
UIDE430-10

IDE Project Management
and Building Guide

for the Texas Instruments
MSP430 Microcontroller Family

AFE1_AFE2-1:1

2
IDE Project Management and Building Guide
for MSP430

COPYRIGHT NOTICE
© 2015–2021 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Texas Instruments is a registered trademark of Texas Instruments Corporation. MSP430
is a trademark of Texas Instruments Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Tenth edition: March 2021

Part number: UIDE430-10

This guide applies to version 7.x of IAR Embedded Workbench® for Texas
Instruments’s MSP430 microcontroller family.

Internal reference: M23, Mym8.5, INIT

AFE1_AFE2-1:1

3

Brief contents
Tables ... 13

Preface .. 15

Part 1. Project management and building 21

The development environment .. 23

Project management ... 87

Building projects ... 109

Editing ... 125

Part 2. Reference information ... 169

Product files .. 171

Menu reference ... 179

General options .. 197

Compiler options ... 209

Assembler options ... 227

Custom build options ... 235

Build actions options .. 237

Linker options .. 239

TI ULP Advisor™ Software options .. 255

Library builder options .. 257

Glossary ... 259

Index ... 275

AFE1_AFE2-1:1

4
IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

5

Contents
Tables ... 13

Preface .. 15

Who should read this guide ... 15

Required knowledge .. 15

How to use this guide ... 15

What this guide contains ... 16

Part 1. Project management and building .. 16

Part 2. Reference information .. 16

Other documentation ... 17

User and reference guides .. 17

The online help system .. 18

Web sites .. 18

Document conventions .. 18

Typographic conventions ... 19

Naming conventions .. 20

Part 1. Project management and building 21

The development environment .. 23

Introduction to the IAR Embedded Workbench IDE 23

Briefly about the IDE and the build toolchain 23

Tools for analyzing and checking your application 24

An extensible and modular environment ... 24

The layout of the windows on the screen ... 25

Using and customizing the IDE .. 26

Running the IDE ... 26

Working with example projects ... 27

Organizing windows on the screen .. 28

Specifying tool options .. 28

Adding a button to a toolbar .. 29

Removing a button from a toolbar ... 30

AFE1_AFE2-1:1

6
IDE Project Management and Building Guide
for MSP430

Showing/hiding toolbar buttons ... 31

Recognizing filename extensions ... 31

Getting started using external analyzers .. 32

Invoking external tools from the Tools menu 34

Adding command line commands to the Tools menu 35

Using an external editor ... 35

Reference information on the IDE .. 37

IAR Embedded Workbench IDE window ... 39

Customize dialog box ... 44

Button Appearance dialog box ... 46

Tool Output window .. 47

Common Fonts options .. 48

Key Bindings options ... 49

Language options ... 51

Editor options ... 52

Configure Auto Indent dialog box ... 55

External Editor options .. 56

Editor Setup Files options .. 58

Editor Colors and Fonts options ... 59

Messages options ... 60

Project options .. 61

External Analyzers options .. 63

External Analyzer dialog box .. 65

Source Code Control options (deprecated) .. 67

Debugger options ... 68

Stack options .. 70

Terminal I/O options .. 72

Configure Tools dialog box ... 74

Configure Viewers dialog box .. 76

Edit Viewer Extensions dialog box ... 77

Filename Extensions dialog box .. 78

Filename Extension Overrides dialog box ... 79

Edit Filename Extensions dialog box ... 80

Product Info dialog box .. 80

AFE1_AFE2-1:1

Contents

7

Argument variables ... 81

Configure Custom Argument Variables dialog box 83

Project management ... 87

Introduction to managing projects ... 87

Briefly about managing projects .. 87

How projects are organized .. 89

The IDE interacting with version control systems 92

Managing projects .. 92

Creating and managing a workspace and its projects 93

Viewing the workspace and its projects ... 94

Interacting with Subversion ... 95

Reference information on managing projects 96

Workspace window .. 97

Create New Project dialog box .. 102

Configurations for project dialog box .. 103

New Configuration dialog box ... 104

Add Project Connection dialog box ... 105

Version Control System menu for Subversion 105

Subversion states .. 106

Building projects ... 109

Introduction to building projects ... 109

Briefly about building a project ... 109

Extending the toolchain ... 109

Building a project .. 110

Setting project options using the Options dialog box 111

Building your project ... 114

Correcting errors found during build ... 115

Using pre- and post-build actions .. 115

Building multiple configurations in a batch 116

Building from the command line ... 116

Adding an external tool .. 118

Reference information on building ... 119

Options dialog box ... 119

AFE1_AFE2-1:1

8
IDE Project Management and Building Guide
for MSP430

Build window ... 120

Batch Build dialog box .. 122

Edit Batch Build dialog box ... 123

Editing ... 125

Introduction to the IAR Embedded Workbench editor 125

Briefly about the editor .. 125

Briefly about source browse information ... 126

Customizing the editor environment .. 126

Editing a file ... 126

Indenting text automatically .. 127

Matching brackets and parentheses .. 127

Splitting the editor window into panes .. 128

Dragging text .. 128

Code folding ... 128

Word completion .. 129

Code completion .. 129

Parameter hint .. 129

Using and adding code templates ... 130

Syntax coloring .. 131

Adding bookmarks ... 132

Using and customizing editor commands and shortcut keys 132

Displaying status information .. 132

Programming assistance ... 132

Navigating in the insertion point history .. 133

Navigating to a function ... 133

Finding a definition or declaration of a symbol 133

Finding references to a symbol .. 134

Finding function calls for a selected function 134

Switching between source and header files 134

Displaying source browse information .. 134

Text searching .. 134

Accessing online help for reference information 135

AFE1_AFE2-1:1

Contents

9

Reference information on the editor ... 136

Editor window .. 137

Find dialog box .. 146

Find in Files window .. 147

Replace dialog box ... 148

Find in Files dialog box ... 149

Replace in Files dialog box .. 151

Incremental Search dialog box ... 153

Declarations window .. 154

Ambiguous Definitions window .. 155

References window .. 156

Source Browser window .. 157

Source Browse Log window .. 160

Resolve File Ambiguity dialog box ... 162

Call Graph window .. 162

Template dialog box ... 163

Editor shortcut key summary ... 164

Part 2. Reference information ... 169

Product files .. 171

Installation directory structure ... 171

Root directory .. 171

The 430 directory ... 172

The common directory ... 173

The install-info directory ... 173

Project directory structure .. 173

Various settings files .. 174

Files for global settings .. 174

Files for local settings .. 175

AFE1_AFE2-1:1

10
IDE Project Management and Building Guide
for MSP430

File types ... 175

Menu reference ... 179

Menus ... 179

File menu .. 179

Edit menu ... 182

View menu ... 186

Project menu .. 189

Tools menu ... 193

Window menu .. 195

Help menu .. 196

General options .. 197

Description of general options .. 197

Target options ... 197

Output ... 200

Library Configuration .. 201

Library Options .. 203

Stack/Heap ... 204

MPU/IPE/FRWP .. 205

MISRA C .. 207

Compiler options ... 209

Description of compiler options .. 209

Multi-file Compilation ... 209

Language 1 ... 210

Language 2 ... 213

Code ... 214

Optimizations ... 216

Output ... 217

List ... 219

Preprocessor ... 220

Diagnostics ... 222

MISRA C .. 223

Extra Options ... 224

AFE1_AFE2-1:1

Contents

11

Edit Include Directories dialog box ... 224

Assembler options ... 227

Description of assembler options .. 227

Language .. 227

Output ... 228

List ... 229

Preprocessor ... 231

Diagnostics ... 232

Extra Options ... 233

Custom build options ... 235

Description of custom build options .. 235

Custom Tool Configuration ... 235

Build actions options .. 237

Description of build actions options ... 237

Build Actions Configuration .. 237

Linker options .. 239

Description of linker options ... 239

Config ... 240

Output ... 242

Extra Output ... 244

Stack Usage .. 245

List ... 246

Log ... 248

#define .. 249

Diagnostics ... 250

Checksum ... 252

Extra Options ... 254

Edit Control Files dialog box ... 254

TI ULP Advisor™ Software options .. 255

Description of TI ULP Advisor options 255

TI ULP Advisor ... 256

AFE1_AFE2-1:1

12
IDE Project Management and Building Guide
for MSP430

Library builder options .. 257

Description of library builder options .. 257

Output ... 258

Glossary ... 259

Index ... 275

AFE1_AFE2-1:1

13

Tables
1: Typographic conventions used in this guide ... 19

2: Naming conventions used in this guide .. 20

3: Argument variables ... 81

4: iarbuild.exe command line options ... 117

5: Editor shortcut keys for insertion point navigation ... 164

6: Editor shortcut keys for selecting text ... 165

7: Editor shortcut keys for scrolling .. 165

8: Miscellaneous editor shortcut keys ... 165

9: Additional Scintilla shortcut keys ... 166

10: The 430 directory ... 172

11: The common directory .. 173

12: File types ... 175

AFE1_AFE2-1:1

14
IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

15

Preface
● Who should read this guide

● How to use this guide

● What this guide contains

● Other documentation

● Document conventions

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features and tools available in the IDE.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the MSP430 microcontroller (refer to the
chip manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 17.

How to use this guide
Each chapter in this guide covers a specific topic area. In many chapters, information is
typically divided into different sections based on information types:

● Concepts, which describes the topic and gives overviews of features related to the
topic area. Any requirements or restrictions are also listed. Read this section to learn
about the topic area.

● Tasks, which lists useful tasks related to the topic area. For many of the tasks, you
can also find step-by-step descriptions. Read this section for information about
required tasks as well as for information about how to perform certain tasks.

AFE1_AFE2-1:1

16

What this guide contains

IDE Project Management and Building Guide
for MSP430

● Reference information, which gives reference information related to the topic area.
Read this section for information about certain GUI components. You can easily
access this type of information for a certain component in the IDE by pressing F1.

If you are new to using IAR Embedded Workbench, the tutorials, which you can find in
the IAR Information Center, will help you get started using IAR Embedded Workbench.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user documentation.

What this guide contains
This is a brief outline and summary of the chapters in this guide.

PART 1. PROJECT MANAGEMENT AND BUILDING

This section describes the process of editing and building your application:

● The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

● Project management describes how you can create workspaces with multiple
projects, build configurations, groups, source files, and options that help you handle
different versions of your applications.

● Building projects discusses the process of building your application.

● Editing contains detailed descriptions of the IAR Embedded Workbench editor, how
to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

PART 2. REFERENCE INFORMATION

● Product files describes the directory structure and the types of files it contains.

● Menu reference contains detailed reference information about menus and menu
commands.

● General options specifies the target, output, and library options.

● Compiler options specifies compiler options for language, optimizations, code,
output, list file, preprocessor, and diagnostics.

● Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

● Custom build options describes the options available for custom tool configuration.

● Build actions options describes the options available for pre-build and post-build
actions.

AFE1_AFE2-1:1

Preface

17

● Linker options describes the options for setting up for linking.

● TI ULP Advisor™ Software options describes the options for configuring the TI
ULP Advisor static code analyzer from Texas Instruments.

● Library builder options describes the options for building a library.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
Systems products are available in the Installation and Licensing Quick Reference
Guide and the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide.

● Using the IAR C-SPY® Debugger, is available in the C-SPY® Debugging Guide
for MSP430.

● Programming for the IAR C/C++ Compiler for MSP430, is available in the IAR
C/C++ Compiler User Guide for MSP430.

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, is available in the IAR Linker and Library Tools Reference Guide.

● Programming for the IAR Assembler for MSP430, is available in the IAR Assembler
Reference Guide for MSP430.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Developing safety-critical applications using the MISRA C guidelines, is available
in the IAR Embedded Workbench® MISRA C:2004 Reference Guide or the IAR
Embedded Workbench® MISRA C:1998 Reference Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for MSP430, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

AFE1_AFE2-1:1

18

Document conventions

IDE Project Management and Building Guide
for MSP430

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

● IDE project management and building

● Debugging using the IAR C-SPY® Debugger

● The IAR C/C++ Compiler

● The IAR Assembler

● Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
F1. Note that if you select a function name in the editor window and press F1 while
using the CLIB C standard library, you will get reference information for the DLIB
C standard library.

● C-STAT

● MISRA C

WEB SITES

Recommended web sites:

● The Texas Instruments web site, www.ti.com, that contains information and news
about the MSP430 microcontrollers.

● The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example 430\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\430\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

AFE1_AFE2-1:1

Preface

19

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a stack usage control directive, where [and] are
not part of the actual directive, but any [,], {, or } are part of the
directive syntax.

{option} A mandatory part of a stack usage control directive, where { and } are
not part of the actual directive, but any [,], {, or } are part of the
directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

[a|b|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

20

Document conventions

IDE Project Management and Building Guide
for MSP430

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

Brand name Generic term

IAR Embedded Workbench® for MSP430 IAR Embedded Workbench®

IAR Embedded Workbench® IDE for MSP430 the IDE

IAR C-SPY® Debugger for MSP430 C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for MSP430 the compiler

IAR Assembler™ for MSP430 the assembler

IAR XLINK Linker™ XLINK, the linker

IAR XAR Library Builder™ the library builder

IAR XLIB Librarian™ the librarian

IAR CLIB Runtime Environment™ the CLIB runtime environment

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

21

Part 1. Project
management and building
This part contains these chapters:

● The development environment

● Project management

● Building projects

● Editing

22

AFE1_AFE2-1:1

23

The development
environment
● Introduction to the IAR Embedded Workbench IDE

● Using and customizing the IDE

● Reference information on the IDE

Introduction to the IAR Embedded Workbench IDE
These topics are covered:

● Briefly about the IDE and the build toolchain

● Tools for analyzing and checking your application

● An extensible and modular environment

● The layout of the windows on the screen

BRIEFLY ABOUT THE IDE AND THE BUILD TOOLCHAIN

The IDE is the environment where all tools needed to build your application—the build
toolchain—are integrated: a C/C++ compiler, C/C++ libraries, an assembler, a linker,
library tools, an editor, a project manager with Make utility, and the IAR C-SPY®
Debugger. The tools used specifically for building your source code are referred to as
the build tools.

The toolchain that comes with your product package supports a specific microcontroller.
However, the IDE can simultaneously contain multiple toolchains for various
microcontrollers. This means that if you have IAR Embedded Workbench installed for
several microcontrollers, you can choose which microcontroller to develop for.

Note: The compiler, assembler, and linker and library tools can also be run from a
command line environment, if you want to use them as external tools in an already
established project environment.

AFE1_AFE2-1:1

24

Introduction to the IAR Embedded Workbench IDE

IDE Project Management and Building Guide
for MSP430

TOOLS FOR ANALYZING AND CHECKING YOUR
APPLICATION

IAR Embedded Workbench comes with various types of support for analyzing and
finding errors in your application, such as:

● Compiler and linker errors, warnings, and remarks

All diagnostic messages are issued as complete, self-explanatory messages. Errors
reveal syntax or semantic errors, warnings indicate potential problems, and remarks
(default off) indicate deviations from the standard. Double-click a message and the
corresponding source code construction is highlighted in the editor window. For
more information, see the IAR C/C++ Compiler User Guide for MSP430.

● Stack usage analysis during linking

Under the right circumstances, the linker can accurately calculate the maximum
stack usage for each call tree, such as cstartup, interrupt functions, RTOS tasks,
etc. For more information, see the IAR C/C++ Compiler User Guide for MSP430.

● C-STAT for static analysis

C-STAT is a static analysis tool that tries to find deviations from specific sets of rules,
where each rule specifies an unsafe source construct. The rules come from various
institutes, like MISRA (MISRA C:2004, MISRA C++:2008, and MISRA C:2012),
CWE, and CERT. For information about how to use C-STAT and the rules, see the
C-STAT® Static Analysis Guide.

● MISRA C:1998 and 2004

In addition to the MISRA checks in C-STAT, the IDE provides compiler checks for
MISRA C:1998 and 2004. For more information, see the IAR Embedded
Workbench® MISRA C:2004 Reference Guide or the IAR Embedded Workbench®
MISRA C:1998 Reference Guide.

● TI ULP AdvisorTM

TI ULP Advisor is a static code analyzer from Texas Instruments that flags source
code and helps you improve the power consumption properties of your application.

For more information, see TI ULP Advisor, page 256.

● C-SPY debugging features such as, Profiling, Code Coverage, Trace, and Power
debugging. For more information, see the C-SPY® Debugging Guide for MSP430.

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IDE provides all the features required for your project, you can also
integrate other tools. For example, you can:

● Use the Custom Build mechanism to add other tools to the toolchain, see Extending
the toolchain, page 109.

AFE1_AFE2-1:1

The development environment

25

● Add IAR Visual State to the toolchain, which means that you can add state machine
diagrams directly to your project in the IDE.

● Use the Subversion version control system to keep track of different versions of
your source code. The IDE can attach to files in a Subversion working copy.

● Add an external analyzer, for example a lint tool, of your choice to be used on whole
projects, groups of files, or an individual file of your project. Typically, you might
want to perform a static code analysis on your source code, using the same settings
and set of source code files as when you compile. See Getting started using external
analyzers, page 32.

● Add external tools to the Tools menu, for convenient access from within the IDE.
For this reason, the menu might look different depending on which tools you have
preconfigured to appear as menu commands.

● Configure custom argument variables, which typically can be useful if you install a
third-party product and want to specify its include directory. Custom argument
variables can also be used for simplifying references to files that you want to be part
of your project.

THE LAYOUT OF THE WINDOWS ON THE SCREEN

In the IDE, each window that you open has a default location, which depends on other
currently open windows. You can position the windows and arrange a layout according
to your preferences. Each window can be either docked or floating.

You can dock each window at specific places, and organize them in tab groups. If you
rearrange the size of one docked window, the sizes of any other docked windows are
adjusted accordingly. You can also make a window floating, which means it is always
on top of other windows. The location and size of a floating window does not affect
other currently open windows. You can move a floating window to any place on your
screen, including outside of the IAR Embedded Workbench IDE main window.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Introduction to the IAR
Embedded Workbench editor, page 125.

AFE1_AFE2-1:1

26

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

Using and customizing the IDE
These tasks are covered:

● Running the IDE

● Working with example projects

● Organizing windows on the screen

● Specifying tool options

● Adding a button to a toolbar

● Removing a button from a toolbar

● Showing/hiding toolbar buttons

● Recognizing filename extensions

● Getting started using external analyzers

● Invoking external tools from the Tools menu

● Adding command line commands to the Tools menu

● Using an external editor

See also Extending the toolchain, page 109.

For more information about customizations related to C-SPY, see the C-SPY®
Debugging Guide for MSP430.

RUNNING THE IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR
Systems>IAR EW for MSP430>IAR EW for MSP430.

The file IarIdePm.exe is located in the common\bin directory under your IAR
Systems installation, in case you want to start the program from the command line or
from within Windows Explorer.

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IDE starts.

If you have several versions of IAR Embedded Workbench installed, the workspace file
is opened by the most recently used version of your IAR Embedded Workbench that
uses that file type, regardless of which version the project file was created in.

AFE1_AFE2-1:1

The development environment

27

WORKING WITH EXAMPLE PROJECTS

Example applications are provided with IAR Embedded Workbench. You can use these
examples to get started using the development tools from IAR Systems. You can also
use the examples as a starting point for your application project.

You can find the examples in the 430\examples directory. The examples are ready to
be used as is. They are supplied with ready-made workspace files, together with source
code files and all other related files.

To run an example project:

1 Choose Help>Information Center and click Example projects.

2 Browse to the example that matches the specific evaluation board or starter kit you are
using.

Click the Open Project button.

3 In the dialog box that appears, choose a destination folder for your project.

4 The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set as Active from the context menu.

5 To view the project settings, select the project and choose Project>Options. Verify the
settings for General Options>Target> and Debugger>Setup>Driver. As for other
settings, the project is set up to suit the target system you selected.

AFE1_AFE2-1:1

28

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see the C-SPY® Debugging Guide for MSP430.

Click OK to close the project Options dialog box.

6 To compile and link the application, choose Project>Make or click the Make button.

7 To start C-SPY, choose Project>Download and Debug or click the Download and
Debug button.

8 Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

ORGANIZING WINDOWS ON THE SCREEN

Use these methods to organize the windows on your screen:

● To disconnect a tabbed window from a tab group and place it as a separate window,
drag the tab away from the tab group.

● To make a window or tab group floating, double-click on the window’s title bar.

● When dragging a window to move it, press Ctrl to prevent it from docking.

To place a window in the same tab group as another open window, drag the window you
want to relocate and drop it on the other window. Drop it on one of the arrow buttons of
the organizer control, to control how to dock it.

See also The layout of the windows on the screen, page 25.

SPECIFYING TOOL OPTIONS

You can find commands for customizing the IDE on the Tools menu.

1 To display the IDE Options dialog box, choose Tools>Options to get access to a wide
variety of options:

AFE1_AFE2-1:1

The development environment

29

2 To access the options to the right in the dialog box, select a category to the left.

For more information about various options for customizing the IDE, see Tools menu,
page 193.

ADDING A BUTTON TO A TOOLBAR

The buttons on the IDE toolbars provide shortcuts for commands on the IDE menus.

1 To add a new button to a toolbar in the main IDE window, click the Toolbar Options
button and choose Add or Remove Buttons>Customize.

2 The Customize dialog box opens on the Commands page.

AFE1_AFE2-1:1

30

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

In the Categories list, select the menu on which the command you want to add to the
toolbar is located.

3 Drag a command from the Commands list to one of the toolbars where you want to
insert the command as a button.

You can rearrange the existing buttons by dragging them to new positions.

Note: If you instead of adding a button want to show a button that has been hidden
temporarily, see Showing/hiding toolbar buttons, page 31.

REMOVING A BUTTON FROM A TOOLBAR

1 To remove a button from any of the toolbars in the main window of the IDE, click the
Toolbar Options button and choose Add or Remove Buttons>Customize. Ignore the
Customize dialog box that is opened.

AFE1_AFE2-1:1

The development environment

31

2 Right-click on the toolbar button that you want to remove and choose Delete from the
context menu.

Note: If you instead of removing a button want to hide it temporarily, see
Showing/hiding toolbar buttons, page 31.

SHOWING/HIDING TOOLBAR BUTTONS

As an alternative to removing a button from an IDE toolbar, you can toggle its visibility
on/off.

1 To hide a button temporarily from any of the toolbars in the main window of the IDE,
click the Toolbar Options button and choose Add or Remove Buttons>toolbar.

2 Select or deselect the command button you want to show/hide.

Note: If you want to delete a button entirely from the toolbar, see Removing a button
from a toolbar, page 30.

RECOGNIZING FILENAME EXTENSIONS

In the IDE, you can increase the number of recognized filename extensions. By default,
each tool in the build toolchain accepts a set of standard filename extensions. Also, if
you have source files with a different filename extension, you can modify the set of
accepted filename extensions.

To get access to the necessary commands, choose Tools>Filename Extensions.

See Filename Extensions dialog box, page 78.

To override the default filename extension from the command line, include an explicit
extension when you specify a filename.

AFE1_AFE2-1:1

32

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

GETTING STARTED USING EXTERNAL ANALYZERS

1 To add an external analyzer to the Project menu, choose Tools>Options to open the
IDE Options dialog box and select the Project>External Analyzers page.

2 To configure the invocation, click Add to open the External Analyzer dialog box.

Specify the details required for the analyzer you want to be able to invoke.

Use Output matching patterns to specify (or choose from a list) three regular
expressions for identifying warning and error messages and to find references to source
file locations.

Click OK when you have finished.

For more information about this dialog box, see External Analyzer dialog box, page 65.

3 In the IDE Options dialog box, click OK.

AFE1_AFE2-1:1

The development environment

33

4 Choose Project>Analyze Project and select the analyzer that you want to run,
alternatively choose Analyze File(s) to run the analyzer on individual files.

Each of the regular expressions that you specified will be applied on each line of output
from the external analyzer. Output from the analyzer is listed in the Build Log window.
You can double-click any line that matches the Location regular expression you
specified in the External Analyzer dialog box to jump to the corresponding location in
the editor window.

Note: If you want to stop the analysis before it is finished, click the Stop Build button.

AFE1_AFE2-1:1

34

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

INVOKING EXTERNAL TOOLS FROM THE TOOLS MENU

1 To add an external tool to the menu, for example Notepad, choose Tools>Configure
Tools to open the Configure Tools dialog box.

2 Fill in the text fields according to the screenshot. For more information about this
dialog box, see Configure Tools dialog box, page 74.

3 After you have entered the appropriate information and clicked OK, the menu
command you have specified is displayed on the Tools menu.

Note: You cannot use the Configure Tools dialog box to extend the toolchain in the
IDE. If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.

AFE1_AFE2-1:1

The development environment

35

ADDING COMMAND LINE COMMANDS TO THE TOOLS MENU

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

To add a command, for example Backup, to the Tools menu to make a copy of the entire
project directory to a network drive:

1 Choose Tools>Configure Tools to open the Configure Tools dialog box.

2 Type or browse to the cmd.exe command shell in the Command text box.

3 Type the command line command or batch file name in the Argument text box, for
example:

/C copy c:\project*.* F:

Alternatively, use an argument variable to allow relocatable paths:

/C copy $PROJ_DIR$*.* F:

The argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

USING AN EXTERNAL EDITOR

The External Editor options—available by choosing
Tools>Options>Editor>External Editor—let you specify an external editor of your
choice.

Note: While you are debugging using C-SPY, C-SPY will not use the external editor for
displaying the current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:

1 Select the option Use External Editor.

2 An external editor can be called in one of two ways, using the Type drop-down menu:

● Command Line calls the external editor by passing command line parameters.

● DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

3 If you use the command line, specify the command to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\Windows\NOTEPAD.EXE

AFE1_AFE2-1:1

36

Using and customizing the IDE

IDE Project Management and Building Guide
for MSP430

To send an argument to the external editor, type the argument in the Arguments field.
For example, type $FILE_PATH$ to start the editor with the active file (in editor, project,
or messages windows).

Note: Options for Terminal I/O are only available when the C-SPY debugger is running.

4 If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

The command strings should be entered as:

DDE-Topic CommandString1
DDE-Topic CommandString2

AFE1_AFE2-1:1

The development environment

37

as in this example, which applies to Codewright®:

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the message window.

5 Click OK.

When you double-click a filename in the Workspace window, the file is opened by the
external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables, page 81.

Reference information on the IDE
Reference information about:

● IAR Embedded Workbench IDE window, page 39

● Customize dialog box, page 44

● Button Appearance dialog box, page 46

● Tool Output window, page 47

● Common Fonts options, page 48

● Key Bindings options, page 49

● Language options, page 51

● Editor options, page 52

AFE1_AFE2-1:1

38

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

● Configure Auto Indent dialog box, page 55

● External Editor options, page 56

● Editor Setup Files options, page 58

● Editor Colors and Fonts options, page 59

● Messages options, page 60

● Project options, page 61

● External Analyzers options, page 63

● External Analyzer dialog box, page 65

● Source Code Control options (deprecated), page 67

● Debugger options, page 68

● Stack options, page 70

● Terminal I/O options, page 72

● Configure Tools dialog box, page 74

● Configure Viewers dialog box, page 76

● Edit Viewer Extensions dialog box, page 77

● Filename Extensions dialog box, page 78

● Filename Extension Overrides dialog box, page 79

● Edit Filename Extensions dialog box, page 80

● Product Info dialog box, page 80

● Argument variables, page 81

● Configure Custom Argument Variables dialog box, page 83

AFE1_AFE2-1:1

The development environment

39

IAR Embedded Workbench IDE window
The main window of the IDE is displayed when you launch the IDE.

The figure shows the window and its default layout.

Menu bar

The menu bar contains:

File

Commands for opening source and project files, saving and printing, and exiting
from the IDE.

Edit

Commands for editing and searching in editor windows and for enabling and
disabling breakpoints in C-SPY.

View

Commands for opening windows and controlling which toolbars to display.

AFE1_AFE2-1:1

40

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Project

Commands for adding files to a project, creating groups, and running the IAR
Systems tools on the current project.

Simulator

Commands specific for the C-SPY simulator. This menu is only available when
you have selected the simulator driver in the Options dialog box.

C-SPY hardware driver
Commands specific for the C-SPY hardware debugger driver you are using, in
other words, the C-SPY driver that you have selected in the Options dialog box.
For some IAR Embedded Workbench products, the name of the menu reflects
the name of the C-SPY driver you are using and for others, the name of the menu
is Emulator.

Tools

User-configurable menu to which you can add tools for use with the IDE.

Window

Commands for manipulating the IDE windows and changing their arrangement
on the screen.

Help

Commands that provide help about the IDE.

For more information about each menu, see Menus, page 179.

Toolbar

The buttons on the IDE toolbar provide shortcuts for the most useful commands on the
IDE menus, and a text box for typing a string to do a quick search. For information about
how to add and remove buttons on the toolbars, see Using and customizing the IDE, page
26.

For a description of any button, point to it with the mouse pointer. When a command is
not available, the corresponding toolbar button is dimmed, and you will not be able to
click it.

The toolbars are dockable; drag and drop to rearrange them.

AFE1_AFE2-1:1

The development environment

41

This figure shows the menu commands corresponding to each of the toolbar buttons:

Note: When you start C-SPY, the Download and Debug button will change to a Make
and Restart Debugger button , and the Debug without Downloading will change
to a Restart Debugger button .

Toolbar Options

Click the Toolbars Options button to open the Toolbars Options menu.

Context menu

This context menu is available by right-clicking a toolbar button when the Customize
dialog box is open. For information about how to open this dialog box, see Customize
dialog box, page 44.

These commands are available:

Reset to Default

Hides the button icon and displays the name of the button instead.

Copy Button Image

Copies the button icon and stores the image on the clipboard.

Delete

Removes the button from the toolbar.

AFE1_AFE2-1:1

42

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Button Appearance

Displays the Button Appearance dialog box, see Button Appearance dialog
box, page 46.

Image

Displays the button only as an icon.

Text

Displays the button only as text.

Image and Text

Displays the button both as an icon and as text.

Start Group

Inserts a delimiter to the left of the button.

Toolbars Options menu

This menu and its submenus are available by clicking the Toolbars Options button on
the far right end of a toolbar:

These commands are available:

Add or Remove Buttons

Opens a submenu.

toolbar

Opens a submenu that lists all command buttons on the toolbar. Select or
deselect a checkbox to show/hide the button on the toolbar. Choose Reset
Toolbar to restore the toolbar to its default appearance.

AFE1_AFE2-1:1

The development environment

43

Customize

Displays the Customize dialog box, see Customize dialog box, page 44.

Status bar

The status bar at the bottom of the window can be enabled from the View menu.

