can choose to display graphs for current, voltage, and
energy.

● In the Power Log window.

Power logs can be useful for finding peaks in the power consumption
and by double-clicking on a value you can see the corresponding source
code. The precision depends on the frequency of the samples, but there
is a good chance that you find the source code sequence that caused the
peak.

For more information, see the chapter Power debugging.

State logging Based on logged activity—state changes—for peripheral units and
clocks, as well as for CPU modes generated by the debug probe or
associated hardware. Choose to display the state logs:

● In the Timeline window, as a graph of the state changes.

● In the State Log window and in the State Log Summary window.

The information is useful for tracing the activity on the target system.

For more information, see the chapter Power debugging.

AFE1_AFE2-1:1

The application timeline

197

REQUIREMENTS FOR TIMELINE SUPPORT

Depending on the capabilities of the hardware, the debug probe, and the C-SPY driver
you are using, trace-based timeline information is supported for:

For more information about requirements related to trace data, see Requirements for
using trace, page 182.

Analyzing your application’s timeline
These tasks are covered:

● Displaying a graph in the Timeline window

● Navigating in the graphs

● Analyzing performance using the graph data

● Getting started using data logging

● Getting started using data sampling

See also:

● Debugging in the power domain, page 248

● Using the interrupt system, page 271

Target system
Call

Stack

Data

logging

Interrupt

logging

Power

logging

State

logging

C-SPY simulator Yes Yes — Yes — —

Table 7: Support for timeline information

Target system Call Stack
Data

logging

Interrupt

logging

State

logging

Power

logging

C-SPY simulator Yes Yes Yes —

C-SPY FET Debugger driver — — — Yes Yes

Table 8: Supported graphs in the Timeline window

AFE1_AFE2-1:1

198

Analyzing your application’s timeline

C-SPY® Debugging Guide
for MSP430

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs; follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 195.

1 Choose Project>Options>FET Debugger>Setup and select Enable ULP/LPMx.5
debug.

If you are using the C-SPY simulator, choose Simulator>Simulated Frequency to set
up a frequency that matches the simulated hardware.

2 Choose Timeline from the C-SPY driver menu to open the Timeline window.

3 In the Timeline window, right-click in the window and choose Select Graphs from the
context menu to select which graphs to be displayed.

4 In the Timeline window, right-click in the graph area and choose Enable from the
context menu to enable a specific graph.

5 For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 127.

6 Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
198, you can use any of these alternatives to navigate in the graph:

● Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and – keys. The graph zooms in or out depending on which
command you used.

● Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

● Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

● Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. Press Enter or right-click and

AFE1_AFE2-1:1

The application timeline

199

from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

1 In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis; choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

2 Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 198.

3 Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.

AFE1_AFE2-1:1

200

Analyzing your application’s timeline

C-SPY® Debugging Guide
for MSP430

GETTING STARTED USING DATA LOGGING

1 To set a data log breakpoint, use one of these methods:

● In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

● In the Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

● In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information, see Data Log
breakpoints, page 109.

2 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

● C-SPY driver>Data Log Summary to open the Data Log Summary window

● C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

3 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

4 Start executing your application program to collect the log information.

5 To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data Log graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

AFE1_AFE2-1:1

The application timeline

201

7 To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

GETTING STARTED USING DATA SAMPLING

1 Choose C-SPY driver>Data Sample Setup to open the Data Sample Setup window.

2 In the Data Sample Setup window, perform these actions:

● In the Expression column, type the name of the variable for which you want to
sample data. The variable must be an integral type with a maximum size of 32 bits
and you can specify up to four variables. Make sure that the checkbox is selected for
the variable that you want to sample.

● In the Sampling interval column, type the number of milliseconds to pass between
the samples.

3 To view the result of data sampling, you must enable it in the window in question:

● Choose C-SPY driver>Data Sample to open the Data Sample window. From the
context menu, choose Enable.

● Choose C-SPY driver>Sampled Graphs to open the Sampled Graphs window.
From the context menu, choose Enable.

4 Start executing your application program. This starts the data sampling. When the
execution stops, for example because a breakpoint is triggered, you can view the result
either in the Data Sample window or as the Data Sample graph in the Sampled
Graphs window

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable data sampling, choose Disable from the context menu in each window
where you have enabled it.

Reference information on application timeline
Reference information about:

● Data Log window, page 202

● Data Log Summary window, page 205

● Data Sample Setup window, page 209

● Data Sample window, page 208

● Sampled Graphs window, page 211

● Timeline window—Call Stack graph, page 215

AFE1_AFE2-1:1

202

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

● Timeline window—Data Log graph, page 218

● Viewing Range dialog box, page 222

See also:

● Timeline window—Interrupt Log graph, page 287

● Timeline window—Power graph, page 257

● Timeline window—State Log graph, page 264

Data Log window
The Data Log window is available from the C-SPY driver menu.

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using data logging, page 200.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

The application timeline

203

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information
is displayed in these columns:

Time

If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*

Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value

Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 109.

Address

The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the
offset contains + ?.

AFE1_AFE2-1:1

204

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

* You can double-click a line in the display area. If the value of the PC for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

AFE1_AFE2-1:1

The application timeline

205

Data Log Summary window
The Data Log Summary window is available from the C-SPY driver menu.

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 200.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns. Summary information is listed at the bottom of the
display area.

Data

The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 109.

Total Accesses

The total number of accesses.

If the sum of read accesses and write accesses is less than the total accesses, the
target system for some reason did not provide valid access type information for
all accesses.

Read Accesses

The total number of read accesses.

Write Accesses

The total number of write accesses.

AFE1_AFE2-1:1

206

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

Unknown Accesses

The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time
/Current cycles

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

AFE1_AFE2-1:1

The application timeline

207

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

AFE1_AFE2-1:1

208

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

Data Sample window
The Data Sample window is available from the C-SPY driver menu.

Use this window to view the result of the data sampling for the variables you have
selected in the Data Sample Setup window.

Choose Enable from the context menu to enable data sampling.

See also Getting started using data sampling, page 201.

Requirements

A device that supports the trace buffer.

Display area

This area contains these columns:

Sampling Time

The time when the data sample was collected. Time starts at zero after a reset.
Every time the execution stops, a red Stop indicates when the stop occurred.

The selected expression

The column headers display the names of the variables that you selected in the
Data Sample Setup window. The column cells display the sampling values for
the variable.

* You can double-click a row in the display area. If you have enabled the data sample
graph in the Sampled Graphs window, the selection line will be moved to reflect the
time of the row you double-clicked.

AFE1_AFE2-1:1

The application timeline

209

Context menu

This context menu is available:

These commands are available:

Enable

Enables data sampling.

Clear

Clears the sampled data.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Open setup window

Opens the Data Sample Setup window.

Data Sample Setup window
The Data Sample Setup window is available from the C-SPY driver menu.

Use this window to specify up to four variables to sample data for. You can view the
sampled data for the variables either in the Data Sample window or as graphs in the
Sampled Graphs window.

AFE1_AFE2-1:1

210

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

See also Getting started using data sampling, page 201.

Requirements

A device that supports the trace buffer.

Display area

This area contains these columns:

Expression

Type the name of the variable which must be an integral type with a maximum
size of 32 bits. Click the check box to enable or disable data sampling for the
variable.

Alternatively, drag an expression from the editor window and drop it in the
display area.

Variables in the expressions must be statically located, for example global
variables.

Address

The actual memory address that is accessed. The column cells cannot be edited.

Size

The size of the variable, either 1, 2, or 4 bytes. The column cells cannot be
edited.

Sampling interval [ms]

Type the number of milliseconds to pass between the samples. The shortest
allowed interval is 10 ms and the interval you specify must be a multiple of that.

Note that the sampling time you specify is just the interval (according to the
Microsoft Windows calculations) for how often C-SPY checks with the C-SPY
driver (which in turn must check with the MCU for a value). If this takes longer
than the sampling interval you have specified, the next sampling will be omitted.
If this occurs, you might want to consider increasing the sampling time.

Context menu

This context menu is available:

These commands are available:

Remove

Removes the selected variable.

AFE1_AFE2-1:1

The application timeline

211

Remove All

Removes all variables.

Sampled Graphs window
The Sampled Graphs window is available from the C-SPY driver menu.

Use this window to display graphs for up to four different variables, and where:

● The graph displays how the value of the variable changes over time. The area on the
left displays the limits, or range, of the Y-axis for the variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Sample window, see Data Sample window, page 208.

● The graph can be displayed as levels, where a horizontal line—optionally
color-filled—shows the value until the next sample. Alternatively, the graph can be
linear, where a line connects consecutive samples.

● A red vertical line indicates the time of application execution stops.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

To navigate in the graph, use any of these alternatives:

● Right-click and choose Zoom In or Zoom Out from the context menu.
Alternatively, use the + and – keys to zoom.

● Right-click in the graph and choose Navigate and the appropriate command to
move backward and forward on the graph. Alternatively, use any of the shortcut
keys: arrow keys, Home, End, and Ctrl+End.

● Double-click on a sample to highlight the corresponding source code in the editor
window and in the Disassembly window.

AFE1_AFE2-1:1

212

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

● Click on the graph and drag to select a time interval. Press Enter or right-click and
choose Zoom>Zoom to Selection from the context menu. The selection zooms in.

Hover with the mouse pointer in the graph to get detailed tooltip information for that
location.

See also Getting started using data sampling, page 201.

The graphs require hardware breakpoints. To preserve the required hardware
breakpoints, use the option Use only emulated breakpoints, see Breakpoints, page 410.

Requirements

A device that supports the trace buffer.

Context menu

This context menu is available:

These commands are available:

Navigate

Commands for navigating in the graphs. Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection to the previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

AFE1_AFE2-1:1

The application timeline

213

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: -

1us, 10us, 100us makes an interval of 1 microseconds, 10 microseconds, or 100
microseconds, respectively, fit the window.

1ms, 10ms, 100ms makes an interval of 1 millisecond, 10 milliseconds, or 100
milliseconds, respectively, fit the window.

1s, 10s, 100s makes an interval of 1 second, 10 seconds, or 100 seconds,
respectively, fit the window.

1k s, 10k s, 100k s makes an interval of 1,000 seconds, 10,000 seconds, or
100,000 seconds, respectively, fit the window.

1M s, 10M s, makes an interval of 1,000,000 seconds or 10,000,000 seconds,
respectively, fit the window.

Data Sample

A menu item that shows that the Data Sample-specific commands below are
available.

Open Setup window (Data Sample Graph)

Opens the Data Sample Setup window.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Clears the sampled data.

AFE1_AFE2-1:1

214

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

Variable

The name of the variable for which the Data Sample-specific commands below
apply. This menu item is context-sensitive, which means it reflects the Data
Sample graph you selected in the Sampled Graphs window (one of up to four).

Viewing Range

Displays a dialog box, see Viewing Range dialog box, page 222.

Size

Controls the vertical size of the graph; choose between Small, Medium, and
Large.

Style

Choose how to display the graph. Choose between:

Levels, where a horizontal line—optionally color-filled—shows the value until
the next sample.

Linear, where a line connects consecutive samples.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line. This is
only possible if the graph is displayed as Levels.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.

Select Graphs

Selects which graphs to display in the Sampled Graphs window.

AFE1_AFE2-1:1

The application timeline

215

Timeline window—Call Stack graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

● Medium green for normal C functions with debug information

● Light green for functions known to the debugger only through an assembler label

● Medium yellow for normal interrupt handlers, with debug information

● Light yellow for interrupt handlers known to the debugger only through an
assembler label.

AFE1_AFE2-1:1

216

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

AFE1_AFE2-1:1

The application timeline

217

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack

A heading that shows that the Call stack-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Show Timing

Toggles the display of the timing information on or off.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Save to File

Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

218

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

Profile Selection

Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling.

Timeline window—Data Log graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area for the Data Log graph

Where:

● The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

● The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the

AFE1_AFE2-1:1

The application timeline

219

context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 202.

● The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

AFE1_AFE2-1:1

220

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log

A heading that shows that the Data Log-specific commands below are available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable

The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).

AFE1_AFE2-1:1

The application timeline

221

Viewing Range

Displays a dialog box, see Viewing Range dialog box, page 222.

Size

Determines the vertical size of the graph; choose between Small, Medium, and
Large.

Solid Graph

Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value

Shows the numerical value of the variable, in addition to the graph.

Hexadecimal

Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

222

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Requirements

The C-SPY FET Debugger driver.

Range for ...

Selects the viewing range for the displayed values:

Auto

Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory

For the Power Log graph: Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

For the other graphs: Uses the range according to the value range of the variable,
for example 0–65535 for an unsigned 16-bit integer.

Custom

Use the text boxes to specify an explicit range.

AFE1_AFE2-1:1

The application timeline

223

Scale

Selects the scale type of the Y-axis:

● Linear

● Logarithmic

AFE1_AFE2-1:1

224

Reference information on application timeline

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

225

Profiling
● Introduction to the profiler

● Using the profiler

● Reference information on the profiler

Introduction to the profiler
These topics are covered:

● Reasons for using the profiler

● Briefly about the profiler

● Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the IAR
C/C++ Compiler User Guide for MSP430.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

AFE1_AFE2-1:1

226

Introduction to the profiler

C-SPY® Debugging Guide
for MSP430

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

● Trace (calls)

The full instruction trace is analyzed to determine all function calls and returns.
When the collected instruction sequence is incomplete or discontinuous, the
profiling information is less accurate.

● Trace (flat)

Each instruction in the full instruction trace or each PC Sample is assigned to a
corresponding function or code fragment, without regard to function calls or returns.
This is most useful when the application does not exhibit normal call/return
sequences, such as when you are using an RTOS, or when you are profiling code
which does not have full debug information.

Power sampling

Some debug probes support sampling of the power consumption of the development
board. Each sample is associated with a PC sample and represents the power
consumption (actually, the electrical current) for a small time interval preceding the time
of the sample. When the profiler is set to use Power Sampling, additional columns are
displayed in the Profiler window. Each power sample is associated with a function or
code fragment, just as with regular PC Sampling.

Note that this does not imply that all the energy corresponding to a sample can be
attributed to that function or code fragment. The time scales of power samples and
instruction execution are vastly different; during one power measurement, the CPU has
typically executed many thousands of instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator supports the profiler; there are no specific requirements.

The function profiler is available in the hardware debugger system if your device and
debug probe support it. The instruction profiler is not available in the hardware debugger
system.

AFE1_AFE2-1:1

Profiling

227

This table lists the C-SPY driver profiling support:

Using the profiler
These tasks are covered:

● Getting started using the profiler on function level

● Analyzing the profiling data

● Getting started using the profiler on instruction level

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:

1 Build your application using these options:

2 To set up the profiler for function profiling, choose Project>Options>Debugger>FET
Debugger>Setup and select Enable ULP/LPMx.5 debug.

3 When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

4 Start executing your application to collect the profiling information.

5 Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

6 When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

C-SPY driver Trace (calls) Trace (flat) Power

C-SPY simulator Yes Yes —

C-SPY FET Debugger driver — — Yes

Table 9: C-SPY driver profiling support

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Format>Debug information for C-SPY

Table 10: Project options for enabling the profiler

AFE1_AFE2-1:1

228

Using the profiler

C-SPY® Debugging Guide
for MSP430

ANALYZING THE PROFILING DATA

Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler
follows the program flow and detects function entries and exits.

● For the InitFib function, Flat Time 231 is the time spent inside the function itself.

● For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

● For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

● Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the PC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

AFE1_AFE2-1:1

Profiling

229

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

Note: The <No function> entry represents PC values that are not within the known
C-SPY ranges for the application.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

1 To set up the profiler for function profiling, choose Project>Options>Debugger>FET
Debugger>Setup and select Enable ULP/LPMx.5 debug.

2 When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

3 Make sure that the Show command on the context menu is selected, to display the
profiling information.

4 Start executing your application to collect the profiling information.

AFE1_AFE2-1:1

230

Reference information on the profiler

C-SPY® Debugging Guide
for MSP430

5 When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

For each instruction, the number of times it has been executed is displayed.

Reference information on the profiler
Reference information about:

● Function Profiler window, page 230

See also:

● Disassembly window, page 65

Function Profiler window
The Function Profiler window is available from the C-SPY driver menu.

AFE1_AFE2-1:1

Profiling

231

This figure reflects the C-SPY simulator driver.

This window displays function profiling information.

When Trace (flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

See also Using the profiler, page 227.

Requirements

One of these alternatives:

● The C-SPY simulator.

● The C-SPY FET Debugger driver and an MSP430 device with JSTATE register and
an eZFET or MSP-FET debug probe.

Note that if you are using the C-SPY FET Debugger driver, the profiling sources
Trace (flat) and Trace (calls) are not available.

Toolbar

The toolbar contains:

Enable/Disable

Enables or disables the profiler.

Clear

Clears all profiling data.

Save

Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view

Overlays the values in the percentage columns with a graphical bar.

Progress bar

Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process.

AFE1_AFE2-1:1

232

Reference information on the profiler

C-SPY® Debugging Guide
for MSP430

Note that because the profiler consumes data at a certain rate and the target
system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Display area

The content in the display area depends on which source that is used for the profiling
information:

● For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

● For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 226.

More specifically, the display area provides information in these columns:

Function (All sources)

The name of the profiled C function.

Calls (Trace (calls))

The number of times the function has been called.

Flat time (Trace (calls))

The time expressed in cycles spent inside the function.

Flat time (%) (Trace (calls))

Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))

The time expressed in cycles spent inside the function and everything called by
the function.

Acc. time (%) (Trace (calls))

Accumulated time expressed as a percentage of the total time.

AFE1_AFE2-1:1

Profiling

233

PC Count (Trace (flat))

The number of executed instructions associated with the function.

PC Count (%) (Trace (flat))

The number of executed instructions associated with the function as a
percentage of the total number of executed instructions.

Power Samples (Power Sampling)

The number of power samples associated with that function.

Energy (%) (Power Sampling)

The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Avg Current [mA] (Power Sampling)

The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)

The minimum measured value for all samples associated with that function.

Max Current [mA] (Power Sampling)

The maximum measured value for all samples associated with that function.

Context menu

This context menu is available:

The contents of this menu depend on the C-SPY driver you are using.

These commands are available:

Enable

Enables the profiler. The system will also collect information when the window
is closed.

Clear

Clears all profiling data.

AFE1_AFE2-1:1

234

Reference information on the profiler

C-SPY® Debugging Guide
for MSP430

Filtering

Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.

Uncheck All—Includes all lines in the profiling.

Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using Trace (flat).

Source

Selects which source to be used for the profiling information. See also Profiling
sources, page 226.

Note that the available sources depend on the C-SPY driver you are using.

Choose between:

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling

Toggles power sampling information on or off.

Save to File

Saves all profiling data to a file.

Show Source

Opens the editor window (if not already opened) and highlights the selected
source line.

AFE1_AFE2-1:1

235

Code coverage
● Introduction to code coverage

● Using code coverage

● Reference information on code coverage

Introduction to code coverage
These topics are covered:

● Reasons for using code coverage

● Briefly about code coverage

● Requirements and restrictions for using code coverage

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C or C++ code. For every program, module, and function, the analysis shows the
percentage of code that has been executed since code coverage was turned on up to the
point where the application has stopped. In addition, all statements that have not been
executed are listed. The analysis will continue until turned off.

Note: Assembler code is not covered in the Code Coverage window. To view code
coverage for assembler code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY simulator and there are no specific
requirements or restrictions.

AFE1_AFE2-1:1

236

Using code coverage

C-SPY® Debugging Guide
for MSP430

Using code coverage
These tasks are covered:

● Getting started using code coverage

GETTING STARTED USING CODE COVERAGE

To get started using code coverage:

1 Before you can use the code coverage functionality, you must build your application
using these options:

2 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

3 Click the Activate button, alternatively choose Activate from the context menu, to
switch on code coverage.

4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, the code coverage information is updated
automatically.

Reference information on code coverage
Reference information about:

● Code Coverage window, page 237

See also Single stepping, page 58.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Table 11: Project options for enabling code coverage

AFE1_AFE2-1:1

Code coverage

237

Code Coverage window
The Code Coverage window is available from the View menu.

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

Only source code that was compiled with debug information is displayed. Therefore,
startup code, exit code, and library code are not displayed in the window. Furthermore,
coverage information for statements in inlined functions is not displayed. Only the
statement containing the inlined function call is marked as executed.

A statement is considered to be executed when all its instructions have been executed.
By default, when a statement has been executed, it is removed from the window and the
percentage is increased correspondingly.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

238

Reference information on code coverage

C-SPY® Debugging Guide
for MSP430

Toolbar

The toolbar contains buttons for switching code coverage on and off, clearing the code
coverage information, and saving/restoring the code coverage session. See the
description of the context menu for more detailed information.

The toolbar contains these buttons:

Activate

Switches code coverage on and off during execution.

Clear

Clears the code coverage information. All step points are marked as not
executed.

Save session

Saves your code coverage session data to a *.dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command might not be supported by the C-SPY driver you are
using.

Display area

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the
active window.

These columns are available:

Code

The code coverage information as a tree structure, showing the program,
module, function, and statement levels. The plus sign and minus sign icons
allow you to expand and collapse the structure.

These icons give you an overview of the current status on all levels:

● Red diamond: 0% of the modules or functions has been executed.

● Green diamond: 100% of the modules or functions has been executed.

● Red and green diamond: Some of the modules or functions have been
executed.

AFE1_AFE2-1:1

Code coverage

239

Red, green, and yellow colors can be used as highlight colors in the source editor
window. In the editor window, the yellow color signifies partially executed.

Coverage (%)

The amount of statements that has been covered so far, that is, the number of
executed statements divided with the total number of statements.

Code Range

The address range in code memory where the statement is located.

File

The source file where the step point is located.

Line

The source file line where the step point is located.

Column

The source file column where the step point is located.

Context menu

This context menu is available:

These commands are available:

Activate

Switches code coverage on and off during execution.

Clear

Clears the code coverage information. All step points are marked as not
executed.

Hide Covered Step Points

Toggles the display of covered step points on and off. When this option is
selected, executed statements are removed from the window.

Show Coverage in Editor

Toggles the red, green, and yellow highlight colors that indicate code coverage
in the source editor window on and off.

AFE1_AFE2-1:1

240

Reference information on code coverage

C-SPY® Debugging Guide
for MSP430

Save session

Saves your code coverage session data to a *.dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Restore session

Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command might not be
supported by the C-SPY driver you are using.

Save As

Saves the current code coverage result in a text file.

AFE1_AFE2-1:1

241

Power debugging
● Introduction to power debugging

● Optimizing your source code for power consumption

● Debugging in the power domain

● Reference information on power debugging

Introduction to power debugging
These topics are covered:

● Reasons for using power debugging

● Briefly about power debugging

● Requirements and restrictions for power debugging

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 243.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can gain insight into how the software affects the power consumption, and thus how it
can be minimized.