The status bar displays:

● Source browser progress information

● The number of errors and warnings generated during a build

● The position of the insertion point in the editor window. When you edit, the status
bar shows the current line and column number containing the insertion point.

● The character encoding

● The state of the modifier keys Caps Lock, Num Lock, and Overwrite.

● If your product package is available in more languages than English, a flag in the
corner shows the language version you are using. Click the flag to change the
language. The change will take force the next time you launch the IDE.

AFE1_AFE2-1:1

44

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Customize dialog box
The Customize dialog box is available by clicking the Toolbars Options button on the
far right end of the a toolbar in the main IDE window and choosing Add or Remove
Buttons>Customize.

These are the options on the Commands page of the Customize dialog box:

Categories

Lists the menus in the IDE. Select a menu name to make the commands on that menu
available for adding as buttons to a toolbar. Select New Menu to add a custom
drop-down menu to a toolbar.

Commands

Lists menu commands that can be dragged to one of the toolbars and inserted as buttons.
If New Menu is the selected Category, the command New Menu can be dragged to a

AFE1_AFE2-1:1

The development environment

45

toolbar to add a custom drop-down menu to the toolbar. Commands from the
Commands list can then be dragged to populate the custom menu.

These are the options on the Options page of the Customize dialog box:

Show Screen Tips on toolbars

Enables tooltips for the buttons on the toolbars. The tooltips contain the display names
of the buttons.

Show shortcut keys in Screen Tips

Includes the keyboard shortcut in the tooltip text for the buttons on the toolbar.

Large Icons

Increases the size of the buttons on the toolbars.

AFE1_AFE2-1:1

46

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

These are the options on the Toolbars page of the Customize dialog box:

Toolbars

Select/deselect a toolbar to show/hide it in the main IDE window. The menu bar cannot
be hidden.

Reset

Restores the selected toolbar to its default appearance.

Reset All

This button is disabled.

Show text labels

Displays the names of the buttons on the selected toolbar.

Button Appearance dialog box
The Button Appearance dialog box is available by right-clicking a toolbar button when
the Customize dialog box is open and choosing Button Appearance from the context
menu.

Use this dialog box to change the display name of a toolbar button.

Image only

This option has no effect.

Text only

Enables the text box Button text.

AFE1_AFE2-1:1

The development environment

47

Image and text

Enables the text box Button text.

Use Default Image

This option is disabled.

Select User-defined Image

This option is disabled.

New

This button is disabled.

Edit

This button is disabled.

Button text

The display name of the toolbar button. Edit the text to change the name.

Tool Output window
The Tool Output window is available by choosing View>Messages>Tool Output.

This window displays any messages output by user-defined tools in the Tools menu,
provided that you have selected the Redirect to Output Window option in the
Configure Tools dialog box, see Configure Tools dialog box, page 74. When opened,
this window is, by default, grouped together with the other message windows.

Context menu

This context menu is available:

AFE1_AFE2-1:1

48

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Common Fonts options
The Common Fonts options are available by choosing Tools>Options.

Use this page to configure the fonts used for all project windows except the editor
windows.

For information about how to change the font in the editor windows, see Editor Colors
and Fonts options, page 59.

Fixed Width Font

Selects which font to use in the Disassembly, Register, and Memory windows.

Proportional Width Font

Selects which font to use in all windows except the Disassembly, Register, Memory,
and editor windows.

AFE1_AFE2-1:1

The development environment

49

Key Bindings options
The Key Bindings options are available by choosing Tools>Options.

Use this page to customize the shortcut keys used for the IDE menu commands.

Menu

Selects the menu to be edited. Any currently defined shortcut keys for the selected menu
are listed below the Menu drop-down list.

List of commands

Selects the menu command you want to configure your own shortcut keys for, from this
list of all commands available on the selected menu.

Press shortcut key

Type the key combination you want to use as shortcut key for the selected command.
You cannot set or add a shortcut if it is already used by another command.

Primary

Choose to:

Set

Saves the key combination in the Press shortcut key field as a shortcut for the
selected command in the list.

AFE1_AFE2-1:1

50

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Clear

Removes the listed primary key combination as a shortcut for the selected
command in the list.

The new shortcut will be displayed next to the command on the menu.

Alias

Choose to:

Add

Saves the key combination in the Press shortcut key field as an alias—a hidden
shortcut—for the selected command in the list.

Clear

Removes the listed alias key combination as a shortcut for the selected
command in the list.

The new shortcut will be not displayed next to the command on the menu.

Reset All

Reverts the shortcuts for all commands to the factory settings.

AFE1_AFE2-1:1

The development environment

51

Language options
The Language options are available by choosing Tools>Options.

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

Language

Selects the language to be used. The available languages depend on your product
package, English (United States) and Japanese (Japan).

Note: If you have installed IAR Embedded Workbench for several different toolchains
in the same directory, the IDE might be in mixed languages if the toolchains are
available in different languages.

AFE1_AFE2-1:1

52

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Editor options
The Editor options are available by choosing Tools>Options.

Use this page to configure the editor. For more information about the editor, see Editing,
page 125.

Tab size

Specify the width of a tab character, in terms of character spaces.

Indent size

Specify the number of spaces to be used when tabulating with an indentation.

Tab Key Function

Controls what happens when you press the Tab key. Choose between:

Insert tab

Inserts a tab character when the Tab key is pressed.

Indent with spaces

Inserts an indentation (space characters) when the Tab key is pressed.

AFE1_AFE2-1:1

The development environment

53

Show right margin

Displays the area of the editor window outside the right margin as a light gray field. If
this option is selected, you can set the width of the text area between the left margin and
the right margin. Choose to set the width based on:

Printing edge

Bases the width on the printable area, which is taken from the general printer
settings.

Columns

Bases the width on the number of columns.

File Encoding

Controls file encoding. Choose between:

Default character encoding

Selects the character encoding to be used by default for new files. Choose
between:

System (uses the Windows settings)
Western European
UTF-8
Japanese (Shift-JIS)
Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic
Central European
Greek
Hebrew
Thai
Baltic
Russian
Vietnamese

Note that if you have specified a character encoding from the editor window
context menu, that encoding will override this setting for the specific document.

Auto-detect character encoding

Detects automatically which character encoding that should be used when you
open an existing document.

AFE1_AFE2-1:1

54

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

EOL characters

Selects which line break character to use when editor documents are saved.
Choose between:

PC (default), Windows and DOS end of line characters.

UNIX, UNIX end of line characters.

Preserve, the same end of line character as the file had when it was opened,
either PC or UNIX. If both types or neither type are present in the opened file,
PC end of line characters are used.

Syntax highlighting

Makes the editor display the syntax of C or C++ applications in different text styles.

For more information about syntax highlighting, see Editor Colors and Fonts options,
page 59 and Syntax coloring, page 131.

Auto indent

Makes the editor indent the new line automatically when you press Return. For C/C++
source files, click the Configure button to configure the automatic indentation, see
Configure Auto Indent dialog box, page 55. For all other text files, the new line will have
the same indentation as the previous line.

Show line numbers

Makes the editor display line numbers in the editor window.

Scan for changed files

Makes the editor reload files that have been modified by another tool.

If a file is open in the IDE, and the same file has concurrently been modified by another
tool, the file will be automatically reloaded in the IDE. However, if you already started
to edit the file, you will be prompted before the file is reloaded.

Show bookmarks

Makes the editor display a column on the left side in the editor window, with icons for
compiler errors and warnings, Find in Files results, user bookmarks, and breakpoints.

Show fold margin

Makes the editor display the fold margin in the left side of the editor window. For more
information, see Code folding, page 128.

AFE1_AFE2-1:1

The development environment

55

Enable virtual space

Allows the insertion point to move outside the text area.

Remove trailing blanks

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank
spaces between the last non-blank character and the end of line character.

Auto code completion and parameter hints

Enables code completion and parameter hints. For more information, see Editing a file,
page 126.

Show source browser tooltips

Toggles the display of detailed information about the identifier that the cursor currently
hovers over.

Show line break characters

Toggles the display of carriage return and line feed characters in the editor window.

Show whitespaces

Toggles the display of period (.) characters for single blank spaces and arrow (—>)
characters for tabs in the editor window.

Configure Auto Indent dialog box
The Configure Auto Indent dialog box is available from the Editor category in the
IDE Options dialog box.

Use this dialog box to configure the editor’s automatic indentation of C/C++ source
code.

AFE1_AFE2-1:1

56

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

For more information about indentation, see Indenting text automatically, page 127.

Opening Brace (a)

Specify the number of spaces used for indenting an opening brace.

Body (b)

Specify the number of additional spaces used for indenting code after an opening brace,
or a statement that continues onto a second line.

Label (c)

Specify the number of additional spaces used for indenting a label, including case labels.

Sample code

This area reflects the settings made in the text boxes for indentation. All indentations are
relative to the preceding line, statement, or other syntactic structures.

External Editor options
The External Editor options are available by choosing Tools>Options.

Use this page to specify an external editor of your choice.

Note: The contents of this dialog box depends on the setting of the Type option.

See also Using an external editor, page 35.

Use External Editor

Enables the use of an external editor.

AFE1_AFE2-1:1

The development environment

57

Type

Selects the type of interface. Choose between:

● Command Line

● DDE (Windows Dynamic Data Exchange).

Editor

Specify the filename and path of your external editor. A browse button is available.

Arguments

Specify any arguments to be passed to the editor. This is only applicable if you have
selected Command Line as the interface type.

Service

Specify the DDE service name used by the editor. This is only applicable if you have
selected DDE as the interface type.

The service name depends on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Command

Specify a sequence of command strings to be passed to the editor. The command strings
should be typed as:

DDE-Topic CommandString1
DDE-Topic CommandString2

This is only applicable if you have selected DDE as the interface type.

The command strings depend on the external editor that you are using. Refer to the user
documentation of your external editor to find the appropriate settings.

Note: You can use variables in arguments, see Argument variables, page 81.

AFE1_AFE2-1:1

58

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Editor Setup Files options
The Editor Setup Files options are available by choosing Tools>Options.

Use this page to specify setup files for the editor.

Use Custom Keyword File

Specify a text file containing keywords that you want the editor to highlight. For
information about syntax coloring, see Syntax coloring, page 131.

Use Code Templates

Specify a text file with code templates that you can use for inserting frequently used
code in your source file. For information about using code templates, see Using and
adding code templates, page 130.

AFE1_AFE2-1:1

The development environment

59

Editor Colors and Fonts options
The Editor Colors and Fonts options are available by choosing Tools>Options.

Use this page to specify the colors and fonts used for text in the editor windows. The
keywords controlling syntax highlighting for assembler and C or C++ source code are
specified in the files syntax_icc.cfg and syntax_asm.cfg, respectively. These files
are located in the 430\config directory.

Editor Font

Click the Font button to open the standard Font dialog box where you can choose the
font and its size to be used in editor windows.

Syntax Coloring

Selects a syntax element in the list and sets the color and style for it:

Color

Lists colors to choose from. Choose Custom from the list to define your own
color.

Type Style

Select Normal, Bold, or Italic style for the selected element.

AFE1_AFE2-1:1

60

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Sample

Displays the current appearance of the selected element.

Background Color

Click to set the background color of the editor window.

Note: The User keyword syntax element refers to the keywords that you have listed in
the custom keyword file, see Editor Setup Files options, page 58.

Messages options
The Messages options are available by choosing Tools>Options.

Use this page to re-enable suppressed dialog boxes.

Enable All Dialogs

Enables all dialog boxes you have suppressed by selecting a Don’t show again check
box, for example:

AFE1_AFE2-1:1

The development environment

61

Project options
The Project options are available by choosing Tools>Options.

Use this page to set options for the Make and Build commands.

Stop build operation on

Selects when the build operation should stop. Choose between:

Never

Never stops.

Warnings

Stops on warnings and errors.

Errors

Stops on errors.

Save editor windows before building

Selects when the editor windows should be saved before a build operation. Choose
between:

Never

Never saves.

AFE1_AFE2-1:1

62

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Ask

Prompts before saving.

Always

Always saves before Make or Build.

Save workspace and projects before building

Selects when a workspace and included projects should be saved before a build
operation. Choose between:

Never

Never saves.

Ask

Prompts before saving.

Always

Always saves before Make or Build.

Make before debugging

Selects when a Make operation should be performed as you start a debug session.
Choose between:

Never

Never performs a Make operation before a debug session.

Ask

Prompts before performing a Make operation.

Always

Always performs a Make operation before a debug session.

Reload last workspace at startup

Loads the last active workspace automatically the next time you start the IAR Embedded
Workbench IDE.

Play a sound after build operations

Plays a sound when the build operations are finished.

Generate browse information

Enables the generation of source browse information to display in the Source Browser
window, see Source Browser window, page 157.

AFE1_AFE2-1:1

The development environment

63

No source browser and build status updates when the IDE is not the foreground process

Halts the source browser when the IDE is not the foreground process. This also means
that the build status is no longer updated in the Workspace window. This option is
useful, for example, if you are using a laptop and want to reduce power consumption.

Enable project connections

Enables the support for setting up live project connections, see Add Project Connection
dialog box, page 105.

Enable parallel build

Enables the support for parallel build. The compiler runs in several parallel processes to
better use the available cores in the CPU. In the Processes text box, specify the number
of processes you want to use. Using all available cores might result in a less responsive
IDE.

External Analyzers options
The External Analyzers options are available by choosing Tools>Options.

Use this page to add an external analyzer to the standard build toolchain. External
analyzers operate on C/C++ source code in the user project. Header files or assembler
source code files are not analyzed.

AFE1_AFE2-1:1

64

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

For more information, see Getting started using external analyzers, page 32.

Analyzers

Lists the external analyzers that you have added to the standard build toolchain.

Move Up

Moves the analyzer you have selected in the list one step up. This order is reflected on
the Project menu.

Move Down

Moves the analyzer you have selected in the list one step down. This order is reflected
on the Project menu.

Add

Displays the External Analyzer dialog box where you can add a new analyzer to the
toolchain and configure the invocation of the analyzer.

Delete

Deletes the selected analyzer from the list of analyzers.

Edit

Displays the External Analyzer dialog box where you can edit the invocation details of
the selected analyzer.

AFE1_AFE2-1:1

The development environment

65

External Analyzer dialog box
The External Analyzer dialog box is available by choosing
Tools>Options>Project>External Analyzers.

Use this dialog box to configure the invocation of the external analyzer that you want to
add to the standard build toolchain.

External analyzers operate on C/C++ source code in the user project. Header files or
assembler source code files are not analyzed.

For more information, see Getting started using external analyzers, page 32.

Name

Specify the name of the external analyzer. Note that the name must be unique.

AFE1_AFE2-1:1

66

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Path

Specify the path to the analyzer’s executable file. A browse button is available.

Arguments

Specify the arguments that you want to pass to the analyzer.

Note that you can use argument variables for specifying the arguments, see Argument
variables, page 81.

Location

Specify a regular expression used for finding source file locations. The regular
expression is applied to each output line which will appear as text in the Build Log
window. You can double-click a line that matches the regular expression you specify.

You can use the argument variables $FILE_NAME$, $LINE_NUMBER$, and
$COLUMN_NUMBER$ to identify a filename, line number, and column number,
respectively. Choose one of the predefined expressions:

\"?$FILE_NAME$\"?:$LINE_NUMBER$

Will, for example, match a location of the form file.c:17.

\"?$FILE_NAME$\"? +$LINE_NUMBER$

Will, for example, match a location of the form file.c17.

\"?$FILE_NAME$\"?

Will, for example, match a location of the form file.c.

Alternatively, you can specify your own expression. For example, the regular expression
Msg: $FILE_NAME$ @ $LINE_NUMBER$, when applied to the output string
Msg:MySourceFile.c @ 32, will identify the file as MySourceFile.c, and the line
number as 32.

Warning

Any output line that matches this expression is tagged with the warning symbol.

For example, the expression (?i)warning(?-i): will identify any line that contains
the string warning: (regardless of case) as a warning.

Error

Any output line that matches this expression is tagged with the error symbol. Errors have
precedence over warnings.

AFE1_AFE2-1:1

The development environment

67

For example, the expression (?i)error(?-i): will identify any line that contains the
string error: (regardless of case) as an error.

Source Code Control options (deprecated)
The Source Code Control options are available by choosing Tools>Options.

Use this page to configure the interaction between an IAR Embedded Workbench
project and an SCC project.

Note: This is a deprecated feature which is not supported for new projects.

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box.

Save editor windows before performing source code control commands

Determines whether editor windows should be saved before you perform any source
code control commands. Choose between:

Never

Never saves editor windows before performing any source code control
commands.

Ask

Prompts before performing any source code control commands.

Always

Always saves editor windows before performing any source code control
commands.

AFE1_AFE2-1:1

68

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Debugger options
The Debugger options are available by choosing Tools>Options.

Use this page to configure the debugger environment.

When source resolves to multiple function instances

Some source code corresponds to multiple code instances, for example template code.
When specifying a source location in such code, for example when setting a source
breakpoint, you can make C-SPY act on all instances or a subset of instances. Use the
Automatically choose all instances option to let C-SPY act on all instances without
asking first.

Source code color in disassembly window

Click the Color button to select the color for source code in the Disassembly window.
To define your own color, choose Custom from the list.

Step into functions

Controls the behavior of the Step Into command. Choose between:

All functions

Makes the debugger step into all functions.

AFE1_AFE2-1:1

The development environment

69

Functions with source only

Makes the debugger step only into functions for which the source code is
known. This helps you avoid stepping into library functions or entering
disassembly mode debugging.

STL container expansion

Specify how many elements that are shown initially when a container value is expanded
in, for example, the Watch window.

Update intervals

Specify how often the contents of the Live Watch window and the Memory window
are updated in milliseconds.

These text boxes are only available if the C-SPY driver you are using has access to the
target system memory while executing your application.

Default integer format

Selects the default integer format in the Watch, Locals, and related windows.

Window classification by background color

Toggles background colors in some C-SPY windows on or off. Colors are used for
differentiating types of windows, for example, all interrupt-related windows have one
background color, and all watch-related windows have another color, etc.

AFE1_AFE2-1:1

70

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Stack options
The Stack options are available by choosing Tools>Options or from the context menu
in the Memory window.

Use this page to set options specific to the Stack window.

Enable graphical stack display and stack usage tracking

Enables the graphical stack bar available at the top of the Stack window. It also enables
detection of stack overflows. For more information about the stack bar and the
information it provides, see the C-SPY® Debugging Guide for MSP430.

% stack usage threshold

Specify the percentage of stack usage above which C-SPY should issue a
warning for stack overflow.

Warn when exceeding stack threshold

Makes C-SPY issue a warning when the stack usage exceeds the threshold
specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Stack pointer(s) not valid until program reaches

Specify a location in your application code from where you want the stack display and
verification to occur. The Stack window will not display any information about stack
usage until execution has reached this location.

AFE1_AFE2-1:1

The development environment

71

By default, C-SPY will not track the stack usage before the main function. If your
application does not have a main function, for example, if it is an assembler-only
project, you should specify your own start label. If this option is selected, after each reset
C-SPY keeps a breakpoint on the given location until it is reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the first instruction. Select this option to avoid incorrect warnings or
misleading stack display for this part of the application.

Warnings

Selects where warnings should be issued. Choose between:

Log

Warnings are issued in the Debug Log window.

Log and alert

Warnings are issued in the Debug Log window and as alert dialog boxes.

Limit stack display to

Limits the amount of memory displayed in the Stack window by specifying a number
of bytes, counting from the stack pointer. This can be useful if you have a big stack or
if you are only interested in the topmost part of the stack. Using this option can improve
the Stack window performance, especially if reading memory from the target system is
slow. By default, the Stack window shows the whole stack, or in other words, from the
stack pointer to the bottom of the stack. If the debugger cannot determine the memory
range for the stack, the byte limit is used even if the option is not selected.

Note: The Stack window does not affect the execution performance of your application,
but it might read a large amount of data to update the displayed information when the
execution stops.

AFE1_AFE2-1:1

72

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Terminal I/O options
The Terminal I/O options are available by choosing Tools>Options when C-SPY is
running.

Use this page to configure the C-SPY terminal I/O functionality.

Input mode

Controls how the terminal I/O input is read.

Keyboard Makes the input characters be read from the keyboard. Choose between:

Buffered: Buffers input characters.

Direct: Does not buffer input characters.

File Makes the input characters be read from a file. Choose between:

Text: Reads input characters from a text file.

Binary: Reads input characters from a binary file.

A browse button is available for locating the input file.

AFE1_AFE2-1:1

The development environment

73

Input echoing

Determines whether to echo the input characters and where to echo them. Choose
between:

Log file

Echoes the input characters in the Terminal I/O log file. Requires that you have
enabled the option Debug>Logging>Enable log file.

Terminal I/O window

Echoes the input characters in the Terminal I/O window.

Encoding

Determines the encoding used for terminal input and output. Choose between:

System

Uses the Windows settings.

UTF-8

Uses the UTF-8 encoding.

Show target reset in Terminal I/O window

Displays a message in the C-SPY Terminal I/O window when the target resets.

AFE1_AFE2-1:1

74

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Configure Tools dialog box
The Configure Tools dialog box is available from the Tools menu.

Use this dialog box to specify a tool of your choice to add to the Tools menu, for
example Notepad:

Note: If you intend to add an external tool to the standard build toolchain, see Extending
the toolchain, page 109.

You can use variables in the arguments, which allows you to set up useful tools such as
interfacing to a command line revision control system, or running an external tool on the
selected file.

To add a command line command or batch file to the Tools menu:

1 Type or browse to the cmd.exe command shell in the Command text box.

AFE1_AFE2-1:1

The development environment

75

2 Type the command line command or batch file name in the Argument text box as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the
tool has finished.

For an example, see Adding command line commands to the Tools menu, page 35.

New

Creates a stub for a new menu command for you to configure using this dialog box.

Delete

Removes the command selected in the Menu Content list.

Menu Content

Lists all menu commands that you have defined.

Menu Text

Specify the name of the menu command. If you add the & sign anywhere in the name,
the following letter, N in this example, will appear as the mnemonic key for this
command. The text you specify will be reflected in the Menu Content list.

Command

Specify the tool and its path, to be run when you choose the command from the menu.
A browse button is available.

Argument

Optional: Specify an argument for the command.

Initial Directory

Specify an initial working directory for the tool.

Redirect to Output window

Makes the IDE send any console output from the tool to the Tool Output page in the
message window. Tools that are launched with this option cannot receive any user input,
for instance input from the keyboard.

Tools that require user input or make special assumptions regarding the console that they
execute in, will not work at all if launched with this option.

AFE1_AFE2-1:1

76

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Prompt for Command Line

Makes the IDE prompt for the command line argument when the command is chosen
from the Tools menu.

Tool Available

Specifies in which context the tool should be available. Choose between:

● Always

● When debugging

● When not debugging.

Configure Viewers dialog box
The Configure Viewers dialog box is available from the Tools menu.

This dialog box lists overrides to the default associations between the document formats
that IAR Embedded Workbench can handle and viewer applications.

Display area

This area contains these columns:

Extensions

Explicitly defined filename extensions of document formats that IAR
Embedded Workbench can handle.

Action

The viewer application that is used for opening the document type. Explorer
Default means that the default application associated with the specified type in
Windows Explorer is used.

AFE1_AFE2-1:1

The development environment

77

New

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 77.

Edit

Displays the Edit Viewer Extensions dialog box, see Edit Viewer Extensions dialog
box, page 77.

Delete

Removes the association between the selected filename extensions and the viewer
application.

Import

Opens a file browser where you can locate and import a File Viewer Association file in
XML format. This file contains associations between document formats and viewer
applications.

Export

Displays a standard Save As dialog box to let you save the current associations between
document formats and viewer applications in the Configure Viewers dialog box to a file
in XML format.

Edit Viewer Extensions dialog box
The Edit Viewer Extensions dialog box is available from the Configure Viewers
dialog box.

Use this dialog box to specify how to open a new document type or edit the setting for
an existing document type.

AFE1_AFE2-1:1

78

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

File name extensions

Specify the filename extension for the document type—including the separating
period (.).

Action

Selects how to open documents with the filename extension specified in the Filename
extensions text box. Choose between:

Built-in text editor

Opens all documents of the specified type with the IAR Embedded Workbench
text editor.

Use file explorer associations

Opens all documents of the specified type with the default application
associated with the specified type in Windows Explorer.

Command line

Opens all documents of the specified type with the viewer application you type
or browse your way to. You can give any command line options you would like
to the tool, for instance, type $FILE_PATH$ after the path to the viewer
application to start the viewer with the active file (in editor, project, or messages
windows).

Filename Extensions dialog box
The Filename Extensions dialog box is available from the Tools menu.

Use this dialog box to customize the filename extensions recognized by the build tools.
This is useful if you have many source files with different filename extensions.

Toolchain

Lists the toolchains for which you have an IAR Embedded Workbench installed on your
host computer. Select the toolchain you want to customize filename extensions for.

AFE1_AFE2-1:1

The development environment

79

Note the * character indicates user-defined overrides. If there is no * character, factory
settings are used.

Edit

Displays the Filename Extension Overrides dialog box, see Filename Extension
Overrides dialog box, page 79.

Filename Extension Overrides dialog box
The Filename Extension Overrides dialog box is available from the Filename
Extensions dialog box.

This dialog box lists filename extensions recognized by the build tools.

Display area

This area contains these columns:

Tool

The available tools in the build chain.

Factory Setting

The filename extensions recognized by default by the build tool.

Override

The filename extensions recognized by the build tool if there are overrides to the
default setting.

Edit

Displays the Edit Filename Extensions dialog box for the selected tool.

AFE1_AFE2-1:1

80

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Edit Filename Extensions dialog box
The Edit File Extensions dialog box is available from the Filename Extension
Overrides dialog box.

This dialog box lists the filename extensions recognized by the IDE and lets you add
new filename extensions.

Factory setting

Lists the filename extensions recognized by default.

Override

Specify the filename extensions you want to be recognized. Extensions can be separated
by commas or semicolons, and should include the leading period.

Product Info dialog box
The Product Info dialog box is available from the Help menu.

This dialog box lists the version number of your IAR Embedded Workbench product
installation and the shared components.

Note: The initial digit of the version number of the shared components (in this screen
shot 8) is reflected by the default installation directory x:\Program Files\IAR
Systems\Embedded Workbench 8.n\.

AFE1_AFE2-1:1

The development environment

81

Details

Opens a dialog box which lists the version numbers of the various components part of
your product installation.

Argument variables
You can use argument variables for paths and arguments, for example when you specify
include paths in the Options dialog box or whenever there is a need for a macro-like
expansion that depends on the current context, for example in arguments to tools. You
can use a wide range of predefined argument variables as well as create your own, see
Configure Custom Argument Variables dialog box, page 83. These are the predefined
argument variables:

Variable Description

$COMPILER_ARGS$ All compiler options except for the filename that is used when
compiling using the compiler. Note that this argument variable is
restricted to the Arguments text box in the External Analyzer
dialog box.

$CONFIG_NAME$ The name of the current build configuration, for example Debug or
Release.

CUR_DIR Current directory

CUR_LINE Current line

$DATE$ Today’s date, formatted according to the current locale. Note that
this might make the variable unsuited for use in file paths.

EW_DIR Top directory of IAR Embedded Workbench, for example
c:\Program Files\IAR Systems\Embedded Workbench
N.n

EXE_DIR Directory for executable output

$FILE_BNAME$ Filename without extension

$FILE_BPATH$ Full path without extension

$FILE_DIR$ Directory of active file, no filename

$FILE_FNAME$ Filename of active file without path

$FILE_PATH$ Full path of active file (in editor, project, or message window)

$LIST_DIR$ Directory for list output

OBJ_DIR Directory for object output

$PROJ_DIR$ Project directory

$PROJ_FNAME$ Project filename without path

Table 3: Argument variables

AFE1_AFE2-1:1

82

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Argument variables can also be used on some pages in the IDE Options dialog box, see
Tools menu, page 193.

$PROJ_PATH$ Full path of project file

$TARGET_DIR$ Directory of primary output file

$TARGET_BNAME$ Filename without path of primary output file and without extension

$TARGET_BPATH$ Full path of primary output file without extension

$TARGET_FNAME$ Filename without path of primary output file

$TARGET_PATH$ Full path of primary output file

$TOOLKIT_DIR$ Directory of the active product, for example c:\Program
Files\IAR Systems\Embedded Workbench N.n\430

$USER_NAME$ Your host login name

WS_DIR The active workspace directory (only available in the IDE, not when
using iarbuild.exe or cspybat.exe)

$_ENVVAR_$ The Windows environment variable ENVVAR. Any name within $_
and _$ will be expanded to that system environment variable.

MY_CUSTOM_VAR Your own argument variable, see Configure Custom Argument Variables
dialog box, page 83. Any name within $ and $ will be expanded to the
value you have defined.

Variable Description

Table 3: Argument variables (Continued)

AFE1_AFE2-1:1

The development environment

83

Configure Custom Argument Variables dialog box
The Configure Custom Argument Variables dialog box is available from the Tools
menu.

Use this dialog box to define and edit your own custom argument variables. Typically,
this can be useful if you install a third-party product and want to specify its include
directory by using argument variables. Custom argument variables can also be used for
simplifying references to files that you want to be part of your project.

Custom argument variables have one of two different scopes:

● Workspace-local variables, which are associated with a specific workspace and can
only be seen by the workspace that was loaded when the variables were created.

● Global variables, which are available for use in all workspaces

You can organize your variables in named groups.

Workspace and Global tabs

Click the tab with the scope you want for your variable:

Workspace

● Both global and workspace-local variables are visible in the display area.

● Only workspace-local variables can be edited or removed.

● Groups of variables as well as individual variables can be added or imported
to the local level.

● Workspace-local variables are stored in the file
Workspace.custom_argvars in a specific directory, see Files for local
settings, page 175.

AFE1_AFE2-1:1

84

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

Global

● Only variables that are defined as global are visible in the display area; all
these variables can be edited or removed.

● Groups of variables as well as individual variables can be added or imported
to the global level.

● Global variables are stored in the file global.custom_argvars in a
specific directory, see Files for global settings, page 174.

Note that when you rely on custom argument variables in the build tool settings, some
of the information needed for a project to build properly might now be in a
.custom_argvars file. You should therefore consider version-controlling your custom
argument file (workspace-local and global), and whether to document the need for using
these variables.

Expand/Collapse All

Expands or collapses the view of the variables.

Hide disabled groups

Hides all groups of variables that you previously have disabled.

Enable Group / Disable Group

Enables or disables a group of variables that you have selected. The result differs
depending on which tab you have open:

● Workspace tab: Enabling or disabling groups will only affect the current
workspace.

● Global tab: Enabling will only affect newly created workspaces. These will inherit
the current global state as the default for the workspace.

Note: You cannot use a variable that is part of a disabled group.

New Group

Opens the New Group dialog box where you can specify a name for a new group. When
you click OK, the group is created and appears in the list of custom argument variables.

Add Variable

Opens the Add Variables dialog box where you can specify a name and value of a new
variable to the group you have selected. When you click OK, the variable is created and
appears in the list of custom argument variables.

Note that you can also add variables by importing previously defined variables. See
Import below.

AFE1_AFE2-1:1

The development environment

85

Edit Variable

Opens the Edit Variables dialog box where you can edit the name and value of a
selected variable. When you click OK, the variable is created and appears in the list of
custom argument variables.

Delete

Deletes the selected group or variable.

Import

Opens a file browser where you can locate a Workspace.custom_argvars file. The
file can contain variables already defined and associated with another workspace or be
a file created when installing a third-party product.

AFE1_AFE2-1:1

86

Reference information on the IDE

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

87

Project management
● Introduction to managing projects

● Managing projects

● Reference information on managing projects

Introduction to managing projects
These topics are covered:

● Briefly about managing projects

● How projects are organized

● The IDE interacting with version control systems

BRIEFLY ABOUT MANAGING PROJECTS

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by several
engineers.

The IDE comes with functions that will help you stay in control of all project modules,
for example, C or C++ source code files, assembler files, include files, and other related

AFE1_AFE2-1:1

88

Introduction to managing projects

IDE Project Management and Building Guide
for MSP430

modules. You create workspaces and let them contain one or several projects. Files can
be organized in file groups, and options can be set on all levels—project, group, or file.

Changes are tracked so that a request for rebuild will retranslate all required modules,
making sure that no executable files contain out-of-date modules.

These are some additional features of the IDE:

● Project templates to create a project that can be built and executed for a smooth
development startup

● Hierarchical project representation

● Source browser with an hierarchical symbol presentation

● Options can be set globally, on groups of source files, or on individual source files

● The Make command automatically detects changes and performs only the required
operations

● Project connection to set up a connection between IAR Embedded Workbench and
an external tool

● Text-based project files

● Custom Build utility to expand the standard toolchain in an easy way

● Command line build with the project file as input.

AFE1_AFE2-1:1

Project management

89

Navigating between project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays
information about the build configuration that is currently active in the Workspace
window. For that configuration, the Source Browser window displays a hierarchical
view of all globally defined symbols, such as variables, functions, and type definitions.
For classes, information about any base classes is also displayed.

For more information about source browsing, see Briefly about source browse
information, page 126.

HOW PROJECTS ARE ORGANIZED

The IDE allows you to organize projects in an hierarchical tree structure showing the
logical structure at a glance.

The IDE has been designed to suit the way that software development projects are
typically organized. For example, perhaps you need to develop related versions of an
application for different versions of the target hardware, and you might also want to
include debugging routines into the early versions, but not in the final application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

In the following sections, the various levels of the hierarchy are described.

Projects and workspaces

Typically you create one or several projects, where each project can contain either:

● Source code files, which you can use for producing your embedded application or a
library. For an example where a library project has been combined with an
application project, see the example about creating and using libraries in the
tutorials.

● An externally built executable file that you want to load in C-SPY. For information
about how to load executable files built outside of the IDE, see the C-SPY®
Debugging Guide for MSP430.

If you have several related projects, you can access and work with them simultaneously.
To achieve this, you can organize related projects in workspaces.

AFE1_AFE2-1:1

90

Introduction to managing projects

IDE Project Management and Building Guide
for MSP430

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—are developed,
requiring one development team each (team A and B). Because the two applications are
related, they can share parts of the source code between them. The following project
model can be applied:

● Three projects—one for each application, and one for the common source code

● Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code)
is both convenient and efficient, to avoid having to compile it unnecessarily. This figure
illustrates this example:

Projects and build configurations

Often, you need to build several versions of your project, for example, for different
debug solutions that require different settings for the linker and debugger. Another
example is when you need a separately built executable file with special debug output
for execution trace, etc. IAR Embedded Workbench lets you define multiple build
configurations for each project. In a simple case, you might need just two, called Debug
and Release, where the only differences are the options used for optimization, debug
information, and output format. In the Release configuration, the preprocessor symbol
NDEBUG is defined, which means the application will not contain any asserts.

AFE1_AFE2-1:1

Project management

91

Additional build configurations might be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
you can exclude some source files from the build configuration. These build
configurations might fulfill these requirements for Project A:

● Project A - Device 1:Release

● Project A - Device 1:Debug

● Project A - Device 2:Release

● Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files and their paths

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Note: The settings for a build configuration can affect which include files that are used
during the compilation of a source file. This means that the set of include files associated
with the source file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

● Project files

Paths to files part of the project file are relative if they are located on the same drive.
The path is relative either to $PROJ_DIR$ or EW_DIR. The argument variable
EW_DIR is only used if the path refers to a file located in a subdirectory of
EW_DIR and the distance from EW_DIR is shorter than the distance from
$PROJ_DIR$.

AFE1_AFE2-1:1

92

Managing projects

IDE Project Management and Building Guide
for MSP430

Paths to files that are part of the project file are absolute if the files are located on
different drives.

● Workspace files

For files located on the same drive as the workspace file, the path is relative to
$PROJ_DIR$.

For files located on another drive than the workspace file, the path is absolute.

● Debug files

If your debug image file contains debug information, any paths in the file that refer
to source files are absolute.

Drag and drop

You can easily drag individual source files and project files from Windows Explorer to
the Workspace window. Source files dropped on a group are added to that group.
Source files dropped outside the project tree—on the Workspace window
background—are added to the active project.

THE IDE INTERACTING WITH VERSION CONTROL SYSTEMS

The IAR Embedded Workbench IDE can identify and access any files that are in a
Subversion (SVN) working copy, see Interacting with Subversion, page 95.

From within the IDE you can connect an IAR Embedded Workbench project to an
external SVN project, and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system, you
should be familiar with the version control client application you are using.

Note: Some of the windows and dialog boxes that appear when you work with version
control in the IDE originate from the version control system and are not described in the
documentation from IAR Systems. For information about details in the client
application, refer to the documentation supplied with that application.

Note: Different version control systems use different terminology even for some of the
most basic concepts involved. You must keep this in mind when you read the
descriptions of the interaction between the IDE and the version control system.

Managing projects
These tasks are covered:

● Creating and managing a workspace and its projects

● Viewing the workspace and its projects

● Interacting with Subversion

AFE1_AFE2-1:1

Project management

93

CREATING AND MANAGING A WORKSPACE AND ITS
PROJECTS

This is a description of the overall procedure for creating the workspace, projects,
groups, files, and build configurations. For a detailed step-by-step example, see
Creating an application project in the tutorials.

The steps involved for creating and managing a workspace and its contents are:

Note: You do not have to use the same toolchain for the new build configuration as for
other build configurations in the same project, and it might not be necessary for you to
perform all of these steps and not in this order.

The File menu provides commands for creating workspaces. The Project menu
provides commands for creating projects, adding files to a project, creating groups,

AFE1_AFE2-1:1

94

Managing projects

IDE Project Management and Building Guide
for MSP430

specifying project options, and running the IAR Systems development tools on the
current projects.

VIEWING THE WORKSPACE AND ITS PROJECTS

The Workspace window is where you access your projects and files during the
application development.

1 To choose which project you want to view, click its tab at the bottom of the Workspace
window.

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is only generated if the list file option
is enabled. The Output folder related to the project node contains generated files related
to the whole project, such as the executable file and the linker map file (if the list file
option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

2 To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that you select from the
drop-down list that are built when you build your application.

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

AFE1_AFE2-1:1

Project management

95

An overview of all project members is displayed.

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

INTERACTING WITH SUBVERSION

The version control integration in IAR Embedded Workbench allows you to
conveniently perform some of the most common Subversion operations directly from
within the IDE, using the client applications svn.exe and TortoiseProc.exe.

To connect an IAR Embedded Workbench project to a Subversion system:

1 In the Subversion client application, set up a Subversion working copy.

2 In the IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy:

1 To use the Subversion integration in the IDE, make sure that svn.exe and
TortoiseProc.exe are in your path.

2 Check out a working copy from a Subversion repository.

The files that constitute your project do not have to come from the same working copy;
all files in the project are treated individually. However, note that TortoiseProc.exe
does not allow you to simultaneously, for example, check in files coming from different
repositories.

To connect application projects to the Subversion working copy:

1 In the Workspace window, select the project for which you have created a Subversion
working copy.

AFE1_AFE2-1:1

96

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

2 From the Project menu, choose Version Control System>Connect Project to
Subversion. This command is also available from the context menu that appears when
you right-click in the Workspace window.

For more information about the commands available for accessing the Subversion
working copy, see Version Control System menu for Subversion, page 105.

Viewing the Subversion states

When your IAR Embedded Workbench project has been connected to the Subversion
working copy, a column that contains status information for version control will appear
in the Workspace window. Various icons are displayed, where each icon reflects the
Subversion state, see Subversion states, page 106.

Reference information on managing projects
Reference information about:

● Workspace window, page 97

● Create New Project dialog box, page 102

● Configurations for project dialog box, page 103

● New Configuration dialog box, page 104

● Add Project Connection dialog box, page 105

● Version Control System menu for Subversion, page 105

● Subversion states, page 106

AFE1_AFE2-1:1

Project management

97

Workspace window
The Workspace window is available from the View menu.

Use this window to access your projects and files during the application development.

Drop-down list

At the top of the window there is a drop-down list where you can choose a build
configuration to display in the window for a specific project.

The display area

This area contains four columns.

AFE1_AFE2-1:1

98

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

The Files column displays the name of the current workspace and a tree representation
of the projects, groups and files included in the workspace. One or more of these icons
are displayed:

The column that contains status information about option overrides can have one of
three icons for each level in the project:

Workspace

Project

Project with multi-file compilation

Group of files

Group excluded from the build

Group of files, part of multi-file compilation

Group of files, part of multi-file compilation, but excluded from the build

Object file or library

Assembler source file

C source file

C++ source file

Source file excluded from the build

Header file

Text file

HTML text file

Control file, for example the linker configuration file

IDE internal file

Other file

Blank There are no settings/overrides for this file/group.

Black check mark There are local settings/overrides for this file/group.

Red check mark There are local settings/overrides for this file/group, but they are
either identical to the inherited settings or they are ignored
because you use multi-file compilation, which means that the
overrides are not needed.

AFE1_AFE2-1:1

Project management

99

The column that contains build status information can have one of three icons for each
file in the project:

The column contains status information about version control. For information about the
various icons, see Subversion states, page 106.

Use the tabs at the bottom of the window to choose which project to display.
Alternatively, you can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the Introduction to managing projects, page 87.

Context menu

This context menu is available:

These commands are available:

Options

Displays a dialog box where you can set options for each build tool for the
selected item in the Workspace window, for example to exclude it from the
build. You can set options for the entire project, for a group of files, or for an
individual file. See Setting project options using the Options dialog box, page
111.

Blank The file will not be rebuilt next time the project is built.

Red ball The file will be rebuilt next time the project is built.

Small red dot The file is being rebuilt.

AFE1_AFE2-1:1

100

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

Make

Brings the current target up to date by compiling, assembling, and linking only
the files that have changed since the last build.

Compile

Compiles or assembles the currently active file as appropriate. You can choose
the file either by selecting it in the Workspace window, or by selecting the
editor window containing the file you want to compile.

Rebuild All

Recompiles and relinks all files in the selected build configuration.

Clean

Deletes intermediate files.

C-STAT Static Analysis>Analyze Project

Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)

Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results

Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary

Shows a standard Save As dialog box where you can select the destination for a
report summary in HTML and then create it. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Generate Full HTML Report

Shows a standard Save As dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Stop Build

Stops the current build operation.

Add>Add Files

Displays a dialog box where you can add files to the project.

AFE1_AFE2-1:1

Project management

101

Add>Add filename
Adds the indicated file to the project. This command is only available if there is
an open file in the editor.

Add>Add Group

Displays the Add Group dialog box where you can add new groups to the
project. For more information about groups, see Groups, page 91.

Remove

Removes selected items from the Workspace window.

Rename

Displays the Rename Group dialog box where you can rename a group. For
more information about groups, see Groups, page 91.

Version Control System

Opens a submenu with commands for source code control, see Version Control
System menu for Subversion, page 105.

Open Containing Folder

Opens the File Explorer that displays the directory where the selected file
resides.

File Properties

Displays a standard File Properties dialog box for the selected file.

Set as Active

Sets the selected project in the overview display to be the active project. It is the
active project that will be built when the Make command is executed.

AFE1_AFE2-1:1

102

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

Create New Project dialog box
The Create New Project dialog box is available from the Project menu.

Use this dialog box to create a new project based on a template project. Template
projects are available for C/C++ applications, assembler applications, and library
projects. You can also create your own template projects.

Tool chain

Selects the target to build for. If you have several versions of IAR Embedded Workbench
for different targets installed on your host computer, the drop-down list might contain
some or all of these targets.

Project templates

Select a template to base the new project on, from this list of available template projects.

Description

A description of the currently selected template.

AFE1_AFE2-1:1

Project management

103

Configurations for project dialog box
The Configurations for project dialog box is available by choosing Project>Edit
Configurations.

Use this dialog box to define new build configurations for the selected project; either
entirely new, or based on a previous project.

Configurations

Lists existing configurations, which can be used as templates for new configurations.

New

Displays a dialog box where you can define new build configurations, see New
Configuration dialog box, page 104.

Remove

Removes the configuration that is selected in the Configurations list.

AFE1_AFE2-1:1

104

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

New Configuration dialog box
The New Configuration dialog box is available by clicking New in the Configurations
for project dialog box.

Use this dialog box to define new build configurations; either entirely new, or based on
any currently defined configuration.

Name

Type the name of the build configuration.

Tool chain

Specify the target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the drop-down list
might contain some or all of these targets.

Based on configuration

Selects a currently defined build configuration to base the new configuration on. The
new configuration will inherit the project settings and information about the factory
settings from the old configuration. If you select None, the new configuration will be
based strictly on the factory settings.

Factory settings

Select the default factory settings that you want to apply to your new build
configuration. These factory settings will be used by your project if you click the
Factory Settings button in the Options dialog box.

Choose between:

Debug, Factory settings suitable for a debug build configuration.

Release, Factory settings suitable for a release build configuration.

AFE1_AFE2-1:1

Project management

105

Add Project Connection dialog box
The Add Project Connection dialog box is available from the Project menu.

Use this dialog box to set up a project connection between IAR Embedded Workbench
and an external tool. This can, for example, be useful if you want IAR Embedded
Workbench to build source code files provided by the external tool. The source files will
automatically be added to your project. If the set of files changes, the new set of files
will automatically be used when the project is built in IAR Embedded Workbench.

To disable support for this, see Project options, page 61.

Connect using

Chooses the external tool that you want to set up a connection with.

OK

Displays a dialog box where you specify the connection.

Version Control System menu for Subversion
The Version Control System submenu is available from the Project menu and from the
context menu in the Workspace window.

For more information about interacting with an external version control system, see The
IDE interacting with version control systems, page 92.

Menu commands

These commands are available for Subversion:

AFE1_AFE2-1:1

106

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

Commit

Displays Tortoise’s Commit dialog box for the selected file(s).

Add

Displays Tortoise’s Add dialog box for the selected file(s).

Revert

Displays Tortoise’s Revert dialog box for the selected file(s).

Update

Opens Tortoise’s Update window for the selected file(s).

Diff

Opens Tortoise’s Diff window for the selected file(s).

Log

Opens Tortoise’s Log window for the selected file(s).

Properties

Displays information available in the version control system for the selected file.

Refresh

Updates the version control system display status for all files that are part of the
project. This command is always enabled for all projects under the version
control system.

Connect Project to Subversion

Checks whether svn.exe and TortoiseProc.exe are in the path and then
enables the connection between the IAR Embedded Workbench project and an
existing checked-out working copy. After this connection has been created, a
special column that contains status information appears in the Workspace
window. Note that you must check out the source files from outside the IDE.

Disconnect Project from Subversion

Removes the connection between the selected IAR Embedded Workbench
project and Subversion. The column in the Workspace window that contains
SVN status information will no longer be visible for that project.

Subversion states
Each Subversion-controlled file can be in one of several states.

(blue A) Added.

(red C) Conflicted.

AFE1_AFE2-1:1

Project management

107

Note: The version control system in the IAR Embedded Workbench IDE depends on the
information provided by Subversion. If Subversion provides incorrect or incomplete
information about the states, the IDE might display incorrect symbols.

(red D) Deleted.

 (red I) Ignored.

 (blank) Not modified.

 (red M) Modified.

(red R) Replaced.

 (gray X) An unversioned directory created by an external definition.

 (gray question
mark)

Item is not under version control.

(black exclamation
mark)

Item is missing—removed by a non-SVN command—or
incomplete.

(red tilde) Item obstructed by an item of a different type.

AFE1_AFE2-1:1

108

Reference information on managing projects

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

109

Building projects
● Introduction to building projects

● Building a project

● Reference information on building

Introduction to building projects
These topics are covered:

● Briefly about building a project

● Extending the toolchain

BRIEFLY ABOUT BUILDING A PROJECT

The build process consists of these steps:

● Setting project options using the Options dialog box

● Building the project, either an application project or a library project

● Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation. If necessary, you can
also specify pre-build and post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also
use the command line utility iarbuild.exe.

For examples of building application and library projects, see the tutorials in the
Information Center. For more information about building library projects, see the IAR
C/C++ Compiler User Guide for MSP430.

EXTENDING THE TOOLCHAIN

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard toolchain. This feature is used for executing external tools (not provided by
IAR Systems). You can make these tools execute each time specific files in your project
have changed.

If you specify custom build options on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation

AFE1_AFE2-1:1

110

Building a project

IDE Project Management and Building Guide
for MSP430

between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and r43 files. For more
information about custom build options, see Custom build options, page 235.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance, include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, and the name of the output files
generated by the external tool. Note that you can use argument variables for some of the
file information.

You can specify custom build options to any level in the project tree. The options you
specify are inherited by any sub-level in the project tree.

Tools that can be added to the toolchain

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench toolchain are:

● Tools that generate files from a specification, such as Lex and YACC

● Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

For more information, see Adding an external tool, page 118.

Building a project
These tasks are covered:

● Setting project options using the Options dialog box

● Building your project

● Correcting errors found during build

● Using pre- and post-build actions

● Building multiple configurations in a batch

● Building from the command line

● Adding an external tool

AFE1_AFE2-1:1

Building projects

111

SETTING PROJECT OPTIONS USING THE OPTIONS DIALOG
BOX

1 Before you can set project options, choose a build configuration.

By default, the IDE creates two build configurations when a project is created—Debug
and Release. Every build configuration has its own project settings, which are
independent of the other configurations.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

AFE1_AFE2-1:1

112

Building a project

IDE Project Management and Building Guide
for MSP430

2 Decide which level you want to set the options on: the entire project, groups of files, or
for an individual file. Select that level in the Workspace window (in this example, the
project level) and choose Options from the context menu to display the Options dialog
box.

Note: There is one important restriction on setting options. If you set an option on group
or file level (group or file level override), no options on higher levels that operate on files
will affect that group or file.

3 The Options dialog box provides options for the build tools—a category for each build
tool.

Options in the General Options, Linker, and Debugger categories can only be set on
project level because they affect the entire build configuration, and cannot be set for
individual groups and files. However, the options in the other categories can be set for
the project, a group of files, or an individual file.

AFE1_AFE2-1:1

Building projects

113

4 Select a category from the Category list to select which building tool to set options for.
Which tools that are available in the Category list depends on which tools are included
in your product. When you select a category, one or more pages containing options for
that component are displayed.

5 Click the tab that corresponds to the type of options you want to view or change. Make
the appropriate settings. Some hints:

● To override project level settings, select the required item—for instance a specific
group of files or an individual file—and select the option Override inherited
settings.

The new settings will affect all members of that group, that is, files and any groups
of files. Your local overrides are indicated with a checkmark in a separate column in
the Workspace window.

AFE1_AFE2-1:1

114

Building a project

IDE Project Management and Building Guide
for MSP430

● Use the Extra Options page to specify options that are only available as command
line options and are not in the IDE.

● To restore all settings to the default factory settings, click the Factory Settings
button, which is available for all categories except General Options and Custom
Build. Note that two sets of factory settings are available: Debug and Release.
Which one is used depends on your build configuration, see New Configuration
dialog box, page 104.

● If you add a source file with a non-recognized filename extension to your project,
you cannot set options on that source file. However, you can add support for
additional filename extensions. For more information, see Filename Extensions
dialog box, page 78.

BUILDING YOUR PROJECT

You can build your project either as an application project or a library project.

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

To build your project as an application project, choose one of the three build commands
Make, Compile, and Rebuild All. They will run in the background, so you can continue
editing or working with the IDE while your project is being built.

To build your project as a library project, choose Project>Options>General
Options>Output>Output file>Library before you build your project. Then, Linker is
replaced by Library Builder in the Category list in the Options dialog box, and the
result of the build will be a library. For an example, see the tutorials.

AFE1_AFE2-1:1

Building projects

115

For more information, see Project menu, page 189.

CORRECTING ERRORS FOUND DURING BUILD

Error messages are displayed in the Build message window.

To specify the level of output to the Build message window:

1 Right-click in the Build message window to open the context menu.

2 From the context menu, select the level of output you want: From All, which shows all
messages, including compiler and linker information, to Errors, which only shows
errors, but not warnings or other messages.

If your source code contains errors, you can jump directly to the correct position in the
appropriate source file by double-clicking the error message in the error listing in the
Build window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

For more information about the Build message window, see Build window, page 120.

USING PRE- AND POST-BUILD ACTIONS

If necessary, you can specify pre-build and post-build actions that you want to occur
before or after the build. The Build Actions options in the Options dialog box—
available from the Project menu—let you specify the actions required.

For more information about the Build Actions options, see Build actions options, page
237.

Using pre-build actions for time stamping

You can use pre-build actions to embed a time stamp for the build in the resulting binary
file. Follow these steps:

1 Create a dedicated time stamp file, for example, timestamp.c and add it to your
project.

2 In this source file, use the preprocessor macros __TIME__ and __DATE__ to initialize
a string variable.

3 Choose Project>Options>Build Actions to open the Build Actions dialog box.

4 In the Pre-build command line text field, specify for example this pre-build action:

cmd /c "del "OBJ_DIR\timestamp.o""

This command removes the timestamp.o object file.

AFE1_AFE2-1:1

116

Building a project

IDE Project Management and Building Guide
for MSP430

Alternatively, you can use the open source command line utility touch for this purpose
or any other suitable utility that updates the modification time of the source file. For
example:

"touch $PROJ_DIR$\timestamp.c"

5 If the project is not entirely up-to-date, the next time you use the Make command, the
pre-build action will be invoked before the regular build process. Then the regular build
process must always recompile timestamp.c and the correct timestamp will end up in
the binary file.

If the project already is up-to-date, the pre-build action will not be invoked. This means
that nothing is built, and the binary file still contains the timestamp for when it was last
built.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog box—
available from the Project menu—lets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations, it is convenient to define one or
more different batches. Instead of building the entire workspace, you can only build the
appropriate build configurations, for instance Release or Debug configurations.

For more information about the Batch Build dialog box, see Batch Build dialog box,
page 122.

BUILDING FROM THE COMMAND LINE

To build the project from the command line, use the IAR Command Line Build Utility
(iarbuild.exe) located in the common\bin directory. Typically, this can be useful for
automating your testing for continuous integration.

As input you use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean | -build | -make | -cstat_analyze |
-cstat_clean] config[,config1,config2,...]|*[-log
errors|warnings|info|all][-parallel number][-varfile filename]

AFE1_AFE2-1:1

Building projects

117

These are the possible parameters:

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

If the build process was successful, the IAR Command Line Build Utility returns 0.
Otherwise it returns a non-zero number and a diagnostic message.

Parameter Description

project.ewp Your IAR Embedded Workbench project file.

-clean Removes any intermediate and output files.

-build Rebuilds and relinks all files in the specified build configuration(s).

-make Brings the specified build configuration(s) up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

-cstat_analyze Analyzes the project using C-STAT and generates information about
the number of messages. For more information, see the C-STAT®
Static Analysis Guide.

-cstat_clean Cleans the C-STAT message database for the project. For more
information, see the C-STAT® Static Analysis Guide.

config|* config, the name of a configuration you want to build, which can
be either one of the predefined configurations Debug or Release, or
a name that you define yourself. For more information about build
configurations, see Projects and build configurations, page 90.
* (wild card character), the -clean, -build, and -make
commands will process all configurations defined in the project.

-log errors Displays build error messages.

-log warnings Displays build warning and error messages.

-log info Displays build warning and error messages, and messages issued by
the #pragma message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

-parallel number Specifies the number of parallel processes to run the compiler in to
make better use of the cores in the CPU.

-varfile filename Makes custom-defined argument variables become defined in a
workspace scope available to the build engine by specifying the file to
use. See Configure Custom Argument Variables dialog box, page 83.

Table 4: iarbuild.exe command line options

AFE1_AFE2-1:1

118

Building a project

IDE Project Management and Building Guide
for MSP430

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the toolchain. The
same procedure can also be used for other tools.

In the example, Flex takes the file myFile.lex as input. The two files myFile.c and
myFile.h are generated as output.

1 Add the file you want to work with to your project, for example myFile.lex.

2 Select this file in the Workspace window and choose Project>Options. Select
Custom Build from the list of categories.

3 In the Filename extensions field, type the filename extension .lex. Remember to
specify the leading period (.).

4 In the Command line field, type the command line for executing the external tool, for
example:

flex $FILE_PATH$ -o$FILE_BNAME$.c

During the build process, this command line is expanded to:

flex myFile.lex -omyFile.c

Note the usage of argument variables and specifically the use of $FILE_BNAME$ which
gives the base name of the input file, in this example appended with the c extension to
provide a C source file in the same directory as the input file foo.lex. For more
information about these variables, see Argument variables, page 81.

5 In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:

$FILE_BPATH$.c
$FILE_BPATH$.h

6 If the external tool uses any additional files during the build, these should be added in
the Additional input files field, for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

7 Click OK.

8 To build your application, choose Project>Make.

AFE1_AFE2-1:1

Building projects

119

Reference information on building
Reference information about:

● Options dialog box, page 119

● Build window, page 120

● Batch Build dialog box, page 122

● Edit Batch Build dialog box, page 123

Options dialog box
The Options dialog box is available from the Project menu.

Use this dialog box to specify your project settings.

See also Setting project options using the Options dialog box, page 111.

AFE1_AFE2-1:1

120

Reference information on building

IDE Project Management and Building Guide
for MSP430

Category

Selects the build tool you want to set options for. The available categories will depend
on the tools installed in your IAR Embedded Workbench IDE, and will typically
include:

● General options

● Static Analysis, see the C-STAT® Static Analysis Guide for more information about
these options

● C/C++ Compiler

● Assembler

● Custom build, options for extending the toolchain

● Build Actions, options for pre-build and post-build actions

● Linker, available for application projects but not for library projects

● Library builder, available for library projects but not for application projects

● Debugger

● Simulator

● C-SPY hardware drivers, options specific to additional hardware debuggers.

Selecting a category displays one or more pages of options for that component of the
IDE.

Factory Settings

Restores all settings to the default factory settings. Note that this option is not available
for all categories.

Build window
The Build window is available by choosing View>Messages.

This window displays the messages generated when building a build configuration.
When opened, the window is, by default, grouped together with the other message

AFE1_AFE2-1:1

Building projects

121

windows. Double-click a message in the Build window to open the appropriate file for
editing, with the insertion point at the correct position.

Context menu

This context menu is available:

These commands are available:

All

Shows all messages, including compiler and linker information.

Messages

Shows all messages.

Warnings

Shows warnings and errors.

Errors

Shows errors only.

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Live Log to File

Displays a submenu with commands for writing the build messages to a log file
and setting filter levels for the log.

AFE1_AFE2-1:1

122

Reference information on building

IDE Project Management and Building Guide
for MSP430

Batch Build dialog box
The Batch Build dialog box is available by choosing Project>Batch build.

This dialog box lists all defined batches of build configurations. For more information,
see Building multiple configurations in a batch, page 116.

Batches

Select the batch you want to build from this list of currently defined batches of build
configurations.

Build

Give the build command you want to execute:

● Make

● Clean

● Rebuild All.

New

Displays the Edit Batch Build dialog box, where you can define new batches of build
configurations, see Edit Batch Build dialog box, page 123.

Remove

Removes the selected batch.

Edit

Displays the Edit Batch Build dialog box, where you can edit existing batches of build
configurations.

AFE1_AFE2-1:1

Building projects

123

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

Use this dialog box to create new batches of build configurations, and edit already
existing batches.

Name

Type a name for a batch that you are creating, or change the existing name (if you wish)
for a batch that you are editing.

Available configurations

Select the configurations you want to move to be included in the batch you are creating
or editing, from this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurations list to the
Configurations to build list, use the arrow buttons.

Configurations to build

Lists the build configurations that will be included in the batch you are creating or
editing. Drag the build configurations up and down to set the order between the
configurations.

AFE1_AFE2-1:1

124

Reference information on building

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

125

Editing
● Introduction to the IAR Embedded Workbench editor

● Editing a file

● Programming assistance

● Reference information on the editor

Introduction to the IAR Embedded Workbench editor
These topics are covered:

● Briefly about the editor

● Briefly about source browse information

● Customizing the editor environment

For information about how to use an external editor in the IAR Embedded Workbench
IDE, see Using an external editor, page 35.

BRIEFLY ABOUT THE EDITOR

The integrated text editor allows you to edit multiple files in parallel, and provides both
basic editing features and functions specific to software development, like:

● Automatic word and code completion

● Automatic line indentation and block indentation

● Parenthesis and bracket matching

● Function navigation within source files

● Context-sensitive help system that can display reference information for DLIB
library functions and language extensions

● Text styles and color that identify the syntax of C or C++ programs and assembler
directives

● Powerful search and replace commands, including multi-file search

● Direct jump to context from error listing

● Multibyte character support

● Parameter hints

● Bookmarks

AFE1_AFE2-1:1

126

Editing a file

IDE Project Management and Building Guide
for MSP430

● Unlimited undo and redo for each window.

BRIEFLY ABOUT SOURCE BROWSE INFORMATION

Optionally, source browse information is continuously generated in the background.
This information is used by many different features useful as programming assistance,
for example:

● Source Browser window

● Go to definition or declaration

● Find all references

● Find all calls to or from a function, where the result is presented as a call graph.