Power debugging in C-SPY supports the EnergyTraceTM Technology provided by Texas
Instruments.

AFE1_AFE2-1:1

242

Introduction to power debugging

C-SPY® Debugging Guide
for MSP430

Measuring power consumption

Debug probes with EnergyTraceTM Technology support measure the power supplied to
a target microcontroller. A software-controlled DC–DC converter generates the target
power supply. The time density of the DC–DC converter charge pulses equals the power
consumption of the target microcontroller. A built-in on-the-fly calibration circuit
defines the energy equivalent of a single DC–DC charge pulse.

For more information about the debug probes, see the MSP430 Hardware Tools User’s
Guide on the Texas Instruments website.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

● The Power Log Setup window is where you can specify a threshold and an action
to be executed when the threshold is reached. This means that you can enable or
disable the power measurement or you can stop the application’s execution and
determine the cause of unexpected power values.

● The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

● The Power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly
window, which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

● The State Log window logs activity—state changes—for peripheral units and
clocks, as well as for CPU modes. The State Log Summary window displays a
summary of the logged activity. The State Log graphs display a graphical view of
the activity. The information is useful for tracing the activity on the target system.

● The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

AFE1_AFE2-1:1

Power debugging

243

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

Power debugging in C-SPY support two capture modes, with different capabilities:

● EnergyTraceTM, which can output timestamps, voltage, current, and energy
information. This mode is available for all MSP430 devices with both MSP-FET
(black box) and eZ-FET.

● EnergyTrace++TM, which can output timestamps, state log information for
peripheral units, clocks, and CPU modes (64-bit JSTATE register content), voltage,
current, and energy information. This mode is available for all MSP430 devices
with the JSTATE register, currently the MSP430FR59xx device family, together
with both the MSP-FET (black box) and the eZ-FET debugger probe. The
respective device-specific .menu file includes an <energytrace>1</energytrace>
tag.

To use the features in C-SPY for power debugging, you also need:

● The C-SPY FET Debugger driver.

Note: The MSP-FET430UIF (gray box) and the eZ430 debug probes do not support
power debugging.

Optimizing your source code for power consumption
This section gives some examples where power debugging can be useful and hopefully
help you identify source code constructions that can be optimized for low power
consumption.

These topics are covered:

● Waiting for device status

● Software delays

● DMA versus polled I/O

● Low-power mode diagnostics

● CPU frequency

● Detecting mistakenly unattended peripherals

● Peripheral units in an event-driven system

● Finding conflicting hardware setups

● Analog interference

AFE1_AFE2-1:1

244

Optimizing your source code for power consumption

C-SPY® Debugging Guide
for MSP430

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED);
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY);

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

DMA VERSUS POLLED I/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microcontroller is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design. In a task-oriented design, a task can
be defined with the lowest priority, and it will only execute when there is no other task
that needs to be executed. This idle task is the perfect place to implement power

AFE1_AFE2-1:1

Power debugging

245

management. In practice, every time the idle task is activated, it sets the microcontroller
into a low-power mode. All MSP430 devices have a number of different low-power
modes, in which different parts of the microcontroller can be turned off when they are
not needed. The oscillator can for example either be turned off or switched to a lower
frequency. In addition, individual peripheral units, timers, and the CPU can be stopped.
The different low-power modes have different power consumption based on which
peripherals are left turned on. A power debugging tool can be very useful when
experimenting with different low-level modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:

P = f * U2 * k

where f is the clock frequency, U is the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 10 MHz is expected to
spend 50% of the time in sleep mode when running at 20 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. This will be easily
revealed by the Power graph in the Timeline window. Double-clicking in the Timeline
window where the power consumption is unexpectedly high will take you to the
corresponding source code and disassembly code. In many cases, it is enough to disable
the peripheral unit when it is inactive, for example by turning off its clock which in most
cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power

AFE1_AFE2-1:1

246

Optimizing your source code for power consumption

C-SPY® Debugging Guide
for MSP430

even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t0 is in an inactive mode and the current is
I0:

At t1, the system is activated whereby the current rises to I1 which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I1. At t2, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I2 between t2 and t3 where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But in the power domain, more optimizations can be made. The
shadowed area represents the energy that could have been saved if the peripheral devices
that are not used between t2 and t3 had been turned off, or if the priorities of the two tasks
had been changed.

AFE1_AFE2-1:1

Power debugging

247

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design
requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window

AFE1_AFE2-1:1

248

Debugging in the power domain

C-SPY® Debugging Guide
for MSP430

is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

Debugging in the power domain
These tasks are covered:

● Displaying a power profile and analyzing the result

● Displaying the power profile on a device without EnergyTrace++

● Detecting unexpected power usage during application execution

● Measuring low power currents

● Changing the graph resolution

See also:

● Timeline window—Power graph, page 257

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT

To view the power profile on a device with EnergyTrace++:

1 Before you start the debug session, choose Project>Options>Debugger>FET
Debugger>Setup>Enable ULP/LPMx.5 debug.

2 Start the debugger.

3 Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging: Current, Voltage, or
Energy.

4 Choose C-SPY driver>Timeline to open the Timeline window.

5 Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view. Repeat this for each graph you want to view.

6 Choose C-SPY driver>Power Log to open the Power Log window.

7 Optionally, if you want to correlate power values to the status of peripheral units,
clocks, and CPU modes, right-click in the State Log graph area, and choose Enable
from the context menu.

8 Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graphs. See Viewing Range dialog box, page 222.

AFE1_AFE2-1:1

Power debugging

249

9 Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values, and a graphical representation of the logged
activity—state changes—for peripheral units and clocks, as well as CPU modes if you
enabled the State Log graph. For information about how to navigate on the graph, see
Navigating in the graphs, page 198.

10 To analyze power consumption:

● Double-click on an interesting power value to highlight the corresponding source
code in the editor window and in the Disassembly window. The corresponding log
is highlighted in the Power Log window. For examples of when this can be useful,
see Optimizing your source code for power consumption, page 243.

● You can identify peripheral units to disable if they are not used. You can detect this
by analyzing the power graph in combination with the State Log Graph in the
Timeline window. See also Detecting mistakenly unattended peripherals, page 245.

DISPLAYING THE POWER PROFILE ON A DEVICE WITHOUT
ENERGYTRACE++

To view the power profile on a device without EnergyTrace++:

1 Start the debugger.

2 Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging: Current, Voltage, or
Energy.

3 Choose C-SPY driver>Timeline to open the Timeline window.

4 Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view. Repeat this for each graph you want to view.

5 Choose C-SPY driver>Power Log to open the Power Log window.

AFE1_AFE2-1:1

250

Debugging in the power domain

C-SPY® Debugging Guide
for MSP430

6 Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values. For information about how to navigate on the
graph, see Navigating in the graphs, page 198.

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption on a device with
EnergyTrace++:

1 Choose C-SPY driver>Power Log Setup to open the Power Log Setup window.

2 In the Power Log Setup window, specify a threshold value and the appropriate action,
for example Log All and Halt CPU Above Threshold.

3 Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

4 Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.

MEASURING LOW POWER CURRENTS

During the capture of the internal states or even when simply executing until a
breakpoint stops the execution, the target microcontroller is constantly accessed via
JTAG or Spy-Bi-Wire debug logic. These debug accesses consume energy that will be
included in the numbers displayed in the Power Log window and graphs. To measure
the power numbers of just the application, it is therefore recommended to use the

AFE1_AFE2-1:1

Power debugging

251

Release JTAG on Go option, which means that the debug logic of the target
microcontroller is not accessed while measuring the power consumption.

To measure low power currents:

1 Before you start the debug session, choose Project>Options>Debugger>FET
Debugger>Setup>Enable ULP/LPMx.5 debug.

2 Start the debugger.

3 Choose C-SPY driver>Release JTAG on Go.

4 Choose C-SPY driver>Power Log Setup. In the ID column, select the alternatives for
which you want to enable power logging: Current, Voltage, or Energy.

5 To enable the graphs in the Timeline window, choose Emulator>Timeline to open the
Timeline window. Right-click in the graph area for each graph that you have enabled
power logging for and choose Enable from the context menu.

6 Start the execution.

Power logging is enabled and you can now see the graphs appear in the Timeline
window.

CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:

1 In the Timeline window, select the Power graph, right-click and choose Open Setup
Window to open the Power Log Setup window.

2 From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging
Reference information about:

● Power Log Setup window, page 252

● Power Log window, page 254

● Timeline window—Power graph, page 257

AFE1_AFE2-1:1

252

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

● State Log Setup window, page 258

● State Log window, page 259

● State Log Summary window, page 261

● Timeline window—State Log graph, page 264

See also:

● Trace window, page 184

● The application timeline, page 195

● Viewing Range dialog box, page 222

● Function Profiler window, page 230

Power Log Setup window
The Power Log Setup window is available from the C-SPY driver menu during a debug
session.

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the power graph in the Timeline window.

Requirements

An eZFET or MSP-FET debug probe.

Display area

This area contains these columns:

ID

A unique string that identifies the measurement channel in the probe. Select the
check box to activate the channel. If the check box is deselected, logs will not
be generated for that channel.

Name

Specify a user-defined name.

AFE1_AFE2-1:1

Power debugging

253

Threshold

Specify a threshold value in the selected unit. The action you specify will be
executed when the threshold value is reached.

Unit

Displays the selected unit for power. You can choose a unit from the context
menu.

Action

Displays the selected action for the measurement channel. Choose between:

● Log All

● Log Above Threshold

● Log Below Threshold

● Log All and Halt CPU Above Threshold

● Log All and Halt CPU Below Threshold

Context menu

This context menu is available:

These commands are available:

nA, uA, mA

Selects the unit for the power display. These alternatives are available for
channels that measure current.

uV, mV, V

Selects the unit for power display. These alternatives are available for channels
that measure voltage.

uWs, mWs, Ws

Selects the unit for power display. These alternatives are available for channels
that measure energy.

Log All

Logs all values.

AFE1_AFE2-1:1

254

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Log Above Threshold

Logs all values above the threshold.

Log Below Threshold

Logs all values below the threshold.

Log All and Halt CPU Above Threshold

Logs all values. If a logged value exceeds the threshold, execution is stopped.
This might take a few execution cycles.

Log All and Halt CPU Below Threshold

Logs all values. If a logged value goes below the threshold, execution is stopped.
This might take a few execution cycles.

Power Log window
The Power Log window is available from the C-SPY driver menu during a debug
session.

This window displays collected power values.

A row with only Time/Cycles and Program Counter displayed in gray denotes a logged
power value for a channel that was active during the actual collection of data but
currently is disabled in the Power Log Setup window.

Note: The number of logged power values is limited. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

An eZFET or MSP-FET debug probe.

Display area

This area contains these columns:

Time

The time from the application reset until the event, based on time stamps.

AFE1_AFE2-1:1

Power debugging

255

This column is available when you have selected Show Time from the context
menu.

Program Counter (J-Link only)

Displays one of these:

An address, which is the content of the PC, that is, the address of an instruction
close to where the power value was collected.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Note that the Program Counter column is only available if your device
supports it.

Name [unit]

The power measurement value expressed in the unit you specified in the Power
Log Setup window.

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

AFE1_AFE2-1:1

256

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Choose Live Log File

Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to

Toggles live logging on or off. The logs are saved in the specified file.

Clear log file

Clears the content of the live log file.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

Open Setup Window

Opens the Power Log Setup window.

The format of the log file

The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:

Time/Cycles

The time from the application reset until the power value was logged.

Approx

An x in the column indicates that the power value has an approximative value
for time/cycle.

AFE1_AFE2-1:1

Power debugging

257

PC

The value of the program counter close to the point where the power value was
logged.

Name [unit]

The corresponding value from the Power Log window, where Name and unit
are according to your settings in the Power Log Setup window.

Timeline window—Power graph
The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

The power graph displays a graphical view of power measurement samples.

Depending on the abilities in hardware, the debug probe, and the C-SPY driver you are
using, this window can display a Power Log graph that shows power measurement
samples generated by the debug probe or associated hardware in relation to a common
time axis.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see Reference information on application timeline, page 201.

See also Requirements and restrictions for power debugging, page 243.

AFE1_AFE2-1:1

258

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Requirements

An eZFET or MSP-FET debug probe.

Display area

Where:

● The label area at the left end of the graph displays the name of the measurement
channel.

● The Voltage and the Current graphs show power measurement samples generated by
the debug probe or associated hardware. The Energy graph shows accumulated
energy since the last time the CPU was stopped.

● The graphs can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

● The resolution of the graphs can be changed.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

State Log Setup window
The State Log Setup window is available from the menu during a debug session.

Use the State Log Setup window to specify whether to halt the CPU in connection with
activity—state changes—for peripheral units and clocks, as well as for CPU modes.

AFE1_AFE2-1:1

Power debugging

259

State Log window
The State Log window is available from the C-SPY driver menu.

This window logs activity—state changes—for peripheral units and clocks, as well as
for CPU modes.

The information is useful for tracing the activity on the target system. When the State
Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Displaying a power profile and analyzing the result, page 248 and Timeline
window—State Log graph, page 264.

Requirements

An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

Display area

This area contains these columns:

Time

The time for the state change, based on the sampling frequency.

If a time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

Source

The name of the peripheral unit, clock, or CPU mode.

Status

The status at the given time.

Program Counter*

The address of the program counter when the status changed, or shows idle if
the log was taken during CPU idle mode, or shows --- for an unknown PC value.

AFE1_AFE2-1:1

260

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Active

The active time calculated using the on and off time for the source. If it is written
in italics, it is based on at least one approximative time.

* You can double-click an address. If it is available in the source code, the editor window
displays the corresponding source code, for example for the interrupt handler (this does
not include library source code).

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles

Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

AFE1_AFE2-1:1

Power debugging

261

State Log Summary window
The State Log Summary window is available from the C-SPY driver menu.

This window displays a summary of logged activity—state changes—for peripheral
units and clocks, as well as for CPU modes.

Click a column to sort it according to the values. Click again to reverse the sort order.

At the bottom of the display area, the current time or cycles is displayed—the number
of cycles or the execution time since the start of execution.

See also Displaying a power profile and analyzing the result, page 248 and Timeline
window—State Log graph, page 264.

Requirements

An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

Display area

Each row in this area displays statistics about the specific measurement source based on
the log information in these columns; and summary information is listed at the bottom
of the display area:

Source

The name of the peripheral unit, clock, or CPU mode.

Count

The number of times the source was activated.

First time

The first time the source was activated.

Total (Time)**

The accumulated time the source has been active.

AFE1_AFE2-1:1

262

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Total (%)

The accumulated time in percent that the source has been active.

Shortest

The shortest time spent with this source active.

Longest

The longest time spent with this source active.

Min interval

The shortest time between two activations of this source.

Max interval

The longest time between two activations of this source.

Approximative time count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time
/Current cycles

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

AFE1_AFE2-1:1

Power debugging

263

** Calculated in the same way as for the Execution time/cycles in the State Log
window.

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles

Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

AFE1_AFE2-1:1

264

Reference information on power debugging

C-SPY® Debugging Guide
for MSP430

Timeline window—State Log graph
The State Log graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

The State Log graph displays a graphical view of logged activity—state changes—for
peripheral units and clocks, as well as CPU modes in relation to a common time axis.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see Reference information on application timeline, page 201.

See also Requirements and restrictions for power debugging, page 243.

Requirements

An MSP430 device with JSTATE register and an eZFET or MSP-FET debug probe.

Display area

Where:

● The label area at the left end of the graph displays the name of the sources of the
status information.

● The graph itself shows the state of the peripheral units, clocks, and CPU modes
generated by the debug probe or associated hardware. The white figure indicates the
time spent in the state. This graph is a graphical representation of the information in
the State Log window, see State Log window, page 259.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

265

Part 3. Advanced
debugging
This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:

● Interrupts

● The advanced cycle counter

● State storage

● The sequencer

● C-SPY macros

● The C-SPY command line utility—cspybat

266

AFE1_AFE2-1:1

267

Interrupts
● Introduction to interrupts

● Using the interrupt system

● Reference information on interrupts

Introduction to interrupts
These topics are covered:

● Briefly about the interrupt simulation system

● Interrupt characteristics

● Interrupt simulation states

● C-SPY system macros for interrupt simulation

● Target-adapting the interrupt simulation system

● Briefly about interrupt logging

See also:

● Reference information on C-SPY system macros, page 325

● Breakpoints, page 107

● The IAR C/C++ Compiler User Guide for MSP430

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and
debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

● Simulated interrupt support for the MSP430 microcontroller

● Single-occasion or periodical interrupts based on the cycle counter

● Predefined interrupts for various devices

AFE1_AFE2-1:1

268

Introduction to interrupts

C-SPY® Debugging Guide
for MSP430

● Configuration of hold time, probability, and timing variation

● State information for locating timing problems

● Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

● A log window that continuously displays events for each defined interrupt.

● A status window that shows the current interrupt activities.

All interrupts you define using the Interrupt Setup dialog box are preserved between
debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options probability—

AFE1_AFE2-1:1

Interrupts

269

the probability, in percent, that the interrupt will actually appear in a period—and
variance—a time variation range as a percentage of the repeat interval. These options
make it possible to randomize the interrupt simulation. You can also specify a hold time
which describes how long the interrupt remains pending until removed if it has not been
processed. If the hold time is set to infinite, the corresponding pending bit will be set
until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the
available status information. For an interrupt, these states can be displayed: Idle,
Pending, Executing, or Suspended.

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

AFE1_AFE2-1:1

270

Introduction to interrupts

C-SPY® Debugging Guide
for MSP430

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:

● __cancelAllInterrupts

● __cancelInterrupt

● __disableInterrupts

● __enableInterrupts

● __orderInterrupt

● __popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupt Setup dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 325.

AFE1_AFE2-1:1

Interrupts

271

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 44.

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful, for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. In the
IDE:

● The logs are displayed in the Interrupt Log window

● A summary is available in the Interrupt Log Summary window

● The Interrupt graph in the Timeline window provides a graphical view of the
interrupt events during the execution of your application

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator.

See also Getting started using interrupt logging, page 274.

Using the interrupt system
These tasks are covered:

● Simulating a simple interrupt

● Simulating an interrupt in a multi-task system

● Getting started using interrupt logging

AFE1_AFE2-1:1

272

Using the interrupt system

C-SPY® Debugging Guide
for MSP430

See also:

● Using C-SPY macros, page 313 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

● The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

1 Assume this simple application which contains an interrupt service routine for the
BasicTimer, which increments a tick variable. The main function sets the necessary
status registers. The application exits when 100 interrupts have been generated.

#include "io430x41x.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{
 /* Timer setup code */
 WDTCTL = WDTPW + WDTHOLD; /* Stop WDT */
 IE2 |= BTIE; /* Enable BT interrupt */
 BTCTL = BTSSEL+BTIP2+BTIP1+BTIP0;
 __enable_interrupt(); /* Enable interrupts */

 while (ticks < 100); /* Endless loop */
 printf("Done\n");
}

/* Timer interrupt service routine */
#pragma vector = BASICTIMER_VECTOR
__interrupt void basic_timer(void)
{
 ticks += 1;
}

2 Add your interrupt service routine to your application source code and add the file to
your project.

3 Choose Project>Options>Debugger>Setup, select Override default, and choose a
device description file. The device description file contains information about the
interrupt that C-SPY needs to be able to simulate it. Use the browse button to locate the
ddf file.

4 Build your project and start the simulator.

AFE1_AFE2-1:1

Interrupts

273

5 Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
Enable interrupt simulation to enable interrupt simulation. Click New to open the
Edit Interrupt dialog box. For the timer example, verify these settings:

Click OK.

6 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 4000

● Continuously repeat the interrupt after approximately 2000 cycles.

7 To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

8 From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log
window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Reference information on application timeline, page 201.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:

1 Set a code breakpoint on the instruction that returns from the interrupt function.

Option Settings

Interrupt BASICTIMER_VECTOR

First activation 4000

Repeat interval 2000

Hold time 10

Probability (%) 100

Variance (%) 0

Table 12: Timer interrupt settings

AFE1_AFE2-1:1

274

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

1 Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

● C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

● C-SPY driver>Timeline to open the Timeline window and view the Interrupt graph

2 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

3 Start executing your application program to collect the log information.

4 To view the interrupt log information, look in the Interrupt Log or Interrupt Log
Summary window, or the Interrupt graph in the Timeline window.

5 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

6 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts
Reference information about:

● Interrupt Setup dialog box, page 275

● Edit Interrupt dialog box, page 277

● Forced Interrupt window, page 278

● Interrupt Status window, page 279

● Interrupt Log window, page 281

● Interrupt Log Summary window, page 284

● Timeline window—Interrupt Log graph, page 287

AFE1_AFE2-1:1

Interrupts

275

Interrupt Setup dialog box
The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

See also Using the interrupt system, page 271.

Requirements

The C-SPY simulator.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area

This area contains these columns:

Interrupt

Lists all interrupts. Use the checkbox to enable or disable the interrupt.

ID

A unique interrupt identifier.

Type

Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.

AFE1_AFE2-1:1

276

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

Buttons

These buttons are available:

New

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 277.

Edit

Opens the Edit Interrupt dialog box, see Edit Interrupt dialog box, page 277.

Delete

Removes the selected interrupt.

Delete All

Removes all interrupts.

AFE1_AFE2-1:1

Interrupts

277

Edit Interrupt dialog box
The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

See also Using the interrupt system, page 271.

Requirements

The C-SPY simulator.

Interrupt

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The list is
populated with entries from the device description file that you have selected.

Description

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file and consists of a string describing the vector address, the
default priority, enable bit, and pending bit, separated by space characters. For interrupts
specified using the system macro __orderInterrupt, the Description box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.

AFE1_AFE2-1:1

278

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

Forced Interrupt window
The Forced Interrupt window is available from the C-SPY driver menu.

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logic and interrupt routines. Just start typing an interrupt name and focus
shifts to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description column
header. A second click on the same column header reverses the sort order.

To force an interrupt:

1 Enable the interrupt simulation system, see Interrupt Setup dialog box, page 275.

2 Double-click the interrupt in the Forced Interrupt window, or activate it by using the
Force command available on the context menu.

Requirements

The C-SPY simulator.

AFE1_AFE2-1:1

Interrupts

279

Display area

This area lists all available interrupts and their definitions. The description field is
editable and the information is retrieved from the selected device description file. See
this file for a detailed description.

Context menu

This context menu is available:

This command is available:

Force

Triggers the interrupt you selected in the display area.

Interrupt Status window
The Interrupt Status window is available from the C-SPY driver menu.

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator.