The source browse information is updated when a file in the project is saved. When you
save an edited source file, or when you open a new project, there will be a short delay
before the information is up-to-date. During the update, progress information is
displayed in the status bar.

Note: If you want the generation of source browse information to halt when you change
focus from the IAR Embedded Workbench IDE to another program, make sure to enable
the No source browser and build status updates when the IDE is not the foreground
process option.

CUSTOMIZING THE EDITOR ENVIRONMENT

The IDE editor can be configured on the IDE Options pages Editor and Editor>Colors
and Fonts. Choose Tools>Options to access the pages.

For information about these pages, see Tools menu, page 193.

Editing a file
The editor window is where you write, view, and modify your source code.

These tasks are covered:

● Indenting text automatically

● Matching brackets and parentheses

● Splitting the editor window into panes

● Dragging text

● Code folding

AFE1_AFE2-1:1

Editing

127

● Word completion

● Code completion

● Parameter hint

● Using and adding code templates

● Syntax coloring

● Adding bookmarks

● Using and customizing editor commands and shortcut keys

● Displaying status information

See also:

● Programming assistance, page 132

● Using an external editor, page 35

INDENTING TEXT AUTOMATICALLY

The text editor can perform various kinds of indentation. For assembler source files and
plain text files, the editor automatically indents a line to match the previous line.

To indent several lines, select the lines and press the Tab key.

To move a whole block of lines back to the left again, press Shift+Tab.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

● Press the Return key

● Type any of the special characters {, }, :, and #

● Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:

1 Choose Tools>Options and select Editor.

2 Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For more information, see Configure Auto Indent dialog box, page 55.

MATCHING BRACKETS AND PARENTHESES

To highlight matching parentheses with a light gray color, place the insertion point next
to a parenthesis:

AFE1_AFE2-1:1

128

Editing a file

IDE Project Management and Building Guide
for MSP430

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets (grow) or Match
Brackets (shrink) after that, the selection will increase or shrink, respectively, to the
next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [], {}, and <> (requires Match All
Brackets).

SPLITTING THE EDITOR WINDOW INTO PANES

You can split the editor window horizontally or vertically into multiple panes, to look at
different parts of the same source file at once, or to move text between two different
panes.

To split a window into panes (horizontally or vertically), use the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it to the edge of the
window.

DRAGGING TEXT

To move text within an editor window or to copy between editor windows, select the text
and drag it to the new location.

CODE FOLDING

Sections of code can be hidden and displayed using code folding.

To collapse or expand groups of lines, click on the fold points in the fold margin:

The fold point positions are based on the hierarchical structure of the document
contents, for example, brace characters in C/C++ or the element hierarchy of an XML
file. The Toggle All Folds command (Ctrl+Alt+F) can be used for expanding (or
collapsing) all folds in the current document. The command is available from the Edit
menu and from the context menu in the editor window. You can enable or disable the
fold margin from Tools>Options>Editor.

AFE1_AFE2-1:1

Editing

129

WORD COMPLETION

Word completion attempts to complete the word that you have started to type, basing the
assumption on the contents of the rest of your document.

To make the editor complete the word that you have started to type, press
Ctrl+Alt+Space or choose Complete Word from the context menu. If the suggestion is
incorrect, repeat the command to get new suggestions.

CODE COMPLETION

To make the editor show a list of symbols that are available in a class, type ., ->, or ::
after a class or object name:

When you place the cursor anywhere else but after ., ->, or :, the context menu lists all
symbols available in the active translation unit.

Click on a symbol name in the list or choose it with the arrow keys and press Return to
insert it at the current insertion point.

PARAMETER HINT

To make the editor suggest function parameters as tooltip information, start typing the
first parenthesis after a function name.

When there are several overloaded versions of a function, you can choose which one to
use by clicking the arrows in the tooltip (Ctrl+Up/Down). To insert the parameters as
text, press Ctrl+Enter:

AFE1_AFE2-1:1

130

Editing a file

IDE Project Management and Building Guide
for MSP430

USING AND ADDING CODE TEMPLATES

Code templates are a method of conveniently inserting frequently used source code
sequences, for example for loops and if statements. The code templates are defined in
a plain text file. By default, a few example templates are provided. In addition, you can
easily add your own code templates.

To set up the use of code templates:

1 Choose Tools>Options>Editor>Setup Files.

2 Select or deselect the Use Code Templates option. By default, code templates are
enabled.

3 In the text field, specify which template file you want to use:

● The default template file

The original template file CodeTemplates.txt
(alternativelyCodeTemplates.ENU.txt or CodeTemplates.JPN.txt if you are
using an IAR Embedded Workbench that is available in both English and Japanese)
is located in a separate directory, see Files for global settings, page 174.

Note that this is a local copy of the file, which means it is safe to modify it if you
want.

● Your own template file

Note that before you can choose your own template file, you must first have created
one. To create your own template file, choose Edit>Code Templates>Edit
Templates, add your code templates, and save the file with a new name. The syntax
for defining templates is described in the default template file.

A browse button is available for your convenience.

4 To use your new templates in your own template file, you must:

● Delete the filename in the Use Code Templates text box.

● Deselect the Use Code Templates option and click OK.

● Restart the IAR Embedded Workbench IDE.

● Choose Tools>Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should
now be displayed in the Use Code Templates text box. Select the checkbox to enable
the template.

To insert a code template into your source code:

1 In the editor window, right-click where you want the template to be inserted and
choose Insert Template (Ctrl+Alt+V).

2 Choose a code template from the menu that appears.

AFE1_AFE2-1:1

Editing

131

If the code template requires any type of field input, as in the for loop example which
needs an end value and a count variable, an input dialog box appears.

SYNTAX COLORING

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR
Embedded Workbench editor automatically recognizes the syntax of different parts of
source code, for example:

● C and C++ keywords

● C and C++ comments

● Assembler directives and comments

● Preprocessor directives

● Strings.

The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Editor>Colors and Fonts
options. For more information, see Editor Colors and Fonts options, page 59.

To define your own set of keywords that should be syntax-colored
automatically:

1 In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

2 Choose Tools>Options and select Editor>Setup Files.

AFE1_AFE2-1:1

132

Programming assistance

IDE Project Management and Building Guide
for MSP430

3 Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

4 Select Editor>Colors and Fonts and choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For more
information, see Editor Colors and Fonts options, page 59.

In the editor window, type any of the keywords you listed in your keyword file; see how
the keyword is colored according to your specification.

ADDING BOOKMARKS

Use the Edit>Navigate>Toggle Bookmark command to add and remove bookmarks.
To switch between the marked locations, choose Edit>Navigate>Navigate Next
Bookmark or Navigate Previous Bookmark.

USING AND CUSTOMIZING EDITOR COMMANDS AND
SHORTCUT KEYS

The Edit menu provides commands for editing and searching in editor windows, for
instance, unlimited undo/redo. You can also find some of these commands on the
context menu that appears when you right-click in the editor window. For more
information about each command, see Edit menu, page 182.

There are also editor shortcut keys for:

● moving the insertion point

● scrolling text

● selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page
164.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For more information, see Key Bindings options, page 49.

DISPLAYING STATUS INFORMATION

The status bar is available by choosing View>Status Bar. For more information, see
IAR Embedded Workbench IDE window, page 39.

Programming assistance
There are several features in the editor that assist you during your software development.
This section describes various tasks related to using the editor.

AFE1_AFE2-1:1

Editing

133

These tasks are covered:

● Navigating in the insertion point history

● Navigating to a function

● Finding a definition or declaration of a symbol

● Finding references to a symbol

● Finding function calls for a selected function

● Switching between source and header files

● Displaying source browse information

● Text searching

● Accessing online help for reference information

NAVIGATING IN THE INSERTION POINT HISTORY

The current position of the insertion point is added to the insertion point history by
actions like Go to definition and clicking on the result for the Find in Files command.
You can jump in the history either forward or backward by using the Navigate Forward

 and Navigate Backward buttons (or by pressing Alt + Right Arrow or Alt +
Left Arrow).

NAVIGATING TO A FUNCTION

Click the Go to function button in the top-right corner of the editor window to list all
functions defined in the source file displayed in the window. You can then choose to
navigate directly to one of the functions by clicking it in the list. Note that the list is
refreshed when you save the file.

FINDING A DEFINITION OR DECLARATION OF A SYMBOL

To see the definition or declaration of a global symbol or a function, you can use these
alternative methods:

● In the editor window, right-click on a symbol and choose the Go to definition or Go
to declaration command from the context menu that appears. If more than one
declaration is found, the declarations are listed in the Declarations window from
where you can navigate to a specific declaration.

● In the Source Browser window, double-click on a symbol to view the definition

● In the Source Browser window, right-click on a symbol, or function, and choose
the Go to definition command from the context menu that appears

The definition of the symbol or function is displayed in the editor window.

AFE1_AFE2-1:1

134

Programming assistance

IDE Project Management and Building Guide
for MSP430

FINDING REFERENCES TO A SYMBOL

To find all references for a specific symbol, select the symbol in the editor window,
right-click and choose Find All References from the context menu. All found
references are displayed in the References window.

You can now navigate between the references.

FINDING FUNCTION CALLS FOR A SELECTED FUNCTION

To find all calls to or from a function, select the function in the editor window or in the
Source Browser window, right-click and choose either Find All Calls to or Find All
Calls from from the context menu. The result is displayed in the Call Graph window.

You can navigate between the function calls.

SWITCHING BETWEEN SOURCE AND HEADER FILES

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an editor
window. You can also choose the command Open Header/Source File, which opens
the header or source file with a corresponding filename to the current file, or activates it
if it is already open. This command is available if the insertion point is located on any
line except an #include line.

DISPLAYING SOURCE BROWSE INFORMATION

1 To open the Source Browser window, choose View>Source Browser>Source
Browser. Source browse information is displayed for the active build configuration.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the window.

2 To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

TEXT SEARCHING

There are several standard search functions available in the editor:

● Quick search text box

● Find dialog box

● Replace dialog box

● Find in Files dialog box

● Replace in Files dialog box

● Incremental Search dialog box.

AFE1_AFE2-1:1

Editing

135

To use the Quick search text box on the toolbar:

1 Type the text you want to search for and press Enter.

2 Press Esc to stop the search. This is a quick method of searching for text in the active
editor window.

To use the Find, Replace, Find in Files, Replace in Files, and Incremental
Search functions:

1 Before you use the search commands, choose Tools>Options>Editor and make sure
the Show bookmarks option is selected.

2 Choose the appropriate search command from the Edit menu. For more information
about each search function, see Edit menu, page 182.

3 To remove the blue flag icons that have appeared in the left-hand margin, right-click in
the Find in Files window and choose Clear All from the context menu.

ACCESSING ONLINE HELP FOR REFERENCE INFORMATION

When you need to know the syntax of a library function, extended keyword, intrinsic
function, etc, select it in the editor window and press F1.

AFE1_AFE2-1:1

136

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

The documentation for the item appears in a help window.

Reference information on the editor
Reference information about:

● Editor window, page 137

● Find dialog box, page 146

● Find in Files window, page 147

● Replace dialog box, page 148

● Find in Files dialog box, page 149

● Replace in Files dialog box, page 151

● Incremental Search dialog box, page 153

● Declarations window, page 154

● Ambiguous Definitions window, page 155

● References window, page 156

● Source Browser window, page 157

AFE1_AFE2-1:1

Editing

137

● Source Browse Log window, page 160

● Resolve File Ambiguity dialog box, page 162

● Call Graph window, page 162

● Template dialog box, page 163

● Editor shortcut key summary, page 164

Editor window
The editor window is opened when you open or create a text file in the IDE.

You can open one or several text files, either from the File menu, or by double-clicking
them in the Workspace window. All open files are available from the drop-down menu
at the upper right corner of the editor window. Several editor windows can be open at
the same time.

AFE1_AFE2-1:1

138

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Source code files and HTML files are displayed in editor windows. From an open
HTML document, hyperlinks to HTML files work like in an ordinary web browser. A
link to an eww workspace file opens the workspace in the IDE, and closes any currently
open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line
numbers—available by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently
open windows.

For more information about using the editor, see Editing a file, page 126 and
Programming assistance, page 132.

Relative source file paths

The IDE has partial support for relative source file paths.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IDE uses a path relative to the project file when accessing the source
file.

Documentation comments

In addition to regular comments that start with // (in C++) or /* (in C and C++), the
editor supports documentation comments, that start with /**, /*!, /// or //!. The
editor can distinguish these documentation comments from regular comments. By
default, the editor assigns the two types of comments different colors.

Inside a documentation comment, the editor highlights doxygen-style keywords
(keywords that begin with \ or @) and by default uses a different color for them than for
the rest of the comment. The color depends on whether the keyword is identified as an
existing doxygen keyword or not. You can customize the editor’s use of colors on the
Tools>Options>Editor>Colors and Fonts page, see Editor Colors and Fonts options,
page 59.

Lines inside documentation comment blocks can be shown in tooltips and parameter
hints for variables and functions. A comment block with no doxygen-style keywords
will be shown as a concatenated text string in tooltips and parameter hints. After the
occurrence of a doxygen-style keyword, only text written after a @brief keyword will
be shown in tooltips and parameter hints.

Window tabs, tab groups, and tab context menu

The name of the open file is displayed on the tab. If you open several files, they are
organized in a tab group. Click the tab for the file that you want to display. If a file has
been modified after it was last saved, an asterisk appears on the tab after the filename,
for example Utilities.c *. If a file is read-only, a padlock icon is visible on the tab.

AFE1_AFE2-1:1

Editing

139

The tab’s tooltip shows the full path and a remark if the file is not a member of the active
project.

A context menu appears if you right-click on a tab in the editor window.

These commands are available:

Save file
Saves the file.

Close

Closes the file.

Close All But This

Closes all tabs except the current tab.

Close All to the Right

Closes all tabs to the right of the current tab.

Open Containing Folder

Opens the File Explorer that displays the directory where the selected file
resides.

File Properties

Displays a standard File Properties dialog box.

Multiple editor windows and splitter controls

You can have one or several editor windows open at the same time. The commands on
the Window menu allow you to split the editor window into panes and to open multiple
editor windows. There are also commands for moving files between editor windows.

For more information about each command on the Window menu, see Window menu,
page 195.

AFE1_AFE2-1:1

140

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Go to function

Click the Go to function button in the top right-hand corner of the editor window to list
all functions of the C or C++ editor window.

Filter the list by typing the name of the function you are looking for. Then click the name
of the function that you want to show in the editor window.

AFE1_AFE2-1:1

Editing

141

Context menu

This context menu is available:

The contents of this menu depend on whether the debugger is started or not, and on the
C-SPY driver you are using. Typically, additional breakpoint types might be available
on this menu. For information about available breakpoints, see the C-SPY® Debugging
Guide for MSP430.

AFE1_AFE2-1:1

142

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

These commands are available:

Cut, Copy, Paste

Standard window commands.

Complete Word

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor document.

Complete Code

Shows a list of symbols that are available in a class, when you place the insertion
point after ., ->, or :: and when these characters are preceded by a class or
object name. For more information, see Code completion, page 129.

Parameter Hint

Suggests parameters as tooltip information for the function parameter list you
have begun to type. When there are several overloaded versions of a function,
you can choose which one to use by clicking the arrows in the tooltip. For more
information, see Parameter hint, page 129.

Match Brackets

Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds

Expands/collapses all code folds in the active project.

Insert Template

Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears. For more
information about this dialog box, see Template dialog box, page 163. For
information about using code templates, see Using and adding code templates,
page 130.

Open "header.h"

Opens the header file header.h in an editor window. If more than one header
file with the same name is found and the IDE does not have access to
dependency information, the Resolve File Ambiguity dialog box is displayed,
see Resolve File Ambiguity dialog box, page 162. This menu command is only
available if the insertion point is located on an #include line when you open
the context menu.

AFE1_AFE2-1:1

Editing

143

Open Header/Source File

Opens the header or source code file that has same base name as the current file.
If the destination file is not open when you choose the command, the file will
first be opened. This menu command is only available if the insertion point is
located on any line except an #include line when you open the context menu.
This command is also available from the File>Open menu.

Go to Definition of symbol
Places the insertion point at the definition of the symbol. If no definition is found
in the source code, the first declaration will be used instead. If more than one
possible definition is found, they are listed in the Ambiguous Definitions
window. See Ambiguous Definitions window, page 155.

Go to Declaration of symbol
If only one declaration is found, the command puts the insertion point at the
declaration of the symbol. If more than one declaration is found, these
declarations are listed in the Declarations window.

Find All References to symbol
The references are listed in the References window.

Find All Calls to symbol
Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 162. If this command
is disabled, make sure to select a function in the editor window.

Find All Calls from symbol
Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 162. If this
command is disabled, make sure to select a function in the editor window.

Find in Trace

Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see the C-SPY® Debugging Guide for
MSP430.

Toggle Breakpoint (Code)

Toggles a code breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about code breakpoints, see the
C-SPY® Debugging Guide for MSP430.

AFE1_AFE2-1:1

144

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Toggle Breakpoint (Log)

Toggles a log breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about log breakpoints, see the
C-SPY® Debugging Guide for MSP430.

Toggle Breakpoint (Trace Start)

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. For information about Trace Start breakpoints, see the C-SPY®
Debugging Guide for MSP430. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Toggle Breakpoint (Trace Stop)

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. For information about Trace Stop breakpoints, see the C-SPY®
Debugging Guide for MSP430. Note that this menu command is only available
if the C-SPY driver you are using supports trace.

Enable/disable Breakpoint

Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.

Set Data Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. For more information about data
breakpoints, see the C-SPY® Debugging Guide for MSP430.

Set Data Log Breakpoint for 'variable'

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. The breakpoints you set in this
window will be triggered by both read and write accesses; to change this, use the
Breakpoints window. For more information about data logging and data log
breakpoints, see the C-SPY® Debugging Guide for MSP430.

Edit Breakpoint

Displays the Edit Breakpoint dialog box to let you edit the breakpoint available
on the source code line where the insertion point is located. If there is more than
one breakpoint on the line, a submenu is displayed that lists all available
breakpoints on that line.

Set Next Statement

Sets the Program Counter directly to the selected statement or instruction
without executing any code. This menu command is only available when you are
using the debugger. For more information, see the C-SPY® Debugging Guide
for MSP430.

AFE1_AFE2-1:1

Editing

145

Add to Quick Watch: symbol
Opens the Quick Watch window and adds the symbol, see the C-SPY®
Debugging Guide for MSP430. This menu command is only available when you
are using the debugger.

Add to Watch: symbol
Opens the symbol to the Watch window and adds the symbol. This menu
command is only available when you are using the debugger.

Add to Live Watch: symbol
Opens the Live Watch window and adds the symbol, see the C-SPY®
Debugging Guide for MSP430. This menu command is only available when you
are using the debugger.

Move to PC

Moves the insertion point to the current PC position in the editor window. This
menu command is only available when you are using the debugger.

Run to Cursor

Executes from the current statement or instruction up to the statement or
instruction where the insertion point is located. This menu command is only
available when you are using the debugger.

Character Encoding

Interprets the source file according to the specified character encoding. Choose
between:

System (uses the Windows settings)
Western European
UTF-8
Japanese (Shift-JIS)
Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic
Baltic
Central European
Greek
Hebrew
Russian
Thai
Vietnamese
Convert to UTF-8 (converts the document to UTF-8)

AFE1_AFE2-1:1

146

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Use one of these settings if the Auto-detect character encoding option could
not determine the correct encoding or if the option is deselected. For more
information about file encoding, see Editor options, page 52.

Options

Displays the IDE Options dialog box, see Tools menu, page 193.

Find dialog box
The Find dialog box is available from the Edit menu.

Note that the contents of the dialog box might be different if you search in an editor
window compared to if you search in the Memory window. This screen shot reflects the
dialog box when you search in an editor window.

Find what

Specify the text to search for. Use the drop-down list to use old search strings.

When you search in the Memory window, the value you search for must be a multiple
of the display unit size. For example, when using the 2 units size in the Memory
window, the search value must be a multiple of two bytes.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying
int will also find print, sprintf etc. This option is only available when you perform
the search in an editor window.

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

AFE1_AFE2-1:1

Editing

147

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find Next

Searches for the next occurrence of the specified text.

Find Previous

Searches for the previous occurrence of the specified text.

Stop

Stops an ongoing search. This button is only available during a search in the Memory
window.

Find in Files window
The Find in Files window is available by choosing View>Messages.

This window displays the output from the Edit>Find and Replace>Find in Files
command. When opened, this window is, by default, grouped together with the other
message windows.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. That source location is highlighted with a blue
flag icon. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

Context menu

This context menu is available:

AFE1_AFE2-1:1

148

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

These commands are available:

Copy

Copies the selected content of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window and any blue flag icons in the left-side
margin of the editor window.

Replace dialog box
The Replace dialog box is available from the Edit menu.

Note that the contents of the dialog box are different if you search in an editor window
compared to if you search in the Memory window.

Find what

Specify the text to search for. Use the drop-down list to use old search strings.

Replace with

Specify the text to replace each found occurrence with. Use the drop-down list to use old
search strings.

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int. This option is only available
when you perform the search in an editor window.

Match whole word

Searches for the specified text only if it occurs as a separate word. Otherwise, int will
also find print, sprintf etc. This option is only available when you search in an editor
window.

AFE1_AFE2-1:1

Editing

149

Search as hex

Searches for the specified hexadecimal value. This option is only available when you
perform the search in the Memory window.

Only in selection

Limits the search operation to the selected lines (when searching in an editor window)
or to the selected memory area (when searching in the Memory window). The option is
only enabled when a selection has been made before you open the dialog box.

Find next

Searches for the next occurrence of the specified text.

Replace

Replaces the searched text with the specified text.

Replace all

Replaces all occurrences of the searched text in the current editor window.

Find in Files dialog box
The Find in Files dialog box is available from the Edit menu.

Use this dialog box to search for a string in files.

AFE1_AFE2-1:1

150

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

The result of the search appears in the Find in Files message window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line with the string you searched for.

Find what

Specify the string you want to search for, or a regular expression. Use the drop-down list
to use old search strings/expressions. You can narrow the search down with one or more
of these conditions:

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word

Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.

Match regular expression

Interprets the search string as a the regular expression, which must follow the
standard for the Perl programming language.

Look in

Specify which files you want to search in. Choose between:

For all projects in workspace

Searches all projects in the workspace, not just the active project.

Project files

Searches all files that you have explicitly added to your project.

Project files and user include files

Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files

Searches all project files that you have explicitly added to your project and all
files that they include.

Directory

Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

AFE1_AFE2-1:1

Editing

151

Look in subdirectories

Searches the directory that you have specified and all its subdirectories.

File types

A filter for choosing which type of files to search; the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Replace in Files dialog box
The Replace in Files dialog box is available from the Edit menu.

Use this dialog box to search for a specified string in multiple text files and replace it
with another string.

The result of the replacement appears in the Find in Files message window—available
from the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
message window. This opens the corresponding file in an editor window with the

AFE1_AFE2-1:1

152

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

insertion point positioned at the start of the specified text. A blue flag in the left-hand
margin indicates the line containing the string you searched for.

Find what

Specify the string you want to search for and replace, or a regular expression. Use the
drop-down list to use old search strings/expressions. You can narrow the search down
with one or more of these conditions:

Match case

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word

Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf, and so on.

Match regular expression

Interprets the search string as a regular expression, which must follow the
standard for the Perl programming language.

Replace with

Specify the string you want to replace the original string with. Use the drop-down list to
use old replace strings.

Look in

Specify which files you want to search in. Choose between:

For all projects in workspace

Searches all projects in the workspace, not just the active project.

Project files

Searches all files that you have explicitly added to your project.

Project files and user include files

Searches all files that you have explicitly added to your project and all files that
they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all include files

Searches all project files that you have explicitly added to your project and all
files that they include.

AFE1_AFE2-1:1

Editing

153

Directory

Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories

Searches the directory that you have specified and all its subdirectories.

File types

A filter for choosing which type of files to search; the filter applies to all Look in
settings. Choose the appropriate filter from the drop-down list. The text field is editable,
to let you add your own filters. Use the * character to indicate zero or more unknown
characters of the filters, and the ? character to indicate one unknown character.

Stop

Stops an ongoing search. This button is only available during an ongoing search.

Close

Closes the dialog box. An ongoing search must be stopped first.

Find Next

Finds the next occurrence of the specified search string.

Replace

Replaces the found string and finds the next occurrence of the specified search string.

Replace All

Saves all files and replaces all found strings that match the search string.

Skip file

Skips the occurrences in the current file.

Incremental Search dialog box
The Incremental Search dialog box is available from the Edit menu.

AFE1_AFE2-1:1

154

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Use this dialog box to gradually fine-tune or expand the search string.

Find what

Type the string to search for. The search is performed from the location of the insertion
point—the start point. Every character you add to or remove from the search string
instantly changes the search accordingly. If you remove a character, the search starts
over again from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Match case

Searches for occurrences that exactly match the case of the specified text. Otherwise,
searching for int will also find INT and Int.

Find Next

Searches for the next occurrence of the current search string. If the Find What text box
is empty when you click the Find Next button, a string to search for will automatically
be selected from the drop-down list. To search for this string, click Find Next.

Close

Closes the dialog box.

Only in selection

Limits the search operation to the selected lines. The option is only available when more
than one line has been selected before you open the dialog box.

Declarations window
The Declarations window is available by choosing View>Source Browser.

AFE1_AFE2-1:1

Editing

155

This window displays the result from the Go to Declaration command on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list declarations for a specific symbol, select a symbol in the editor window,
right-click and choose Go to Declaration from the context menu. All declarations are
listed in the Declarations window.

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Ambiguous Definitions window
The Ambiguous Definitions window is available by choosing View>Source Browser.

This window displays the result from the Go to Definition command on the editor
window context menu, if the source browser finds more than one possible definition.

When opened, this window is by default grouped together with the other message
windows.

AFE1_AFE2-1:1

156

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next entry in sequence.

Context menu

This context menu is available:

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

References window
The References window is available by choosing View>Source Browser.

This window displays the result from the Find All References commands on the editor
window context menu.

When opened, this window is by default grouped together with the other message
windows.

To find and list references for a specific symbol, select a symbol in the editor window,
right-click and choose Find All References from the context menu. All references are
listed in the References window.

AFE1_AFE2-1:1

Editing

157

Double-click an entry in the window to open the corresponding file with the insertion
point positioned at the correct location. Choose Edit>Next Error/Tag or press F4 to
jump to the next in sequence.

Context menu

This context menu is available:

These commands are available:

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Deletes the contents of the window.

Source Browser window
The Source Browser window is available from the View menu.

This window displays an hierarchical view in alphabetical order of all symbols defined
in the active build configuration. This means that source browse information is available
for symbols in source files and include files part of that configuration. Source browse
information is not available for symbols in linked libraries.

AFE1_AFE2-1:1

158

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

For more information about how to use this window, see Displaying source browse
information, page 134.

The display area

The display area contains four columns:

To sort each column, click its header.

Icons used for the symbol types

These are the icons used:

Name The names of global symbols and functions defined in the project. Note
that an unnamed type, for example a struct or a union without a name,
will get a name based on the filename and line number where it is defined.
These pseudonames are enclosed in angle brackets.

Scope The scope (namespaces and classes/structs) that the entry belongs to.

Symbol
type

Displays the symbol type for each element.

File The file name (without path) that contains the definition of the entry.

Base class

Class

Configuration

Enumeration

Enumeration constant

 (Yellow rhomb) Field of a struct

 (Purple rhomb) Function

Macro

Namespace

Template class

Template function

Type definition

Union

 (Yellow rhomb) Variable

AFE1_AFE2-1:1

Editing

159

Context menu

This context menu is available in the display area:

These commands are available:

Go to Definition

The editor window will display the definition of the selected item.

Find All Calls to

Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 162. If this command
is disabled, make sure to select a function in the Source Browser window.

Find All Calls from

Opens the Call Graph window which displays all functions in the project that
are called from the selected function, see Call Graph window, page 162. If this
command is disabled, make sure to select a function in the Source Browser
window.

Move to Parent

If the selected element is a member of a class, struct, union, enumeration, or
namespace, this menu command can be used for moving the insertion point to
the enclosing element.

All Symbols

Type filter; displays all global symbols and functions defined in the project.

Functions and Variables

Type filter; displays all functions and variables defined in the project.

Non-Member Functions and Variables

Type filter; displays all functions and variables that are not members of a class.

AFE1_AFE2-1:1

160

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Types

Type filter; displays all types such as structures and classes defined in the
project.

Constants and Macros

Type filter; displays all constants and macros defined in the project.

Project Files

File filter; displays symbols from all files that you have explicitly added to your
project, but no include files.

Project and User Include Files

File filter; displays symbols from all files that you have explicitly added to your
project and all files included by them, except the include files in the IAR
Embedded Workbench installation directory.

Project and All Include Files

File filter; displays symbols from all files that you have explicitly added to your
project and all files included by them.

Progress bar

While the source browse information is generated for a project, a green progress bar is
displayed in the status bar of the IDE window. Clicking on this progress bar opens a
context menu with a command to open the Source Browse Log window, see Source
Browse Log window, page 160.

If the source browser encounters a fatal error, the progress bar turns red.

Source Browse Log window
The Source Browse Log window is available by choosing View>Messages.

This window displays the output from the operation of the source browser.

AFE1_AFE2-1:1

Editing

161

Context menu

This context menu is available:

These commands are available:

All

Shows all messages sent by the source browser. This is mainly useful as input to
IAR Systems technical support.

Messages

Gives information about what the source browser is doing and any errors that
occur during parsing.

Errors

Shows only errors received during the source browsing.

Copy

Copies the contents of the window.

Select All

Selects the contents of the window.

Clear All

Clears the contents of the window.

Live Log to File

Displays a submenu with commands for writing the source browse messages to
a log file, and setting filter levels for the log.

AFE1_AFE2-1:1

162

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Resolve File Ambiguity dialog box
The Resolve File Ambiguity dialog box is displayed when the editor finds more than
one header file with the same name.

This dialog box lists the header files if more than one header file is found when you
choose the Open "header.h" command on the editor window context menu and the IDE
does not have access to dependency information.

Call Graph window
The Call Graph window is available by choosing View>Source Browser>Call Graph.

This window displays calls to or calls from a function. The window is useful for
navigating between the function calls.

To display a call graph, select a function name in the editor window or in the Source
Browser window, right-click and select either Find All Calls to or Find All Calls from
from the context menu.

Double-click an entry in the window to place the insertion point at the location of the
function call (or definition, if a call is not applicable for the entry). The editor will open
the file that contains the call if necessary.

AFE1_AFE2-1:1

Editing

163

Display area

The display area shows the call graph for the selected function, where each line lists a
function. These columns are available:

Context menu

This context menu is available:

These commands are available:

Go to Definition

Places the insertion point at the location of the function definition.