Display area

This area contains these columns:

Interrupt

Lists all interrupts.

ID

A unique interrupt identifier.

AFE1_AFE2-1:1

280

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Type

The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced Interrupt window.

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Status

The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time

The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

Timing

The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

AFE1_AFE2-1:1

Interrupts

281

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information, see Getting started using interrupt logging, page 274.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 287.

Requirements

The C-SPY simulator.

Display area

This area contains these columns:

Time

The point in time, measured in seconds, when the event occurred.

AFE1_AFE2-1:1

282

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

This column is available when you have selected Show Time from the context
menu.

Cycles

The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt

The interrupt as defined in the device description file.

Status

Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Forced
Interrupt window.

Enter, the interrupt is currently executing.

Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter

The value of the program counter when the event occurred.

Execution Time/Cycles

The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

AFE1_AFE2-1:1

Interrupts

283

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

AFE1_AFE2-1:1

284

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

This window displays a summary of logs of entrances to and exits from interrupts.

For more information, see Getting started using interrupt logging, page 274.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 287.

Requirements

The C-SPY simulator.

Display area

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns; and summary information is listed at the bottom of the
display area:

Interrupt

The type of interrupt that occurred.

Count

The number of times the interrupt occurred.

First time

The first time the interrupt was executed.

Total (Time)**

The accumulated time spent in the interrupt.

Total (%)

The time in percent of the current time.

Fastest**

The fastest execution of a single interrupt of this type.

AFE1_AFE2-1:1

Interrupts

285

Slowest**

The slowest execution of a single interrupt of this type.

Min interval

The shortest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval

The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Approximative time count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time
/Current cycles

The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

AFE1_AFE2-1:1

286

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu

This context menu is available:

These commands are available:

Enable

Enables the logging system. The system will log information also when the
window is closed.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File

Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time

Displays the Time column.

If the Time column is displayed by default in the C-SPY driver you are using,
this menu command is not available.

Show Cycles

Displays the Cycles column.

If the Cycles column is not supported in the C-SPY driver you are using, this
menu command is not available.

AFE1_AFE2-1:1

Interrupts

287

Timeline window—Interrupt Log graph
The Interrupt Log graph displays interrupts collected by the trace system. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

The C-SPY simulator.

Display area

● The label area at the left end of the graph displays the names of the interrupts.

● The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 281.

● If the bar is displayed without horizontal borders, there are two possible causes:

● The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.

● There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.

● If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

AFE1_AFE2-1:1

288

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

Context menu

This context menu is available:

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate

Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll

Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom

Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

AFE1_AFE2-1:1

Interrupts

289

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Interrupt

A heading that shows that the Interrupt Log-specific commands below are
available.

Enable

Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear

Deletes the log information. Note that this will also happen when you reset the
debugger.

Go To Source

Displays the corresponding source code in an editor window, if applicable.

Sort by

Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

source

Goes to the previous/next log for the selected source.

Select Graphs

Selects which graphs to be displayed in the Timeline window.

Time Axis Unit

Selects the unit used in the time axis; choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

290

Reference information on interrupts

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

291

The advanced cycle
counter
● Introduction to the advanced cycle counter

● Using the cycle counter applications

● Reference information on the advanced cycle counter

Introduction to the advanced cycle counter
This section introduces the advanced cycle counter.

These topics are covered:

● Reasons for using the advanced cycle counter

● Briefly about the advanced cycle counter

● Requirements for using the advanced cycle counter

For related information, see Registers window, page 163.

REASONS FOR USING THE ADVANCED CYCLE COUNTER

The advanced cycle counter for MSP430 devices can help you, for example, to measure
the DMA load, to profile a part of your application, or to measure how long some tasks
take.

BRIEFLY ABOUT THE ADVANCED CYCLE COUNTER

The advanced cycle counter provides one or two 40-bit counters to count the number of
cycles used by the CPU to execute certain tasks. On some devices, the cycle counter
operation can be controlled using triggers. This allows, for example, conditional
profiling, such as profiling a specific section of code.

The Advanced Cycle Counter Control window contains preconfigured applications,
as well as the opportunity to customize your own use of the cycle counter.

REQUIREMENTS FOR USING THE ADVANCED CYCLE
COUNTER

The advanced cycle counter is only available if you are using the C-SPY FET Debugger
driver and an MSP430 device that supports the Enhanced Emulation Module at the

AFE1_AFE2-1:1

292

Using the cycle counter applications

C-SPY® Debugging Guide
for MSP430

required level. Some devices have one cycle counter and some have two. If your device
has one cycle counter, it is referred to as Cycle counter 0. If your device has two cycle
counters, they are referred to as Cycle counter 0 and Cycle counter 1.

Using the cycle counter applications
This section gives you descriptions of the Cycle counter 1 applications available in the
Advanced Cycle Counter Control window; that is, step-by-step descriptions of how to
use the extra cycle counter.

These topics are covered:

● Counting all CPU cycles

● Measuring the DMA load versus the CPU load

● Profiling a specific part of your application

● Measuring the Trigger hits

● Measuring the number of CPU cycles for a task

COUNTING ALL CPU CYCLES

The Cycle counter application in the Advanced Cycle Counter Control window
makes Cycle counter 1 behave like an ordinary cycle counter, counting all CPU cycles.

To count all CPU cycles:

1 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

2 Select the Cycle counter option.

3 Click the Reset Counter 1 button to reset Cycle counter 1.

4 Execute your program and then stop the execution.

Cycle counter 1 in the Cycle Counter Values area now shows the number of CPU
cycles that were executed.

MEASURING THE DMA LOAD VERSUS THE CPU LOAD

The DMA load vs. CPU load application in the Advanced Cycle Counter Control
window measures the DMA load versus the CPU load by comparing the number of
DMA bus cycles with the total number of bus cycles.

To measure the DMA load versus the CPU load:

1 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

AFE1_AFE2-1:1

The advanced cycle counter

293

2 Select the DMA load vs. CPU load option.

3 Click the Reset Counter 1 button to reset Cycle counter 1.

4 Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of DMA bus
cycles, which can be compared with the number of CPU cycles shown by Cycle
counter 0.

PROFILING A SPECIFIC PART OF YOUR APPLICATION

The Profiling application in the Advanced Cycle Counter Control window lets you
profile a specific part of your program. Two reaction triggers or breakpoints define the
start and stop points for the cycle counter. Cycle counter 1 starts to count cycles at the
first trigger point and stops counting cycles at the second trigger.

Note: You cannot define which trigger point should be used as the start point or stop
point; the first of the two that is reached will start the cycle counter. The execution does
not stop at any of the triggers. You can compare the amount of time spent in a specific
function with the result for cycle counter 0, which counts all cycles for the entire
application.

To profile a section of your application:

1 Set up an advanced trigger at the start point of the code section that you want to
measure. For information about setting advanced trigger breakpoints, see Advanced
trigger breakpoints, page 109.

2 Set up a second advanced trigger at the stop point of the code section that you want to
measure.

3 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

4 Select the Profiling option.

5 Select the start trigger point from the drop-down list Reaction trigger 1.

6 Select the stop trigger point from the drop-down list Reaction trigger 2.

7 Click the Reset Counter 1 button to reset Cycle counter 1.

8 Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 shows the number of CPU cycles
spent in the selected code section or function. Cycle counter 0 shows all counted CPU
cycles.

AFE1_AFE2-1:1

294

Using the cycle counter applications

C-SPY® Debugging Guide
for MSP430

MEASURING THE TRIGGER HITS

The Trigger hits application in the Advanced Cycle Counter Control window
measures the number of times a certain point in your program has been reached. Cycle
counter 1 counts the number of times a trigger point has been triggered.

To measure how many times a point in your application is reached:

1 Set up an advanced trigger at the trigger point that you want to measure. For
information about setting advanced trigger breakpoints, see Advanced Trigger
breakpoints dialog box, page 134.

2 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

3 Select the Trigger hits option.

4 Select the trigger point from the drop-down list Reaction trigger 1.

5 Click the Reset Counter 1 button to reset Cycle counter 1.

6 Execute your program and then stop the execution.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of times the
trigger point has been triggered.

MEASURING THE NUMBER OF CPU CYCLES FOR A TASK

The Trip counter application in the Advanced Cycle Counter Control window
measures the number of CPU cycles required to execute a certain task or function. Cycle
counter 1 starts to count cycles at the start trigger and stops counting cycles at the stop
trigger. The execution stops when the stop trigger is reached.

To measure the number of cycles required to execute a task or function:

1 Set up an advanced trigger at the start point of the code section that you want to
measure. For information about setting advanced trigger breakpoints, see Advanced
Trigger breakpoints dialog box, page 134.

2 Set up a second advanced trigger at the stop point of the code section that you want to
measure.

3 Choose Emulator>Advanced Cycle Counter to open the Advanced Cycle Counter
Control window.

4 Select the Trip counter option.

5 Select the start trigger point from the drop-down list Reaction trigger 1.

6 Select the stop trigger point from the drop-down list Reaction trigger 2.

7 Click the Reset Counter 1 button to reset Cycle counter 1.

AFE1_AFE2-1:1

The advanced cycle counter

295

8 Execute your program. The execution stops when the stop trigger is reached.

In the Cycle Counter Values area, Cycle counter 1 now shows the number of CPU
cycles required to execute the task or function.

Reference information on the advanced cycle counter
This section gives reference information about the Advanced Cycle Counter Control
window.

Advanced Cycle Counter Control window
The Advanced Cycle Counter Control window is available from the Emulator menu
when the debugger is running.

Use this window to set the behavior of Cycle counter 0 and Cycle counter 1, the extra
cycle counter for some MSP430 devices.

Requirements

The C-SPY FET Debugger driver.

Applications

The Advanced Cycle Counter Control window contains preconfigured applications
for Cycle counter 1, as well as the opportunity to customize your own use of the cycle
counter. Use the cycle counter Applications to configure for what purpose to use the
cycle counter. Choose between:

Cycle counter

Makes Cycle counter 1 count all CPU cycles, see Counting all CPU cycles, page
292.

AFE1_AFE2-1:1

296

Reference information on the advanced cycle counter

C-SPY® Debugging Guide
for MSP430

DMA load vs. CPU load

Compares the number of DMA bus cycles with the total number of bus cycles,
see Measuring the DMA load versus the CPU load, page 292.

Profiling

Profiles a specific part of your program, see Profiling a specific part of your
application, page 293.

Trigger hits

Measures the number of times a certain point in your program has been reached,
see Measuring the Trigger hits, page 294.

Trip counter

Measures the number of CPU cycles required to execute a certain task or
function, see Measuring the number of CPU cycles for a task, page 294.

Custom

Make a custom application using the options in the Cycle Counter 1 area.

Cycle counter values

Cycle counter 0

The value of cycle counter 0. Cycle counter 0 is the same cycle counter as the
one displayed in the Registers window.

Cycle counter 1

The value of Cycle counter 1. Cycle counter 1 is controlled by the settings in the
Advanced Cycle Counter Control window.

Mode

Reaction

Increments the counter on reactions. This option is only available for Cycle
counter 1.

Fetch

Increments the counter on all instruction fetch cycles.

Bus incl. DMA

Increments the counter on all bus cycles (including DMA cycles).

CPU excl. DMA

Increments the counter on all CPU bus cycles (excluding DMA cycles).

DMA

Increments the counter on all DMA bus cycles.

AFE1_AFE2-1:1

The advanced cycle counter

297

Start

Reaction

Uses the cycle counter reaction to start the cycle counter. This option is only
available for Cycle counter 1.

CPU starts

Starts counting cycles when the CPU starts to execute.

Act as counter 0/1

Starts counting when the other counter starts. This option is only available for
devices with two cycle counters.

Stop

Reaction

Uses the cycle counter reaction to stop the cycle counter. This option is only
available for Cycle counter 1.

CPU stops

Stops counting when the CPU stops the execution.

Act as counter 0/1

Stops counting when the other counter stops. This option is only available for
devices with two cycle counters.

Clear

Reaction

Clears the cycle counter on the cycle count reaction. This option is only
available for Cycle counter 1.

No event

Does not clear the counter.

Act as counter 0/1

Clears the cycle counter when the other automatically resets.

Combinations of start, stop, and clear reactions

Start Stop Clear Description

Reaction Reaction The cycle counter reaction starts the cycle counter and
clears it at start.

Table 13: Cycle Counter 1, combinations of start, stop, and clear reactions

AFE1_AFE2-1:1

298

Reference information on the advanced cycle counter

C-SPY® Debugging Guide
for MSP430

Reaction trigger 1, Reaction trigger 2

Selects breakpoints to act as a reaction triggers.

Reset Counter 0/1

Resets the value and state of the cycle counter.

Reaction Reaction The cycle counter reaction stops and clears the cycle
counter.

Reaction Reaction If the cycle counter is stopped, the cycle counter
reaction starts the counter. If the counter is running, the
cycle counter reaction stops the counter.

Reaction Reaction Reaction If the cycle counter is stopped, the cycle counter
reaction starts the counter and clears it at start. If the
counter is running, the cycle counter reaction stops the
counter.

Start Stop Clear Description

Table 13: Cycle Counter 1, combinations of start, stop, and clear reactions (Continued)

AFE1_AFE2-1:1

299

State storage
● Introduction to state storage

● Using state storage

● Reference information on state storage

Introduction to state storage
This section introduces the state storage module, a limited variant of a traditional trace
module available for the C-SPY FET Debugger driver.

These topics are covered:

● Reasons for using state storage

● Briefly about state storage

● Requirements

For related information, see also:

● The sequencer, page 305

REASONS FOR USING STATE STORAGE

State storage allows you to examine the last eight states or instructions that were
executed before a specific point was reached or a specific event occurred, or the next
eight states that will be executed after a specific point is reached or a specific event
occurs.

BRIEFLY ABOUT STATE STORAGE

The state storage module is a limited variant of a traditional trace module. It can store
eight states and can be used for monitoring program states or program flow, without
interfering with the execution. It uses a built-in buffer to store MAB, MDB, and CPU
control signal information.

REQUIREMENTS

The state storage module is only available if you are using the C-SPY FET Debugger
driver and a device that supports the Enhanced Emulation Module at the required level.

AFE1_AFE2-1:1

300

Using state storage

C-SPY® Debugging Guide
for MSP430

Using state storage
This section gives you step-by-step descriptions about how to set up state storage.

SETTING UP STATE STORAGE

To use the state storage module, you must:

1 Define one or several range breakpoints or conditional breakpoints.

2 In the breakpoints dialog box, select the action State Storage Trigger for these
breakpoints. This means that the breakpoint is defined as a state storage trigger. (State
storage can also be triggered from the Sequencer Control window.)

Note: Depending on the behavior you want when the state storage module is triggered,
it is useful to consider the combination of the Action options and the options available
in the State Storage Control window. See the examples following immediately after
these steps.

3 Choose Emulator>State Storage Control to open the State Storage Control window.

4 Select the option Enable state storage. Set the options Buffer wrap around, Trigger
action, and Storage action according to your preferences.

In the list State Storage Triggers, all breakpoints defined as state storage triggers are
listed.

For more details about the options, see State Storage Control window, page 301.

5 Click Apply.

6 Choose Emulator>State Storage window to open the State Storage window.

7 Choose Debug>Go to execute your application. Before you can view the state storage
information, you must stop the execution. You can do this, for instance, by using the
Break command.

For information about the window contents, see State Storage window, page 303.

Example

As an example, assume the following setup:

● There is a conditional breakpoint which has both of the action options selected—
Break and State Storage Trigger

● The state storage options Instruction fetch and Buffer wrap around are selected
in the State Storage Control window.

AFE1_AFE2-1:1

State storage

301

This will start the state storage immediately when you start executing your application.
When the breakpoint is triggered, the execution will stop and the last eight states can be
inspected in the State Storage window.

However, if you do not want the state storage module to start until a specific state is
reached, you would usually not want the execution to stop, because no state information
has been stored yet.

In this case, select the State Storage Trigger action in the Conditional breakpoints
dialog box (making sure that Break is deselected), and deselect the option Buffer wrap
around in the State Storage Control window.

When the breakpoint is triggered, the execution will not stop, but the state storage will
start. Because the option Buffer wrap around is deselected, you have ensured that the
data in the buffer will not be overwritten.

When another breakpoint (which has Break selected) is triggered, or if you stop the
execution by clicking the Break button, the State Storage window will show eight states
starting with the breakpoint that was used for starting the state storage module.

Reference information on state storage
This section gives reference information about these windows:

● State Storage Control window, page 301

● State Storage window, page 303

State Storage Control window
The State Storage Control window is available from the Emulator menu.

AFE1_AFE2-1:1

302

Reference information on state storage

C-SPY® Debugging Guide
for MSP430

Use this window to define how to use the state storage module. The window is only
available for devices that support the Enhanced Emulation Module at the required level.

Requirements

The C-SPY FET Debugger driver.

Enable state storage

Enables the state storage module.

Buffer wrap around

Determines whether the state storage buffer should wrap around. If you select this
option, the state storage buffer is continuously overwritten until the execution is stopped
or a breakpoint is triggered. Only the eight last states are stored.

Alternatively, in order not to overwrite the information in the state storage buffer,
deselect this option. To guarantee that the eight first states will be stored, you should also
click Reset.

Reset

Resets the state storage module.

Trigger action

Selects which action to take when breakpoints defined as state storage triggers are
triggered:

Start on trigger

Starts state storage when the breakpoint is triggered.

Stop on trigger

Starts state storage immediately when execution starts. State storage stops when
the breakpoint is triggered.

None

Starts state storage immediately when execution starts. State storage does not
stop when the breakpoint is triggered. However, if execution stops, state storage
also stops but it will resume when execution resumes.

Storage action on

Selects when the state information should be collected:

Triggers

Stores state information at the time when the state storage trigger is triggered.
That is, when the breakpoint defined as a state storage trigger is triggered.

AFE1_AFE2-1:1

State storage

303

Instruction fetch

Stores state information at all instruction fetches.

All cycles

Stores state information for all cycles.

State storage triggers

Lists all the breakpoints that are defined as state storage triggers. That is, the breakpoints
that have the action State Storage Trigger selected.

State Storage window
The State Storage window is available from the Emulator menu.

This window displays state storage information for eight states. Invalid data is displayed
in red color.

Requirements

The C-SPY FET Debugger driver.

Toolbar

The toolbar contains:

Update

Refreshes the data in the State Storage window, alternatively appends new data.

Automatic update

Updates the data in the State Storage window automatically each time new data
is available in the state storage buffer.

Automatic restart

Resets the state storage module for consecutive data readouts after each readout.

AFE1_AFE2-1:1

304

Reference information on state storage

C-SPY® Debugging Guide
for MSP430

Append data

Appends collected data from the state storage buffer to the data that is already
present in the State Storage window. The new data is added below the data that
is already present.

Display area

This area contains these columns:

Address bus

The stored value of the address bus.

Instruction

The instruction.

Mnemonic

The mnemonic.

Data bus

The stored content of the data bus.

AFE1_AFE2-1:1

305

The sequencer
● Introduction to the sequencer

● Using the sequencer

● Reference information on the sequencer

Introduction to the sequencer
This section introduces the sequencer module.

These topics are covered:

● Reasons for using the sequencer

● Briefly about the sequencer

● Requirements for using the sequencer

For related information, see also:

● State storage, page 299

REASONS FOR USING THE SEQUENCER

The sequencer is useful if you, for instance, want to stop the execution or start the state
storage module under certain conditions, for instance a specific program flow. If you
combine this with letting the state storage module continuously store information, you
will have useful state information logged in the State Storage window when the
execution stops.

BRIEFLY ABOUT THE SEQUENCER

The sequencer module is a simple state machine that lets you break the execution or
trigger the state storage module using a more complex method than a standard
breakpoint.

In a simple setup, you can define three transition triggers, where the last one triggers an
action. In an advanced setup, the state machine can have four states (0-3). State 0 is the
starting state, and state 3 is the state that triggers a breakpoint (the action state). This
breakpoint can be designed either to stop execution, or to trigger the state storage
module.

AFE1_AFE2-1:1

306

Using the sequencer

C-SPY® Debugging Guide
for MSP430

REQUIREMENTS FOR USING THE SEQUENCER

The sequencer module is only available for the C-SPY FET Debugger driver and if you
are using a device that supports the Enhanced Emulation Module at the required level.

Using the sequencer
This section gives you step-by-step descriptions about how to use certain features of the
sequencer module.

These topics are covered:

● Setting up the sequencer (simple setup)

● Setting up the sequencer (advanced setup)

● Using the sequencer to locate a problem

SETTING UP THE SEQUENCER (SIMPLE SETUP)

In a simple setup, you can define three transition triggers, where the last one triggers an
action.

To define a simple sequencer setup:

1 Choose Emulator>Sequencer Control to open the Sequencer Control window.

2 Select the option Enable Sequencer.

3 Use the Transition trigger drop-down lists to define three breakpoints, where the last
breakpoint should act as a transition trigger.

SETTING UP THE SEQUENCER (ADVANCED SETUP)

In an advanced setup, the state machine can have four states (0-3). State 0 is the starting
state, and state 3 is the state that triggers a breakpoint (the action state). This breakpoint
can be designed either to stop execution, or to trigger the state storage module.

To define an advanced sequencer setup:

1 Choose Emulator>Sequencer Control to open the Sequencer Control window.

2 Select the option Enable Sequencer.

3 Click the Advanced button. This will let you define 4 states (0-3) with two transition
triggers each (a and b).

From the eight available hardware breakpoints (0-7) of the device, breakpoint number 7
will be reserved for state 3. The Transition trigger drop-down lists let you define one
breakpoint each, where the breakpoint should act as a transition trigger.

AFE1_AFE2-1:1

The sequencer

307

4 For each transition trigger, define which state should be the next state after the
transition.

Use the following options:

5 Select an action to determine the result of the final transition trigger. If you select the
option Break, the execution will stop. If you select the option State Storage Trigger,
the state storage module will be triggered.

USING THE SEQUENCER TO LOCATE A PROBLEM

Consider this example:

void my_putchar(char c)
{
 ...
 /* Code suspected to be erroneous */
 ...
}

void my_function(void)
{
 ...
 my_putchar('a');
 ...
 my_putchar('x');
 ...
 my_putchar('@');
 ...
}

In this example, the customized putchar function my_putchar has for some reason a
problem with special characters. To locate the problem, it might be useful to stop
execution when the function is called, but only when it is called with one of the
problematic characters as the argument.

To locate the problem:

1 Set a hardware breakpoint on the statement my_putchar('@');.

2 Set another breakpoint on the suspected code within the function my_putchar().

State Storage Trigger Select a breakpoint from the drop-down list to move the state
machine from one state to another. Note: To do this you must
first define the required conditional breakpoints.

Next state Select a state to define which state should be the next state after
the transition.

AFE1_AFE2-1:1

308

Using the sequencer

C-SPY® Debugging Guide
for MSP430

3 Define these breakpoints as transition triggers. Choose Emulator>Sequencer Control
to open the Sequencer Control window. Select the option Enable sequencer.

4 In this simple example you only need two transition triggers.

Make sure the following options are selected:

The transition trigger 1 depends on the transition trigger 0. This means that the execution
will stop only when the function my_putchar() is called by the function call
my_putchar('@');

Click OK.

5 Set up the state storage module. Choose Emulator>State Storage Control to open the
State Storage Control window.

Make sure the following options are selected:

Click OK.

6 Start the program execution. The state storage module will continuously store trace
information. Execution stops when the function my_putchar() has been called by the
function call my_putchar('@');

7 Choose Emulator>State Storage Window to open the State Storage window. You
can now examine the stored trace information. For more information, see State Storage
window, page 303.

Option Setting

Transition trigger 0 The breakpoint which is set on the function call
my_putchar('@');

Transition trigger 1 The breakpoint which is set on the suspected code within the function
my_putchar()

Action Break

Table 14: Sequencer settings - example

Option Setting

Enable state storage Selected

Buffer wrap around Selected

Storage action Instruction fetch

Trigger action None

Table 15: State Storage Control settings—example

AFE1_AFE2-1:1

The sequencer

309

8 When the sequencer is in state 3, the C-SPY breakpoint mechanism—which is used for
all breakpoints, not only transition triggers—can be locked. Therefore, you should
always end the session with one of these steps:

● Disabling the sequencer module. This will restore all breakpoint actions.

● Resetting the state machine by clicking the Reset States button. The sequencer will
still be active and trigger on the defined setup during the program execution.

Reference information on the sequencer
This section gives reference information about the Sequencer Control window.

Sequencer Control window
The Sequencer Control window is available from the Emulator menu.

Use this window to break the execution or trigger the state storage module, using a more
complex method than a standard breakpoint. The window is only available for devices
that support the Enhanced Emulation Module at the required level.

For related information about state storage, see State storage, page 299.

Requirements

The C-SPY FET Debugger driver.

Enable Sequencer

Enables the sequencer.

AFE1_AFE2-1:1

310

Reference information on the sequencer

C-SPY® Debugging Guide
for MSP430

Action

Controls the result of the final transition trigger:

Break

Stops the execution.

State Storage Trigger

Triggers to move the state machine from one state to another and activates the
state storage module. Requires that you select a conditional breakpoint, that you
have defined, from the Transition trigger drop-down list.

Current state

Displays the current state of the state machine.

Reset Trigger

Selects a trigger that will reset the state machine.

Reset States

Sets the state machine to state 0.

Advanced

Displays the advanced setup options. This will let you define four states (numbered 0-3)
with two transition triggers each (a and b). For each transition trigger, you can define
which state should be the next state after the transition.

State 0–3

Controls the transition triggers and the state that follows the transitions.

Transition trigger a

Selects a breakpoint to act as a transition trigger.

Transition trigger b

Selects a breakpoint to act as a transition trigger.

Next state

Select the next state after the transition.

For state 3—the final transition trigger—you must also define an Action: Break or
State Storage Trigger.

AFE1_AFE2-1:1

311

C-SPY macros
● Introduction to C-SPY macros

● Using C-SPY macros

● Reference information on the macro language

● Reference information on reserved setup macro function names

● Reference information on C-SPY system macros

● Graphical environment for macros

Introduction to C-SPY macros
These topics are covered:

● Reasons for using C-SPY macros

● Briefly about using C-SPY macros

● Briefly about setup macro functions and files

● Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.

● Feeding your application with simulated data during runtime.

● Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

● Developing small debug utility functions, for instance calculating the stack depth.

AFE1_AFE2-1:1

312

Introduction to C-SPY macros

C-SPY® Debugging Guide
for MSP430

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

● Write your macro variables and functions and collect them in one or several macro
files

● Register your macros

● Execute your macros

For registering and executing macros, there are several methods to choose between.
Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

● Once after communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded

● Each time the reset command is issued

● Once when the debug session ends

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 323.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

● Macro statements, which are similar to C statements.

● Macro functions, which you can define with or without parameters and return
values.

AFE1_AFE2-1:1

C-SPY macros

313

● Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

● Macro variables, which can be global or local, and can be used in C-SPY
expressions.

● Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 318.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldVal;
CheckLatest(val)
{
 if (oldVal != val)
 {
 __message "Message: Changed from ", oldVal, " to ", val, "\n";
 oldVal = val;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros
These tasks are covered:

● Registering C-SPY macros—an overview

● Executing C-SPY macros—an overview

● Registering and executing using setup macros and setup files

● Executing macros using Quick Watch

● Executing a macro by connecting it to a breakpoint

● Aborting a C-SPY macro

For more examples using C-SPY macros, see:

● The tutorial about simulating an interrupt, which you can find in the Information
Center

● Initializing target hardware before C-SPY starts, page 49

AFE1_AFE2-1:1

314

Using C-SPY macros

C-SPY® Debugging Guide
for MSP430

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and therefore
you must register your macros. There are various ways to register macro functions:

● You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 315.

● You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 366. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 368.

● You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 345.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

● You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 315.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 315.

● The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specifically designed for C-SPY macros. See Macro Quicklaunch window,
page 370.

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 316.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

AFE1_AFE2-1:1

C-SPY macros

315

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:

1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile("MyMacroUtils.mac");
 __registerMacroFile("MyDeviceSimulation.mac");

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

2 Save the file using the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger>Setup. Select the Use
macro file option, and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

1 Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus()
{
 if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

AFE1_AFE2-1:1

316

Using C-SPY macros

C-SPY® Debugging Guide
for MSP430

2 Save the macro function using the filename extension mac.

3 To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

4 Select the macro you want to register and your macro will appear in the Debugger
Macros window.

5 Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus() in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus(). Right-click, and choose Quick Watch from the context menu that
appears.

The macro will automatically be displayed in the Quick Watch window. For more
information, see Quick Watch window, page 99.

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:

1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

AFE1_AFE2-1:1

C-SPY macros

317

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Debug Log window.

Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact(), in the Action field and click OK to close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Debug Log window.

Note that the expression in the Action field is evaluated only when the breakpoint causes
the execution to really stop. If you want to log a value and then automatically continue
execution, you can either:

● Use a Log breakpoint, see Log breakpoints dialog box, page 123

● Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 118.

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 321.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:

1 Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

AFE1_AFE2-1:1

318

Reference information on the macro language

C-SPY® Debugging Guide
for MSP430

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

● Macro functions, page 318

● Macro variables, page 318

● Macro parameters, page 319

● Macro strings, page 319

● Macro statements, page 320

● Formatted output, page 321

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 82.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

AFE1_AFE2-1:1

C-SPY macros

319

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named
parameter will behave as a normal C-SPY macro variable with these differences:

● The parameter definition can have an initializer

● Values of a parameters can be set through options (either in the IDE or in cspybat).

● A value set from an option will take precedence over a value set by an initializer

● A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

The syntax for defining one or more macro parameters is:

__param param[=value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 391.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can

Expression What it means

myvar = 3.5; myvar is now type double, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 16: Examples of C-SPY macro variables

AFE1_AFE2-1:1

320

Reference information on the macro language

C-SPY® Debugging Guide
for MSP430

concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get the
length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 321.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For more information about C-SPY expressions, see C-SPY expressions, page 82.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement

AFE1_AFE2-1:1

C-SPY macros

321

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement

do
 statement
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 339.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

AFE1_AFE2-1:1

322

Reference information on the macro language

C-SPY® Debugging Guide
for MSP430

To produce messages in the Debug Log window:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Debug Log window.";

This produces this message in the Debug Log window:

This line prints the values 42 and 37 in the Debug Log window.

To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

%b for binary scalar arguments

%o for octal scalar arguments

%d for decimal scalar arguments

%x for hexadecimal scalar arguments

%c for character scalar arguments

AFE1_AFE2-1:1

C-SPY macros

323

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names
There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 312.

Reference information about:

● execUserPreload

● execUserExecutionStarted

● execUserExecutionStopped

● execUserSetup

● execUserPreReset

● execUserReset

● execUserExit

execUserPreload

Syntax execUserPreload

For use with All C-SPY drivers.

Description Called after communication with the target system is established but before
downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

AFE1_AFE2-1:1

324

Reference information on reserved setup macro function names

C-SPY® Debugging Guide
for MSP430

execUserExecutionStarted

Syntax execUserExecutionStarted

For use with All C-SPY drivers.

Description Called when the debugger is about to start or resume execution. The macro is not called
when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax execUserExecutionStopped

For use with All C-SPY drivers.

Description Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserSetup

Syntax execUserSetup

For use with All C-SPY drivers.

Description Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

AFE1_AFE2-1:1

C-SPY macros

325

execUserPreReset

Syntax execUserPreReset

For use with All C-SPY drivers.

Description Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset

Syntax execUserReset

For use with All C-SPY drivers.

Description Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit

Syntax execUserExit

For use with All C-SPY drivers.

Description Called once when the debug session ends.

Implement this macro to save status data etc.

Reference information on C-SPY system macros
This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro Description

__abortLaunch Aborts the launch of the debugger

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

Table 17: Summary of system macros

AFE1_AFE2-1:1

326

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__closeFile Closes a file that was opened by __openFile

__delay Delays execution

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it

__fillMemory8 Fills a specified memory area with a byte value

__fillMemory16 Fills a specified memory area with a 2-byte value

__fillMemory32 Fills a specified memory area with a 4-byte value

__getSelectedCore Only for use with IAR Embedded Workbench
products that support multicore debugging

__isBatchMode Checks if C-SPY is running in batch mode or not.

__loadImage Loads a debug image

__memoryRestore Restores the contents of a file to a specified memory
zone

__memorySave Saves the contents of a specified memory area to a
file

__messageBoxYesCancel Displays a Yes/Cancel dialog box for user interaction

__messageBoxYesNo Displays a Yes/No dialog box for user interaction

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExec

utingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file

__readMemory8,

__readMemoryByte

Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

Macro Description

Table 17: Summary of system macros (Continued)

AFE1_AFE2-1:1

C-SPY macros

327

__selectCore Only for use with IAR Embedded Workbench
products that support multicore debugging

__setAdvancedTriggerBreak Sets an advanced trigger breakpoint

__setCodeBreak Sets a code breakpoint

__setConditionalBreak Sets a conditional breakpoint

__setDataBreak Sets a data breakpoint

__setDataLogBreak Sets a data log breakpoint

__setLogBreak Sets a log breakpoint

__setRangeBreak Sets a range breakpoint

__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak Sets a trace start breakpoint

__setTraceStopBreak Sets a trace stop breakpoint

__sourcePosition Returns the file name and source location if the
current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

__system1 Starts an external application

__system2 Starts an external application with stdout and
stderr collected in one variable

__system3 Starts an external application with stdout and
stderr collected in separate variables

__targetDebuggerVersion Returns the version of the target debugger

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image

__wallTime_ms Returns the current host computer CPU time in
milliseconds

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

Macro Description

Table 17: Summary of system macros (Continued)

AFE1_AFE2-1:1

328

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__abortLaunch

Syntax __abortLaunch(message)

Parameters message

A string that is printed as an error message when the macro executes.

Return value None.

For use with All C-SPY drivers.

Description This macro can be used for aborting a debugger launch, for example if another macro
sees that something goes wrong during initialization and cannot perform a proper setup.

This is an emergency stop when launching, not a way to end an ongoing debug session
like the C library function abort().

Example if (!__messageBoxYesCancel("Do you want to mass erase to unlock
 the device?", "Unlocking device"))
{ __abortLaunch("Unlock canceled. Debug session cannot
 continue."); }

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

For use with The C-SPY Simulator.

Description Cancels all ordered interrupts.

__writeMemory8,

__writeMemoryByte

Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Macro Description

Table 17: Summary of system macros (Continued)

AFE1_AFE2-1:1

C-SPY macros

329

__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

For use with The C-SPY Simulator.

Description Cancels the specified interrupt.

__clearBreak

Syntax __clearBreak(break_id)

Parameters break_id

The value returned by any of the set breakpoint macros.

Return value int 0

For use with All C-SPY drivers.

Description Clears a user-defined breakpoint.

See also Breakpoints, page 107.

__closeFile

Syntax __closeFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 18: __cancelInterrupt return values

AFE1_AFE2-1:1

330

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

For use with All C-SPY drivers.

Description Closes a file previously opened by __openFile.

__delay

Syntax __delay(value)

Parameters value

The number of milliseconds to delay execution.

Return value int 0

For use with All C-SPY drivers.

Description Delays execution the specified number of milliseconds.

__disableInterrupts

Syntax __disableInterrupts()

Return value

For use with The C-SPY Simulator.

Description Disables the generation of interrupts.

__driverType

Syntax __driverType(driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:

"sim" corresponds to the simulator driver

"fet" corresponds to the C-SPY FET Debugger driver

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 19: __disableInterrupts return values

AFE1_AFE2-1:1

C-SPY macros

331

Return value

For use with All C-SPY drivers.

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts

Syntax __enableInterrupts()

Return value

For use with The C-SPY Simulator.

Description Enables the generation of interrupts.

__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Result Value

Successful 1

Unsuccessful 0

Table 20: __driverType return values

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 21: __enableInterrupts return values

AFE1_AFE2-1:1

332

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Return value

For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__fillMemory8

Syntax __fillMemory8(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

length

An integer that specifies how many bytes are affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Result Value

Successful int 0

Unsuccessful int 1

Table 22: __evaluate return values

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

AFE1_AFE2-1:1

C-SPY macros

333

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a byte value.

Example __fillMemory8(0x80, 0x700, "Memory", 0x10, "OR");

__fillMemory16

Syntax __fillMemory16(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

length

An integer that defines how many 2-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Return value int 0

For use with All C-SPY drivers.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

AFE1_AFE2-1:1

334

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Description Fills a specified memory area with a 2-byte value.

Example __fillMemory16(0xCDCD, 0x7000, "Memory", 0x200, "Copy");

__fillMemory32

Syntax __fillMemory32(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

length

An integer that defines how many 4-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a 4-byte value.

Example __fillMemory32(0x0000FFFF, 0x4000, "Memory", 0x1000, "XOR");

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

AFE1_AFE2-1:1

C-SPY macros

335

__getSelectedCore

Description This macro returns 0 for a single-core system. It is only useful for IAR Embedded
Workbench products that support multicore debugging

__isBatchMode

Syntax __isBatchMode()

Return value

For use with All C-SPY drivers.

Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

__loadImage

Syntax __loadImage(path, offset, debugInfoOnly)

Parameters path

A string that identifies the path to the debug image to download. The path must
either be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for MSP430.

offset

An integer that identifies the offset to the destination address for the downloaded
debug image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Return value

Result Value

True int 1

False int 0

Table 23: __isBatchMode return values

Value Result

Non-zero integer number A unique module identification.

Table 24: __loadImage return values

AFE1_AFE2-1:1

336

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

For use with All C-SPY drivers.

Description Loads a debug image (debug file).

Example 1 Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage("ROMfile", 0x8000, 1);

This macro call loads the debug information for the ROM library ROMfile without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage("ApplicationFile", 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

See also Images, page 403 and Loading multiple debug images, page 47.

__memoryRestore

Syntax __memoryRestore(zone, filename)

Parameters zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

int 0 Loading failed.

Value Result

Table 24: __loadImage return values (Continued)

AFE1_AFE2-1:1

C-SPY macros

337

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
MSP430.

Return value int 0

For use with All C-SPY drivers.

Description Reads the contents of a file and saves it to the specified memory zone.

Example __memoryRestore("Memory", "c:\\temp\\saved_memory.hex");

See also Memory Restore dialog box, page 154.

__memorySave

Syntax __memorySave(start, stop, format, filename)

Parameters start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended

motorola

motorola-s19

motorola-s28

motorola-s37

msp430-txt-format

AFE1_AFE2-1:1

338

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
MSP430.

Return value int 0

For use with All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example __memorySave("Memory:0x00", "Memory:0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex");

See also Memory Save dialog box, page 153.

__messageBoxYesCancel

Syntax __messageBoxYesCancel(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

Result Value

Yes 1

No 0

Table 25: __messageBoxYesCancel return values

AFE1_AFE2-1:1

C-SPY macros

339

__messageBoxYesNo

Syntax __messageBoxYesNo(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

__openFile

Syntax __openFile(filename, access)

Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for MSP430.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)

"w" write (by default in text mode; combine with b for binary mode: wb)

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t" ASCII text, opens the file in text mode

Result Value

Yes 1

No 0

Table 26: __messageBoxYesNo return values

AFE1_AFE2-1:1

340

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and
append

Return value

For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var myFileHandle; /* The macro variable to contain */
 /* the file handle */
myFileHandle = __openFile("$PROJ_DIR$\\Debug\\Exe\\test.tst",
"r");
if (myFileHandle)
{
 /* successful opening */
}

See also For information about argument variables, see the IDE Project Management and
Building Guide for MSP430.

__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (ddf) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

Result Value

Successful The file handle

Unsuccessful An invalid file handle, which tests as False

Table 27: __openFile return values

AFE1_AFE2-1:1

C-SPY macros

341

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_hold_time

1 if infinite, otherwise 0.

hold_time

The hold time (integer)

probability

The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

For use with The C-SPY Simulator.

Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("USART0RX_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value int 0

For use with The C-SPY Simulator.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with

AFE1_AFE2-1:1

342

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

See also Simulating an interrupt in a multi-task system, page 273.

__readFile

Syntax __readFile(fileHandle, valuePtr)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Return value

For use with All C-SPY drivers.

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

Example __var number;
if (__readFile(myFileHandle, &number) == 0)
{
 // Do something with number
}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 0xabcd 0x90ef
to the variable number.

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 28: __readFile return values

AFE1_AFE2-1:1

C-SPY macros

343

__readFileByte

Syntax __readFileByte(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

For use with All C-SPY drivers.

Description Reads one byte from a file.

Example __var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{
 /* Do something with byte */
}

__readMemory8, __readMemoryByte

Syntax __readMemory8(address, zone)
__readMemoryByte(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "Memory");

AFE1_AFE2-1:1

344

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__readMemory16

Syntax __readMemory16(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "Memory");

__readMemory32

Syntax __readMemory32(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "Memory");

AFE1_AFE2-1:1

C-SPY macros

345

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide
for MSP430.

Return value int 0

For use with All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");

See also Using C-SPY macros, page 313.

__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

__selectCore

Description This macro can only be used with IAR Embedded Workbench products that support
multicore debugging.

AFE1_AFE2-1:1

346

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__setAdvancedTriggerBreak

Syntax __setAdvancedTriggerBreak(type, condition, access, action, mask
 cond_value)

Parameters All parameters are strings.

type The breakpoint type: "Address", "Data", or "Register".

condition The breakpoint condition operator: "==", ">=", "<=", or "!=".

access The memory access type. Choose between:

"Read"

"Write"

"ReadWrite"

"Fetch"

"FetchHold"

"NoFetch"

"NoFetchRead"

"NoFetchNoDMA"

"DMA"

"NoDMA"

"WriteNoDMA"

"NoFetchReadNoDMA"

"ReadNoDMA"

"ReadDMA"

"WriteDMA"

action The action type: "Break", "Trigger", or "BreakTrigger".

mask A 16-bit value that the breakpoint address or value will be masked
with.

cond_value An extra conditional data value.

AFE1_AFE2-1:1

C-SPY macros

347

Return value

For use with The C-SPY FET Debugger driver.

Description Sets an advanced trigger breakpoint.

Example __var brk;
brk = __setAdvancedTriggerBreak("Register", ">=", "Write",
 "Trigger", "0x0000", "0x4000");
...
__clearBreak(brk);

See also Breakpoints, page 107.

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 136.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition. This must be a valid C-SPY expression, for instance
a C-SPY macro function.

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 29: __setAdvancedTriggerBreak return values

AFE1_AFE2-1:1

348

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Return value

For use with All C-SPY drivers.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

See also Breakpoints, page 107.

__setConditionalBreak

Syntax __setConditionalBreak(location, type, operator, access, action,
 mask, cond_value, cond_operator,
 cond_access, cond_mask)

Parameters All parameters are strings.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 30: __setCodeBreak return values

location The breakpoint location. Choose between:

A source location on the form "{filename}.line.col" (for
example "{D:\\src\\prog.c}.12.9")

An absolute location on the form "zone:hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

A register (for example "R10")

type The breakpoint type: "Address", "Data", or "Register".

operator The breakpoint operator: "==", ">=", "<=", or "!=".

AFE1_AFE2-1:1

C-SPY macros

349

Return value

For use with The C-SPY FET Debugger driver.

Description Sets a conditional breakpoint.

Example __var brk;
brk = __setConditionalBreak("R10", "Register", "0x5000", ">=",
 "Write", "Trigger", "0x0000", "0x4000", "<=", "Write",
 “0x00FF”);
...
__clearBreak(brk);

See also Breakpoints, page 107.

__setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,
 action)

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

action The action type: "Break", "Trigger", or "BreakTrigger".

mask A 16-bit value that the breakpoint address or value will be masked
with.

cond_value An extra conditional data value.

cond_operator The condition operator: "==", ">=", "<=", or "!=".

cond_access The access type of the condition: "Read" or "Write".

cond_mask The mask value of the condition.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 31: __setConditionalBreak return values

AFE1_AFE2-1:1

350

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 136.

count

The number of times that a breakpoint condition must be fulfilled before a break
occurs (integer).

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

For use with The C-SPY Simulator.

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...
__clearBreak(brk);

See also Breakpoints, page 107.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 32: __setDataBreak return values

AFE1_AFE2-1:1

C-SPY macros

351

__setDataLogBreak

Syntax __setDataLogBreak(variable, access)

Parameters variable

A string that defines the variable the breakpoint is set on, a variable of integer
type with static storage duration. The microcontroller must also be able to
access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8-bit variables.

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

Return value

For use with The C-SPY Simulator.

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when a specified
variable is accessed. Note that a data log breakpoint does not stop the execution, it just
generates a data log.

Example __var brk;
brk = __setDataLogBreak("MyVar", "R");
...
__clearBreak(brk);

See also Breakpoints, page 107 and Getting started using data logging, page 200.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 33: __setDataLogBreak return values

AFE1_AFE2-1:1

352

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__setLogBreak

Syntax __setLogBreak(location, message, msg_type, condition,
 cond_type)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 136.

message

The message text.

msg_type

The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

Return value

For use with All C-SPY drivers.