Go to Call

Places the insertion point at the location of the function call.

Template dialog box
The Template dialog box appears when you insert a code template that requires any
field input.

Use this dialog box to specify any field input that is required by the source code template
you insert.

Note: The figure reflects the default code template that can be used for automatically
inserting code for a for loop.

Function Displays the call graph for the selected function; first the
selected function, followed by a list of all called or calling
functions. The functions calling the selected function are
indicated with left arrow and the functions called by the
selected function are indicated with a right arrow.

File The name of the source file.

Line The line number for the call.

AFE1_AFE2-1:1

164

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Text fields

Specify the required input in the text fields. Which fields that appear depends on how
the code template is defined.

Display area

The display area shows the code that would result from the code template, using the
values you submit. For more information about using code templates, see Using and
adding code templates, page 130.

Editor shortcut key summary
There are three types of shortcut keys that you can use in the editor:

● Predefined shortcut keys, which you can edit using the IDE Options dialog box

● Shortcut keys provided by the Scintilla editor

● Custom shortcut keys that you can add using the IDE Options dialog box.

The following tables summarize the editor’s predefined shortcut keys.

Moving the insertion point

To move the insertion point Press

One character to the left Left arrow

One character to the right Right arrow

One word to the left Ctrl + Left arrow

One word to the right Ctrl + Right arrow

One word part to the left; when using mixed
cases, for example mixedCaseName

Ctrl + Alt + Left arrow

One word part to the right; when using mixed
cases, for example mixedCaseName

Ctrl + Alt + Right arrow

One line up Up arrow

One line down Down arrow

To the previous paragraph Ctrl + Alt + Up arrow

To the next paragraph Ctrl + Alt + Down arrow

To the start of the line Home

To the end of the line End

To the beginning of the file Ctrl + Home

To the end of the file Ctrl + End

Table 5: Editor shortcut keys for insertion point navigation

AFE1_AFE2-1:1

Editing

165

Selecting text

To select text, press Shift and the corresponding command for moving the insertion
point. In addition, this command is available:

Scrolling text

Miscellaneous shortcut keys

To select Press

A column-based block Shift + Alt + Arrow key

Table 6: Editor shortcut keys for selecting text

To scroll Press

Up one line.
When used in the parameter hints text box,
this shortcut steps up one line through the
alternatives.

Ctrl + Up arrow

Down one line,
When used in the parameter hints text box,
this shortcut steps down one line through the
alternatives.

Ctrl + Down arrow

Up one page Page Up

Down one page Page Down

Table 7: Editor shortcut keys for scrolling

Description Press

When used in the parameter hints text box,
this shortcut inserts parameters as text in the
source code.

Ctrl + Enter

Bracket matching: Expand selection to next
level of matching of {}, [], or ().

Ctrl + B

Bracket matching: Expand selection to next
level of matching of {}, [], (), or <>.

Ctrl + Alt + B

Bracket matching: Shrink selection to next
level of matching of {}, [], or ().

Ctrl + Shift + B

Bracket matching: Shrink selection to next
level of matching of {}, [], (), or <>.

Ctrl + Alt + Shift + B

Change case for selected text to lower Ctrl + u

Change case for selected text to upper Ctrl + U

Table 8: Miscellaneous editor shortcut keys

AFE1_AFE2-1:1

166

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

Additional Scintilla shortcut keys

Complete code Ctrl + Space

Complete word Ctrl + Alt + Space

Insert template Ctrl + Alt + V

Parameter hint Ctrl + Shift + Space

Zooming Mouse wheel

Zoom in Ctrl + numeric keypad '+'

Zoom out Ctrl + numeric keypad '-'

Zoom normal Ctrl + numeric keypad '/'

Description Press

Table 8: Miscellaneous editor shortcut keys (Continued)

Description Press

Scroll window line up or down Ctrl + Up
Ctrl + Down

Select a rectangular block and change its size a
line up or down, or a column left or right

Shift + Alt + arrow key

Move insertion point one paragraph up or
down

Ctrl + Alt + Up
Ctrl + Alt + Down

Grow selection one paragraph up or down Ctrl + Shift + Alt + Up
Ctrl + Shift + Alt + Down

Move insertion point one word left or right Ctrl + Left
Ctrl + Right

Grow selection one word left or right Ctrl + Shift + Left
Ctrl + Shift + Right

Grow selection to next start or end of a word Ctrl + Shift + Alt + Left
Ctrl + Shift + Alt + Right

Move to first non-blank character of the line Home

Move to start of line Alt + Home

Select to start of the line Shift + Alt + Home

Select a rectangular block to the start or end
of page

Shift + Alt + Page Up
Shift + Alt + Page Down

Delete to start of next word Ctrl + Delete

Delete to start of previous word Ctrl + Backspace

Delete forward to end of line Ctrl + Shift + Delete

Table 9: Additional Scintilla shortcut keys

AFE1_AFE2-1:1

Editing

167

Delete backward to start of line Ctrl + Shift + Backspace

Zoom in Ctrl + Add (numeric +)

Zoom out Ctrl + Subtract (numeric –)

Restore zoom to 100% Ctrl + Divide (numeric /)

Cut current line Ctrl + L

Copy current line Ctrl + Shift + T

Delete current line Ctrl + Shift + L

Change selection to lower case Ctrl + U

Change selection to upper case Ctrl + Shift + U

Description Press

Table 9: Additional Scintilla shortcut keys (Continued)

AFE1_AFE2-1:1

168

Reference information on the editor

IDE Project Management and Building Guide
for MSP430

169

Part 2. Reference
information
This part contains these chapters:

● Product files

● Menu reference

● General options

● Compiler options

● Assembler options

● Custom build options

● Build actions options

● Linker options

● TI ULP Advisor™ Software options

● Library builder options

170

AFE1_AFE2-1:1

171

Product files
● Installation directory structure

● Project directory structure

● Various settings files

● File types

Installation directory structure
These topics are covered:

● Root directory

● The 430 directory

● The common directory

● The install-info directory

The installation procedure creates several directories to contain the various types of files
used with the IAR Systems development tools. The following sections give a description
of the files contained by default in each directory.

ROOT DIRECTORY

The default installation root directory is typically x:\Program Files\IAR

Systems\Embedded Workbench N.n\, where x is the drive where Microsoft
Windows is installed, and the first digit in N.n reflects the first digit in the version
number of the IAR Embedded Workbench shared components.

Note that this version number is not the same as the version number of your IAR
Embedded Workbench product. To find the version number of the IDE and the product,
see Product Info dialog box, page 80.

AFE1_AFE2-1:1

172

Installation directory structure

IDE Project Management and Building Guide
for MSP430

THE 430 DIRECTORY

The 430 directory contains all product-specific subdirectories.

Directory Description

430\bin Contains executable files for MSP430-specific components, such as the
compiler, the assembler, the linker and the library tools, and the
C-SPY® drivers.

430\config Contains files used for configuring the development environment and
projects, for example:
• Linker configuration files (*.xcl)
• Special function register description files (*.sfr)
• C-SPY device description files (*.ddf)
• Device selection files (*.menu)
• Flash loader applications for various devices (*.d43)
• Syntax coloring configuration files (*.cfg)
• Project templates for both application and library projects (*.ewp),
and for the library projects, the corresponding library configuration
files.

430\cstat Contains files related to C-STAT.

430\doc Contains online versions in hypertext PDF format of this user guide,
and of the MSP430 reference guides, as well as online help files
(*.chm). The directory also contains release notes with recent
additional information about the MSP430 tools.

430\drivers Contains low-level device drivers, typically USB drivers required by the
C-SPY drivers.

430\examples Contains files related to example projects, which can be opened from
the Information Center.

430\inc Contains include files, such as the header files for the standard C or
C++ library. There are also specific header files that define special
function registers (SFRs); these files are used by both the compiler and
the assembler.

430\lib Contains prebuilt libraries and the corresponding library configuration
files, used by the compiler.

430\plugins Contains executable files and description files for components that can
be loaded as plugin modules.

430\rtos Contains product information, evaluation versions, and example
projects for third-party RTOS and middleware solutions integrated into
IAR Embedded Workbench.

Table 10: The 430 directory

AFE1_AFE2-1:1

Product files

173

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

THE INSTALL-INFO DIRECTORY

The install-info directory contains metadata (version number, name, etc.) about the
installed product components. Do not modify these files.

Project directory structure
When you build your project, the IDE creates new directories in your project directory.
A subdirectory is created; the name of this directory reflects the build configuration you
are using, typically Debug or Release. This directory in turn contains these
subdirectories:

430\src Contains source files for some configurable library functions and the
library source code.
For the XLINK linker, the directory also contains the source files for
components common to all IAR Embedded Workbench products, such
as a sample reader of the IAR XLINK Linker output format SIMPLE.

430\tutorials Contains the files used for the tutorials in the Information Center.

Directory Description

common\bin Contains executable files for components common to all IAR
Embedded Workbench products, such as the editor and the graphical
user interface components. The executable file for the IDE is also
located here.

common\config Contains files used by the IDE for settings in the development
environment.

common\doc Contains release notes with recent additional information about the
components common to all IAR Embedded Workbench products. We
recommend that you read these files. The directory also contains
documentation related to installation and licensing.

common\plugins Contains executable files and description files for components that can
be loaded as plugin modules, for example modules for code coverage.

Table 11: The common directory

Directory Description

Table 10: The 430 directory (Continued)

List The destination directory for various list files.

AFE1_AFE2-1:1

174

Various settings files

IDE Project Management and Building Guide
for MSP430

Various settings files
When you work in the IDE, the IDE creates files for various types of settings. These files
are stored in different directories depending on whether the files contain global or local
settings.

FILES FOR GLOBAL SETTINGS

Files for global settings are stored in C:\Users\User\AppData\Local\IAR
Embedded Workbench. These are the global settings files:

Obj The destination directory for the object files from the compiler and
assembler. The object files have the extension r43 and are used as input to
the linker.

Exe The destination directory for:

● The executable file, which has the extension d43 and is used as input
to the IAR C-SPY® Debugger.

● Library object files, which have the extension r43.

CodeTemplates.txt
CodeTemplates.ENU.txt
CodeTemplates.JPN.txt

A file that holds predefined code templates.

Note that if you are using an IDE that is available in
languages other than English, you are asked to select a
language version when you start the IAR Embedded
Workbench for the first time. In this case, the filename
is extended with ENU or JPN, depending on your
choice of language (English or Japanese).

See also Using and adding code templates, page 130.

global.custom_argvars A file that holds any custom argument variables that
are defined for a global scope.

See also Configure Custom Argument Variables dialog
box, page 83.

IarIde.xml A file that holds IDE and project settings global to
your installed IAR Embedded Workbench product(s).

AFE1_AFE2-1:1

Product files

175

FILES FOR LOCAL SETTINGS

Files for local settings are stored in the directory settings, which is created in your
project directory. These are the local settings files:

File types
The IAR Systems development tools use the following default filename extensions to
identify the produced files and other recognized file types:

Project.dbgdt A file for debugger desktop settings.

Project.Buildconfig.cspy.bat A batch file that C-SPY creates every time
it is invoked.

Project.Buildconfig.driver.xcl A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to the C-SPY driver you are
using.

Project.Buildconfig.general.xcl A file that C-SPY creates every time it is
invoked, and which contains the
command line options used that are
specific to cspybat.

Project.dnx A file for debugger initialization
information.

Workspace.wsdt A file for workspace desktop settings.

Workspace.wspos A file for placement information for the
main IDE window.

Workspace.custom_argvars A file for any custom argument variables
that are defined for a workspace-local
scope. See also Configure Custom
Argument Variables dialog box, page 83.

Ext. Type of file Output from Input to

a43 Target application XLINK EPROM, C-SPY,
etc.

asm Assembler source code Text editor Assembler

bat Windows command batch file C-SPY Windows

c C source code Text editor Compiler

Table 12: File types

AFE1_AFE2-1:1

176

File types

IDE Project Management and Building Guide
for MSP430

cfg Syntax coloring configuration Text editor IDE

chm Online help system file -- IDE

cpp C++ source code Text editor Compiler

cspy.bat Invocation file for cspybat C-SPY –

d43 Target application with debug information XLINK C-SPY and other
symbolic
debuggers

dat Macros for formatting of STL containers IDE IDE

dbg Target application with debug information XLINK C-SPY and other
symbolic
debuggers

dbgdt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IDE IDE

dnx Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IDE IDE

ewp IAR Embedded Workbench project
(current version)

IDE IDE

ewplugin IDE description file for plugin modules -- IDE

ewt Project settings for C-STAT and C-RUN IDE IDE

eww Workspace file IDE IDE

fmt Formatting information for the Locals
and Watch windows

IDE IDE

h C/C++ or assembler header source Text editor Compiler or
assembler
#include

helpfiles Help menu configuration file Text editor IDE

html, htm HTML document Text editor IDE

i Preprocessed source Compiler Compiler

inc Assembler header source Text editor Assembler
#include

ini Project configuration IDE –

log Log information IDE –

Ext. Type of file Output from Input to

Table 12: File types (Continued)

AFE1_AFE2-1:1

Product files

177

When you run the IDE, some files are created and located in dedicated directories under
your project directory, by default $PROJ_DIR$\Debug, $PROJ_DIR$\Release,
$PROJ_DIR$\settings. None of these directories or files affect the execution of the
IDE, which means you can safely remove them if required.

lst List output Compiler and
assembler

–

mac C-SPY macro definition Text editor C-SPY

map List output XLINK –

menu Device selection file Text editor IDE

pbd Source browse information IDE IDE

pbi Source browse information IDE IDE

pew IAR Embedded Workbench project (old
project format)

IDE IDE

prj IAR Embedded Workbench project (old
project format)

IDE IDE

r43 Object module Compiler and
assembler

XLINK, XAR, and
XLIB

r43 Library XAR, XLIB XLINK, XAR, and
XLIB

reggroups User-defined register group configuration IDE IDE

s43 Assembler source code Text editor Assembler

sfr Special function register definitions Text editor C-SPY

sim Simple code formatted input for the flash
loader

C-SPY C-SPY

suc Stack usage control file Text editor XLINK

vsp Visual State project files IAR Visual State
Editor

IAR Visual State
Editor and IAR
Embedded
Workbench IDE

wsdt Workspace desktop settings IDE IDE

wspos Main IDE window placement information IDE IDE

xcl Extended command line Text editor Assembler,
compiler, linker,
cspybat, source
browser

Ext. Type of file Output from Input to

Table 12: File types (Continued)

AFE1_AFE2-1:1

178

File types

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

179

Menu reference
● Menus

Menus
Reference information about:

● File menu

● Edit menu

● View menu

● Project menu

● Tools menu

● Window menu

● Help menu

In addition, a set of C-SPY-specific menus become available when you start the
debugger. For more information about these menus, see the C-SPY® Debugging Guide
for MSP430.

File menu
The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IDE.

AFE1_AFE2-1:1

180

Menus

IDE Project Management and Building Guide
for MSP430

The menu also includes a numbered list of the most recently opened files and
workspaces. To open one of them, choose it from the menu.

Menu commands

These commands are available:

New File (Ctrl+N)

Creates a new text file.

New Workspace

Creates a new workspace.

Open File (Ctrl+O)

Displays an Open dialog box for selecting a text file or an HTML document to
open. See Editor window, page 137.

Open Workspace

Displays an Open Workspace dialog box for selecting a workspace file to open.
Before a new workspace is opened you will be prompted to save and close any
currently open workspaces.

Open Header/Source File (Ctrl+Shift+H)

Opens the header file or source file that corresponds to the current file, and shifts
focus from the current file to the newly opened file. This command is also
available on the context menu in the editor window.

AFE1_AFE2-1:1

Menu reference

181

Close

Closes the active window. You will be given the opportunity to save any files that
have been modified before closing.

Save Workspace

Saves the current workspace file.

Save Workspace As

Displays a Save Workspace As dialog box for saving the workspace with a new
name.

Close Workspace

Closes the current workspace file.

Save (Ctrl+S)

Saves the current text file or workspace file.

Save As

Displays a Save As dialog box where you can save the current file with a new
name.

Save All

Saves all open text documents and workspace files.

Page Setup

Displays a Page Setup dialog box where you can set printer options.

Print (Ctrl+P)

Displays a Print dialog box where you can print a text document.

Recent Files

Displays a submenu from where you can quickly open the most recently opened
text documents.

Recent Workspaces

Displays a submenu from where you can quickly open the most recently opened
workspace files.

Exit

Exits from the IDE. You will be asked whether to save any changes to text files
before closing them. Changes to the project are saved automatically.

AFE1_AFE2-1:1

182

Menus

IDE Project Management and Building Guide
for MSP430

Edit menu
The Edit menu provides commands for editing and searching.

Menu commands

These commands are available:

Undo (Ctrl+Z)

Undoes the last edit made to the current editor window.

Redo (Ctrl+Y)

Redoes the last Undo in the current editor window. You can undo and redo an
unlimited number of edits independently in each editor window.

Cut (Ctrl+X)

The standard Windows command for cutting text in editor windows and text
boxes.

Copy (Ctrl+C)

The standard Windows command for copying text in editor windows and text
boxes.

AFE1_AFE2-1:1

Menu reference

183

Paste (Ctrl+V)

The standard Windows command for pasting text in editor windows and text
boxes.

Select All (Ctrl+A)

Selects all text in the active editor window.

Find and Replace>Find (Ctrl+F)

Displays the Find dialog box where you can search for text within the current
editor window, see Find dialog box, page 146. Note that if the insertion point is
located in the Memory window when you choose the Find command, the dialog
box will contain a different set of options than otherwise. If the insertion point
is located in the Trace window when you choose the Find command, the Find
in Trace dialog box is opened; the contents of this dialog box depend on the
C-SPY driver you are using, see the C-SPY® Debugging Guide for MSP430 for
more information.

Find and Replace>Find Next (F3)

Finds the next occurrence of the specified string.

Find and Replace>Find Previous (Shift+F3)

Finds the previous occurrence of the specified string.

Find and Replace>Find Next (Selected) (Ctrl+F3)

Searches for the next occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Find Previous (Selected) (Ctrl+Shift+F3)

Searches for the previous occurrence of the currently selected text or the word
currently surrounding the insertion point.

Find and Replace>Replace (Ctrl+H)

Displays a dialog box where you can search for a specified string and replace
each occurrence with another string, see Replace dialog box, page 148.

Note that if the insertion point is located in the Memory window when you
choose the Replace command, the dialog box will contain a different set of
options than otherwise.

Find and Replace>Find in Files

Displays a dialog box where you can search for a specified string in multiple text
files, see Find in Files window, page 147.

AFE1_AFE2-1:1

184

Menus

IDE Project Management and Building Guide
for MSP430

Find and Replace>Replace in Files

Displays a dialog box where you can search for a specified string in multiple text
files and replace it with another string, see Replace in Files dialog box, page
151.

Find and Replace>Incremental Search (Ctrl+I)

Displays a dialog box where you can gradually fine-tune or expand the search
by continuously changing the search string, see Incremental Search dialog box,
page 153.

Navigate>Go To (Ctrl+G)

Displays the Go to Line dialog box where you can move the insertion point to
a specified line and column in the current editor window.

Navigate>Toggle Bookmark (Ctrl+F2)

Toggles a bookmark at the line where the insertion point is located in the active
editor window.

Navigate>Previous Bookmark (Shift+F2)

Moves the insertion point to the previous bookmark that has been defined with
the Toggle Bookmark command.

Navigate>Next Bookmark (F2)

Moves the insertion point to the next bookmark that has been defined with the
Toggle Bookmark command.

Navigate>Navigate Backward (Alt+Left Arrow)

Navigates backward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

Navigate>Navigate Forward (Alt+Right Arrow)

Navigates forward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and
clicking on a result from the Find in Files command.

Navigate>Go to Definition (F12)

Shows the declaration of the selected symbol or the symbol where the insertion
point is placed. This menu command is available when browse information has
been enabled, see Project options, page 61.

AFE1_AFE2-1:1

Menu reference

185

Code Templates>Insert Template (Ctrl+Alt+V)

Displays a list in the editor window from which you can choose a code template
to be inserted at the location of the insertion point. If the code template you
choose requires any field input, the Template dialog box appears, see Template
dialog box, page 163. For information about using code templates, see Using
and adding code templates, page 130.

Code Templates>Edit Templates

Opens the current code template file, where you can modify existing code
templates and add your own code templates. For information about using code
templates, see Using and adding code templates, page 130.

Next Error/Tag (F4)

If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the next item from that list in the
editor window.

Previous Error/Tag (Shift+F4)

If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the previous item from that list in
the editor window.

Complete Word (Ctrl+Alt+Space)

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor document.

Complete Code (Ctrl+Space)

Shows a list of symbols that are available in a class, when you place the insertion
point after ., ->, or :: and when these characters are preceded by a class or
object name. For more information, see Code completion, page 129.

Parameter Hint (Ctrl+Shift+Space)

Suggests parameters as tooltip information for the function parameter list you
have begun to type. When there are several overloaded versions of a function,
you can choose which one to use by clicking the arrows in the tooltip. For more
information, see Parameter hint, page 129.

Match Brackets

Selects all text between the brackets immediately surrounding the insertion
point, increases the selection to the next hierarchic pair of brackets, or beeps if
there is no higher bracket hierarchy.

Toggle All Folds (Ctrl+Alt+F)

Expands/collapses all code folds in the active project.

AFE1_AFE2-1:1

186

Menus

IDE Project Management and Building Guide
for MSP430

Auto Indent (Ctrl+T)

Indents one or several lines you have selected in a C/C++ source file. To
configure the indentation, see Configure Auto Indent dialog box, page 55.

Block Comment (Ctrl+K)

Places the C++ comment character sequence // at the beginning of the selected
lines.

Block Uncomment (Ctrl+Shift+K)

Removes the C++ comment character sequence // from the beginning of the
selected lines.

Toggle Breakpoint (F9)

Toggles a breakpoint at the statement or instruction that contains or is located
near the cursor in the source window. This command is also available as an icon
button on the debug toolbar.

Enable/Disable Breakpoint (Ctrl+F9)

Toggles a breakpoint between being disabled, but not actually removed—
making it available for future use—and being enabled again.

View menu
The View menu provides several commands for opening windows in the IDE. When
C-SPY is running you can also open debugger-specific windows from this menu. See
the C-SPY® Debugging Guide for MSP430 for information about these.

Menu commands

These commands are available:

Messages

Displays a submenu which gives access to the message windows—Build, Find
in Files, Source Browse Log, Tool Output, Debug Log—that display
messages and text output from the IAR Embedded Workbench commands. If the
window you choose from the menu is already open, it becomes the active
window.

AFE1_AFE2-1:1

Menu reference

187

Workspace

Opens the current Workspace window, see Workspace window, page 97.

Source Browser>Source Browser

Opens the Source Browser window, see Source Browser window, page 157.

Source Browser>References

Opens the References window, see References window, page 156.

Source Browser>Declarations

Opens the Declarations window, see Declarations window, page 154.

Source Browser>Ambiguous Definitions

Opens the Ambiguous Definitions window, see Ambiguous Definitions
window, page 155.

Source Browser>Call Graph

Opens the Call Graph window, see Call Graph window, page 162.

C-STAT>C-STAT Messages

Opens the C-STAT Messages window, see the C-STAT® Static Analysis Guide.

Breakpoints

Opens the Breakpoints window, see the C-SPY® Debugging Guide for
MSP430.

Call Stack

Opens the Call Stack window. Only available when C-SPY is running.

Watch

Opens an instance of the Watch window from a submenu. Only available when
C-SPY is running.

Live Watch

Opens the Live Watch window. Only available when C-SPY is running.

Quick Watch

Opens the Quick Watch window. Only available when C-SPY is running.

Auto

Opens the Auto window. Only available when C-SPY is running.

Locals

Opens the Locals window. Only available when C-SPY is running.

Statics

Opens the Statics window. Only available when C-SPY is running.

AFE1_AFE2-1:1

188

Menus

IDE Project Management and Building Guide
for MSP430

Memory

Opens an instance of the Memory window from a submenu. Only available
when C-SPY is running.

Registers

Displays a submenu which gives access to the Registers windows—Registers
and Register User Groups Setup. Only available when C-SPY is running.

Disassembly

Opens the Disassembly window. Only available when C-SPY is running.

Stack

Opens an instance of the Stack window from a submenu. Only available when
C-SPY is running.

Symbolic Memory

Opens the Symbolic Memory window. Only available when C-SPY is running.

Terminal I/O

Opens the Terminal I/O window. Only available when C-SPY is running.

Macros>Macro Quicklaunch

Opens the Macro Quicklaunch window. Only available when C-SPY is
running.

Macros>Macro Registration

Opens the Macro Registration window. Only available when C-SPY is
running.

Macros>Debugger Macros

Opens the Debugger Macros window. Only available when C-SPY is running.

Symbols

Opens the Symbols window. Only available when C-SPY is running.

Code Coverage

Opens the Code Coverage window. Only available when C-SPY is running.

Images

Opens the Images window. Only available when C-SPY is running.

Cores

Opens the Cores window. Only available when C-SPY is running.

AFE1_AFE2-1:1

Menu reference

189

Project menu
The Project menu provides commands for working with workspaces, projects, groups,
and files, and for specifying options for the build tools, and running the tools on the
current project.

Menu commands

These commands are available:

Add Files

Displays a dialog box where you can select which files to include in the current
project.

AFE1_AFE2-1:1

190

Menus

IDE Project Management and Building Guide
for MSP430

Add Group

Displays a dialog box where you can create a new group. In the Group Name
text box, specify the name of the new group. For more information about groups,
see Groups, page 91.

Import File List

Displays a standard Open dialog box where you can import information about
files and groups from projects created using another IAR Systems toolchain.

To import information from project files which have one of the older filename
extensions pew or prj you must first have exported the information using the
context menu command Export File List available in your current IAR
Embedded Workbench.

Add Project Connection

Displays the Add Project Connection dialog box, see Add Project Connection
dialog box, page 105.

Edit Configurations

Displays the Configurations for project dialog box, where you can define new
or remove existing build configurations. See Configurations for project dialog
box, page 103.

Remove

In the Workspace window, removes the selected item from the workspace.

Create New Project

Displays the Create New Project dialog box where you can create a new project
and add it to the workspace, see Create New Project dialog box, page 102.

Add Existing Project

Displays a standard Open dialog box where you can add an existing project to
the workspace.

Options (Alt+F7)

Displays the Options dialog box, where you can set options for the build tools,
for the selected item in the Workspace window, see Options dialog box, page
119. You can set options for the entire project, for a group of files, or for an
individual file.

Version Control System

Displays a submenu with commands for version control, see Version Control
System menu for Subversion, page 105.

AFE1_AFE2-1:1

Menu reference

191

Make (F7)

Brings the current build configuration up to date by compiling, assembling, and
linking only the files that have changed since the last build.

Compile (Ctrl+F7)

Compiles or assembles the currently selected file, files, or group.

One or more files can be selected in the Workspace window—all files in the
same project, but not necessarily in the same group. You can also select the
editor window containing the file you want to compile. The Compile command
is only enabled if all files in the selection can be compiled or assembled.

You can also select a group, in which case the command is applied to each file
in the group (also inside nested groups) that can be compiled, even if the group
contains files that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the command will
still only affect the selected file.

Rebuild All

Rebuilds and relinks all files in the current target.

Clean

Removes any intermediate files.

Batch Build (F8)

Displays the Batch Build dialog box where you can configure named batch
build configurations, and build a named batch. See Batch Build dialog box, page
122.

C-STAT Static Analysis>Analyze Project

Makes C-STAT analyze the selected project. For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Analyze File(s)

Makes C-STAT analyze the selected file(s). For more information about
C-STAT, see the C-STAT® Static Analysis Guide.

C-STAT Static Analysis>Clear Analysis Results

Makes C-STAT clear the analysis information for previously performed
analyses. For more information about C-STAT, see the C-STAT® Static Analysis
Guide.

C-STAT Static Analysis>Generate HTML Summary

Shows a standard save dialog box where you can select the destination for a
report summary in HTML and create it. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

AFE1_AFE2-1:1

192

Menus

IDE Project Management and Building Guide
for MSP430

C-STAT Static Analysis>Generate Full HTML Report

Shows a standard save dialog box where you can select the destination for a full
report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Analyze Project

Runs the external analyzer that you select and performs an analysis on all source
files of your project. The list of analyzers is populated with analyzers you
specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 32.

Analyze File(s)

Runs the external analyzer that you select and performs an analysis on a group
of files or on an individual file. The list of analyzers is populated with analyzers
you specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Getting started using external analyzers,
page 32.

Stop Build (Ctrl+Break)

Stops the current build operation.

Download and Debug (Ctrl+D)

Downloads the application and starts C-SPY so that you can debug the project
object file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. This command is not available during a debug
session.

Debug without Downloading

Starts C-SPY so that you can debug the project object file. This menu command
is a shortcut for the Suppress Download option available on the Download
page. The Debug without Downloading command is not available during a
debug session.

Attach to Running Target

Makes the debugger attach to a running application at its current location,
without resetting the target system. If you have defined any breakpoints in your
project, the C-SPY driver will set them during attachment. If the C-SPY driver
cannot set them without stopping the target system, the breakpoints will be
disabled. The option also suppresses download and the Run to option.

AFE1_AFE2-1:1

Menu reference

193

If the option is not available, it is not supported by the combination of C-SPY
driver and device you are using.

Make & Restart Debugger

Stops C-SPY, makes the active build configuration, and starts the debugger
again; all in a single command. This command is only available during a debug
session.

Restart Debugger

Stops C-SPY and starts the debugger again; all in a single command. This
command is only available during a debug session.

Download

Commands for flash download and erase.

SFR Setup

Opens the SFR Setup window which displays the currently defined SFRs that
C-SPY has information about. For more information about this window, see the
C-SPY® Debugging Guide for MSP430.

Open Device Description File

Opens a submenu where you can choose to open a file from a list of all device
files and SFR definitions files that are in use.

Save List of Registers

Generates a list of all defined registers, including SFRs, with information about
the size, location, and access type of each register. If you are in a debug session,
the list also includes the current value of the register. This menu command is
only available when a project is loaded in the IDE.

Tools menu
The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Therefore, it might look different depending on which tools you have
preconfigured to appear as menu items.