Description Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 34: __setLogBreak return values

AFE1_AFE2-1:1

C-SPY macros

353

Example __var logBp1;
__var logBp2;

logOn()
{
 logBp1 = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
 "\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
 logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
 "Leaving trace zone...", "TEXT", "1", "TRUE");
}

logOff()
{
 __clearBreak(logBp1);
 __clearBreak(logBp2);
}

See also Formatted output, page 321 and Breakpoints, page 107.

__setRangeBreak

Syntax __setRangeBreak(start_loc, end_loc, end_cond, type, access,
 action, action_when)

Parameters All parameters are strings.

start_loc The start location. Choose between:

A source location on the form "{filename}.line.col" (for
example "{D:\\src\\prog.c}.12.9")

An absolute location on the form "zone:hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

end_loc The end location. This can be either the same as for start_loc
above or the length of the range.

end_cond The type of end condition: "Location", "Length", or
"Automatic".

type The breakpoint type: "Address" or "Data".

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

AFE1_AFE2-1:1

354

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Return value

For use with The C-SPY FET Debugger driver.

Description Sets a range breakpoint.

Example __var brk;
brk = __setRangeBreak("Memory:0x1240", "Memory:0x1360",
 "Location", "Address", "Fetch", "Trigger", "Inside");
...
__clearBreak(brk);

See also Breakpoints, page 107.

__setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 136.

access

The memory access type: "R" for read or "W" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

action The action type: "Break", "Trigger", or "BreakTrigger".

action_when Specifies if the action should happen at an access inside or outside of
the specified range: "Inside" or "Outside".

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 35: __setRangeBreak return values

AFE1_AFE2-1:1

C-SPY macros

355

Return value

For use with The C-SPY Simulator.

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak

Syntax __setTraceStartBreak(location)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 136.

Return value

For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 36: __setSimBreak return values

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 37: __setTraceStartBreak return values

AFE1_AFE2-1:1

356

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Example __var startTraceBp;
__var stopTraceBp;

traceOn()
{
 startTraceBp = __setTraceStartBreak
 ("{C:\\TEMP\\Utilities.c}.23.1");
 stopTraceBp = __setTraceStopBreak
 ("{C:\\temp\\Utilities.c}.30.1");
}

traceOff()
{
 __clearBreak(startTraceBp);
 __clearBreak(stopTraceBp);
}

See also Trace Start Trigger breakpoint dialog box, page 189.

__setTraceStopBreak

Syntax __setTraceStopBreak(location)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 136.

Return value

For use with The C-SPY Simulator.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

Example See __setTraceStartBreak, page 355.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 38: __setTraceStopBreak return values

AFE1_AFE2-1:1

C-SPY macros

357

See also Trace Stop Trigger breakpoint dialog box, page 190.

__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr

Pointer to the variable storing the column number

Return value

For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters macroString

A macro string.

pattern

The string pattern to search for

position

The position where to start the search. The first position is 0

Return value The position where the pattern was found or -1 if the string is not found.

For use with All C-SPY drivers.

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 39: __sourcePosition return values

AFE1_AFE2-1:1

358

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Description This macro searches a given string (macroString) for the occurrence of another string
(pattern).

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 319.

__subString

Syntax __subString(macroString, position, length)

Parameters macroString

A macro string.

position

The start position of the substring. The first position is 0.

length

The length of the substring

Return value A substring extracted from the given macro string.

For use with All C-SPY drivers.

Description This macro extracts a substring from another string (macroString).

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 319.

__system1

Syntax __system1(string)

Parameters string

The command line used to start an external application.

AFE1_AFE2-1:1

C-SPY macros

359

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. It ignores all output returned from the
application. Terminates the launched application if the application has not finished
within 10 seconds.

Example __var exitCode;

exitCode = __system1("mkdir tmp");

__system2

Syntax __system2(string, &output)

Parameters string

The command line used to start an external application.

output

The output returned from the application. Both the stdout and the stderr
streams are stored in this variable.

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. The output from both the stdout and the
stderr streams is stored in output. If no data has been received from the launched
application within 10 seconds, or when the returned data exceeds 65535 bytes, the
application is terminated. This restriction prevents the Embedded Workbench IDE from
freezing or crashing because of misbehaving applications.

Example __var exitCode;
__var out_err;

exitCode = __system2("dir /S", &out_err);

message "Output from the dir command:";
message out_err;

AFE1_AFE2-1:1

360

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

__system3

Syntax __system3(string, &output, &error)

Parameters string

The command line used to start an external application.

output

The output returned from the stdout output stream of the application.

error

The output returned from the stderr output stream of the application.

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. The output from the stdout stream is
stored in output and the stderr stream is stored in error. If no data has been
received from the launched application within 10 seconds, or when the returned data
exceeds 65535 bytes, the application is terminated. This restriction prevents the
Embedded Workbench IDE from freezing or crashing because of misbehaving
applications.

Example __var exitCode;
__var out;
__var err;

exitCode = __system3("dir /S", &out, &err);

message "Output from the dir command:";
message out;

message "Error text from the dir command:";
message err;

__targetDebuggerVersion

Syntax __targetDebuggerVersion()

Return value A string that represents the version number of the C-SPY debugger processor module.

For use with All C-SPY drivers.

AFE1_AFE2-1:1

C-SPY macros

361

Description This macro returns the version number of the C-SPY debugger processor module.

Example __var toolVer;
toolVer = __targetDebuggerVersion();
__message "The target debugger version is, ", toolVer;

__toLower

Syntax __toLower(macroString)

Parameters macroString

A macro string.

Return value The converted macro string.

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to lower case.

Example __toLower("IAR")

The resulting macro string contains iar.

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 319.

__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.

Return value Macro string.

For use with All C-SPY drivers.

AFE1_AFE2-1:1

362

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains this definition:

char const * hptr = "Hello World!";

this macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 319.

__toUpper

Syntax __toUpper(macroString)

Parameters macroString

A macro string.

Return value The converted string.

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 319.

__unloadImage

Syntax __unloadImage(module_id)

Parameters module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

AFE1_AFE2-1:1

C-SPY macros

363

Return value

For use with All C-SPY drivers.

Description Unloads debug information from an already downloaded debug image.

See also Loading multiple debug images, page 47 and Images, page 403.

__wallTime_ms

Syntax __wallTime_ms()

Return value Returns the current host computer CPU time in milliseconds.

For use with All C-SPY drivers.

Description This macro returns the current host computer CPU time in milliseconds. The first call
will always return 0.

Example __var t1;
__var t2;

t1 = __wallTime_ms();
__var i;
for (i =0; i < 1000; i++)
 message "Tick";
t2 = __wallTime_ms();
 message "Elapsed time: ", t2 - t1;

__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 40: __unloadImage return values

AFE1_AFE2-1:1

364

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for MSP430

value

An integer.

Return value int 0

For use with All C-SPY drivers.

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

__writeFileByte

Syntax __writeFileByte(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

For use with All C-SPY drivers.

Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value int 0

AFE1_AFE2-1:1

C-SPY macros

365

For use with All C-SPY drivers.

Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "Memory");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value int 0

For use with All C-SPY drivers.

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "Memory");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 142.

Return value int 0

AFE1_AFE2-1:1

366

Graphical environment for macros

C-SPY® Debugging Guide
for MSP430

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.

Example __writeMemory32(0x5555FFFF, 0x8020, "Memory");

Graphical environment for macros
Reference information about:

● Macro Registration window, page 366

● Debugger Macros window, page 368

● Macro Quicklaunch window, page 370

Macro Registration window
The Macro Registration window is available from the View>Macros submenu during
a debug session.

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

See also Registering C-SPY macros—an overview, page 314.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

File

The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in
bold style.

AFE1_AFE2-1:1

C-SPY macros

367

Full path

The path to the location of the added macro file.

Context menu

This context menu is available:

These commands are available:

Add

Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove

Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All

Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload

Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File

Opens the selected macro file in the editor window.

Open Debugger Macros Window

Opens the Debugger Macros window.

AFE1_AFE2-1:1

368

Graphical environment for macros

C-SPY® Debugging Guide
for MSP430

Debugger Macros window
The Debugger Macros window is available from the View>Macros submenu during a
debug session.

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.

● Click the column headers Name or File to sort alphabetically on either function
name or filename.

● Double-clicking a macro defined in a file opens that file in the editor window.

● To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

● Select a macro and press F1 to get online help information for that macro.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Name

The name of the debugger macro.

Parameters

The parameters of the debugger macro.

File

For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

AFE1_AFE2-1:1

C-SPY macros

369

Context menu

This context menu is available:

These commands are available:

Open File

Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window

Adds the selected macro to the Macro Quicklaunch window.

User Macros

Lists only the debugger macros that you have defined yourself.

System Macros

Lists only the predefined system macros.

All Macros

Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window

Opens the Macro Registration window.

AFE1_AFE2-1:1

370

Graphical environment for macros

C-SPY® Debugging Guide
for MSP430

Macro Quicklaunch window
The Macro Quicklaunch window is available from the View menu.

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon,

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

See also Executing C-SPY macros—an overview, page 314.

To add an expression:

1 Choose one of these alternatives:

● Drag the expression to the window

● In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Registering C-SPY macros—an overview, page 314.

To evaluate an expression:

1 Double-click the Recalculate icon to calculate the value of that expression.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

C-SPY macros

371

Display area

This area contains these columns:

Recalculate icon

To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression

One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result

Shows the return value from the expression evaluation.

Context menu

This context menu is available:

These commands are available:

Evaluate Now

Evaluates the selected expression.

Remove

Removes the selected expression.

Remove All

Removes all selected expressions.

AFE1_AFE2-1:1

372

Graphical environment for macros

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

373

The C-SPY command line
utility—cspybat
● Using C-SPY in batch mode

● Summary of C-SPY command line options

● Reference information on C-SPY command line options

Using C-SPY in batch mode
You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

● Starting cspybat

● Output

● Invocation syntax

STARTING CSPYBAT

1 To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname.buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

● project.buildconfiguration.general.xcl, which contains options specific
to cspybat

● project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

AFE1_AFE2-1:1

374

Using C-SPY in batch mode

C-SPY® Debugging Guide
for MSP430

Note that debugfile is optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general.xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

● Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

● Terminal output from the application you are debugging

All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 393.

● Error return codes

cspybat returns status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_DLL driver_DLL debug_file
 [cspybat_options] --backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in 430\bin.

driver_DLL The C-SPY driver DLL file; available in 430\bin.

debug_file The object file that you want to debug (filename extension
d43). See also --debug_file, page 382.

Table 41: cspybat parameters

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

375

Summary of C-SPY command line options
Reference information about:

● General cspybat options

● Options available for all C-SPY drivers

● Options available for the simulator driver

● Options available for the C-SPY FET Debugger driver

GENERAL CSPYBAT OPTIONS

cspybat_options The command line options that you want to pass to
cspybat. Note that these options are optional. For
information about each option, see Reference information
on C-SPY command line options, page 378.

--backend Marks the beginning of the parameters to the C-SPY
driver; all options that follow will be sent to the driver.
Note that this option is mandatory.

driver_options The command line options that you want to pass to the
C-SPY driver. Note that some of these options are
mandatory and some are optional. For information about
each option, see Reference information on C-SPY command
line options, page 378.

Parameter Description

Table 41: cspybat parameters (Continued)

--application_args Passes command line arguments to the debugged
application.

--attach_to_running_target Makes the debugger attach to a running
application at its current location, without
resetting the target system.

--backend Marks the beginning of the parameters to be sent
to the C-SPY driver (mandatory).

--code_coverage_file Enables the generation of code coverage
information and places it in a specified file.

--cycles Specifies the maximum number of cycles to run.

--debug_file Specifies an alternative debug file.

AFE1_AFE2-1:1

376

Summary of C-SPY command line options

C-SPY® Debugging Guide
for MSP430

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

OPTIONS AVAILABLE FOR THE C-SPY FET DEBUGGER
DRIVER

--downloadonly Downloads a code image without starting a
debug session afterwards.

-f Extends the command line.

--leave_target_running Makes the debugger leave the application
running on the target hardware after the debug
session is closed.

--macro Specifies a macro file to be used.

--macro_param Assigns a value to a C-SPY macro parameter.

--plugin Specifies a plugin file to be used.

--silent Omits the sign-on message.

--timeout Limits the maximum allowed execution time.

--core Specifies the core to be used.

-d Specifies the C-SPY driver to be used.

-p Specifies the device description file to be used.

--disable_interrupts Disables the interrupt simulation.

--function_profiling Analyzes your source code to find where the most time is
spent during execution.

--mapu Activates memory access checking.

--odd_word_check Stops the execution if an access to an odd address is
found.

--allow_access_to_BSL Enables erase/write access to BSL flash memory.

--allow_locked_flash_

access

Enables erase/write access to locked flash memory.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

377

--connection Specifies the communication channel to be used.

--derivative Specifies the device.

--disable_memory_cach

e

Disables the memory cache in the FET debugger.

--eem Specifies the level of Enhanced Emulation Mode.

--erase_exclude Excludes a memory segment from being erased.

--erase_exclude_all Excludes the whole FRAM memory from being erased.

--erase_ip_protected Erases main and Information flash memories, including
the IP protected area before download.

--erase_main Erases main flash memory before download.

--erase_main_and_info Erases the main and Information flash memories before
download.

--erase_retain_file Retains unchanged memory during download.

--erase_retain_target Retains unchanged memory during download.

--hardware_multiplier Generates code for the hardware multiplier peripheral
unit.

--hwmult_type Specifies the type of hardware multiplier to be used.

--jtag_speed Specifies the JTAG communication speed.

--lptx Specifies the parallel port to be used.

--mspdlogfile Logs the debug communication with msp430.dll.

--port Specifies the serial port to be used.

--protocol Specifies the debug protocol to be used.

--restore_fram_memory Restores a FRAM memory area after the usual memory
erase and write.

--retain_fram_memory Retains a FRAM memory area.

--set_exit_breakpoint Sets a system breakpoint on exit.

--set_getchar_breakpo

int

Sets a system breakpoint on getchar.

--set_putchar_breakpo

int

Sets a system breakpoint on putchar.

AFE1_AFE2-1:1

378

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

Reference information on C-SPY command line options
This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--allow_access_to_BSL

Syntax --allow_access_to_BSL

For use with The C-SPY FET Debugger driver.

Description Use this option to enable erase/write access to BSL flash memory.

Project>Options>Debugger>FET Debugger>Download>Allow erase/write access
to BSL flash memory

--allow_locked_flash_access

Syntax --allow_locked_flash_access

For use with The C-SPY FET Debugger driver.

Description Use this option to enable erase/write access to locked flash memory.

Project>Options>Debugger>FET Debugger>Download>Allow erase/write access
to locked flash memory

--settlingtime Specifies the delay after setting the voltage.

--use_emulated_breakp

oints

Allows C-SPY to use emulated breakpoints.

--use_virtual_breakpo

ints

Allows C-SPY to use virtual breakpoints.

--vccvoltage Specifies the voltage provided by the USB interface.

--verify_all Verifies the download of your application.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

379

--application_args

Syntax --application_args="arg0 arg1 ..."

Parameters arg

A command line argument.

For use with cspybat

Description Use this option to pass command line arguments to the debugged application. These
variables must be defined in the application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;

/* __argv, an array of pointers to the arguments (strings); must
be large enough to fit the number of arguments.*/
__no_init const char * __argv[MAX_ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line arguments. */
__no_init __root char __argvbuf[MAX_ARG_SIZE];

Example --application_args="--logfile log.txt --verbose"

To set this option, use Project>Options>Debugger>Extra Options

--attach_to_running_target

Syntax --attach_to_running_target

For use with cspybat.

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using. If you are using this option with an unsupported combination,
C-SPY produces a message.

Description Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.

If you have defined any breakpoints in your project, the C-SPY driver will set them
during attachment. If the C-SPY driver cannot set them without stopping the target
system, the breakpoints will be disabled. The option also suppresses download and the
Run to option.

AFE1_AFE2-1:1

380

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

Project>Attach to Running Target

--backend

Syntax --backend {driver options}

Parameters driver options

Any option available to the C-SPY driver you are using.

For use with cspybat (mandatory).

Description Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

--connection

Syntax --connection Port

Parameters Port

The communication channel to be used; choose between: ti_usb, ti_lpt,
jlink, olimex, olimex_parallel, elprotonic, softbaugh_lpt,
softbaugh_usb, and softbaugh_usb_pro.

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the communication channel to be used between C-SPY and
the target system.

Project>Options>Debugger>FET Debugger>Setup>Connection

--core

Syntax --core {430X|430Xv2}

Parameters 430X|430Xv2

The core you are using. This option reflects the corresponding compiler option.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

381

For use with All C-SPY drivers.

Description Use this option to specify the core you are using.

See also The IAR C/C++ Compiler User Guide for MSP430 for information about the cores.

Project>Options>General Options>Target>Device

--code_coverage_file

Syntax --code_coverage_file file

Note that this option must be placed before the --backend option on the command line.

Parameters file

The name of the destination file for the code coverage information.

For use with cspybat

Description Use this option to enable the generation of a text-based report file for code coverage
information. The code coverage information will be generated after the execution has
completed and you can find it in the specified file. Because most embedded applications
do not terminate, you might have to use this option in combination with --timeout or
--cycles.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

See also Code coverage, page 235, --cycles, page 381, --timeout, page 396.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.

--cycles

Syntax --cycles cycles

Note that this option must be placed before the --backend option on the command line.

Parameters cycles

The number of cycles to run.

AFE1_AFE2-1:1

382

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

For use with cspybat

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

-d

Syntax -d {sim|fet}

Parameters

For use with All C-SPY drivers.

Description Use this option to specify the C-SPY driver to be used.

Project>Options>Debugger>Setup>Driver

--debug_file

Syntax --debug_file filename

Parameters filename

The name of the debug file to use.

For use with cspybat

Description Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat.bat file. This option can be placed both before and after the
--backend option on the command line.

This option is not available in the IDE.

sim Specifies the simulator driver.

fet Specifies the FET debugger driver.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

383

--derivative

Syntax --derivative device

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to select the device for which you will build your application.

Project>Options>General Options>Target>Device

--disable_interrupts

Syntax --disable_interrupts

For use with The C-SPY Simulator driver.

Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Configuration and deselect the
Enable interrupt simulation command on the context menu.

--disable_memory_cache

Syntax --disable_memory_cache

For use with The C-SPY FET Debugger driver.

Description Use this option to disable the memory cache in the FET debugger.

Project>Options>Debugger>FET Debugger>Setup>Disable memory cache

--downloadonly

Syntax --downloadonly

Note that this option must be placed before the --backend option on the command line.

device Specifies the device to be used.

AFE1_AFE2-1:1

384

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

For use with cspybat

Description Use this option to download the code image without starting a debug session afterwards.

Project>Download>Download active application

--eem

Syntax --eem {level}

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the implementation level of Enhanced Emulation Module for
a MSP430 device. The default value is EMEX_NONE. The value of this option depends on
the device you are using.

This option is automatically set when you are using the IDE.

--erase_exclude

Syntax --erase_exclude range

level Implementation level of Enhanced Emulation Module. Choose
between:

EMEX_LOW

EMEX_MEDIUM

EMEX_HIGH

EMEX_EXTRA_SMALL_5XX

EMEX_SMALL_5XX

EMEX_MEDIUM_5XX

EMEX_LARGE_5XX

EMEX_NONE

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

385

Parameters

For use with The C-SPY FET Debugger driver, but not devices with FRAM memory.

Description Use this option to exclude a memory segment from being erased. The segments that
overlap with the specified area will not be erased.

Example --erase_exclude 0x2180:0x2220

Project>Options>Debugger>Extra Options

--erase_exclude_all

Syntax --erase_exclude_all

For use with The C-SPY FET Debugger driver.

Description Use this option to exclude the whole FRAM memory from being erased before
downloading.

Project>Options>Debugger>Extra Options

--erase_ip_protected

Syntax --erase_ip_protected

For use with The C-SPY FET Debugger driver.

Description Use this option to erase the main and Information flash memories, including the IP
protected area before download.

Project>Options>Debugger>FET Debugger>Download>Erase main and
Information memory inc. IP PROTECTED area

--erase_main

Syntax --erase_main

range The memory range of the segment, in the form
startaddress:endaddress.

AFE1_AFE2-1:1

386

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

For use with The C-SPY FET Debugger driver.

Description Use this option to erase the main flash memory before download. The Information
memory is not erased.

Project>Options>Debugger>FET Debugger>Download>Erase main memory

--erase_main_and_info

Syntax --erase_main_and_info

For use with The C-SPY FET Debugger driver.

Description Use this option to erase both flash memories—main and Information memory—before
download.

Project>Options>Debugger>FET Debugger>Download>Erase main and
Information memory

--erase_retain_file

Syntax --erase_retain_file

For use with The C-SPY FET Debugger driver.

Description Use this option to make C-SPY read the main and Information memories into a buffer.
Only the flash segments that are needed are erased. If data that is to be written into a
segment matches the data in the image that is cached on the host computer, the data in
the image is left as is, and no download is performed. The new data effectively replaces
the old data, and unchanged old data is retained.

Project>Options>Debugger>FET Debugger>Download>Retain unchanged
memory>Compare with image cached on PC

--erase_retain_target

Syntax --erase_retain_target

For use with The C-SPY FET Debugger driver.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

387

Description Use this option to make C-SPY read the main and Information memories into a buffer.
Only the flash segments that are needed are erased. If data that is to be written into a
segment matches the data on the target, the data on the target is left as is, and no
download is performed. The new data effectively replaces the old data, and unchanged
old data is retained.

Project>Options>Debugger>FET Debugger>Download>Retain unchanged
memory>Compare with image on target

-f

Syntax -f filename

Parameters filename

A text file that contains the command line options (default filename extension
xcl).

For use with cspybat

Description Use this option to make cspybat read command line options from the specified file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C/C++ style comments are allowed in the file. Double quotes behave in the same
way as in the Microsoft Windows command line environment.

This option can be placed either before or after the --backend option on the command
line.

To set this option, use Project>Options>Debugger>Extra Options.

--function_profiling

Syntax --function_profiling filename

Parameters filename

The name of the log file where the profiling data is saved.

For use with The C-SPY simulator driver.

AFE1_AFE2-1:1

388

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

Description Use this option to find the functions in your source code where the most time is spent
during execution. The profiling information is saved to the specified file. For more
information about function profiling, see Profiling, page 225.

C-SPY driver>Function Profiling

--hardware_multiplier

Syntax --hardware_multiplier {16|32}

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to generate code for the MSP430 hardware multiplier peripheral unit.
Use this option only when you have chosen a device with a hardware multiplier.

Note: This option requires that you also specify the --hwmult_type option.

To set related options, choose:

Project>Options>General Options>Target>Hardware multiplier

--hwmult_type

Syntax --hwmult_type {1|2|4|8}

Parameters

16 The size of the multiplicands in bits.

Note that this parameter can only be used in combination with the
--hwmult_type parameters 1 and 2.

32 The size of the multiplicands in bits.

Note that this parameter can only be used in combination with the
--hwmult_type parameters 4 and 8.

1 16 bits

Note that this parameter can only be combined with the
--hardware_multiplier parameter 16.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

389

For use with The C-SPY FET Debugger driver.

Description Use this option to generate code for the MSP430 hardware multiplier peripheral unit.
Use this option only when you have chosen a device with a hardware multiplier.

Note: This option requires that you also specify the --hardware_multiplier option.

To set related options, choose:

Project>Options>General Options>Target>Hardware multiplier

--jtag_speed

Syntax --jtag_speed{fast|medium|slow}

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to set the JTAG communication speed.

Project>Options>Debugger>Fet Debugger>Setup>Jtag speed

2 16 bits, the 2xx Family

Note that this parameter can only be combined with the
--hardware_multiplier parameter 16.

4 32 bits

Note that this parameter can only be combined with the
--harware_multiplier parameter 32.

8 32 bits, the 5xx Families

Note that this parameter can only be combined with the
--hardware_multiplier parameter 32.

fast The fast communication speed.

medium The medium communication speed.

slow The slow communication speed.

AFE1_AFE2-1:1

390

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

--leave_target_running

Syntax --leave_target_running

For use with cspybat.

The C-SPY FET Debugger driver.

Note: Even if this option is supported by the C-SPY driver you are using, there might
be device-specific limitations.

Description Use this option to make the debugger leave the application running on the target
hardware after the debug session is closed.

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this option.

C-SPY driver>Leave Target Running

--lptx

Syntax --lptx

For use with The C-SPY FET Debugger driver.

Description Use this option to specify which parallel port the FET Debugger is connected to. x can
be 1, 2, or 3.

Project>Options>Debugger>FET Debugger>Setup>Parallel port

--macro

Syntax --macro filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The C-SPY macro file to be used (filename extension mac).

For use with cspybat

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

391

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 312.

Project>Options>Debugger>Setup>Setup macros>Use macro file

--macro_param

Syntax --macro_param [param=value]

Note that this option must be placed before the --backend option on the command line.

Parameters param=value

param is a parameter defined using the __param C-SPY macro construction.
value is a value.

For use with cspybat

Description Use this option to assign a value to a C-SPY macro parameter. This option can be used
more than once on the command line.

See also Macro parameters, page 319.

To set this option, use Project>Options>Debugger>Extra Options

--mapu

Syntax --mapu

For use with The C-SPY simulator driver.

Description Specify this option to use the segment information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Monitoring memory and registers, page 144.

To set related options, choose:

Simulator>Memory Access Setup

AFE1_AFE2-1:1

392

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

--mspdlogfile

Syntax --mspdlogfile

For use with The C-SPY FET Debugger driver.

Description Use this option to log the debug communication with msp430.dll during the current
debug session. The logged information is written to the mspdcom.log file.

Project>Options>Debugger>Extra Options

--odd_word_check

Syntax --odd_word_check

For use with The C-SPY simulator driver.

Description Use this option to make the simulator issue a warning if there is a word access to an odd
address.

Project>Options>Debugger>Simulator>Setup>Check for word access on odd
address

-p

Syntax -p filename

Parameters filename

The device description file to be used.

For use with All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 44.

Project>Options>Debugger>Setup>Device description file

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

393

--plugin

Syntax --plugin filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The plugin file to be used (filename extension dll).

For use with cspybat

Description Certain C/C++ standard library functions, for example printf, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
430bat.dll located in the 430\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to also include other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

Project>Options>Debugger>Plugins

--port

Syntax --port port

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to specify which serial port the FET Debugger is connected to.

Project>Options>Debugger>FET Debugger>Setup>Connection

port The serial port to be used, can be COMx or Automatic. x is
the number of the COM port.

AFE1_AFE2-1:1

394

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

--protocol

Syntax --protocol {spy-bi-wire|spy-bi-wire-jtag|4wire}

Parameters

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the debug protocol. Spy-Bi-Wire works for the parallel port
FET module and the TI USB FET module.

Project>Options>Debugger>FET Debugger>Setup>Debug protocol

--restore_fram_memory

Syntax --restore_fram_memory range

Parameters

For use with The C-SPY FET Debugger driver, and only FRAM devices.

Description Use this option to restore a FRAM memory area after the usual memory erase and write.

Example --restore_fram_area 0x2180:0x222

Project>Options>Debugger>Extra Options

--retain_fram_memory

Syntax --retain_fram_memory range

spy-bi-wire The Spy-Bi-Wire JTAG protocol.

spy-bi-wire-jtag 4-wire JTAG protocol for devices that also support
Spy-Bi-Wire.

4wire The ordinary 4-wire JTAG protocol.

range The memory range of the FRAM memory area, in the form
startaddress:endaddress.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

395

Parameters

For use with The C-SPY FET Debugger driver, and only FRAM devices.

Description Use this option to retain a FRAM memory area. The memory area will not be written.
This option requires that the download option Retain unchanged memory has been
selected.

Example --retain_fram_area 0x2180:0x222

Project>Options>Debugger>Extra Options

--set_exit_breakpoint

Syntax --set_exit_breakpoint

For use with The C-SPY FET Debugger driver.

Description Use this option to set a system breakpoint for exit.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>exit

--set_getchar_breakpoint

Syntax --set_getchar_breakpoint

For use with The C-SPY FET Debugger driver.

Description Use this option to set a system breakpoint for getchar.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>getchar

--set_putchar_breakpoint

Syntax --set_putchar_breakpoint

For use with The C-SPY FET Debugger driver.

range The memory range of the FRAM memory area, in the form
startaddress:endaddress.

AFE1_AFE2-1:1

396

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

Description Use this option to set a system breakpoint for putchar.

Project>Options>Debugger>FET Debugger>Breakpoints>System breakpoints
on>putchar

--settlingtime

Syntax --settlingtime=milliseconds

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the delay between switching on the target VCC and starting
the identification of the MSP430 device. Give the value in milliseconds in the range
0-9999 ms. This option can only be used with a USB connection.

Project>Options>Debugger>FET Debugger>Setup>Target VCC>Settling time (in
ms)

--silent

Syntax --silent

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to omit the sign-on message.

This option is not available in the IDE.

--timeout

Syntax --timeout milliseconds

Note that this option must be placed before the --backend option on the command line.

Parameters milliseconds

The number of milliseconds before the execution stops.

For use with cspybat

Description Use this option to limit the maximum allowed execution time.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

397

This option is not available in the IDE.

--use_emulated_breakpoints

Syntax --use_emulated_breakpoints

For use with The C-SPY FET Debugger driver.

Description Use this option to allow C-SPY to use emulated breakpoints.

Project>Options>Debugger>FET Debugger>Breakpoints>Use software
breakpoints>Emulated breakpoints

--use_virtual_breakpoints

Syntax --use_virtual_breakpoints

For use with The C-SPY FET Debugger driver.

Description Use this option to allow C-SPY to use virtual breakpoints.

Project>Options>Debugger>FET Debugger>Breakpoints>Use software
breakpoints>Virtual breakpoints

--vccvoltage

Syntax --vccvoltage=volts

For use with The C-SPY FET Debugger driver.

Description Use this option to specify the voltage provided by the USB interface. Give the value in
Volts with one decimal’s precision in the range 1.0-4.0 V. This option can only be used
with a USB connection.

Project>Options>Debugger>FET Debugger>Setup>Target VCC>Target VCC (in
Volt)

--verify_all

Syntax --verify_all

AFE1_AFE2-1:1

398

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for MSP430

For use with The C-SPY FET Debugger driver.

Description Use this option to verify that the downloaded code image can be read back from target
memory with the correct contents.

Project>Options>Debugger>FET Debugger>Download>Verify download

399

Part 4. Additional
reference information
This part of the C-SPY® Debugging Guide for MSP430 includes these chapters:

● Debugger options

● Additional information on C-SPY drivers

400

AFE1_AFE2-1:1

401

Debugger options
● Setting debugger options

● Reference information on general debugger options

● Reference information on the C-SPY simulator

● Reference information on C-SPY hardware debugger driver options

Setting debugger options
Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options).

To set debugger options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on general
debugger options, page 402.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

C-SPY driver Available options pages

C-SPY FET Debugger driver Setup for FET Debugger, page 407
Download, page 408
Breakpoints, page 410

C-SPY Simulator Setup options for the simulator, page 406

Table 42: Options specific to the C-SPY drivers you are using

AFE1_AFE2-1:1

402

Reference information on general debugger options

C-SPY® Debugging Guide
for MSP430

Reference information on general debugger options
Reference information about:

● Setup, page 402

● Images, page 403

● Extra Options, page 404

● Plugins, page 405

Setup
The general Setup options select the C-SPY driver, the setup macro file, and device
description file to use, and specify which default source code location to run to.

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

See also Executing from reset, page 44.

AFE1_AFE2-1:1

Debugger options

403

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

Device description file

A default device description file is selected automatically based on your project settings.
To override the default file, select Override default and specify an alternative file. A
browse button is available.

For information about the device description file, see Modifying a device description
file, page 48.

Device description files for each MSP430 device are provided in the directory
430\config and have the filename extension ddf.

Images
The Images options control the use of additional debug files to be downloaded.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path

Specify the debug file to be downloaded. A browse button is available for your
convenience.

Offset

Specify an integer that determines the destination address for the downloaded
debug file.

AFE1_AFE2-1:1

404

Reference information on general debugger options

C-SPY® Debugging Guide
for MSP430

Debug info only

Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three debug images, use the related C-SPY macro,
see __loadImage, page 335.

For more information, see Loading multiple debug images, page 47.

Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

Syntax: /args arg0 arg1 ...

Multiple lines with /args are allowed, for example:

/args --logfile log.txt

/args --verbose

AFE1_AFE2-1:1

Debugger options

405

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init int __argc;

/* __argv, an array of pointers to strings that holds the
arguments; must be large enough to fit the number of
parameters.*/
__no_init const char * __argv[MAX_ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */
__no_init __root char __argvbuf[MAX_ARG_SIZE];

Plugins
The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the 430\plugins directory.

AFE1_AFE2-1:1

406

Reference information on the C-SPY simulator

C-SPY® Debugging Guide
for MSP430

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

Reference information on the C-SPY simulator
Reference information about:

● Setup options for the simulator

This section gives reference information on the C-SPY simulator options.

Setup options for the simulator
The simulator Setup options control the C-SPY simulator.

Check for word access on odd address

Makes the simulator issue a warning if there is a word access to an odd address.

Reference information on C-SPY hardware debugger driver options
Reference information about:

● Setup for FET Debugger, page 407

● Download, page 408

● Breakpoints, page 410

AFE1_AFE2-1:1

Debugger options

407

Setup for FET Debugger
The FET Debugger Setup options control the C-SPY FET Debugger driver.

Connection

Controls the communication between C-SPY and the target device.

The C-SPY FET Debugger can communicate with the target device via a number of
different emulators. Select the emulator you are using.

If your emulator is connected to the host computer via a parallel port, you must also
specify which parallel port to use: Parallel port 1, Parallel port 2, or Parallel port 3. If
your emulator is connected to the host computer via a USB port, the debugger will
automatically connect to the correct port.

Some emulator drivers support multiple emulators connected to the same host computer.
Each emulator requires its own instance of IAR Embedded Workbench and each
instance must identify its emulator. To identify an emulator, click the browse button to
display a list of all detected emulators. To identify a connection, click the port in the list
and the Mode LED on the attached emulator will light up.

Debug protocol

Determines the debug interface to use:

Automatic selection

Selects the debug interface automatically. (If Connection is set to Automatic,
C-SPY correctly determines which interface to use.)

Manual selection

Spy-Bi-Wire to select the 2-wire JTAG (Spy-Bi-Wire) interface. Works with
emulators from Elprotronic, Olimex, and Texas Instruments that connect via
USB.

AFE1_AFE2-1:1

408

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for MSP430

Disable memory cache

Disables the memory cache in the FET debugger.

Jtag speed

Sets the JTAG communication speed. Choose between Fast, Medium, and Slow.

Target VCC

Specify the voltage provided by the USB interface:

Override default

Overrides the default voltage. To see what the default voltage is, see Device
Information window, page 56.

Target VCC

Specify the voltage with one decimal’s precision in the range 1.0–4.0 V. This
option can only be used with a USB connection.

Settling time

Specify a delay that will be used between switching on the target VCC and
starting the identification of the MSP430 device.

Enable ULP/LPMx.5 debug

Enables debugging of applications that use the LPMx5 low-power mode.

Download
By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.

AFE1_AFE2-1:1

Debugger options

409

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Allow erase/write access to locked flash memory

Enables erase/write access to Info Segment A. This option can only be used with devices
that have the Info Segment A memory.

Allow erase/write access to BSL flash memory

Enables erase/write access to BSL flash memory. This option can only be used with
MSP430F5xx devices that have BSL flash memory.

External code download

Saves user code to external SPI memory.

Erase main memory

Erases only the main flash memory before download. The Information memory is not
erased.

Erase main and Information memory

Erases both flash memories—main and Information memory—before download.

Retain unchanged memory

Reads the main and Information memories into a buffer. Only the flash segments that
are needed are erased.

Compare with image on target

Compares the data that is to be written into a segment with the image on the
target. If the data matches the image, the data on the target is left as is, and
nothing is downloaded. The new data effectively replaces the old data, and
unchanged old data is retained.

Compare with image cached on PC

Compares the data that is to be written into a segment with the image that is
cached on the host computer.

Erase main and Information memory inc. IP PROTECTED area

Erases the main and Information flash memories, including the IP protected area before
download.

AFE1_AFE2-1:1

410

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for MSP430

Retain TLV data

Retains the TLV data for MSP430 i20xx devices.

JTAG password

If a JTAG device is password-protected, enter the needed password here.

Note: For MSP430F5xx/6xx devices, you can set a custom password. To enable this
functionality in the IDE, add the lockjtag tag in the menu file that corresponds to your
device, and set its value to 1. The menu files are located in the directory:

C:\Program Files\IAR Systems\Embedded Workbench 8.n\430\config

\devices

Like this:

<lockjtag>1</lockjtag>

In addition to setting the lockjtag value to 1 in the menu file, you must select the Lock
device permanently option to enable this functionality.

Set the custom password on the page Project>Options>Debugger>FET
Debugger>Download.

Lock device permanently

Select this option to make it possible to use a custom JTAG password.

Breakpoints
The Breakpoints options control the use of breakpoints.

AFE1_AFE2-1:1

Debugger options

411

Use software breakpoints

Allows C-SPY to use software breakpoints when all available hardware breakpoints
have been used. Choose between:

Emulated breakpoints

Makes C-SPY use emulated breakpoints: the instruction where the breakpoint is
set will be replaced by a special instruction that the debugger recognizes.

Use only emulated breakpoints

C-SPY will use only emulated breakpoints.

Virtual breakpoints

Makes C-SPY use virtual breakpoints.

For information, see Breakpoints in the C-SPY FET debugger driver, page 111.

System breakpoints on

Controls the use of system breakpoints in the CLIB runtime environment. If the C-SPY
Terminal I/O window is not required or if you do not need a breakpoint on the exit
label, you can save hardware breakpoints by not reserving system breakpoints. Select or
deselect the options exit, putchar, and getchar respectively, if you want, or do not want,
C-SPY to use system breakpoints for these. For more information, see Breakpoint
consumers, page 112.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

AFE1_AFE2-1:1

412

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for MSP430

AFE1_AFE2-1:1

413

Additional information on
C-SPY drivers
This chapter describes the additional menus and features provided by the
C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus
This section gives reference information on the menus specific to the C-SPY drivers.
More specifically, this means:

● C-SPY driver, page 413

● Simulator menu, page 414

● Emulator menu, page 416

C-SPY driver
Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

When we in this guide write “choose C-SPY driver>” followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

AFE1_AFE2-1:1

414

Reference information on C-SPY driver menus

C-SPY® Debugging Guide
for MSP430

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Memory Access Setup

Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types, see Memory Access Setup dialog box,
page 173.

Trace

Opens a window which displays the collected trace data, see Trace window,
page 184.

Function Trace

Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 188.

Trace Expressions

Opens a window where you can specify specific variables and expressions for
which you want to collect trace data, see Trace Expressions window, page 191.

Function Profiler

Opens a window which shows timing information for the functions, see
Function Profiler window, page 230.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

415

Data Log

Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 202.

Data Log Summary

Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 205.

Interrupt Log

Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 281.

Interrupt Log Summary

Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 284.

Timeline

Opens a window which gives a graphical view of various kinds of information
on a timeline, see Reference information on application timeline, page 201.

Simulated Frequency

Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator. For more information, see Simulated Frequency dialog box, page
419.

Interrupt Setup

Displays a dialog box where you can configure C-SPY interrupt simulation, see
Interrupt Setup dialog box, page 275.

Forced Interrupts

Opens a window from where you can instantly trigger an interrupt, see Forced
Interrupt window, page 278.

Interrupt Status

Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 279.

Breakpoint Usage

Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 121.

AFE1_AFE2-1:1

416

Reference information on C-SPY driver menus

C-SPY® Debugging Guide
for MSP430

Emulator menu
When you are using the C-SPY FET Debugger driver, the Emulator menu is added to
the menu bar.

These commands are available on the menu:

Menu commands

These commands are available on the menu:

Power Log Setup

Opens a window, see Power Log Setup window, page 252.

Power Log

Opens a window, see Power Log window, page 254.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

417

State Log

Opens a window, see State Log window, page 259.

State Log Summary

Opens a window, see State Log Summary window, page 261.

Timeline

Opens a window, see Reference information on application timeline, page 201.

Data Sample Setup

Opens a window, see Data Sample Setup window, page 209.

Data Sample

Opens a window, see Data Sample window, page 208.

Sampled Graphs

Opens a window, see Sampled Graphs window, page 211.

Function Profiler

Opens a window which shoes timing information for the functions, see Function
Profiler window, page 230.

Release JTAG on Go

Sets the JTAG drivers in tri-state so that the device is released from JTAG
control—TEST pin is set to GND—when Go is activated.

Leave Target Running

Leaves the application running on the target hardware after the debug session is
closed.

Any existing breakpoints will not be automatically removed. You might want to
consider disabling all breakpoints before using this menu command.

If this menu command is not available, it is not supported by the C-SPY driver
you are using.

GIE on/off

Clears the General Interrupt Enable bit (GIE) in the Processor Status register.

Force Single Stepping

Forces single step debugging.

Force hardware RST/NMI

Forces an RST/NMI clear reset when the Reset button is pressed.

Resynchronize JTAG

Regains control of the device.

AFE1_AFE2-1:1

418

Reference information on C-SPY driver menus

C-SPY® Debugging Guide
for MSP430

It is not possible to resynchronize JTAG while the device is operating.

Init New Device

Initializes the device according to the settings in the Projects>Options>FET
Debugger category. The current program file is downloaded to the device
memory, and the device is then reset. This command can be used to program
multiple devices with the same program from within the same C-SPY session.

It is not possible to choose Init New Device while the device is operating, thus
the command will be dimmed.

State Storage Control

Opens the State Storage Control window, which lets you define the use of the
state storage module, see State Storage Control window, page 301.

State Storage Window

Opens the State Storage window which contains state storage information
according to your definitions, see State Storage window, page 303.

Sequencer Control

Opens the Sequencer Control window, which lets you define a state machine,
see Sequencer Control window, page 309.

Advanced Cycle Counter

Opens a window, see Advanced Cycle Counter Control window, page 295.

Advanced>Clock Control

Lets you control the clocks on the device. Depending on the hardware support,
either the General Clock Control dialog box or the Extended Clock Control
dialog box is displayed. See General Clock Control dialog box, page 420 and
Extended Clock Control dialog box, page 421, respectively.

Advanced>Emulation Mode

Specifies the device to be emulated. The device must be reset (or reinitialized by
using the menu command Init New Device) following a change to the emulation
mode.

Advanced>Memory Dump

Displays the Memory Dump dialog box, which lets you write device memory
contents to a file, see Memory Dump dialog box, page 176.

Advanced>Breakpoint Combiner

Displays the Breakpoint combiner dialog box, which lets you combine two
already defined breakpoints, see Breakpoint combiner dialog box, page 137.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

419

User code erase (unlocks device)

Overrides and clears FRAM memory protection and erases the Information and
main memories. (Only available for FR2xx and FR4xx devices.)

Secure - Blow JTAG Fuse

Blows the fuse on the target device. After the fuse is blown, no communication
with the device is possible. Only available if you are using a USB-connected
debug probe.

Breakpoint Usage

Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 121.

Device information

Opens the Device Information window with information about the device used
for debugging, see Device Information window, page 56.

Connected device

The name of the device used for debugging.

Note: Not all Emulator>Advanced submenu commands are available on all MSP430
devices.

Reference information on the C-SPY simulator
This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

Reference information about:

● Simulated Frequency dialog box, page 419

Simulated Frequency dialog box
The Simulated Frequency dialog box is available from the C-SPY driver menu.

Use this dialog box to specify the simulator frequency used when the simulator displays
time information.

AFE1_AFE2-1:1

420

Reference information on the C-SPY FET Debugger driver

C-SPY® Debugging Guide
for MSP430

Requirements

The C-SPY simulator.

Frequency

Specify the frequency in Hz.

Reference information on the C-SPY FET Debugger driver
This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

More specifically, this means:

● General Clock Control dialog box, page 420

● Extended Clock Control dialog box, page 421

General Clock Control dialog box
The General Clock Control dialog box is available from the Emulator menu.

Use this dialog box to control the clocks of the device.

Select the clock modules you want to stop when the execution stops. The other clocks
will keep running.

Which clock modules that are displayed depends on the available clocks on the
connected device.

Requirements

The C-SPY FET Debugger driver.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

421

Extended Clock Control dialog box
The Extended Clock Control dialog box is available from the Emulator menu.

Use this dialog box for module level control over the clocks of the device.

Select the clock modules you want to stop when the execution stops. The other clocks
will keep running.

Which clock modules that are displayed depends on the available clocks on the
connected device.

Requirements

The C-SPY FET Debugger driver.

Resolving problems
These topics are covered:

● The device port pins do not work

● Write failure during load

● No contact with the target hardware

Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

AFE1_AFE2-1:1

422

Resolving problems

C-SPY® Debugging Guide
for MSP430

To troubleshoot the Flash Emulation Tool, see appendix A in the document IAR
Embedded Workbench Version 3+ for MSP430 User’s Guide at the Texas Instruments
web site, www.ti.com. The document has the literature number SLAU138AN.