AFE1_AFE2-1:1

194

Menus

IDE Project Management and Building Guide
for MSP430

Menu Commands

These commands are available:

Options

Displays the IDE Options dialog box where you can customize the IDE. See:

Common Fonts options, page 48

Key Bindings options, page 49

Language options, page 51

Editor options, page 52

Configure Auto Indent dialog box, page 55

External Editor options, page 56

Editor Setup Files options, page 58

Editor Colors and Fonts options, page 59

Messages options, page 60

Project options, page 61

Source Code Control options (deprecated), page 67

Debugger options, page 68

Stack options, page 70

Terminal I/O options, page 72

Filename Extensions

Displays the Filename Extensions dialog box where you can define the
filename extensions to be accepted by the build tools, see Filename Extensions
dialog box, page 78.

Configure Viewers

Displays the Configure Viewers dialog box where you can configure viewer
applications to open documents with, see Configure Viewers dialog box, page
76.

Configure Custom Argument Variables

Displays the Configure Custom Argument Variables dialog box where you
can define and edit your own custom argument variables, see Configure Custom
Argument Variables dialog box, page 83.

AFE1_AFE2-1:1

Menu reference

195

Configure Tools

Displays the Configure Tools dialog box where you can set up the interface to
use external tools, see Configure Tools dialog box, page 74.

Notepad

User-configured. This is an example of a user-configured addition to the Tools
menu.

Window menu
The Window menu provides commands for manipulating the IDE windows and
changing their arrangement on the screen.

The last section of the Window menu lists the currently open windows. Choose the
window you want to switch to.

Menu commands

These commands are available:

Close Document (Ctrl+W)

Closes the active editor document.

Close Window

Closes the active IDE window.

Split

Splits an editor window horizontally or vertically into two or four panes, which
means that you can see more parts of a file simultaneously.

AFE1_AFE2-1:1

196

Menus

IDE Project Management and Building Guide
for MSP430

Move Tab to New Vertical Editor Window

Opens a new empty window next to the current editor window and moves the
active document to the new window.

Move Tab to New Horizontal Editor Window

Opens a new empty window under the current editor window and moves the
active document to the new window.

Move Tab to the Next Window

Moves the active document in the current window to the next window.

Move Tab to the Previous Window

Moves the active document in the current window to the previous window.

Close All Tabs Except Active

Closes all the tabs except the current tab.

Close All Tabs to the Right of Active

Closes all tabs to the right of the current tab.

Close All Editor Tabs

Closes all tabs currently available in editor windows.

Toolbars

The options on this submenu toggle the toolbars on or off. There might be
toolbars that are only available for certain C-SPY debug drivers, and only during
a debug session.

Status bar

Toggles the status bar on or off.

Help menu
The Help menu provides help about IAR Embedded Workbench. From this menu you
can also find the version numbers of the user interface and of the IDE, see Product Info
dialog box, page 80.

You can also access the Information Center from the Help menu. The Information
Center is an integrated navigation system that gives easy access to the information
resources you need to get started and during your project development: tutorials,
example projects, user guides, support information, and release notes. It also provides
shortcuts to useful sections on the IAR Systems web site.

AFE1_AFE2-1:1

197

General options
● Description of general options

Description of general options
Reference information about:

● Target options

● Output

● Library Configuration

● Library Options

● Stack/Heap

● MPU/IPE/FRWP

● MISRA C

To set general options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select General Options in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Target options
The Target options specify target-specific features for the IAR C/C++ Compiler and
Assembler.

AFE1_AFE2-1:1

198

Description of general options

IDE Project Management and Building Guide
for MSP430

Device

The device your are using. The choice of device will automatically determine the default
linker configuration file and C-SPY® device description file. For information about how
to override the default files, see the C-SPY® Debugging Guide for MSP430.

Development mode

If you are using an MSP430L092 or RF430FRxx device, choose the operation mode:

● Normal mode

● ROM mode.

Position-independent code

Generates position-independent code. Note that position-independent code will lead to
a rather large overhead in code size. For more information about position-independent
code, see the IAR C/C++ Compiler User Guide for MSP430.

Exclude RESET vector

Excludes the reset vector from the build. This option is useful if your project only
contains assembler source files. The option will make the necessary settings required for
an assembler-only project, for instance, disabling the use of a C or C++ runtime library
and the cstartup system. The Run to option will be disabled.

Code model

Selects the code model for your project. Code models are only available for the
MSP430X architecture.

Small

Selects the Small code model.

Large

Selects the Large code model.

If you do not specify a code model, the compiler will use the Large code model. For
more information about code models, see the IAR C/C++ Compiler User Guide for
MSP430.

Data model

Data models are only available for the MSP430X architecture. There is a trade-off
regarding the way memory is accessed, ranging from cheap access to small memory
areas, up to more expensive access methods that can access any location.

AFE1_AFE2-1:1

General options

199

In the IAR C/C++ Compiler for MSP430, you can set a default memory access method
by selecting a data model. However, it is possible to override the default access method
for each individual variable.

Small

Specifies data16 as the default memory type, which means the first 64 Kbytes
of memory can be accessed. The only way to access the full 1-Mbyte memory
range is to use intrinsic functions.

Medium

Specifies data16 as the default memory type, which means data objects by
default are placed in the first 64 Kbytes of memory. If required, the entire 1
Mbyte of memory can be accessed.

Large

Specifies data20 as the default memory type, which means the entire memory
can be accessed.

If you do not specify a data model, the compiler will use the Small data model. For more
information about data models, see the IAR C/C++ Compiler User Guide for MSP430.

Floating-point

The compiler represents floating-point values by 32- and 64-bit numbers in standard
IEEE 754 format. Size of type 'double' selects the size of the type double; choose
between:

32 bits

The data type double is represented by the 32-bit floating-point format.

64 bits

The data type double is represented by the 64-bit floating-point format.

For more information about the floating-point format, see the IAR C/C++ Compiler
User Guide for MSP430.

Hardware multiplier

Controls the code generation for the MSP430 hardware multiplier peripheral unit. The
option is only available when you have chosen a device containing the hardware
multiplier from the Device drop-down list.

Select Use hardware multiplier to use the hardware multiplier on your device. Choose
between:

Allow direct access

Generates code that accesses the hardware multiplier directly, when appropriate.

AFE1_AFE2-1:1

200

Description of general options

IDE Project Management and Building Guide
for MSP430

Note that direct access to the hardware multiplier is typically faster at the
expense of larger code.

Use only library calls

Makes calls to library functions that perform multiplication.

The decision to generate direct access or library calls is, for each operation, based on the
optimization settings.

Output
The Output options determine the type of output file. You can also specify the
destination directories for executable files, object files, and list files.

Output file

Selects the type of the output file:

Executable (default)

As a result of the build process, the linker will create an application (an
executable output file). When this setting is used, linker options will be available
in the Options dialog box. Before you create the output you should set the
appropriate linker options.

Library

As a result of the build process, the library builder will create a library file.
When this setting is used, library builder options will be available in the Options
dialog box, and Linker will disappear from the list of categories. Before you
create the library you can set the options.

AFE1_AFE2-1:1

General options

201

Output directories

Specify the paths to the destination directories. Note that incomplete paths are relative
to your project directory. You can specify:

Executables/libraries

Overrides the default directory for executable or library files. Type the name of
the directory where you want to save executable files for the project.

Object files

Overrides the default directory for object files. Type the name of the directory
where you want to save object files for the project.

List files

Overrides the default directory for list files. Type the name of the directory
where you want to save list files for the project.

Library Configuration
The Library Configuration options determine which library to use.

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see the IAR C/C++
Compiler User Guide for MSP430.

Library

Selects which runtime library to use. For information about available libraries, see the
IAR C/C++ Compiler User Guide for MSP430.

The names of the library object file and library configuration file that actually will be
used are displayed in the Library file and Configuration file text boxes, respectively.

AFE1_AFE2-1:1

202

Description of general options

IDE Project Management and Building Guide
for MSP430

Library file

Displays the library object file that will be used. A library object file is automatically
chosen depending on your settings of these options:

● Library

● Device

● Floating-point size

● Data model

If you have chosen Custom DLIB or Custom CLIB in the Library drop-down list, you
must specify your own library object file.

Configuration file

Displays the library configuration file that will be used. A library configuration file is
chosen automatically depending on the project settings. If you have chosen Custom
DLIB in the Library drop-down list, you must specify your own library configuration
file.

Note: A library configuration file is only required for the DLIB library.

Enable thread support in library

Select this option to automatically configure the runtime library for use with threads.

Use MathLib

Enables the use of the Texas Instruments MathLib library. These functions in the
runtime library are replaced with variants in MathLib that use hardware features:

● Trigonometric: sinf, cosf, tanf

● Inverse trigonometric: asinf, acosf, atanf, atan2f

● Exponential: expf, logf

● Misc: sqrtf, reciprocalf, fmodf

AFE1_AFE2-1:1

General options

203

Library Options
The Library Options select the printf and scanf formatters.

For information about the capabilities of the formatters, see the IAR C/C++ Compiler
User Guide for MSP430.

Printf formatter

If Auto is selected, the linker automatically chooses the appropriate formatter for
printf-related functions based on information from the compiler.

To override the default formatter for all printf-related functions, except for wprintf
variants, choose between:

● Printf formatters in the IAR DLIB Library: Full, Full without multibytes, Large,
Large without multibytes, Small, Small without multibytes, and Tiny

● Printf formatters in the IAR CLIB Library: Large, Medium, and Small.

Choose a formatter that suits the requirements of your application.

Scanf formatter

If Auto is selected, the linker automatically chooses the appropriate formatter for
scanf-related functions based on information from the compiler.

To override the default formatter for all scanf-related functions, except for wscanf
variants, choose between:

● Scanf formatters in the IAR DLIB Library: Full, Full without multibytes, Large,
Large without multibytes, Small, and Small without multibytes

● Scanf formatters in the IAR CLIB Library: Large, and Medium.

Choose a formatter that suits the requirements of your application.

AFE1_AFE2-1:1

204

Description of general options

IDE Project Management and Building Guide
for MSP430

Math functions

Some library math functions are also available in size-optimized versions. Choose
between:

Default

The default versions of the functions cos, exp, log, log10, pow, sin, tan, and
__iar_Sin.

Smaller

Versions of the functions cos, exp, log, log10, pow, sin, tan, and
__iar_Sin that are about 20% smaller and about 20% faster than the default
versions.

Stack/Heap
The Stack/Heap options determine the heap and stack sizes.

For more information about using stacks and heaps, see the IAR C/C++ Compiler User
Guide for MSP430.

Override default

Overrides the default heap and stack size settings.

Stack size

Specify the required stack size in the Stack size text box, using decimal notation.

Data16 heap size

Specify the required heap size in the Data16 heap size text box, using decimal notation.

AFE1_AFE2-1:1

General options

205

Data20 heap size

Specify the required heap size in the Data20 heap size text box, using decimal notation.
This option is not available for all processors.

Read from linker configuration file

Uses the stack and heap sizes from the linker configuration file.

MPU/IPE/FRWP
The MPU/IPE/FRWP options control the:

● Memory Protection Unit (MPU)

● Intellectual Property Encapsulation (IPE)

● FRAM Write Protection (FRWP)

Memory Protection Unit (MPU)

These options control the Memory Protection Unit (MPU). You can set these options:

Support MPU

Includes MPU support code and enforces MPU memory area alignment
requirements.

Enable MPU

Sets the MPU enable bit to activate MPU.

Lock MPU

Locks all MPU control registers (except the IPE registers). The registers are
read-only until a brown-out reset occurs.

AFE1_AFE2-1:1

206

Description of general options

IDE Project Management and Building Guide
for MSP430

NMI on MPU/IPE violation

Enables the generation of a non-maskable interrupt event when a segment
violation occurs. This applies to MPU and IPE.

This option has no effect when the device is configured to perform a reset on
violation.

Assert PUC on MPU violation

Causes a Power Up Clear (PUC) reset to occur on violation.

Information memory permissions

Sets access permissions on information memory. Choose between:

R, Permission to read.

W, Permission to write.

X, Permission to execute.

Assert PUC on information memory MPU violation, Causes a Power Up
Clear reset to occur on violation.

Intellectual Property Encapsulation (IPE)

These options control Intellectual Property Encapsulation (IPE). You can set these
options:

Support IPE

Includes an IPE signature and enforces IPE memory area alignment
requirements.

Enable IPE

Includes an IPE enable bit in the IPE structure.

Note: Once IPE has been enabled on a device, the IPE area will remain locked
until cleared.

To clear the IPE area when downloading an application, select
Project>Options>Debugger>FET Debugger>Download>Erase main and
Information memory inc. IP PROTECTED area.

Lock IPE

Locks the IPE control registers. The registers are read-only until a brown-out
reset occurs.

Assert PUC on IPE violation

Causes a Power Up Clear (PUC) reset to occur on violation.

AFE1_AFE2-1:1

General options

207

FRAM Write Protection (FRWP)

Note: FRAM Write Protection is only available on some devices.

These options enable FRAM Write Protection (FRWP) to protect information and/or
program memory. You can set these options:

Support FRWP

Enables FRAM Write Protection (FRWP).

Protect INFO memory

Data FRAM Write Protection (DFWP), to protect information memory.

Protect program memory

Program FRAM Write Protection (PFWP), to protect program memory.

MISRA C
The MISRA-C:1998 and MISRA-C:2004 options control how the IDE checks the
source code for deviations from the MISRA C rules. The settings are used for both the
compiler and the linker.

For details about specific options, see the IAR Embedded Workbench® MISRA C:2004
Reference Guide or the IAR Embedded Workbench® MISRA C:1998 Reference Guide
available from the Help menu.

AFE1_AFE2-1:1

208

Description of general options

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

209

Compiler options
● Description of compiler options

Description of compiler options
Reference information about:

● Multi-file Compilation

● Language 1

● Language 2

● Code

● Optimizations

● Output

● List

● Preprocessor

● Diagnostics

● MISRA C

● Extra Options

● Edit Include Directories dialog box

To set compiler options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select C/C++ Compiler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Multi-file Compilation
Before you set specific compiler options, you can decide whether you want to use
multi-file compilation, which is an optimization technique.

Multi-file Compilation

Enables multi-file compilation from the group of project files that you have selected in
the Workspace window.

AFE1_AFE2-1:1

210

Description of compiler options

IDE Project Management and Building Guide
for MSP430

You can use this option for the entire project or for individual groups of files. All C/C++
source files in such a group are compiled together using one invocation of the compiler.

This means that all files included in the selected group are compiled using the compiler
options which have been set on the group or nearest higher enclosing node which has
any options set. Any overriding compiler options on one or more files are ignored when
building, because a group compilation must use exactly one set of options.

For information about how multi-file compilation is displayed in the Workspace
window, see Workspace window, page 97.

Discard Unused Publics

Discards any unused public functions and variables from the compilation unit.

For more information about multi-file compilation and discarding unused public
functions, see the IAR C/C++ Compiler User Guide for MSP430.

Language 1
The Language 1 options determine which programming language to use and which
extensions to enable.

For more information about the supported languages, their dialects, and their extensions,
see the IAR C/C++ Compiler User Guide for MSP430.

Language

Determines the compiler support for either C or C++:

C (default)

Makes the compiler treat the source code as C, which means that features
specific to C++ cannot be used.

AFE1_AFE2-1:1

Compiler options

211

C++

Makes the compiler treat the source code as Embedded C++ or Extended
Embedded C++. This means that some features specific to C++, such as classes
and overloading, can be used.

Auto

Language support is decided automatically depending on the filename extension
of the file being compiled:

c, files with this filename extension are treated as C source files.

cpp, files with this filename extension will be treated as C++ source files.

Language conformance

Controls how strictly the compiler adheres to the standard C or C++ language:

Standard with IAR extensions

Accepts MSP430-specific keywords as extensions to the standard C or C++
language. In the IDE, this setting is enabled by default.

Standard

Disables IAR Systems extensions, but does not adhere strictly to the C or C++
dialect you have selected. Some useful relaxations to C or C++ are still
available.

Strict

Adheres strictly to the C or C++ dialect you have selected. This setting disables
a great number of useful extensions and relaxations to C or C++.

C dialect

Selects the dialect if C is the supported language:

C89

Enables the C89 standard instead of Standard C. Note that this setting is
mandatory when the MISRA C checking is enabled.

C99

Enables the C99 standard, also known as Standard C. This is the default standard
used in the compiler, and it is stricter than C89. Features specific to C89 cannot
be used. In addition, choose between:

Allow VLA, allows the use of C99 variable length arrays.

C++ inline semantics, enables C++ inline semantics when compiling a
Standard C source code file.

AFE1_AFE2-1:1

212

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Require prototypes

Forces the compiler to verify that all functions have proper prototypes, which
means that source code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan &
Ritchie C declaration.

● A function definition of a public function with no previous prototype
declaration.

● An indirect function call through a function pointer with a type that does not
include a prototype.

C++ dialect

Selects the dialect if C++ is the supported language:

Embedded C++

Makes the compiler treat the source code as Embedded C++. This means that
features specific to C++, such as classes and overloading, can be used.

Extended Embedded C++

Enables features like namespaces or the standard template library in your source
code.

Destroy static objects

Makes the compiler generate code to destroy C++ static variables that require
destruction at program exit.

C++ requires that a DLIB library (C/C++ library) is used.

AFE1_AFE2-1:1

Compiler options

213

Language 2
The Language 2 options control the use of some language extensions.

Plain 'char' is

Normally, the compiler interprets the plain char type as unsigned char. Plain 'char'
is Signed makes the compiler interpret the char type as signed char instead, for
example, for compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
Signed option, references to library functionality that uses unsigned plain characters
will not work.

Floating-point semantics

Controls floating-point semantics. Choose between:

Strict conformance

Makes the compiler conform strictly to the C and floating-point standards for
floating-point expressions.

Relaxed

Makes the compiler relax the language rules and perform more aggressive
optimization of floating-point expressions. This option improves performance
for floating-point expressions that fulfill these conditions:

● The expression consists of both single- and double-precision values

● The double-precision values can be converted to single precision without
loss of accuracy

● The result of the expression is converted to single precision.

AFE1_AFE2-1:1

214

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Note that performing the calculation in single precision instead of double
precision might cause a loss of accuracy.

Enable multibyte support

By default, multibyte characters cannot be used in C or Embedded C++ source code.
Enable multibyte support makes the compiler interpret multibyte characters in the
source code according to the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Guard Calls

Enables guards for function static variable initialization. This option should be used in
a threaded C++ environment.

For information about managing a multithreaded environment, see the IAR C/C++
Compiler User Guide for MSP430.

Code
The Code options control the code generation of the compiler.

For more information about these compiler options, see the IAR C/C++ Compiler User
Guide for MSP430.

R4 utilization

Controls how register R4 can be used. Choose between:

Normal use

Allows the compiler to use the register in generated code.

AFE1_AFE2-1:1

Compiler options

215

__regvar variables

Makes the compiler use the register for locating global register variables
declared with the extended keyword __regvar.

Not used

Locks R4 so it can be used for a special purpose by your application.

R5 utilization

Controls how register R5 can be used. Choose between:

Normal use

Allows the compiler to use the register in generated code.

__regvar variables

Makes the compiler use the register for locating global register variables
declared with the extended keyword __regvar.

Not used

Locks R5 so it can be used for a special purpose by your application.

Reduce stack usage

Makes the compiler minimize the use of stack space at the cost of somewhat larger and
slower code.

20-bit context save on interrupts

Makes all interrupt functions be treated as a __save_reg_20 declared function without
explicitly using the __save_reg20 keyword. This is useful if your application requires
that all 20 bits of registers are preserved. The drawback is that the code will be somewhat
slower.

Note: This option is for MSP430X only. It has no effect when compiling for the
MSP430 architecture.

AFE1_AFE2-1:1

216

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Optimizations
The Optimizations options determine the type and level of optimization for the
generation of object code.

Level

Selects the optimization level:

None

No optimization; provides best debug support.

Low

The lowest level of optimization.

Medium

The medium level of optimization.

High, balanced

The highest level of optimization, balancing between speed and size.

High, size

The highest level of optimization, favors size.

High, speed

The highest level of optimization, favors speed.

No size constraints

Optimizes for speed, but relaxes the normal restrictions for code size expansion.
This option is only available at the level High, speed.

AFE1_AFE2-1:1

Compiler options

217

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a high balanced optimization that generates small code
without sacrificing speed.

For a list of optimizations performed at each optimization level, see the IAR C/C++
Compiler User Guide for MSP430.

Enabled transformations

Selects which transformations that are available at different optimization levels. When
a transformation is available, you can enable or disable it by selecting its check box.
Choose between:

● Common subexpression elimination

● Loop unrolling

● Function inlining

● Code motion

● Type-based alias analysis

In a debug project the transformations are, by default, disabled. In a release project the
transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the
IAR C/C++ Compiler User Guide for MSP430.

Output
The Output options determine the generated compiler output.

AFE1_AFE2-1:1

218

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Module type

Selects the module type. Select Override default and choose between:

Program Module

The object file will be treated as a program module rather than as a library
module. By default, the compiler generates program modules.

Library Module

The object file will be treated as a library module rather than as a program
module. A library module will only be included if it is referenced in your
application.

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the IAR Linker and Library Tools Reference Guide, available
from the Help menu.

Object module name

Specify the object module name. Normally, the internal name of the object module is
the name of the source file, without a directory name or extension.

This option is particularly useful when several modules have the same filename, because
the resulting duplicate module name would normally cause a linker error, for example,
when the source file is a temporary file generated by a preprocessor.

Generate debug information

Makes the compiler include additional information in the object modules that is required
by C-SPY® and other symbolic debuggers.

Generate debug information is selected by default. Deselect it if you do not want the
compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Override segment base name

The compiler places functions and data objects into named segments which are referred
to by the IAR XLINK Linker. Override segment base name places any part of your
application into separate non-default segments. This is useful if you want to control
placement of your code or data to different address ranges and you find the @ notation,
alternatively the #pragma location directive, insufficient.

To override the default segment base name, specify a segment name in the Name text
field. The named segment can either be a predefined segment or a segment you define
yourself.

AFE1_AFE2-1:1

Compiler options

219

Note: Take care when you explicitly place a variable or function in a predefined segment
other than the one used by default. This is useful in some situations, but incorrect
placement can result in anything from error messages during compilation and linking to
a malfunctioning application. Carefully consider the circumstances; there might be strict
requirements on the declaration and use of the function or variable.

Note: Any changes to the segment names require corresponding modification in the
linker configuration file.

For detailed information about segments and the various methods for controlling the
placement of data and code, see the IAR C/C++ Compiler User Guide for MSP430.

List
The List options make the compiler generate a list file and determine its contents.

By default, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension lst.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category, see Output, page
200.

You can open the output files directly from the Output folder which is available in the
Workspace window.

AFE1_AFE2-1:1

220

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Output list file

Makes the compiler generate a list file. You can open the output files directly from the
Output folder which is available in the Workspace window. By default, the compiler
does not generate a list file. For the list file content, choose between:

Assembler mnemonics

Includes assembler mnemonics in the list file.

Diagnostics

Includes diagnostic information in the list file.

Output assembler file

Makes the compiler generate an assembler list file. For the list file content, choose
between:

Include source

Includes source code in the assembler file.

Include call frame information

Includes compiler-generated information for runtime model attributes, call
frame information, and frame size information.

Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

AFE1_AFE2-1:1

Compiler options

221

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 224.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIR$, see Argument variables, page 81.

Preinclude file

Specify a file to include before the first line of the source file.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:

TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:

#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Preprocessor output to file

Makes the compiler and assembler output the result of the preprocessing to a file with
the filename extension i, located in the lst directory. Choose between:

Preserve comments

Includes comments in the output. Normally, comments are treated as
whitespace, and their contents are not included in the preprocessor output.

Generate #line directives

Generates #line directives in the output to indicate where each line originated
from.

AFE1_AFE2-1:1

222

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Diagnostics
The Diagnostics options determine how diagnostic messages are classified and
displayed. Use the diagnostics options to override the default classification of the
specified diagnostics.

Note: The diagnostic messages cannot be suppressed for fatal errors, and fatal errors
cannot be reclassified.

Enable remarks

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

Suppress these diagnostics

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings Xx117 and Xx177, type:

Xx117,Xx177

Treat these as remarks

Classifies diagnostic messages as remarks. A remark is the least severe type of
diagnostic message. It indicates a source code construct that might cause strange
behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177

AFE1_AFE2-1:1

Compiler options

223

Treat these as warnings

Classifies diagnostic messages as warnings. A warning indicates an error or omission
that is of concern, but which will not cause the compiler to stop before compilation is
completed.

For example, to classify the remark Xx826 as a warning, type:

Xx826

Treat these as errors

Classifies diagnostic messages as errors. An error indicates a violation of the language
rules, of such severity that object code will not be generated, and the exit code will be
non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Treat all warnings as errors

Classifies all warnings as errors. If the compiler encounters an error, object code is not
generated.

MISRA C
The MISRA-C:1998 and MISRA-C:2004 options override the corresponding options
in the General Options category.

For details about specific options, see the IAR Embedded Workbench® MISRA C:2004
Reference Guide or the IAR Embedded Workbench® MISRA C:1998 Reference Guide
available from the Help menu.

AFE1_AFE2-1:1

224

Description of compiler options

IDE Project Management and Building Guide
for MSP430

Extra Options
The Extra Options page provides you with a command line interface to the tool.

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

Edit Include Directories dialog box
The Edit Include Directories dialog box is available from the Preprocessor page in the
Options dialog box for the compiler and assembler categories.

Use this dialog box to specify or delete include paths, or to make a path relative or
absolute.

To add a path to an include directory:

1 Click the text <Click to add>. A browse dialog box is displayed.

2 Browse to the appropriate include directory and click Select. The include path appears.
To add yet another one, click <Click to add>.

AFE1_AFE2-1:1

Compiler options

225

To make the path relative or absolute:

1 Click the drop-down arrow. A context menu is displayed. which shows the absolute
path and paths relative to the argument variables $PROJ_DIR$ and $TOOLKIT_DIR$,
when possible.

2 Choose one of the alternatives.

To change the order of the paths:

1 Use the shortcut key combinations Ctrl+Up/Down.

2 The list will be sorted accordingly.

To delete an include path:

1 Select the include path and click the red cross at the beginning of the line, alternatively
press the Delete key.

2 The selected path will disappear.

AFE1_AFE2-1:1

226

Description of compiler options

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

227

Assembler options
● Description of assembler options

Description of assembler options
Reference information about:

● Language

● Output

● List

● Preprocessor

● Diagnostics

● Extra Options

To set assembler options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Assembler in the Category list.

3 To restore all settings to the default factory settings, click the Factory Settings button.

Language
The Language options control certain behavior of the assembler language.

AFE1_AFE2-1:1

228

Description of assembler options

IDE Project Management and Building Guide
for MSP430

User symbols are case sensitive

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that,
for example, LABEL and label refer to different symbols. When case sensitivity is off,
LABEL and label will refer to the same symbol.

Enable multibyte support

Makes the assembler interpret multibyte characters in the source code according to the
host computer’s default setting for multibyte support. By default, multibyte characters
cannot be used in assembler source code.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Macro quote characters

Selects the characters used for the left and right quotes of each macro argument. By
default, the characters are < and >.

Macro quote characters changes the quote characters to suit an alternative convention
or simply to allow a macro argument to contain < or >.

Output
The Output options determine the generated assembler output.

AFE1_AFE2-1:1

Assembler options

229

Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options make the assembler generate a list file and determine its contents.

Output list file

Makes the assembler generate a list file and send it to the file sourcename.lst. By
default, the assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files,
use the Output Directories option in the General Options category, see Output, page
200. You can open the output files directly from the Output folder which is available in
the Workspace window.

Include header

Includes the header. The header of the assembler list file contains information about the
product version, date and time of assembly, and the command line equivalents of the
assembler options that were used.

Include listing

Selects which type of information to include in the list file:

#included text

Includes #include files in the list file.

AFE1_AFE2-1:1

230

Description of assembler options

IDE Project Management and Building Guide
for MSP430

Macro definitions

Includes macro definitions in the list file.

Macro expansion

Excludes macro expansions from the list file.

Macro execution info

Prints macro execution information on every call of a macro.

Assembled lines only

Excludes lines in false conditional assembler sections from the list file.

Multiline code

Lists the code generated by directives on several lines if necessary.

Include cross-reference

Includes a cross-reference table at the end of the list file:

#define

Includes preprocessor #defines.

Internal symbols

Includes all symbols, user-defined as well as assembler-internal.

Dual line spacing

Uses dual-line spacing.

Lines/page

Specify the number of lines per page, within the range 10 to 150. The default number of
lines per page is 80 for the assembler list file.

Tab spacing

Specify the number of character positions per tab stop, within the range 2 to 9. By
default, the assembler sets eight character positions per tab stop.

AFE1_AFE2-1:1

Assembler options

231

Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler and assembler.

Ignore standard include directories

Normally, the compiler and assembler automatically look for include files in the
standard include directories. Use this option to turn off this behavior.

Additional include directories

Specify the full paths of directories to search for include files, one per line. Any
directories specified here are searched before the standard include directories, in the
order specified.

Use the browse button to display the Edit Include Directories dialog box, where you
can specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 224.

To avoid being dependent on absolute paths, and to make the project more easily
portable between different machines and file system locations, you can use argument
variables like $TOOLKIT_DIR$ and $PROJ_DIR$, see Argument variables, page 81.

Defined symbols

Define a macro symbol (one per line), including its value, for example like this:

TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:

#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

AFE1_AFE2-1:1

232

Description of assembler options

IDE Project Management and Building Guide
for MSP430

Diagnostics
The Diagnostics options control individual warnings or ranges of warnings.

Warnings

Controls the assembler warnings. The assembler displays a warning message when it
finds an element of the source code that is legal, but probably the result of a
programming error. By default, all warnings are enabled. To control the generation of
warnings, choose between:

Enable

Enables warnings.

Disable

Disables warnings.

All warnings

Enables/disables all warnings.

Just warning

Enables/disables the warning you specify.

Warnings from to

Enables/disables all warnings in the range you specify.

For more information about assembler warnings, see the IAR Assembler Reference
Guide for MSP430.

Max number of errors

Specify the maximum number of errors. This means that you can increase or decrease
the number of reported errors, for example, to see more errors in a single assembly. By
default, the maximum number of errors reported by the assembler is 100.

AFE1_AFE2-1:1

Assembler options

233

Extra Options
The Extra Options page provides you with a command line interface to the tool.

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

AFE1_AFE2-1:1

234

Description of assembler options

IDE Project Management and Building Guide
for MSP430

AFE1_AFE2-1:1

235

Custom build options
● Description of custom build options

Description of custom build options
Reference information about:

● Custom Tool Configuration

To set custom build options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Custom Build in the Category list.

Custom Tool Configuration
The Custom Tool Configuration options control the invocation of the tools you want
to add to the tool chain.

For an example, see Extending the toolchain, page 109.