THE DEVICE PORT PINS DO NOT WORK

On some MSP430 devices, the device port pins are shared with the JTAG pins that
C-SPY uses to debug the device. Normally, C-SPY maintains the pins in JTAG mode so
that the device can be debugged. During this time the port functionality of the shared
pins is not available.

To release the JTAG pins:

Choose Emulator>Release JTAG on Go to set the JTAG drivers to tri-state and release
the device from JTAG control (the TEST pin is set to GND) when Go is activated. Any
active on-chip breakpoints are retained and the shared JTAG port pins revert to their port
functions.

Note: Be aware of the following:

● The JTAG pins will only be released if there are N or fewer active breakpoints.

● When you measure the electrical current of the device, the JTAG control signals
must be released, otherwise the device will be powered by the signals on the JTAG
pins and the measurements will be incorrect.

● If you release the JTAG pins, C-SPY has no access to the device and cannot
determine if an active breakpoint has been triggered. C-SPY must be manually told
to stop the device, at which time the state of the device will be determined (that is,
has a breakpoint been reached?).

WRITE FAILURE DURING LOAD

There are several possible reasons for write failure during load. The most common is
that your application has been incorrectly linked:

● Check the contents of your linker configuration file and make sure that your
application has not been linked to the wrong address

● Check that you are using the correct linker configuration file.

To choose a device:

1 Choose Project>Options.

2 Select the General Options category.

3 Click the Target tab.

4 Choose the appropriate device from the Device drop-down list.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

423

To override the default linker configuration file:

1 Choose Project>Options.

2 Select the Linker category.

3 Click the Config tab.

4 Select the Override default option, and choose the appropriate linker configuration
file in the Linker configuration file area. A browse button is available.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

● Check the communication devices on your host computer

● Verify that the cable is properly plugged in and not damaged or of the wrong type

● Make sure that the evaluation board is supplied with sufficient power

● Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

AFE1_AFE2-1:1

424

Resolving problems

C-SPY® Debugging Guide
for MSP430

UCSARM-4:3

Index

425

A
Abort (Report Assert option) . 78
__abortLaunch (C-SPY system macro). 328
absolute location, specifying for a breakpoint. 137
Access type (Advanced Trigger breakpoints option) 135
Access type (Edit Memory Access option) 175
Access (Conditional breakpoints option) 132
Access (Edit SFR option) . 172
Action (Advanced Trigger breakpoints option). 135
Action (Conditional breakpoints option). 133
Action (Sequencer option) . 310
Address Range (Find in Trace option) 194
Address (Edit SFR option) . 172
Advanced Cycle Counter Control window 295
Advanced Trigger breakpoints dialog box 134
advanced trigger breakpoints, overview 109
Advanced (Sequencer option) . 310
Advanced>Breakpoint Combiner (Emulator menu) 418
Advanced>Clock Control (Emulator menu) 418
Advanced>Emulation Mode (Emulator menu) 418
Advanced>Memory Dump (Emulator menu) 418
Allow erase/write access to locked flash memory (C-SPY
FET Debugger option) . 409
Allow erase/write access to BSL flash memory (C-SPY
FET Debugger option) . 409
--allow_access_to_BSL (C-SPY command line option) . . 378
--allow_locked_flash_access (C-SPY command line
option) . 378
Ambiguous symbol (Resolve Symbol Ambiguity option). 104
application flow, monitoring. 299
Applications (Advanced Cycle Counter option) 295
--application_args (C-SPY command line option) 379
application, built outside the IDE . 46
assembler labels, viewing . 86
assembler source code, fine-tuning 225
assembler symbols, in C-SPY expressions 83
assembler variables, viewing . 86
assumptions, programming experience 23

Auto Scroll (Timeline window context menu) . 216, 220, 288
Auto window . 87
Autostep settings dialog box . 78

B
--attach_to_running_target (C-SPY command line option)379
--backend (C-SPY command line option) 380
backtrace information, viewing in Call Stack window 71
batch mode, using C-SPY in . 373
Big Endian (Memory window context menu) 152
blocks, in C-SPY macros . 321
bold style, in this guide . 28
Break At (Advanced Trigger breakpoints option) 134
Break At (Conditional breakpoints option) 131
Breakpoint combiner dialog box. 137
breakpoint condition, example 117–118
breakpoint dialog box

Code . 122
Data . 125
Data Log . 127
Immediate . 128
Log . 123
Trace Start Trigger. 189
Trace Stop Trigger . 190

Breakpoint Usage window . 121
Breakpoint Usage (Emulator menu) 419
breakpoints

advanced trigger. 134
briefly about. 107
code, example . 348
conditional . 131

using . 300
connecting a C-SPY macro . 316
consumers of . 112
data . 125
data log . 127
description of . 107
disabling used by Stack window 113

Index

UCSARM-4:3

426
C-SPY® Debugging Guide
for MSP430

emulated, configuring . 411
icons for in the IDE . 110
in Memory window . 115
listing all . 121
range . 129
reasons for using . 107
setting

in memory window . 115
using system macros . 116
using the dialog box . 114

toggling . 114
types of . 108
useful tips. 117
virtual, configuring . 411

Breakpoints dialog box
Advanced Trigger . 134
Conditional . 131
Range. 129

Breakpoints window . 119
Breakpoints (FET debugger options) 410
Browse (Trace toolbar) . 185
byte order, setting in Memory window 151

C
C function information, in C-SPY. 63
C symbols, in C-SPY expressions. 83
C variables, in C-SPY expressions 82
call chain, displaying in C-SPY . 63
Call Stack graph (Timeline window) 215
Call stack information. 63
Call Stack window . 71

for backtrace information. 63
Call Stack (Timeline window context menu) 217
__cancelAllInterrupts (C-SPY system macro) 328
__cancelInterrupt (C-SPY system macro). 329
Check for word access on odd address (C-SPY simulator
option) . 406

Clear Group (Registers User Groups Setup window
context menu) . 167
Clear trace data (Trace toolbar). 185
Clear (Advanced Cycle Counter option) 297
__clearBreak (C-SPY system macro) 329
CLIB

consuming breakpoints . 112
library reference information for 26
naming convention. 29

clock frequency, simulated . 419
__closeFile (C-SPY system macro) 329
code breakpoints

overview . 108
toggling . 114

code coverage, using. 236
Code Coverage window . 237
--code_coverage_file (C-SPY command line option) 381
code, covering execution of . 237
command line options. 378

typographic convention . 28
command prompt icon, in this guide 28
computer style, typographic convention 27
Condition (Conditional breakpoints option) 133
conditional breakpoints

overview . 110
triggering state storage. 300

Conditional breakpoints dialog box 131
conditional statements, in C-SPY macros 320
--connection (C-SPY command line option) 380
Connection (C-SPY FET Debugger option) 407
context menu, in windows . 85
conventions, used in this guide . 27
Copy Window Contents (Disassembly
window context menu) . 70
copyright notice . 2
cores, inspecting state of . 79
Cores window. 79
CPU cycles, counting . 292, 294
cspybat . 373

reading options from file (-f) . 387

UCSARM-4:3

Index

427

current position, in C-SPY Disassembly window 67
Current state (Sequencer option). 310
cursor, in C-SPY Disassembly window 67
Cycle counter values (Advanced Cycle Counter option). . 296
--cycles (C-SPY command line option) 381
C-SPY

batch mode, using in . 373
debugger systems, overview of 37
environment overview . 33
plugin modules, loading. 45
scripting. See macros
setting up . 43–44
starting the debugger . 45

C-SPY drivers
differences between drivers . 39
overview . 39
specifying . 402
types of . 38

C-SPY expressions . 82
evaluating, using Macro Quicklaunch window 370
evaluating, using Quick Watch window. 99
in C-SPY macros . 320
Tooltip watch, using . 81
Watch window, using. 81

C-SPY hardware debugger driver
extending functionality of . 50

C-SPY macros
blocks. 321
conditional statements . 320
C-SPY expressions . 320
examples . 313

checking status of register. 315
creating a log macro . 316

executing . 313
connecting to a breakpoint 316
using Quick Watch . 315
using setup macro and setup file 315

functions . 84, 318
keywords . 318–319, 321

loop statements . 321
macro statements . 320
parameters . 319
setup macro file . 312

executing. 315
setup macro functions . 312

summary . 323
system macros, summary of. 325
using . 311
variables. 84, 318

C-SPY options
Breakpoints . 410
Download . 408
Extra Options. 404
Images . 403
Plugins . 405
Setup . 402
Setup (FET) . 407

C-SPYLink . 39
C-STAT for static analysis, documentation for. 26
C++ terminology. 27

D
-d (C-SPY command line option) 382
data breakpoints, overview . 109
Data Coverage (Memory window context menu) 152
data coverage, in Memory window. 150
data log breakpoints, overview . 109
Data Log graph (Timeline window) 218
Data Log Summary window . 205
Data Log Summary (Simulator menu) 415
Data Log window . 202
Data Log (Simulator menu) . 415
Data Log (Timeline window context menu) 220
Data Sample Setup window . 209
Data Sample window . 208
Data Sample (Sampled Graphs window context menu) . . 213
ddf (filename extension), selecting a file 44

UCSARM-4:3

428
C-SPY® Debugging Guide
for MSP430

Debug Log window . 75
Debug menu (C-SPY main window). 51
Debug protocol (C-SPY FET Debugger option) 407
Debug (Report Assert option) . 78
--debug_file (cspybat option) . 382
debugger concepts, definitions of . 36
debugger drivers

FET Debugger . 40
simulator . 40

debugger drivers. See C-SPY drivers
Debugger Macros window . 368
debugger system overview . 37
debugging projects

externally built applications . 46
loading multiple images . 47

debugging, RTOS awareness . 35
__delay (C-SPY system macro) . 330
Delay (Autostep Settings option) . 78
Delete/revert All Custom SFRs (SFR Setup window
context menu) . 170
--derivative (C-SPY command line option). 383
Description (Edit Interrupt option) 277
description (interrupt property) . 277
Device description file (debugger option) 403
device description files . 44

definition of . 48
memory zones . 143
modifying . 48
register zone. 143
specifying interrupts . 340

Device Information window . 56
Device information (Emulator menu) 419
Device Support Module . 50
Disable memory cache (C-SPY FET Debugger option) . . 408
__disableInterrupts (C-SPY system macro) 330
--disable_interrupts (C-SPY command line option) 383
--disable_memory_cache (C-SPY command line option) . 383
Disassembly window . 65

context menu . 68
disclaimer . 2

DLIB
consuming breakpoints . 112
naming convention. 29

DMA load, measuring. 292
do (macro statement) . 321
document conventions . 27
documentation

overview of guides. 25
overview of this guide . 24
this guide . 23

Download (FET debugger options). 408
--download_only (C-SPY command line option) 383
Driver (debugger option) . 402
__driverType (C-SPY system macro) 330

E
Edit Expressions (Trace toolbar). 185
Edit Interrupt dialog box. 277
Edit Memory Access dialog box . 175
Edit Memory Range dialog box . 171
Edit Settings (Trace toolbar) . 185
edition, of this guide . 2
--eem (C-SPY command line option) 384
emulated breakpoints, configuring 411
Emulator menu (reference information) 416
Enable interrupt simulation (Interrupt Setup option). 275
Enable Log File (Log File option). 77
Enable ULP/LPMx.5 debug (C-SPY FET Debugger
option) . 408
Enable (Sampled Graphs window context menu) 213
Enable (Timeline window context menu) 217
__enableInterrupts (C-SPY system macro) 331
Enable/Disable Breakpoint (Disassembly window
context menu) . 70
Enable/Disable (Trace toolbar) . 185
End address (Memory Save option) 153
endianness. See byte order
Enter Location dialog box. 136

UCSARM-4:3

Index

429

Erase main and Information memory inc.
IP PROTECTED area (C-SPY FET Debugger option) . . . 409
Erase main and Information memory (C-SPY FET
Debugger option) . 409
Erase main memory (C-SPY FET Debugger option) 409
--erase_exclude (C-SPY command line option) 384
--erase_exclude_all (C-SPY command line option) 385
--erase_ip_protected (C-SPY command line option). 385
--erase_main (C-SPY command line option) 385
--erase_main_and_info (C-SPY command line option) . . 386
--erase_retain_file (C-SPY command line option) 386
--erase_retain_target (C-SPY command line option) 386
__evaluate (C-SPY system macro) 331
Evaluate Now (Macro Quicklaunch window context
menu) . 371
examples

C-SPY macros . 313
interrupts

interrupt logging . 274
timer . 272

macros
checking status of register. 315
creating a log macro . 316
using Quick Watch . 315

performing tasks and continue execution 118
tracing incorrect function arguments 117

execUserExecutionStarted (C-SPY setup macro) 324
execUserExecutionStopped (C-SPY setup macro) 324
execUserExit (C-SPY setup macro) 325
execUserPreload (C-SPY setup macro) 323
execUserPreReset (C-SPY setup macro). 325
execUserReset (C-SPY setup macro) 325
execUserSetup (C-SPY setup macro) 324
executed code, covering . 237
execution history, tracing . 184
execution, stopping using the sequencer 305
expressions. See C-SPY expressions
Extended Clock Control dialog box 421
extended command line file, for cspybat. 387
External code download (C-SPY FET option) 409

extra cycle counter . 291
Extra Options, for C-SPY . 404

F
-f (cspybat option). 387
FET Debugger (C-SPY driver)

communication . 422
hardware installation . 42

File format (Memory Save option) 153
file types

device description, specifying in IDE 44
macro . 44, 403

filename extensions
ddf, selecting device description file 44
mac, using macro file. 44
sfr, register definitions for C-SPY 164

Filename (Memory Restore option) 154
Filename (Memory Save option) 154
Fill dialog box. 155
__fillMemory8 (C-SPY system macro) 332
__fillMemory16 (C-SPY system macro). 333
__fillMemory32 (C-SPY system macro). 334
Find in Trace dialog box . 193
Find in Trace window. 194
Find in Trace (Disassembly window context menu) 70
Find (Memory window context menu) 152
Find (Trace toolbar) . 185
first activation time (interrupt property), definition of . . . 268
First activation (Edit Interrupt option) 277
flash memory, load library module to 336
flash memory, single-stepping in C-SPY emulator 60
__fmessage (C-SPY macro keyword) 321
for (macro statement) . 321
Force hardware RST/NMI (Emulator menu). 417
Force Single Stepping (Emulator menu) 417
Force (Forced Interrupt window context menu) 279
Forced Interrupt window. 278
Forced Interrupts (Simulator menu) 415

UCSARM-4:3

430
C-SPY® Debugging Guide
for MSP430

Format (Registers User Groups Setup window context
menu) . 167
formats, C-SPY input . 35
Function Profiler window . 230
Function Profiler (Simulator menu) 414
Function Trace window . 188
functions

C-SPY running to when starting 44, 402
most time spent in, locating . 225

--function_profiling (cspybat option) 387
fuse, blowing on the target device. 419

G
General Clock Control dialog box 420
__getSelectedCore (C-SPY system macro). 335
GIE on/off (Emulator menu). 417
Go To Source (Timeline window context
menu) . 217, 221, 289
Go (Debug menu) . 62

H
hardware setup, power consumption because of 247
--hardware_multiplier (C-SPY command line option) . . . 388
highlighting, in C-SPY . 62
Hold time (Edit Interrupt option) 278
hold time (interrupt property), definition of 269
--hwmult_type (C-SPY command line option) 388

I
icons, in this guide . 28
if else (macro statement) . 320
if (macro statement) . 320
Ignore (Report Assert option) . 78
Images window. 54
Images, loading multiple. 403
immediate breakpoints, overview 109

Include (Log File option) . 77
Init New Device (Emulator menu) 418
input formats, C-SPY . 35
Input Mode dialog box . 74
input, special characters in Terminal I/O window. 74
installation directory . 27
Instruction Profiling (Disassembly window context menu) 69
Intel-extended, C-SPY input format 35
Intel-extended, C-SPY output format 38
Intel-Standard, C-SPY input format 35
interference, power consumption because of 247
interrupt handling, power consumption during 246
Interrupt Log graph in Timeline window 287
Interrupt Log Summary window. 284
Interrupt Log window . 281
Interrupt Setup dialog box . 275
Interrupt Setup (Simulator menu) 415
Interrupt Status window . 279
interrupt system, using device description file 271
Interrupt (Edit Interrupt option) . 277
Interrupt (Timeline window context menu). 289
interrupts

adapting C-SPY system for target hardware 271
simulated, introduction to . 267
timer, example . 272
using system macros . 270

__isBatchMode (C-SPY system macro) 335
italic style, in this guide . 27–28

J
JTAG password (C-SPY FET Debugger option) 410
JTAG pins, shared with port pins 422
JTAG speed (C-SPY FET Debugger option) 408
--jtag_speed (C-SPY command line option) 389

L
labels (assembler), viewing. 86

UCSARM-4:3

Index

431

Leave Target Running (Emulator menu). 417
--leave_target_running (C-SPY command line option). . . 390
Length (Fill option). 155
library functions

C-SPY support for using, plugin module 393
online help for . 26

lightbulb icon, in this guide. 28
linker options

typographic convention . 28
consuming breakpoints . 112

Little Endian (Memory window context menu) 151
Live Watch window . 93
__loadImage (C-SPY system macro) 335
loading multiple debug files, list currently loaded 54
loading multiple images . 47
Locals window . 89
lock device permanently . 410
log breakpoints, overview. 108
Log File dialog box. 77
loop statements, in C-SPY macros 321
low-power mode, power consumption during. 244
--lpt1 (C-SPY command line option) 390
--lpt2 (C-SPY command line option) 390
--lpt3 (C-SPY command line option) 390

M
mac (filename extension), using a macro file 44
--macro (C-SPY command line option) 390
macro files, specifying . 44, 403
Macro Quicklaunch window. 370
Macro Registration window . 366
macro statements . 320
macros

executing . 313
using . 311

--macro-param (C-SPY command line option) 391
main function, C-SPY running to when starting 44, 402
--mapu (C-SPY command line option) 391

Mask (Advanced Trigger breakpoints option). 135
Mask (Conditional breakpoints option). 133
Memory access checking (Memory Access Setup option) 174
Memory Access Setup dialog box. 173
Memory Access Setup (Simulator menu) 414
memory contents, writing to a file 176
Memory Dump dialog box . 176
Memory Fill (Memory window context menu) 152
memory map. 173
Memory Restore dialog box . 154
Memory Restore (Memory window context menu) 152
Memory Save dialog box . 153
Memory Save (Memory window context menu). 152
Memory window. 149
memory zones. 142

in device description file . 143
__memoryRestore (C-SPY system macro) 336
__memorySave (C-SPY system macro) 337
menu bar, C-SPY-specific . 50
__message (C-SPY macro keyword) 321
__messageBoxYesCancel (C-SPY system macro) 338
__messageBoxYesNo (C-SPY system macro) 339
Messages window, amount of output 76
migration, from earlier IAR compilers 26
MISRA C, documentation . 26
Mixed Mode (Disassembly window context menu) 70
Mode (Advanced Cycle Counter option) 296
Motorola, C-SPY input format . 35
Motorola, C-SPY output format . 38
Move to PC (Disassembly window context menu) 68
--mspdlogfile (C-SPY command line option) 392

N
Name (Edit SFR option) . 171
naming conventions . 28
Navigate (Sampled Graphs window context menu) 212
Navigate (Timeline window context menu) . . . 216, 219, 288
Next Symbol (Symbolic Memory window context menu) 158

UCSARM-4:3

432
C-SPY® Debugging Guide
for MSP430

O
--odd_word_check (C-SPY command line option) 392
__openFile (C-SPY system macro). 339
Operation (Fill option) . 155
Operator (Advanced Trigger breakpoints option) 135
Operator (Conditional breakpoints option) 132
operators, sizeof in C-SPY . 84
optimizations, effects on variables 84
options

in the IDE . 401
on the command line . 378, 404

Options (Stack window context menu) 162
__orderInterrupt (C-SPY system macro). 340
Originator (debugger option) . 406

P
-p (C-SPY command line option) 392
__param (C-SPY macro keyword) 319
parameters

tracing incorrect values of . 63
typographic convention . 27

part number, of this guide . 2
peripheral units

debugging power consumption for. 241
detecting mistakenly unattended 245
detecting unattended . 245
device-specific . 48
displayed in Registers window. 142
in an event-driven system . 246
in C-SPY expressions . 83
initializing using setup macros. 312

Please select one symbol (Resolve Symbol Ambiguity
option) . 105
--plugin (C-SPY command line option) 393
plugin modules (C-SPY). 38

loading . 45
Plugins (C-SPY options). 405

__popSimulatorInterruptExecutingStack (C-SPY
system macro). 341
pop-up menu. See context menu
--port (C-SPY command line option) 393
port pins, shared with JTAG pins 422
power consumption, measuring 226, 241
Power graph in Timeline window 257
Power Log Setup window. 252
Power Log window. 254
power sampling. 226
prerequisites, programming experience 23
Previous Symbol (Symbolic Memory window context
menu) . 158
probability (interrupt property) . 278

definition of . 268
Probability % (Edit Interrupt option) 278
Profile Selection (Timeline window context menu) 218
profiling

analyzing data . 228
on function level . 227
on instruction level. 229
using MSP430 advanced cycle counter 293

profiling information, on functions and instructions 225
profiling sources

trace (calls) . 226
trace (flat) . 226

program execution
breaking . 108–109
in C-SPY . 57

program flow, monitoring . 299
program states, monitoring . 299
programming experience . 23
program. See application
projects, for debugging externally built applications. 46
--protocol (C-SPY command line option) 394
publication date, of this guide . 2

UCSARM-4:3

Index

433

Q
Quick Watch window . 99

executing C-SPY macros . 315

R
Range breakpoints dialog box. 129
range breakpoints, overview . 109
Range for (Viewing Range option) 222
Reaction trigger (Advanced Cycle Counter option) 298
__readFile (C-SPY system macro) 342
__readFileByte (C-SPY system macro) 343
reading guidelines. 23
__readMemoryByte (C-SPY system macro) 343
__readMemory8 (C-SPY system macro) 343
__readMemory16 (C-SPY system macro) 344
__readMemory32 (C-SPY system macro) 344
reference information, typographic convention. 28
register groups . 142

predefined, enabling. 163
Register User Groups Setup window 166
registered trademarks . 2
__registerMacroFile (C-SPY system macro) 345
Registers window . 163
registers, displayed in Registers window 163
Release JTAG on Go (Emulator menu) 417
Removal All Groups (Registers User Groups Setup
window context menu) . 167
Remove All (Macro Quicklaunch window context menu) 371
Remove (Macro Quicklaunch window context menu) . . . 371
Remove (Registers User Groups Setup window context
menu) . 167
Repeat interval (Edit Interrupt option) 277
repeat interval (interrupt property), definition of 268
Replace (Memory window context menu) 152
Report Assert dialog box . 78
Reset Counter (Advanced Cycle Counter option) 298
Reset States (Sequencer option) . 310