Filename extensions

Specify the filename extensions for the types of files that are to be processed by the
custom tool. You can type several filename extensions. Use commas, semicolons, or
blank spaces as separators. For example:

.htm; .html

AFE1_AFE2-1:1

236

Description of custom build options

IDE Project Management and Building Guide
for MSP430

Command line

Specify the command line for executing the external tool.

Output file

Specify the name for the output files from the external tool.

Additional input files

Specify any additional files to be used by the external tool during the build process. If
these additional input files, dependency files, are modified, the need for a rebuild is
detected.

Run this tool before all other tools

Forces the specified custom build tool to be run before all other tools. This can be useful
for some tools after a clean command has been executed or when running the tool for
the first time, typically to solve errors caused by unknown build dependencies. For
example, if the tool produces a header file (h), and this option is not used, the source file
cannot include the header file before it has been generated.

AFE1_AFE2-1:1

237

Build actions options
● Description of build actions options

Description of build actions options
Reference information about:

● Build Actions Configuration

To set build action options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Build Actions in the Category list.

Build Actions Configuration
The Build Actions Configuration options specify pre-build and post-build actions in
the IDE. These options apply to the whole build configuration, and cannot be set on
groups or files.

If a pre- or post-build action returns a non-zero error code, the entire Build or Make
command is aborted.

Pre-build command line

Specify the command line to be executed directly before a build. Use the browse button
to locate the tool you want to be executed. The commands will not be executed if the
configuration is already up-to-date.

AFE1_AFE2-1:1

238

Description of build actions options

IDE Project Management and Building Guide
for MSP430

Post-build command line

Specify the command line to be executed directly after each successful build. Use the
browse button to locate the tool you want to be executed. The commands will not be
executed if the configuration was up-to-date. This is useful for copying or
post-processing the output file.

AFE1_AFE2-1:1

239

Linker options
● Description of linker options

Description of linker options
Reference information about:

● Config

● Output

● Extra Output

● Stack Usage

● List

● Log

● #define

● Diagnostics

● Checksum

● Extra Options

● Edit Control Files dialog box

To set linker options in the IDE:

1 Choose Project>Options to display the Options dialog box.

2 Select Linker in the Category list.

AFE1_AFE2-1:1

240

Description of linker options

IDE Project Management and Building Guide
for MSP430

Config
The Config options specify the path and name of the linker configuration file, override
the default program entry, and specify the library search path.

Linker configuration file

A default linker configuration file is selected automatically based on your project
settings. To override the default file, select Override default and specify an alternative
file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIR$ can be used for specifying a
project-specific or predefined linker configuration file.

Override default program entry

By default, the program entry is the symbol __program_start. The linker makes sure
that a module containing the program entry symbol is included, and that the segment
part containing the symbol is not discarded.

Override default program entry overrides the default program handling; choose
between:

Entry symbol

Specify an entry symbol other than default.

Defined by application

Uses an entry symbol defined in the linked object code. The linker will, as
always, include all program modules, and enough library modules to satisfy all
symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.

AFE1_AFE2-1:1

Linker options

241

Search paths

Specify the names of the directories that XLINK will search if it fails to find the object
files to link in the current working directory. Add the full paths of any additional
directories where you want XLINK to search for your object files.

Use the browse button to open the Edit Include Directories dialog box, where you can
specify directories using a file browser. For more information, see Edit Include
Directories dialog box, page 224.

The argument variables $PROJ_DIR$ and $TOOLKIT_DIR$ can be used, see Argument
variables, page 81.

Raw binary image

Links pure binary files in addition to the ordinary input files. Specify these parameters:

File

The pure binary file you want to link.

Symbol

The symbol defined by the segment part where the binary data is placed.

Segment

The segment where the binary data is placed.

Align

The alignment of the segment part where the binary data is placed.

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw binary output format. The segment
part where the contents of the specified file are placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol.

Read about single output files and the -g option in the IAR Linker and Library Tools
Reference Guide.

AFE1_AFE2-1:1

242

Description of linker options

IDE Project Management and Building Guide
for MSP430

Output
The Output options determine the generated linker output.

Output file

Sets the name of the XLINK output file. By default, the linker will use the project name
with a filename extension. The filename extension depends on which output format you
choose. If you choose Debug information for C-SPY, the output file will have the
filename extension d43.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

To override the default name, select Override default and specify an alternative name
of the output file.

Format

Determines the format of the output file generated by the IAR XLINK Linker. The
output file is either used as input to a debugger or for programming the target system.

Choose between:

Debug information for C-SPY

Creates a UBROF output file, with the d43 filename extension, to be used with
C-SPY.

With runtime control modules

Produces the same output as the Debug information for C-SPY option, but also
includes debugger support for handling program abort, exit, and assertions.
Special C-SPY variants for the corresponding library functions are linked with
your application.

AFE1_AFE2-1:1

Linker options

243

With I/O emulation modules

Produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for I/O
handling, which means that stdin and stdout are redirected to the Terminal
I/O window, and that you can access files on the host computer during a debug
session.

Buffered terminal output

Buffers the terminal output during program execution, instead of instantly
printing each new character to the C-SPY Terminal I/O window.

This option is useful when using debugger systems that have slow
communication.

Allow C-SPY-specific extra output file

Enables the options available on the Extra Output page, see Extra Output, page
244.

Other

Generates output in a different format than those generated by the options
Debug information for C-SPY, With runtime control modules, and With
I/O emulation modules. Choose between:

Output format selects the output format. When you select debug (ubrof) or
ubrof, a UBROF output file with the filename extension dbg is created. The
generated output file will not contain debug information for simulating facilities
such as stop at program exit, long jump instructions, and terminal I/O. If you
need support for these facilities during a debug session, use the Debug
information for C-SPY, With runtime control modules, and With I/O
emulation modules options, respectively.

Format variant selects the format variant which is available for some of the
output formats. The alternatives depend on the output format chosen.

Module-local symbols

Specifies whether local (non-public) symbols in the input modules should be
included or not. If suppressed, the local symbols will not appear in the listing
cross-reference and they will not be passed on to the output file. Choose
between:

Include all includes all local symbols.

Suppress compiler generated ignores compiler-generated local symbols, such
as jump or constant labels. Usually these are only of interest when debugging at
assembler level.

Suppress all ignores all local symbols.

AFE1_AFE2-1:1

244

Description of linker options

IDE Project Management and Building Guide
for MSP430

Note that local symbols are only included in files if they were compiled or
assembled with the appropriate option to specify this.

The default output settings are:

● In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

● In a release project, MSP430-txt is selected by default, which is an output format
without debug information suitable for target download.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant that should be used.

For more information about the debugger runtime interface, see the IAR C/C++
Compiler User Guide for MSP430.

Extra Output
The Extra Output options control the generation of an extra output file and specify its
format.

For some debugger systems, two output files from the same build process are required—
one with the necessary debug information, and one that you can burn to your hardware
before debugging. This is useful when you want to debug code that is located in
non-volatile memory.

If the options are disabled, make sure to select the option Allow C-SPY-specific extra
output file on the Output page. The options are disabled if you have selected any of the
options With runtime control modules or With I/O emulation modules on the
Output page, because then the generated output file will contain dummy
implementations for certain library functions, such as putchar, and extra debug
information required by C-SPY to handle those functions. An extra output file would

AFE1_AFE2-1:1

Linker options

245

still contain the dummy functions, but not the extra debug information, and would
therefore normally be useless.

Generate extra output file

Makes the linker generate an additional output file from the build process.

Output file

Sets the name of the additional output file. By default, the linker will use the project
name and a filename extension that depends on the output format you select. To override
the default name, select Override default and specify an alternative file.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (the first format).

Format

Determines the format of the extra output file:

Output format

Selects an output format. When you select debug (ubrof) or ubrof, a UBROF
output file with the filename extension dbg is created.

Format variant

Selects a format variant. The alternatives depend on the output format chosen.

Stack Usage
The Stack Usage options control the stack usage analysis performed by XLINK.

Read about stack usage analysis in the IAR C/C++ Compiler User Guide for MSP430.

AFE1_AFE2-1:1

246

Description of linker options

IDE Project Management and Building Guide
for MSP430

Enable stack usage analysis

Enables stack usage analysis. If you choose to produce a linker map file, a stack usage
chapter is included in the map file. Additionally, you can:

Control files

Specify one or more stack usage control files to use to control stack usage
analysis or provide more stack usage information for modules or functions. If
no filename extension is specified, the extension suc is used.

Click the browse button to open the Edit Control Files dialog box, where you
can locate and specify a stack usage control file. See Edit Control Files dialog
box, page 254.

Call graph output (XML)

Specify the name of a call graph file to be generated by the linker. If no filename
extension is specified, the extension cgx is used.

List
The List options control the generation of XLINK cross-reference listings.

Generate linker listing

Makes the linker generate a listing and send it to the projectname.map file located in
the list directory.

Segment map

Includes a segment map in the listing. The segment map will contain a list of all the
segments in dump order.

AFE1_AFE2-1:1

Linker options

247

Symbols

Selects which types of symbols to include in the listing:

None

Symbols are excluded.

Symbol listing

An abbreviated list of every entry (global symbol) in every module. This entry
map is useful for quickly finding the address of a routine or data element.

Module map

A list of all segments, local symbols, and entries (public symbols) for every
module in the application.

Module summary

Makes the linker generate a summary of the contributions to the total memory use from
each module. Only modules with a contribution to memory use are listed.

Include suppressed entries

Includes all segment parts in a linked module in the list file, not just the segment parts
that were included in the output. This makes it possible to determine exactly which
entries that were not needed.

Static overlay map

Includes a listing of the static overlay system in the list file. This is only relevant if the
compiler uses static overlay. Read more about static overlay maps in the IAR Linker and
Library Tools Reference Guide.

File format

Selects the file format of the linker listing:

Text

Plain text file.

HTML

HTML format, with hyperlinks.

Lines/page

Sets the number of lines per page for the listing. This number must be in the range 10 to
150.

AFE1_AFE2-1:1

248

Description of linker options

IDE Project Management and Building Guide
for MSP430

Log
The Log options control the stack usage analysis performed by XLINK.

For more information about logging using XLINK, see the IAR Linker and Library Tools
Reference Guide.

Generate log file

Makes the linker log information to a log file, which you can find in
$PROJ_DIR$/Debug/List. The log information can be useful for understanding why
an executable image became the way it is.

Input files

Lists all object files that are used by the linking process and the order in which they will
be processed.

Module selections

Lists each module that is selected for inclusion in the application, and which symbol that
caused it to be included.

Selection of printf/scanf

Lists redirected symbols, and why a certain automatic redirection was made.

Segment selections

Lists each segment part that is selected for inclusion in your application, an th
dependence that caused it to be included.

Stack usage

Lists all calls and the corresponding stack usage.

AFE1_AFE2-1:1

Linker options

249

#define
The #define options define absolute symbols at link time.

Defined symbols

Define absolute symbols to be used at link time. This is especially useful for
configuration purposes. Type the symbols that you want to define for the project, one
per line, and specify their value. For example:

TESTVER=1

Note that there should be no space around the equals (=) sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s)
defined in this manner will be located in a special module called ?ABS_ENTRY_MOD,
which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

AFE1_AFE2-1:1

250

Description of linker options

IDE Project Management and Building Guide
for MSP430

Diagnostics
The Diagnostics options determine the error and warning messages generated by the
IAR XLINK Linker.

Always generate output

Makes the linker generate an output file even if a non-fatal error was encountered during
the linking process, such as a missing global entry or a duplicate declaration. Normally,
XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

Always generate output allows missing entries to be patched in later in the absolute
output image.

Segment overlap warnings

Classifies segment overlap errors as warnings, making it possible to produce
cross-reference maps, etc.

No global type checking

Disables type checking at link time. While a well-written application should not need
this option, there might be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

Range checks

Selects the behavior for address range check errors. If an address is relocated outside the
address range of the target CPU—code, external data, or internal data address—an error

AFE1_AFE2-1:1

Linker options

251

message is generated. This usually indicates an error in an assembler language module
or in the segment placement. Choose between:

Generate errors

Generates an error message.

Generate warnings

Generates a warning.

Disabled

Disables the address range checking.

Warnings/Errors

By default, the IAR XLINK Linker generates a warning when it detects a possible
problem, although the generated code might still be correct. Warnings/Errors
determines how diagnostic messages are classified.

For information about warning and error messages, see the IAR Linker and Library
Tools Reference Guide.

Use these settings to control the generation of warning and error messages:

Suppress all warnings

Suppresses all warnings.

Suppress these diagnostics

Suppresses the output of diagnostic messages for the tags that you specify. For
example, to suppress the warnings w117 and w177, type w117,w177.

Treat these as warnings

Classifies errors as warnings. For example, to make error 106 become treated as
a warning, type e106.

Treat these as errors

Classifies warnings as errors. For example, to make warning 26 become treated
as an error, type w26.

AFE1_AFE2-1:1

252

Description of linker options

IDE Project Management and Building Guide
for MSP430

Checksum
The Checksum options control filling and checksumming.

For more information about checksum calculation, see the IAR C/C++ Compiler User
Guide for MSP430.

Fill unused code memory

Fills all gaps between segment parts introduced by the linker with the fill pattern you
specify:

Fill pattern

Specify a size, in hexadecimal notation, of the filler to be used in gaps between
segment parts.

The linker can introduce gaps either because of alignment restrictions, or at the end of
ranges given in segment placement options. The default behavior, when this option is
not used, is that these gaps are not given a value in the output file.

Generate checksum

Generates a checksum for all generated raw data bytes. This option can only be used if
the Fill unused code memory option has been specified.

Choose between:

Checksum size

Selects the size of the checksum, which can be 1, 2, or 4 bytes.

Alignment

Specify an optional alignment for the checksum. Typically, this is useful when
the processor cannot access unaligned data. If you do not specify an alignment
explicitly, an alignment of 1 is used.

AFE1_AFE2-1:1

Linker options

253

Algorithm

Selects the algorithm to be used when calculating the checksum. Choose
between:

Arithmetic sum, the simple arithmetic sum algorithm. The result is truncated
to one byte.

CRC16 (default), the CRC16 algorithm (generating polynomial 0x1021).

CRC32, the CRC32 algorithm (generating polynomial 0x4C11DB7).

CRC polynomial, the CRC polynomial algorithm, a generating polynomial of
the value you specify.

Complement

Selects the complement variant, either the one’s complement or two’s
complement.

Bit order

Selects the order in which the bits in each byte will be processed. Choose
between:

MSB first, which outputs the most significant bit first for each byte.

LSB first, which reverses the bit order for each byte and outputs the least
significant bit first.

Initial value

Specify an initial value for the checksum. This is useful if the microcontroller
you are using has its own checksum calculation and you want that calculation to
correspond to the calculation performed by the linker.

Checksum unit size

Selects the size of the unit for which a checksum should be calculated. Typically,
this is useful to make the linker produce the same checksum as some hardware
CRC implementations that calculate a checksum for more than 8 bits per
iteration. Choose between:

8-bit, calculates a checksum for 8 bits in every iteration.

16-bit, calculates a checksum for 16 bits in every iteration.

32-bit, calculates a checksum for 32 bits in every iteration.

AFE1_AFE2-1:1

254

Description of linker options

IDE Project Management and Building Guide
for MSP430

Extra Options
The Extra Options page provides you with a command line interface to the tool.

Use command line options

Specify additional command line arguments to be passed to the tool (not supported by
the GUI).

Edit Control Files dialog box
The Edit Control Files dialog box is available by choosing
Project>Options>Linker>Stack Usage and clicking the Control files browse button.

Click <Click to add> to open an Open dialog box. Use it to locate your suc file.

AFE1_AFE2-1:1

255

TI ULP Advisor™
Software options
● Description of TI ULP Advisor options

Description of TI ULP Advisor options
This section gives detailed information about the options in the TI ULPTM Advisor
category.

TI ULP Advisor is a static code analyzer from Texas Instruments that flags source code
and helps you improve the power consumption properties of your application.

To get started using the TI ULP Advisor:

1 Choose Project>Options>TI ULP Advisor to display the TI ULP Advisor page.

2 Select Enable TI ULP Advisor, and other settings as required, see TI ULP Advisor,
page 256.

3 When you build your application, the TI ULP code analysis runs as an additional step.
To display the result of the analysis in the Build window, right-click in the Build
window and choose All.

Each TI ULP advisor build message includes a link to the source code and a link to the
documentation of the specific rule.

AFE1_AFE2-1:1

256

Description of TI ULP Advisor options

IDE Project Management and Building Guide
for MSP430

TI ULP Advisor
The TI ULP Advisor options control which rules that are checked.

Enable TI ULP Advisor

Enables TI ULP Advisor checking of your source code. Only the rules that you select in
the scroll list are checked.

Note: To display the result of the analysis in the Build window, right-click in the Build
window and choose All.

Set active ULP Advisor rules

Lists the rules that you can choose from. Select the rules that you want TI ULP Advisor
to check against when you build your application. The numbers refer to the rule in the
documentation from Texas Instruments.

Additional arguments

Specify any additional arguments that you want to pass to TI ULP Advisor.

AFE1_AFE2-1:1

257

Library builder options
● Description of library builder options

Description of library builder options
Reference information about:

● Output

Options for the library builder are not available by default. Before you can set these
options in the IDE, you must add the library builder tool to the list of categories.

To set Library Builder options in the IDE:

1 Choose Project>Options>General Options>Output.

2 Select the Library option, which means that Library Builder appears as a category in
the Options dialog box.

3 Select Library Builder in the Category list.

AFE1_AFE2-1:1

258

Description of library builder options

IDE Project Management and Building Guide
for MSP430

Output
The Output options control the library builder and as a result of the build process, the
library builder will create a library output file.

Output file

Specifies the name of the output file from the library builder. By default, the linker will
use the project name with a filename extension. To override the default name, select
Override default and specify an alternative name of the output file.

AFE1_AFE2-1:1

Glossary

259

Glossary
This is a general glossary for terms relevant to
embedded systems programming. Some of the terms do
not apply to the IAR Embedded Workbench® version
that you are using.

A
Absolute location.
A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the linker

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application
The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture
A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives
The set of commands that control how the assembler operates.

Assembler language
A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be

preferred over C/C++ to save memory or to enhance the
execution speed of the application.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Auto variables
The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

B
Backtrace
Information for keeping call frame information up to date so
that the IAR C-SPY® Debugger can return from a function
correctly. See also Call frame information.

Bank
See Memory bank.

Bank switching
Switching between different sets of memory banks. This
software technique increases a computer's usable memory by
allowing different pieces of memory to occupy the same
address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

AFE1_AFE2-1:1

260
IDE Project Management and Building Guide
for MSP430

Bank-switching routines
Code that selects a memory bank.

Batch files
A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint

1 Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of
the program variables. Breakpoints can be part of the
program itself, or they can be set by the programmer as
part of an interactive session with a debugging tool for
scrutinizing the program's execution.

2 Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed
either by a read operation or a write operation.

3 Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the
process of debugging. Immediate breakpoints are
generally used for halting the program execution in the
middle of a memory access instruction (before or after the
actual memory access depending on the access type) while
performing some user-specified action. The execution is
then resumed. This feature is only available in the
simulator version of C-SPY.

C
Call frame information
Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls—call stack—wherever the program counter is, provided
that the code comes from compiled C functions. See also
Backtrace.

Calling convention
A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++
functions. All code written in assembler language must
conform to the rules in the calling convention to be callable
from C or C++, or to be able to call C and C++ functions. The
C calling convention and the C++ calling conventions are not
necessarily the same.

Cheap
As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum
A small piece of data calculated from a larger block of data for
the purpose of detecting errors that might have been introduced
during its transmission or storage. Compare CRC (cyclic
redundancy check).

Code banking
See Banked code.

Code model
The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

AFE1_AFE2-1:1

Glossary

261

Code pointers
A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Code segments
Read-only segments that contain code. See also Segment.

Compilation unit
See Translation unit.

Compiler function directives
The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
IAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Context menu
A context menu appears when you right-click in the user
interface, and provides context-specific menu commands.

Cost
See Memory access cost.

CRC (cyclic redundancy check)
A checksum algorithm based on binary polynomials and an
initial value. A CRC algorithm is more complex than a simple
arithmetic checksum algorithm and has a greater error
detecting capability. Most checksum calculation algorithms
currently in wide used are based on CRC. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor
A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before the actual compilation occurs. A
C-style preprocessor follows the rules set up in Standard C and
implements commands like #define, #if, and #include,
which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

D
Data banking
See Banked data.

Data model
The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers
Many microcontrollers have different addressing modes to
access different memory types or address spaces. Compilers
for embedded systems usually have a set of different data
pointer types so they can access the available memory
efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration
A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be

AFE1_AFE2-1:1

262
IDE Project Management and Building Guide
for MSP430

declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
 "b" takes two int parameters and returns an
 int. */

extern int a;
int b(int, int);

Definition
The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Device description file
A file used by C-SPY that contains various device-specific
information such as I/O register (SFR) definitions, interrupt
vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)
A device that is similar to a microprocessor, except that the
internal CPU is optimized for use in applications involving
discrete-time signal processing. In addition to standard
microprocessor instructions, digital signal processors usually
support a set of complex instructions to perform common
signal-processing computations quickly.

Disassembly window
A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

DWARF
An industry-standard debugging format which supports source
level debugging. This is the format used by the IAR ILINK
Linker for representing debug information in an object.

Dynamic initialization
Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile time or at link time. This
is called static initialization. In C++, variables might require
initialization to be performed by executing code, for example,
running the constructor of global objects, or performing
dynamic memory allocation.

Dynamic memory allocation
There are two main strategies for storing variables: statically at
link time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory requirements of an application. See
also Heap memory.

Dynamic object
An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E
EEPROM
Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

AFE1_AFE2-1:1

Glossary

263

ELF
Executable and Linking Format, an industry-standard object
file format. This is the format used by the IAR ILINK Linker.
The debug information is formatted using DWARF.

Embedded C++
A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system
A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator
An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration
A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

EPROM
Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Executable image
Contains the executable image; the result of linking several
relocatable object files and libraries. The file format used for
an object file is UBROF.

Exceptions
An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive
As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords
Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F
Filling
How to fill up bytes—with a specific fill pattern—that exists
between the segments in an executable image. These bytes
exist because of the alignment demands on the segments.

Format specifiers
Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

AFE1_AFE2-1:1

264
IDE Project Management and Building Guide
for MSP430

G
General options
Parameters you can specify to change the default behavior of
all tools that are included in the IDE.

Generic pointers
Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H
Harvard architecture
A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but adds some silicon complexity.
Compare von Neumann architecture.

Heap memory
The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory is allocated from the
heap it remains valid until it is explicitly released back to the
heap by the application. This type of memory is useful when
the number of objects is not known until the application
executes.

Note that this type of memory is risky to use in systems with a
limited amount of memory or systems that are expected to run
for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host
The computer that communicates with the target processor.
The term is used to distinguish the computer on which the

debugger is running from the microcontroller the embedded
application you develop runs on.

I
IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

ILINK
The IAR ILINK Linker which produces absolute output in the
ELF/DWARF format.

Image
See Executable image.

Include file
A text file which is included into a source file. This is often
done by the preprocessor.

Initialized segments
Read-write segments that should be initialized with specific
values at startup. See also Segment.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining
An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics
A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

AFE1_AFE2-1:1

Glossary

265

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts
In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by
both hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions
1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating-point
arithmetic etc.).

K
Key bindings
Key shortcuts for menu commands used in the IDE.

Keywords
A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L
L-value
A value that can be found on the left side of an assignment and
that can, therefore, be changed. This includes plain variables
and dereferenced pointers. Expressions like (x + 10) cannot
be assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Library configuration file
A file that contains a configuration of the runtime library. The
file contains information about what functionality is part of the
runtime environment. The file is used for tailoring a build of a
runtime library. See also Runtime library.

Linker configuration file
A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker configuration file and not in the source code, the linker
configuration file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

AFE1_AFE2-1:1

266
IDE Project Management and Building Guide
for MSP430

M
MAC (Multiply and accumulate)
A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1 Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to
the given macro name. Parameters will be substituted if
referred to.

2 C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of
each macro is then substituted for any occurrences of the
macro name in the rest of the translation unit.

3 C-SPY macros are programs that you can write to enhance
the functionality of C-SPY. A typical application of C-SPY
macros is to associate them with breakpoints; when such a
breakpoint is hit, the macro is run and can, for example, be
used to simulate peripheral devices, to evaluate complex
conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox
A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

Memory access cost
The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model
Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller
A microprocessor on a single integrated circuit intended to
operate as an embedded system. In addition to a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor
A CPU contained on one (or a few) integrated circuits. A
single-chip microprocessor can include other components
such as memory, memory management, caches, floating-point
unit, I/O ports and timers. Such devices are also known as
microcontrollers.

Module
An object. An object file contains a module and library
contains one or more objects. The basic unit of linking. A
module contains definitions for symbols (exports) and
references to external symbols (imports). When you compile
C/C++, each translation unit produces one module.

AFE1_AFE2-1:1

Glossary

267

Multi-file compilation
A technique which means that the compiler compiles several
source files as one compilation unit, which enables for
interprocedural optimizations such as inlining, cross call, and
cross jump on multiple source files in a compilation unit.

N
Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

No-init segments
Read-write segments that should not be initialized at startup.
See also Segment.

Non-volatile storage
Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP
No operation. This is an instruction that does not do anything,
but is used to create a delay. In pipelined architectures, the NOP
instruction can be used for synchronizing the pipeline. See also
Pipeline.

O
Object
An object file or a library member.

Object file, absolute
See Executable image.

Object file, relocatable
The result of compiling or assembling a source file. The file
format used for an object file is UBROF.

Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence
Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

Options
A set of commands that control the behavior of a tool, for
example the compiler or linker. The options can be specified
on the command line or via the IDE.

Output image
See Executable image.

P
Parameter passing
See Calling convention.

Peripheral unit
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline
A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

AFE1_AFE2-1:1

268
IDE Project Management and Building Guide
for MSP430

#pragma
During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking
An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)
Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special symbol
(typically $) that can be used in arithmetic expressions. Also
known as a location counter (LC).

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

PROM
Programmable Read-Only Memory. A type of ROM that can
only be programmed once.

Q
Qualifiers
See Type qualifiers.

R
Range, in linker configuration file
A range of consecutive addresses in a memory. A region is
built up of ranges.

Read-only segments
Segments that contain code or constants. See also Segment.

Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, and
how tasks are scheduled. An RTOS is typically much smaller
than a normal desktop operating system. Compare Real-time
system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Region, in linker configuration file
A set of non-overlapping ranges. The ranges can lie in one or
more memories. For XLINK, the segments are placed in
regions.

Register
A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved as a temporary storage area during program
execution.

AFE1_AFE2-1:1

Glossary

269

Register constant
A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register locking
Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in many situations. For example,
some parts of a system might be written in assembler language
to gain speed. These parts might be given dedicated processor
registers. Or the register might be used by an operating system,
or by other third-party software.

Register variables
Typically, register variables are local variables that are placed
in registers instead of on the (stack) frame of the function.
Register variables are much more efficient than other variables
because they do not require memory accesses, so the compiler
can use shorter/faster instructions when working with them.
See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

Reset
A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor
A piece of embedded software designed specifically for use as
a debugging tool. It resides in the ROM of the evaluation board
chip and communicates with a debugger via a serial port or
network connection. The ROM-monitor provides a set of
primitive commands to view and modify memory locations
and registers, create and remove breakpoints, and execute your
application. The debugger combines these primitives to fulfill
higher-level requests like program download and single-step.

Round Robin
Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of relocatable object files that will be included in
the executable image only if referred to from an object file, in
other words conditionally linked.

Runtime model attributes
A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

For XLINK, two modules can only be linked together if they
have the same value for each key that they both define.

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

S
Saturation arithmetics
Most, if not all, C and C++ implementations use mod–2N
2-complement-based arithmetics where an overflow wraps the
value in the value domain, that is, (127 + 1) = -128. Saturation
arithmetics, on the other hand, does not allow wrapping in the
value domain, for instance, (127 + 1) = 127, if 127 is the upper
limit. Saturation arithmetics is often used in signal processing,
where an overflow condition would have been fatal if value
wrapping had been allowed.

Scheduler
The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. Many scheduling algorithms exist, but most of them are
either based on static scheduling (performed at compile-time),
or on dynamic scheduling (where the actual choice of which

AFE1_AFE2-1:1

270
IDE Project Management and Building Guide
for MSP430

task to run next is taken at runtime, depending on the state of
the system at the time of the task-switch). Most real-time
systems use static scheduling, because it makes it possible to
prove that the system will not violate the real-time
requirements.

Scope
The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM
or in ROM.

Segment map
A set of segments and their locations. This map is part of the
linker list file.

Segment part
A part of a segment, typically a variable or a function.

Semaphore
A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
tasks must access the same resource, the parts of the code (the
critical sections) that access the resource must be made
exclusive for every task. This is done by obtaining the
semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
must obtain the semaphore. If the semaphore is already in use,
the second task must wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level
The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Sharing
A physical memory that can be addressed in several ways. For
XLINK, the command line option -U is used to define it.

Short addressing
Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect
An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal
Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

Simple format
The Simple output format is a format that supplies the bytes of
the application in a way that is easy to manipulate. If you want
to modify the contents of some addresses in the application but
the standard linker options are not sufficient, use the Simple
output format. Generate the application in the Simple format
and then write a small utility (example source code is delivered
with XLINK) that modifies the output.

Simulator
A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used for
debugging the application when the hardware is unavailable,
or not needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

AFE1_AFE2-1:1

Glossary

271

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames
Data structures containing data objects like preserved
registers, local variables, and other data objects that must be
stored temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments
The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Standard libraries
The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like
floating-point routines.

Static object
An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay
Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Statically allocated memory
This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are
allocated this way.

Structure value
A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T
Target

1 An architecture.

2 A piece of hardware. The particular embedded system you
are developing the application for. The term is usually used
to distinguish the system from the host system.

Task (thread)
A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal I/O
A simulated terminal window in C-SPY.

AFE1_AFE2-1:1

272
IDE Project Management and Building Guide
for MSP430

Timer
A peripheral that counts independent of the program
execution.

Timeslice
The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. A task might be
allowed to execute during several consecutive timeslices
before being switched out. A task might also not be allowed to
use its entire time slice, for example if, in a preemptive system,
a higher priority task is activated by an interrupt.

Translation unit
A source file together with all the header files and source files
included via the preprocessor directive #include, except for
the lines skipped by conditional preprocessor directives such
as #if and #ifdef.

Trap
A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers
In Standard C/C++, const or volatile. IAR Systems
compilers usually add target-specific type qualifiers for
memory and other type attributes.