Reset Trigger (Sequencer option) 310
__resetFile (C-SPY system macro) 345
Resolve Source Ambiguity dialog box 138
Restore (Memory Restore option). 154
--restore_fram_memory (C-SPY command line option) . . 394
Resynchronize JTAG (Emulator menu) 417
Retain TLV data (C-SPY FET Debugger option) 410
Retain unchanged memory (C-SPY FET Debugger
option) . 409
--retain_fram_memory (C-SPY command line option) . . . 394
return (macro statement) . 321
ROM-monitor, definition of . 38
RTOS awareness debugging . 35
RTOS awareness (C-SPY plugin module) 35
Run to Cursor (Disassembly window context menu) 68
Run to Cursor, command for executing 62
Run to (C-SPY option) . 44, 402

S
Sampled Graphs window . 211
Save Custom SFRs (SFR Setup window context menu) . . 171
Save to File (Register User Groups Setup window
context menu) . 168
Save to File (Timeline window context menu) 217
Save (Memory Save option) . 154
Save (Trace toolbar) . 185
Scale (Viewing Range option) . 223
scripting C-SPY. See macros
Secure - Blow JTAG Fuse (Emulator menu). 419
Select Graphs (Sampled Graphs window context menu). . 214
Select Graphs (Timeline window context
menu) . 217, 221, 289
Select plugins to load (debugger option). 405
__selectCore (C-SPY system macro) 345
Sequencer Control window. 309
Sequencer Control (Emulator menu). 418
sequencer, setting up. 306
Set Data Breakpoint (Memory window context menu) . . . 152

UCSARM-4:3

434
C-SPY® Debugging Guide
for MSP430

Set Data Log Breakpoint (Memory window context
menu) . 153
Set Next Statement (Disassembly window context menu) . 70
__setAdvancedTriggerBreak (C-SPY system macro) 346
__setCodeBreak (C-SPY system macro). 347
__setConditionalBreak (C-SPY system macro) 348
__setDataBreak (C-SPY system macro) 349
__setDataLogBreak (C-SPY system macro) 351
__setLogBreak (C-SPY system macro) 352
__setRangeBreak (C-SPY system macro). 353
__setSimBreak (C-SPY system macro) 354
Settling time (C-SPY FET option) 408
--settlingtime (C-SPY command line option) 396
__setTraceStartBreak (C-SPY system macro) 355
__setTraceStopBreak (C-SPY system macro). 356
setup macro file, registering . 44
setup macro functions . 312

reserved names. 323
Setup macros (debugger option) . 403
Setup (C-SPY options) . 402
Setup (FET debugger options) . 407
--set_exit_breakpoint (C-SPY command line option) 395
--set_getchar_breakpoint (C-SPY command line option) . 395
--set_putchar_breakpoint (C-SPY command line option) . 395
SFR, using as assembler symbols . 83
SFR Setup window . 168
shortcut menu. See context menu
Show All (SFR Setup window context menu). 170
Show Custom SFRs only (SFR Setup window context
menu) . 170
Show Factory SFRs only (SFR Setup window context
menu) . 170
Show Numerical Value (Timeline window context
menu) . 214, 221
Show offsets (Stack window context menu) 161
Show variables (Stack window context menu) 161
--silent (C-SPY command line option) 396
Simulated Frequency dialog box. 419
simulating interrupts, enabling/disabling 275
Simulator menu. 414

simulator, introduction . 40
Size (Edit SFR option) . 172
Size (Sampled Graphs window context menu) 214
Size (Timeline window context menu) 221
sizeof . 84
__smessage (C-SPY macro keyword). 321
software delay, power consumption during. 244
Solid Graph (Sampled Graphs window context menu) . . . 214
Solid Graph (Timeline window context menu) 221
Sort by (Timeline window context menu). 289
__sourcePosition (C-SPY system macro) 357
special function registers (SFR)

description files . 164
using as assembler symbols . 83

Stack window . 159
standard C, sizeof operator in C-SPY 84
Start address (Fill option) . 155
Start address (Memory Save option) 153
Start (Advanced Cycle Counter option) 297
State Log graph (Timeline window) 264
State Log Setup window . 258
State Log Summary window. 261
State Log window. 259
state storage

setting up . 300
starting using the sequencer . 305

State Storage Control window . 301
State Storage Control (Emulator menu) 418
State Storage window . 303
static analysis, documentation for . 26
Statics window . 96
stdin and stdout, redirecting to C-SPY window 74
Step Into, description . 59
Step Out, description. 60
Step Over, description. 59
step points, definition of . 58
Stop (Advanced Cycle Counter option) 297
stopping execution using the sequencer 305
__strFind (C-SPY system macro) 357

UCSARM-4:3

Index

435

__subString (C-SPY system macro) 358
Symbolic Memory window. 156
Symbols window . 102
symbols, in C-SPY expressions . 82
System breakpoints on (C-SPY FET Debugger option) . . 411
__system1 (C-SPY system macro) 358
__system2 (C-SPY system macro) 359
__system3 (C-SPY system macro) 360

T
target system, definition of . 37
Target VCC (C-SPY FET Debugger option) 408
__targetDebuggerVersion (C-SPY system macro) 360
Terminal IO Log Files (Terminal IO Log Files option) . . . 75
Terminal I/O Log Files dialog box 74
Terminal I/O window . 64, 73
terminology. 27
Text search (Find in Trace option) 193
TI msp430-txt, C-SPY input format 35
TI msp430-txt, C-SPY output format 38
Time Axis Unit (Timeline window context
menu) . 217, 221, 289
Timeline window . 287

power graph . 257
Timeline window (Call Stack graph) 215
Timeline window (Data Log graph) 218
Timeline window (State Log graph) 264
--timeout (C-SPY command line option) 396
timer interrupt, example . 272
Toggle Breakpoint (Code) (Disassembly window context
menu) . 69
Toggle Breakpoint (Log) (Disassembly window context
menu) . 69
Toggle Breakpoint (Trace Start) (Disassembly window
context menu) . 69
Toggle Breakpoint (Trace Stop) (Disassembly window
context menu) . 69
Toggle source (Trace toolbar). 185
__toLower (C-SPY system macro) 361

tools icon, in this guide . 28
__toString (C-SPY system macro) 361
__toUpper (C-SPY system macro) 362
trace . 181, 195
Trace Expressions window . 191
Trace Start Trigger breakpoint dialog box 189
trace start/stop trigger breakpoints, overview 108
Trace Stop Trigger breakpoint dialog box. 190
Trace window . 184
trace (calls), profiling source . 226
trace (flat), profiling source . 226
trace, in Timeline window . 257
trace, state storage being variant of 299
trademarks . 2
Type (Advanced Trigger breakpoints option) 134
Type (Conditional breakpoints option) 131
typographic conventions . 27

U
UBROF. 35
Unavailable, C-SPY message . 85
Universal Binary Relocatable Object Format. See UBROF
__unloadImage(C-SPY system macro) 362
Use command line options (debugger option). 404
Use Extra Images (debugger option). 403
Use manual ranges (Memory Access Setup option) 174
Use only emulated breakpoints (FET Debugger
option) . 212, 411
Use ranges based on (Memory Access Setup option) 173
Use software breakpoints (C-SPY FET Debugger option) 411
user application, definition of . 37
--use_emulated_breakpoints (C-SPY command line
option) . 397
--use_virtual_breakpoints (C-SPY command line option). 397

V
Value (Advanced Trigger breakpoints option) 135

UCSARM-4:3

436
C-SPY® Debugging Guide
for MSP430

Value (Fill option) . 155
__var (C-SPY macro keyword). 318
variables

effects of optimizations . 84
in C-SPY expressions . 82
information, limitation on . 84

variance (interrupt property), definition of 269
Variance % (Edit Interrupt option) 278
--vccvoltage (C-SPY command line option) 397
Verify download (debugger option) 409
--verify_all (C-SPY command line option) 397
version number, of this guide . 2
Viewing Range dialog box . 222
Viewing Range (Sampled Graphs window context menu) 214
Viewing Range (Timeline window context menu) 221
virtual breakpoints, configuring . 411
Visual State, C-SPY plugin module for 39

W
waiting for device, power consumption during 244
__wallTime_ms (C-SPY system macro) 363
warnings icon, in this guide . 28
Watch window . 91

using . 81
web sites, recommended . 27
while (macro statement) . 321
windows, specific to C-SPY . 53
With I/O emulation modules (linker option), using. 74
__writeFile (C-SPY system macro) 363
__writeFileByte (C-SPY system macro) 364
__writeMemoryByte (C-SPY system macro) 364
__writeMemory8 (C-SPY system macro) 364
__writeMemory16 (C-SPY system macro) 365
__writeMemory32 (C-SPY system macro) 365

Z
zone

defined in device description file 143
in C-SPY . 142
part of an absolute address . 137

Zone (Edit SFR option). 172
Zoom (Sampled Graphs window context menu) 213
Zoom (Timeline window context menu). 217, 220, 288

Symbols
__abortLaunch (C-SPY system macro). 328
__cancelAllInterrupts (C-SPY system macro) 328
__cancelInterrupt (C-SPY system macro). 329
__clearBreak (C-SPY system macro) 329
__closeFile (C-SPY system macro) 329
__delay (C-SPY system macro) . 330
__disableInterrupts (C-SPY system macro) 330
__driverType (C-SPY system macro) 330
__enableInterrupts (C-SPY system macro) 331
__evaluate (C-SPY system macro) 331
__fillMemory8 (C-SPY system macro) 332
__fillMemory16 (C-SPY system macro). 333
__fillMemory32 (C-SPY system macro). 334
__fmessage (C-SPY macro keyword) 321
__getSelectedCore (C-SPY system macro). 335
__isBatchMode (C-SPY system macro) 335
__loadImage (C-SPY system macro) 335
__memoryRestore (C-SPY system macro) 336
__memorySave (C-SPY system macro) 337
__message (C-SPY macro keyword) 321
__messageBoxYesCancel (C-SPY system macro) 338
__messageBoxYesNo (C-SPY system macro) 339
__openFile (C-SPY system macro). 339
__orderInterrupt (C-SPY system macro). 340
__param (C-SPY macro keyword) 319
__popSimulatorInterruptExecutingStack (C-SPY
system macro). 341

UCSARM-4:3

Index

437

__readFile (C-SPY system macro) 342
__readFileByte (C-SPY system macro) 343
__readMemoryByte (C-SPY system macro) 343
__readMemory8 (C-SPY system macro) 343
__readMemory16 (C-SPY system macro) 344
__readMemory32 (C-SPY system macro) 344
__registerMacroFile (C-SPY system macro) 345
__resetFile (C-SPY system macro) 345
__selectCore (C-SPY system macro) 345
__setAdvancedTriggerBreak (C-SPY system macro) 346
__setCodeBreak (C-SPY system macro). 347
__setConditionalBreak (C-SPY system macro) 348
__setDataBreak (C-SPY system macro) 349
__setDataLogBreak (C-SPY system macro) 351
__setLogBreak (C-SPY system macro) 352
__setRangeBreak (C-SPY system macro). 353
__setSimBreak (C-SPY system macro) 354
__setTraceStartBreak (C-SPY system macro) 355
__setTraceStopBreak (C-SPY system macro). 356
__smessage (C-SPY macro keyword). 321
__sourcePosition (C-SPY system macro) 357
__strFind (C-SPY system macro) 357
__subString (C-SPY system macro) 358
__system1 (C-SPY system macro) 358
__system2 (C-SPY system macro) 359
__system3 (C-SPY system macro) 360
__targetDebuggerVersion (C-SPY system macro) 360
__toLower (C-SPY system macro) 361
__toString (C-SPY system macro) 361
__toUpper (C-SPY system macro) 362
__unloadImage (C-SPY system macro) 362
__var (C-SPY macro keyword). 318
__wallTime_ms (C-SPY system macro) 363
__writeFile (C-SPY system macro) 363
__writeFileByte (C-SPY system macro) 364
__writeMemoryByte (C-SPY system macro) 364
__writeMemory8 (C-SPY system macro) 364
__writeMemory16 (C-SPY system macro) 365
__writeMemory32 (C-SPY system macro) 365

-d (C-SPY command line option) 382
-f (cspybat option). 387
-p (C-SPY command line option) 392
--allow_access_to_BSL (C-SPY command line option) . . 378
--allow_locked_flash_access (C-SPY command line
option) . 378
--application_args (C-SPY command line option) 379
--attach_to_running_target (C-SPY command line option)379
--backend (C-SPY command line option) 380
--code_coverage_file (C-SPY command line option) 381
--connection (C-SPY command line option) 380
--cycles (C-SPY command line option) 381
--debug_file (cspybat option) . 382
--derivative (C-SPY command line option). 383
--disable_interrupts (C-SPY command line option) 383
--disable_memory_cache (C-SPY command line option) . 383
--download_only (C-SPY command line option) 383
--eem (C-SPY command line option) 384
--erase_exclude (C-SPY command line option) 384
--erase_exclude_all (C-SPY command line option) 385
--erase_ip_protected (C-SPY command line option). 385
--erase_main (C-SPY command line option) 385
--erase_main_and_info (C-SPY command line option) . . 386
--erase_retain_file (C-SPY command line option) 386
--erase_retain_target (C-SPY command line option) 386
--function_profiling (cspybat option) 387
--hardware_multiplier (C-SPY command line option) . . . 388
--hwmult_type (C-SPY command line option) 388
--jtag_speed (C-SPY command line option) 389
--leave_target_running (C-SPY command line option). . . 390
--lpt1 (C-SPY command line option) 390
--lpt2 (C-SPY command line option) 390
--lpt3 (C-SPY command line option) 390
--macro (C-SPY command line option) 390
--macro_param (C-SPY command line option). 391
--mapu (C-SPY command line option) 391
--mspdlogfile (C-SPY command line option) 392
--odd_word_check (C-SPY command line option) 392
--plugin (C-SPY command line option) 393
--port (C-SPY command line option) 393

UCSARM-4:3

438
C-SPY® Debugging Guide
for MSP430

--protocol (C-SPY command line option) 394
--restore_fram_memory (C-SPY command line option) . . 394
--retain_fram_memory (C-SPY command line option) . . . 394
--settlingtime (C-SPY command line option) 396
--set_exit_breakpoint (C-SPY command line option) 395
--set_getchar_breakpoint (C-SPY command line option) . 395
--set_putchar_breakpoint (C-SPY command line option) . 395
--silent (C-SPY command line option) 396
--timeout (C-SPY command line option) 396
--use_emulated_breakpoints (C-SPY command line
option) . 397
--use_virtual_breakpoints (C-SPY command line option). 397
--vccvoltage (C-SPY command line option) 397
--verify_all (C-SPY command line option) 397

Numerics
1x Units (Symbolic Memory window context menu) 158
8x Units (Memory window context menu) 151

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	Additional general C-SPY debugger features

	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	Supported features

	The C-SPY hardware debugger drivers
	Features
	Communication overview
	Recommended power-up sequence

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple debug images
	Editing in C-SPY windows

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts
	Using predefined C-SPY macros for device support

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box
	Device Information window

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	The step commands
	Step Into
	Step Over
	Next Statement
	Step Out
	Single-stepping and flash memory in the C-SPY FET Debugger

	Troubleshooting slow stepping speed
	Running the application
	Go
	Run to Cursor

	Highlighting
	Code coverage

	Viewing the call stack
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Log File dialog box
	Report Assert dialog box
	Autostep settings dialog box
	Cores window

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	C/C++ symbols
	Assembler symbols
	C-SPY macro functions
	C-SPY macro variables
	Using sizeof

	Limitations on variable information
	Effects of optimizations

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Live Watch window
	Statics window
	Quick Watch window
	Symbols window
	Resolve Symbol Ambiguity dialog box

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Code breakpoints
	Log breakpoints
	Trace Start/Stop Trigger breakpoints
	Data breakpoints
	Data Log breakpoints
	Immediate breakpoints
	Range breakpoints
	Advanced trigger breakpoints
	Conditional breakpoints

	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY FET debugger driver
	Hardware breakpoints
	Software breakpoints

	Breakpoint consumers
	User breakpoints
	C-SPY itself
	C-SPY plugin modules

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting breakpoints at C-SPY startup using a setup macro file

	Useful breakpoint hints
	Tracing incorrect function arguments
	Performing a task and continuing execution
	Using breakpoints when programming flash memory

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Log breakpoints dialog box
	Immediate breakpoints dialog box
	Range breakpoints dialog box
	Conditional breakpoints dialog box
	Advanced Trigger breakpoints dialog box
	Enter Location dialog box
	Breakpoint combiner dialog box
	Resolve Source Ambiguity dialog box

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Device-specific zones

	Memory configuration for the C-SPY simulator

	Monitoring memory and registers
	Defining application-specific register groups
	Monitoring stack usage

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Registers window
	Register User Groups Setup window
	SFR Setup window
	Edit SFR dialog box
	Memory Access Setup dialog box
	Edit Memory Access dialog box
	Memory Dump dialog box

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Trace features in C-SPY

	Requirements for using trace

	Collecting and using trace data
	Getting started with trace
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	Trace window
	Function Trace window
	Trace Start Trigger breakpoint dialog box
	Trace Stop Trigger breakpoint dialog box
	Trace Expressions window
	Find in Trace dialog box
	Find in Trace window

	The application timeline
	Introduction to analyzing your application’s timeline
	Briefly about analyzing the timeline
	Requirements for timeline support

	Analyzing your application’s timeline
	Displaying a graph in the Timeline window
	Navigating in the graphs
	Analyzing performance using the graph data
	Getting started using data logging
	Getting started using data sampling

	Reference information on application timeline
	Data Log window
	Data Log Summary window
	Data Sample window
	Data Sample Setup window
	Sampled Graphs window
	Timeline window—Call Stack graph
	Timeline window—Data Log graph
	Viewing Range dialog box

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Profiling sources
	Power sampling

	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level

	Reference information on the profiler
	Function Profiler window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Using code coverage
	Getting started using code coverage

	Reference information on code coverage
	Code Coverage window

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Measuring power consumption
	Power debugging using C-SPY

	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Displaying the power profile on a device without EnergyTrace++
	Detecting unexpected power usage during application execution
	Measuring low power currents
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Power Log window
	Timeline window—Power graph
	State Log Setup window
	State Log window
	State Log Summary window
	Timeline window—State Log graph

	Part 3. Advanced debugging
	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system
	Briefly about interrupt logging
	Requirements for interrupt logging

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced Interrupt window
	Interrupt Status window
	Interrupt Log window
	Interrupt Log Summary window
	Timeline window—Interrupt Log graph

	The advanced cycle counter
	Introduction to the advanced cycle counter
	Reasons for using the advanced cycle counter
	Briefly about the advanced cycle counter
	Requirements for using the advanced cycle counter

	Using the cycle counter applications
	Counting all CPU cycles
	Measuring the DMA load versus the CPU load
	Profiling a specific part of your application
	Measuring the Trigger hits
	Measuring the number of CPU cycles for a task

	Reference information on the advanced cycle counter
	Advanced Cycle Counter Control window
	Combinations of start, stop, and clear reactions

	State storage
	Introduction to state storage
	Reasons for using state storage
	Briefly about state storage
	Requirements

	Using state storage
	Setting up state storage
	Example

	Reference information on state storage
	State Storage Control window
	State Storage window

	The sequencer
	Introduction to the sequencer
	Reasons for using the sequencer
	Briefly about the sequencer
	Requirements for using the sequencer

	Using the sequencer
	Setting up the sequencer (simple setup)
	Setting up the sequencer (advanced setup)
	Using the sequencer to locate a problem

	Reference information on the sequencer
	Sequencer Control window

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language
	Example

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output
	Specifying display format of arguments

	Reference information on reserved setup macro function names
	execUserPreload
	execUserExecutionStarted
	execUserExecutionStopped
	execUserSetup
	execUserPreReset
	execUserReset
	execUserExit

	Reference information on C-SPY system macros
	_ _abortLaunch
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _enableInterrupts
	_ _evaluate
	_ _fillMemory8
	_ _fillMemory16
	_ _fillMemory32
	_ _getSelectedCore
	_ _isBatchMode
	_ _loadImage
	_ _memoryRestore
	_ _memorySave
	_ _messageBoxYesCancel
	_ _messageBoxYesNo
	_ _openFile
	_ _orderInterrupt
	_ _popSimulatorInterruptExecutingStack
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _registerMacroFile
	_ _resetFile
	_ _selectCore
	_ _setAdvancedTriggerBreak
	_ _setCodeBreak
	_ _setConditionalBreak
	_ _setDataBreak
	_ _setDataLogBreak
	_ _setLogBreak
	_ _setRangeBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _system1
	_ _system2
	_ _system3
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _wallTime_ms
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32

	Graphical environment for macros
	Macro Registration window
	Debugger Macros window
	Macro Quicklaunch window

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax
	Parameters

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY FET Debugger driver

	Reference information on C-SPY command line options
	--allow_access_to_BSL
	--allow_locked_flash_access
	--application_args
	--attach_to_running_target
	--backend
	--connection
	--core
	--code_coverage_file
	--cycles
	-d
	--debug_file
	--derivative
	--disable_interrupts
	--disable_memory_cache
	--downloadonly
	--eem
	--erase_exclude
	--erase_exclude_all
	--erase_ip_protected
	--erase_main
	--erase_main_and_info
	--erase_retain_file
	--erase_retain_target
	-f
	--function_profiling
	--hardware_multiplier
	--hwmult_type
	--jtag_speed
	--leave_target_running
	--lptx
	--macro
	--macro_param
	--mapu
	--mspdlogfile
	--odd_word_check
	-p
	--plugin
	--port
	--protocol
	--restore_fram_memory
	--retain_fram_memory
	--set_exit_breakpoint
	--set_getchar_breakpoint
	--set_putchar_breakpoint
	--settlingtime
	--silent
	--timeout
	--use_emulated_breakpoints
	--use_virtual_breakpoints
	--vccvoltage
	--verify_all

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on general debugger options
	Setup
	Images
	Extra Options
	Plugins

	Reference information on the C-SPY simulator
	Setup options for the simulator

	Reference information on C-SPY hardware debugger driver options
	Setup for FET Debugger
	Download
	Breakpoints

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu
	Emulator menu

	Reference information on the C-SPY simulator
	Simulated Frequency dialog box

	Reference information on the C-SPY FET Debugger driver
	General Clock Control dialog box
	Extended Clock Control dialog box

	Resolving problems
	The device port pins do not work
	Write failure during load
	No contact with the target hardware

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
	Symbols
	Numerics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