U
UBROF (Universal Binary Relocatable Object
Format)
File format produced by some of the IAR Systems
programming tools, if your product package includes the
XLINK linker.

V
Value expressions, in linker configuration file
A constant number that can be built up out of expressions that
has a syntax similar to C expressions.

Virtual address (logical address)
An address that must be translated by the compiler, linker or
the runtime system into a physical memory address before it is
used. The virtual address is the address seen by the application,
which can be different from the address seen by other parts of
the system.

Virtual space
An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage
Data stored in a volatile storage device is not retained when the
power to the device is turned off. To preserve data during a
power-down cycle, you should store it in non-volatile storage.
This should not be confused with the C keyword volatile.
Compare Non-volatile storage.

von Neumann architecture
A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W
Watchpoints
Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X
XAR
An IAR tool that creates archives (libraries) in the UBROF
format. XAR is delivered with IAR Embedded Workbench.

XLIB
An IAR tool that creates archives (libraries) in the UBROF
format, listing object code, converting and absolute object file
into an absolute object file in another format. XLIB is
delivered with IAR Embedded Workbench.

AFE1_AFE2-1:1

Glossary

273

XLINK
The IAR XLINK Linker which uses the UBROF output
format.

Z
Zero-initialized segments
Segments that should be initialized to zero at startup. See also
Segment.

Zero-overhead loop
A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone
Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

AFE1_AFE2-1:1

Glossary

274

UIDETooticki6.4.0-1:1

Index

275

A
assembler options, definition of . 259
absolute location, definition of . 259
absolute segments, definition of . 259
accelerator keys. See shortcut keys
Add Project Connection dialog box (Project menu) 105
Additional arguments (TI ULP Advisor option) 256
Additional include directories (preprocessor option) 221, 231
Additional input files (custom build option) 236
address expression, definition of. 259
address range check, specifying in linker 250
Algorithm (Generate checksum setting) 253
Alias (Key bindings option) . 50
Align (Raw binary image setting) 241
Alignment (Generate checksum setting) 252
All warnings (Warning setting). 232
Allow C-SPY-specific output file (Format setting). 243
Allow direct access (Hardware multiplier setting) 199
Allow VLA (C dialect setting) . 211
Always generate output (linker option). 250
Ambiguous Definitions (View menu) 155
ANSI C. See C89
application, definition of . 259
architecture, definition of . 259
argument variables . 75

custom . 82–83
environment variables . 82
in #include file paths . 221, 231
summary of predefined . 81

Arguments (External editor option) 57
Arithmetic sum (checksum algorithm) 253
arranging windows. See windows
asm (filename extension) . 175
Assembled lines only (Include listing setting) 230
assembler comments, text style in editor. 131
assembler directives

definition of . 259
text style in editor . 131

assembler language, definition of 259
assembler list files

compiler call frame information. 220
conditional information, specifying 229
cross-references, generating. 230
generating . 229
header, including . 229
lines per page, specifying. 230
tab spacing, specifying. 230

Assembler mnemonics (Output list file setting) 220
assembler options . 227

Diagnostics . 232
Language . 227
List. 229
Output . 228

assembler options, definition of . 259
assembler output, including debug information 228
Assembler source file (Workspace window icon) 98
assembler, command line version . 23
Assert PUC on IPE violation (general option) 206
Assert PUC on MPU violation (general option) 206
assert, in built applications . 90
assumptions, programming experience 15
Auto code completion and parameter hints (editor option) . 55
Auto indent (editor option) . 54
Auto (Language setting) . 211

B
Background color (IDE Tools option). 60
backtrace information, definition of 259
bank switching, definition of . 259
banked code, definition of. 259
banked data, definition of . 259
banked memory, definition of . 259
bank-switching routines, definition of. 260
bat (filename extension) . 175
Batch Build dialog box (Project menu). 122

Index

UIDETooticki6.4.0-1:1

276
IDE Project Management and Building Guide
for MSP430

batch files
definition of . 260
specifying from the Tools menu. 35

bin, common (subdirectory) . 173
bin, 430 (subdirectory) . 172
Bit order (Generate checksum setting) 253
bitfield, definition of . 260
Body (b) (Configure auto indent option). 56
bold style, in this guide . 19
bookmarks

adding . 132
showing in editor . 54

breakpoints, definition of . 260
@brief (doxygen keyword) . 138
Buffered terminal output (Format setting) 243
-build (iarbuild command line option) 117
Build Actions Configuration (Build Actions options) 237
build configuration

creating . 93
definition of . 90

Build window (View menu) . 120
building

batches . 116
commands for . 114
excluding files . 99
from the command line . 116
options . 61
pre- and post-actions . 115
the process . 109

Button Appearance dialog box . 46

C
C comments, text style in editor . 131
C dialect (compiler option) . 211
C keywords, text style in editor. 131
C source file (Workspace window icon) 98
c (filename extension). 175
C (Language setting). 210

call frame information
definition of . 260
including in assembler list file 220
See also backtrace information

Call graph output (linker option). 246
calling convention, definition of . 260
category, in Options dialog box 113, 120
cfg (filename extension) . 176
characters, in assembler macro quotes 228
cheap memory access, definition of 260
checksum

CRC. 261
definition of . 260
generating . 252

Checksum unit size (Generate checksum setting) 253
Checksum (linker options) . 252
chm (filename extension) . 176
-clean (iarbuild command line option) 117
Clean (Workspace window context menu) 100
CLIB

library reference information for 18
naming convention. 20

Close Workspace (File menu). 181
code

banked, definition of . 259
skeleton, definition of . 271
testing . 115

code completion, in editor. 129
code folding, in editor . 128
code memory, filling unused. 252
Code model (general option). 198
code model, definition of . 260
Code page (compiler options) . 214
code pointers, definition of . 261
code sections, definition of . 261
code templates, using in editor . 130
colors in C-SPY windows, switching on or off 69
command line options

specifying from the Tools menu. 35

UIDETooticki6.4.0-1:1

Index

277

typographic convention . 19
Command line (custom build option) 236
command prompt icon, in this guide 19
Command (External editor option) 57
comments

documentation comment type 138
shown in tooltips and parameter hints 138

Common Fonts (IDE Options dialog box) 48
common (directory) . 173
Compile (Workspace window context menu) 100
compiler diagnostics . 220
compiler function directives, definition of 261
compiler list files

assembler mnemonics, including 220
generating . 220
source code, including . 220

compiler options . 209
definition of . 261
Code . 214
Diagnostics . 222
Language 1 . 210
Language 2 . 213
List. 219
MISRA C. 223
Optimizations. 216
Output . 217
Preprocessor. 231

compiler output
including debug information . 218
module name . 218
overriding default directory for 201
program or library . 218

compiler preprocessor. 231
compiler, command line version . 23
Complement (Generate checksum setting) 253
computer style, typographic convention 19
Config (linker options) . 240, 256
Configuration file (general option) 202
Configurations for project dialog box (Project menu). . . . 103

Configure Auto Indent (IDE Options dialog box) 55
Configure Custom Argument Variables dialog box 83
Configure Tools (Tools menu) . 74
Configure Viewers dialog box (Tools menu) 76
$CONFIG_NAME$ (argument variable) 81
config, common (subdirectory). 173
config, 430 (subdirectory). 172
Connect Project to Subversion (Subversion control menu)106
context menu, definition of . 261
Control file (linker option) . 246
Control file (Workspace window icon) 98
conventions, used in this guide . 18
copyright notice . 2
correcting errors found during build 115
cost. See memory access cost
cpp (filename extension). 176
CRC polynomial (checksum algorithm) 253
CRC, definition of . 261
CRC16 (checksum algorithm). 253
CRC32 (checksum algorithm). 253
Create New Project dialog box (Project menu) 102
Cross-reference (assembler option). 230
cstartup (system startup code)

definition of . 261
stack pointers not valid until reaching 71

cstat, 430 (subdirectory) . 172
CUR_DIR (argument variable) . 81
CUR_LINE (argument variable) 81
custom build . 109

using . 118
custom tool configuration . 109
Custom Tool Configuration (custom build options) 235
custom variables, as argument variables 82
Customize dialog box . 44
C-SPY options, definition of. 261
C-STAT for static analysis, documentation for. 17
C-style preprocessor, definition of 261
C/C++ syntax

enabling in compiler . 211

UIDETooticki6.4.0-1:1

278
IDE Project Management and Building Guide
for MSP430

options for styles . 59
C++ comments, text style in editor 131
C++ dialect (compiler option). 212
C++ inline semantics (C dialect setting) 211
C++ keywords, text style in editor 131
C++ source file (Workspace window icon). 98
C++ terminology. 18
C++ (Language setting) . 211
C89 (C dialect setting) . 211
C99 (C dialect setting) . 211

D
dat (filename extension) . 176–177
Data model (general option) . 198
data model, definition of . 261
data pointers, definition of . 261
data representation, definition of. 261
Data16 heap size (general option). 204
Data20 heap size (general option). 205
$DATE$ (argument variable) . 81
dbg (filename extension). 176
dbgdt (filename extension) . 176
ddf (filename extension) . 176
debug information

generating in assembler . 229
in compiler, generating . 218

Debug information for C-SPY (Format setting) 242
Debugger (IDE Options dialog box) 68
Declarations window (View menu). 154
declaration, definition of . 261
default installation path. 171
Default integer format (IDE option) 69
#define options (linker options) . 249
define (linker options). 249
Defined by application (Override default program entry
setting) . 240
Defined symbols option . 221, 231
Defined symbols (linker option) . 249

definition, definition of . 262
dep (filename extension). 176
Destroy static objects (C++ dialect setting). 212
development environment, introduction 23
Development mode (general option). 198
device description files . 172

definition of . 262
device driver, definition of . 262
device selection files. 172
Device (general option). 198
diagnostics

compiler
including in list file . 220

linker, suppressing . 251
suppressing . 222

Diagnostics (assembler options) . 232
Diagnostics (compiler options) . 222
Diagnostics (linker options) . 250
digital signal processor, definition of 262
directories

common . 173
compiler, ignore standard include 221, 231
root . 171

directory structure. 171
Disable language extensions (Language conformance
setting) . 211
Disable (Warning setting) . 232
Disabled (Range checks setting) . 251
Disassembly window, definition of. 262
Discard Unused Publics (multi-file compilation setting). . 210
disclaimer . 2
Disconnect Project from Subversion (Subversion control
menu) . 106
DLI B, naming convention . 20
dnx (filename extension). 176
dockable windows . 25
document conventions . 18
documentation . 171

online . 172
overview of guides. 17

UIDETooticki6.4.0-1:1

Index

279

overview of this guide . 16
this guide . 15

documentation comment type . 138
doc, common (subdirectory) . 173
doc, 430 (subdirectory) . 172
doxygen keywords in comments . 138
drag-and-drop

of files in workspace window . 92
text in editor window . 128

drivers, 430 (subdirectory) . 172
DSP. See digital signal processor
Dual line spacing (Include cross-reference setting). 230
DWARF, definition of . 262
Dynamic Data Exchange (DDE). 35

calling external editor . 57
dynamic initialization, definition of 262
dynamic memory allocation, definition of 262
dynamic object, definition of . 262

E
Edit Batch Build dialog box (Project menu) 123
Edit Control Files dialog box . 254
Edit Filename Extensions dialog box (Tools menu) 80
Edit Include Directories dialog box (preprocessor
options). 224
Edit menu . 182
Edit Viewer Extensions (Tools menu) 77
editing source files . 126
edition, of this guide . 2
editor

code completion. 129
code folding . 128
code templates . 130
commands . 132
customizing the environment . 126
external . 35
indentation . 127
matching parentheses and brackets 127

options . 52
parameter hint . 129
shortcut keys . 164
shortcut to functions. 133, 140
splitter controls . 139
status bar, using in . 132
using . 125
word completion . 129

Editor Colors and Fonts (IDE Options dialog box) 59
Editor Font (Editor colors and fonts option) 59
Editor Setup Files (IDE Options dialog box) 58
editor setup files, options . 58
Editor window . 137
Editor (External editor option) . 57
Editor (IDE Options dialog box). 52
EEC++ syntax (C++ dialect setting) 212
EEPROM, definition of . 262
Embedded C++

definition of . 263
syntax, enabling in compiler . 212

Embedded C++ (C++ dialect setting) 212
embedded system, definition of . 263
Embedded Workbench

editor . 125
layout . 25
main window . 39
reference information. 179
running. 26
version number, displaying . 196

emulator (C-SPY driver), definition of 263
Enable graphical stack display and stack usage
tracking (Stack option) . 70
Enable IPE (general option) . 206
Enable MPU (general option) . 205
Enable multibyte support (assembler option) 228
Enable multibyte support (compiler option) 214
Enable project connections (IDE Project options). 63
Enable remarks (compiler option). 222
Enable stack usage analysis (linker option). 246
Enable thread support in library (general option) 202

UIDETooticki6.4.0-1:1

280
IDE Project Management and Building Guide
for MSP430

Enable TI ULP Advisor (TI ULP Advisor option) 256
Enable virtual space (editor option) 55
Enable (Warning setting) . 232
Enabled transformations (compiler option). 217
encoding, editor options . 53
Entry symbol (Override default program entry setting) . . 240
enumeration, definition of. 263
environment variables, as argument variables. 82
EOL character (editor option) . 54
EPROM, definition of. 263
error messages, compiler . 223
errors, correcting. 115
ewd (filename extension) . 176
ewp (filename extension) . 176
ewplugin (filename extension) . 176
eww (filename extension) . 176

the workspace file . 26
EW_DIR (argument variable) . 81
example projects . 27

running. 27
examples, 430 (subdirectory) . 172
exceptions, definition of . 263
Exclude RESET vector (general option) 198
excluding files from build . 99
executable image

analyzing using log file . 248
definition of . 263

Executable (Output file setting) . 200
Executables/libraries (output directory setting). 201
EXE_DIR (argument variable) . 81
expensive memory access, definition of 263
extended command line file . 177
Extended Embedded C++ syntax, enabling in compiler . . 212
extended keywords, definition of 263
extensions. See filename extensions or language extensions
External Analyzer (IDE Options dialog box) 63, 65
External Editor (IDE Options dialog box). 56
external editor, using. 35
Extra Options, specifying command line
options . 224, 233, 254

Extra Output (linker options) . 244

F
Factory settings (build configuration option) 104
factory settings, restoring default settings 114
File Encoding (editor option) . 53
file extensions. See filename extensions
File format (linker option) . 247
File menu . 179
file types

C-STAT . 172
device description . 172
device selection . 172
documentation . 172
drivers . 172
extended command line . 177
flash loader applications . 172
header . 172
include . 172
library . 172
linker configuration files . 172
map . 246
project templates . 172
readme . 172
special function registers description files 172
syntax coloring configuration 172

File (Raw binary image setting) . 241
filename extensions . 175

cfg, syntax highlighting . 59
eww, the workspace file. 26
other than default . 31

Filename Extensions dialog box (Tools menu) 78
Filename Extensions Overrides dialog box (Tools menu). . 79
Filename extensions (custom build option). 235
files

editing . 126
navigating among. 89

$FILE_DIR$ (argument variable). 81

UIDETooticki6.4.0-1:1

Index

281

$FILE_FNAME$ (argument variable) 81
$FILE_PATH$ (argument variable) 81
Fill pattern (Fill setting) . 252
Fill unused code memory (linker option) 252
filling, definition of. 263
Find All References window (View menu). 162
Find dialog box (Edit menu) . 146
Find in Files dialog box (Edit menu). 149
Find in Files window (View menu). 147
Fixed width font (IDE option). 48
flash loader applications . 172
floating windows . 25
floating-point expressions, improving performance 213
Floating-point semantics (compiler option) 213
Floating-point (general option) . 199
fmt (filename extension) . 176
font

Editor . 59
Fixed width . 48
Proportional width . 48

format specifiers, definition of . 263
Format variant (Format setting) 243, 245
Format (linker option). 242, 245
formats

linker output
default, overriding. 243
specifying . 242

standard IEEE (floating-point) 199
FRAM Write Protection (FRWP) (general option) 207
functions

intrinsic, definition of. 265
shortcut to in editor windows. 133, 140

G
general options

definition of . 264
Library Configuration . 201
Library Options . 203

MISRA C. 207
MPU/IPE/FRWP options . 205
Output . 200
Stack/Heap options . 204
Target. 197

Generate browse information (IDE Project options) 62
Generate checksum (linker option) 252
Generate debug information (assembler option) 229
Generate debug information (compiler option) 218
Generate errors (Range checks setting). 251
Generate extra output file (linker option) 245
Generate linker listing (linker option) 246
Generate warnings (Range checks setting) 251
Generate #line directives (Preprocessor output to file
setting) . 221
generating extra output file . 243
generic pointers, definition of . 264
glossary. 259
Go to function (editor button) 133, 140
Go to Line dialog box . 184
Group excluded from the build (Workspace window icon). 98
Group of files (Workspace window icon) 98
groups, definition of . 91
Guard Calls (compiler option) . 214

H
h (filename extension) . 176
Hardware multiplier (general option) 199
Harvard architecture, definition of 264
Header file (Workspace window icon) 98
header files . 172

quick access to . 134
heap memory, definition of. 264
heap size, definition of . 264
Help menu . 196
helpfiles (filename extension) . 176
High, balanced (Level setting) . 216
High, size (Level setting) . 216

UIDETooticki6.4.0-1:1

282
IDE Project Management and Building Guide
for MSP430

High, speed (Level setting) . 216
host, definition of . 264
htm (filename extension) . 176
HTML text file (Workspace window icon) 98
HTML (File format setting) . 247
html (filename extension) . 176

I
i (filename extension) . 176
iarbuild, building from the command line 116
IarIdePm.exe. 26
icons

in this guide . 19
in Workspace window . 98
SVN states . 106

IDE
definition of . 264
overview . 23

IDE internal file (Workspace window icon) 98
IEEE format, floating-point values 199
Ignore standard include directories (compiler option)221, 231
ILINK, definition of . 264
inc (filename extension) . 176
Include compiler call frame
information (Output assembler file setting). 220
include files . 172

compiler, specifying path. 221, 231
definition of . 264
linker, specifying path . 241
specifying path. 221, 231

Include header (assembler option) 229
Include listing (assembler option) 229
Include source (Output assembler file setting) 220
Include suppressed entries (linker option). 247
Incremental Search dialog box (Edit menu) 153
inc, 430 (subdirectory) . 172
Indent size (editor option) . 52
Indent with spaces (Tab Key Function setting) 52

indentation, in editor . 127
Information memory permissions (general option) 206
inherited settings, overriding. 113
ini (filename extension) . 176
Initial value (Generate checksum setting) 253
initialized sections, definition of . 264
inline assembler, definition of. 264
inlining, definition of . 264
Insert tab (Tab Key Function setting) 52–53
insertion point

navigating in its history . 133
shortcut key for moving . 132

installation directory . 18
installation path, default . 171
installed files. 171

documentation . 172
executable . 173
include . 172
library . 172

instruction mnemonics, definition of 264
Integrated Development Environment (IDE), definition
of . 264
Intellectual Property Encapsulation (IPE) (general option)206
Internal symbol (Include cross-reference setting) 230
interrupt vector table, definition of 265
interrupt vector, definition of . 264
interrupts

definition of . 265
nested, definition of . 267

intrinsic functions, definition of . 265
intrinsic, definition of . 265
italic style, in this guide . 19
I/O register. See SFR

J
Just warning (Warning setting) . 232

UIDETooticki6.4.0-1:1

Index

283

K
Key bindings (IDE Options dialog box) 49
key bindings, definition of . 265
key summary, editor . 164
keyboard shortcuts. See shortcut keys
keywords

definition of . 265
enable language extensions for 211
in comments. 138
specify syntax color for in editor 131

L
Label (c) (Configure auto indent option). 56
Language conformance (compiler option) 211
language extensions

definition of . 265
disabling in compiler . 211

Language (assembler options). 227
Language (compiler option) . 210
Language (IDE Options dialog box) 51
Language (Language option) . 51
Language 1 (compiler options) . 210
Language 2 (compiler options) . 213
Large (Data model setting) . 199
layout, of Embedded Workbench . 25
Level (compiler option) . 216
library builder, output options. 258
library configuration file

definition of . 265
specifying from IDE . 202

Library Configuration (general options) 201
Library file (general option) . 202
library files . 172
library functions

avoid stepping into (Functions with source only). 69
configurable . 173
online help for . 18

Library Module (Module type setting) 218
library modules, specifying in compiler 218
Library Options (general options) 203
Library (general option) . 201
Library (Output file setting) . 200
library, definition of . 269
lib, 430 (subdirectory). 172
lightbulb icon, in this guide. 19
#line directives, generating in compiler 221
Lines/page (assembler option) . 230
Lines/page (linker option). 247
linker

command line version . 23
diagnostics, suppressing. 251
overriding default output . 243

linker command file. See linker configuration file
linker configuration file

definition of . 265
in directory. 172
path, specifying . 241
specifying in linker . 240

Linker configuration file (linker option) 240
linker list files

generating . 246
including segment map . 246
specifying lines per page . 247

linker options . 239, 255
typographic convention . 19
Checksum . 252
Config . 240, 256
define . 249
Diagnostics . 250
Extra Output . 244
List. 246
Log . 248
Output . 242
Stack Usage . 245
#define . 249

linker symbols, defining . 249

UIDETooticki6.4.0-1:1

284
IDE Project Management and Building Guide
for MSP430

list files
assembler

compiler runtime information 220
conditional information, specifying 229
cross-references, generating 230
header, including. 229
lines per page, specifying . 230
tab spacing, specifying . 230

compiler
assembler mnemonics, including 220
generating . 220
source code, including . 220

linker
generating . 246
including segment map . 246
specifying lines per page. 247

List files (Output directories setting). 201
List (assembler options) . 229
List (compiler options) . 219
List (linker options) . 246
$LIST_DIR$ (argument variable). 81
location counter, definition of . 268
Lock IPE (general option). 206
Lock MPU (general option) . 205
-log (iarbuild command line option) 117
log (filename extension) . 176–177
Log (linker options) . 248
logical address, definition of . 272
Low (Level setting). 216
lst (filename extension). 177
L-value, definition of . 265

M
mac (filename extension) . 177
Macro definitions (Include listing setting) 230
Macro execution info (Include listing setting) 230
Macro expansions (Include listing setting) 230
Macro quote characters (assembler option). 228

macros, definition of . 266
MAC, definition of . 266
mailbox (RTOS), definition of . 266
-make (iarbuild command line option) 117
Make before debugging (IDE Project options) 62
Make (Workspace window context menu) 100
map files, generating. 246
map (filename extension) . 177
Math functions (general option) . 204
Max number of errors (assembler option) 232
Medium (Data model setting) . 199
Medium (Level setting). 216
memory access cost, definition of 266
memory area, definition of . 266
memory bank, definition of. 266
memory map, definition of . 266
memory model, definition of . 266
Memory Protection Unit (MPU) (general option) 205
memory usage, summary of . 247
memory, filling unused . 252
menu bar . 39
menu (filename extension) . 177
Menu (Key bindings option) . 49
menus . 179
Messages window, amount of output 121, 161
Messages (IDE Options dialog box) 60
metadata (subdirectory) . 173
microcontroller, definition of . 266
microprocessor, definition of . 266
migration, from earlier IAR compilers 17
MISRA C

compiler options . 223
documentation . 17
general options. 207

Module map (Symbols setting) . 247
module name, specifying in compiler 218
Module summary (linker option) 247
Module type (compiler option) . 218
modules, definition of . 266

UIDETooticki6.4.0-1:1

Index

285

Module-local symbol (Format setting) 243
MPU/IPE/FRWP (general options) 205
Multiline code (Include listing setting) 230
Multiply and accumulate, definition of 266
multitasking, definition of. 268
multi-file compilation

definition of . 267
specifying options for . 209

N
naming conventions . 20
navigating

in insertion point history . 133
to a function . 133

NDEBUG, preprocessor symbol . 90
nested interrupts, definition of . 267
New Configuration dialog box (Project menu) 104
NMI on MPU/IPE violation (general option) 206
No global type checking (linker option) 250
No size constraints (Level setting) 216
No source browser and build status updates when the IDE
is not the foreground process (IDE Project options) 63
None (Level setting) . 216
None (Symbols setting). 247
non-banked memory, definition of 267
non-initialized memory, definition of 267
non-volatile storage, definition of 267
NOP (assembler instruction), definition of 267
no-init sections, definition of . 267

O
Object file or library (Workspace window icon). 98
object file (absolute), definition of 267
object file (relocatable), definition of 267
Object files (Output directories setting) 201
Object module name (compiler option). 218
object, definition of. 267

OBJ_DIR (argument variable) . 81
online documentation

available from Help menu . 196
target-specific, in directory . 172

Open Containing Folder (editor window context menu) . . 139
Open Containing Folder (Workspace window context
menu) . 101
Open Workspace (File menu) . 180
Opening Brace (a) (Configure auto indent option) 56
operator precedence, definition of. 267
operators, definition of . 267
optimization levels, setting . 216
Optimizations (compiler options) 216
options

assembler . 227
build actions. 237
compiler. 209
custom build . 235
editor . 52
library builder . 257
linker . 239
setup files for editor . 58
TI ULP Advisor . 255

Options dialog box (Project menu) 119
using . 111

Options (Workspace window context menu) 99
options, definition of. 267
Other file (Workspace window icon) 98
Other (Format setting) . 243
output

assembler . 228
including debug information 228

compiler. 217
including debug information 218

formats. 242
debug (ubrof) . 242

generating extra file . 243
linker

generating . 250
specifying filename. 242

UIDETooticki6.4.0-1:1

286
IDE Project Management and Building Guide
for MSP430

specifying filename on extra output 245
preprocessor. 221

Output assembler file (compiler option) 220
Output directories (general option) 201
Output file (custom build option) 236
Output file (general option). 200
Output file (library builder options) 258
Output file (linker option) . 242, 245
Output format (Format setting) 243, 245
output image. See executable image
Output list file (assembler option). 229
Output list file (compiler option) 220
Output (assembler option). 228
Output (compiler options). 217
Output (general options) . 200
Output (library builder options) . 258
Output (linker options) . 242
Override default program entry (linker option) 240
Override default (general option) 204
Override segment base name (compiler option) 218

P
parameter hint, in editor . 129
parameters

typographic convention . 19
when building from command line 116

parentheses and brackets, matching (in editor) 127
part number, of this guide . 2
paths

compiler include files. 221, 231
include files . 221, 231
linker include files . 241
relative, in Embedded Workbench 91, 138
source files. 138

pbd (filename extension). 177
pbi (filename extension) . 177
peripheral units, definition of . 267
peripherals register. See SFR

pew (filename extension) . 177
pipeline, definition of . 267
Plain ‘char’ is (compiler option) . 213
Play a sound after build operations (IDE Project options). . 62
plugins

common (subdirectory) . 173
430 (subdirectory) . 172

pointers
definition of . 267
warn when stack pointer is out of range. 70

pop-up menu. See context menu
Position-independent code (general option) 198
Post-build command line (build actions option) 238
#pragma directive, definition of . 268
precedence, definition of. 267
preemptive multitasking, definition of 268
Preinclude file (compiler option) 221
preprocessor

definition of. See C-style preprocessor
macros for initializing string variables 115
NDEBUG symbol . 90

preprocessor directives
definition of . 268
text style in editor . 131

Preprocessor options . 220
Preprocessor output to file (compiler option) 221
Preprocessor (compiler options) . 231
prerequisites, programming experience 15
Preserve comments (Preprocessor output
to file setting) . 221
Press shortcut key (Key bindings option) 49
Pre-build command line (build actions option) 237
Primary (Key bindings option) . 49
Printf formatter (general option) . 203
prj (filename extension) . 177
processor variant, definition of . 268
Product Info dialog box (Help menu) 80
product overview

directory structure . 171
file types . 175

UIDETooticki6.4.0-1:1

Index

287

program counter, definition of . 268
program location counter, definition of. 268
Program Module (Module type setting) 218
programming experience . 15
program, see also application
Project Make, options . 61
Project menu . 189
project model . 87
project options, definition of . 268
Project page (IDE Options dialog box) 61
Project with multi-file compilation (Workspace window
icon) . 98
Project (Workspace window icon) 98
projects

adding files to . 93
build configuration, creating . 93
building . 114

in batches . 116
creating . 93
definition of . 89, 268
examples . 27

running . 27
excluding groups and files . 93
groups, creating . 93
managing . 87
organization . 89
workspace, creating . 93

$PROJ_DIR$ (argument variable) 81
$PROJ_FNAME$ (argument variable) 81
$PROJ_PATH$ (argument variable). 82
PROM, definition of . 268
Proportional width font (IDE option) 48
Protect INFO memory (general option) 207
Protect program memory (general option) 207
prototypes, verifying the existence of 212
publication date, of this guide . 2

Q
qualifiers, definition of. See type qualifiers

R
Range checks (linker option) . 250
range, definition of . 268
Raw binary image (linker option) 241
Read from linker configuration file (general option). 205
reading guidelines. 15
readme files, See release notes
read-only sections, definition of . 268
real-time operating system, definition of. 268
real-time system, definition of . 268
Rebuild All (Workspace window context menu) 100
Reduce stack usage (compiler option). 215
reference information, typographic convention. 19
References window (View menu) 156
register constant, definition of. 269
register locking, definition of . 269
register variables, definition of . 269
registered trademarks . 2
registers

definition of . 268
header files for in inc directory 172

relative paths. 91, 138
release notes . 172
Reload last workspace at startup (IDE Project options) . . . 62
relocatable segments, definition of 269
remarks, classifying diagnostics as 222
Remove trailing blanks (editor option) 55
Rename Group dialog box . 101
Replace dialog box (Edit menu) . 148
Replace in Files dialog box (Edit menu) 151
Require prototypes (C dialect setting). 212
Reset All (Key bindings option) . 50
reset, definition of . 269
restoring default factory settings . 114

UIDETooticki6.4.0-1:1

288
IDE Project Management and Building Guide
for MSP430

ROM-monitor, definition of . 269
root directory . 171
Round Robin, definition of . 269
rtos, 430 (subdirectory). 172
RTOS, definition of . 268
runtime libraries

definition of . 269
specifying . 201

runtime model attributes, definition of 269
R-value, definition of . 269
R4 utilization (compiler option) . 214
R5 utilization (compiler option) . 215

S
saturation arithmetics, definition of 269
Save All (File menu). 181
Save As (File menu) . 181
Save editor windows before building (IDE Project
options). 61
Save workspace and projects before building (IDE Project
options). 62
Save Workspace (File menu) . 181
Save (File menu). 181
Scan for changed files (editor option) 54
Scanf formatter (general option) . 203
scheduler (RTOS), definition of . 269
scope, definition of . 270
scrolling, shortcut key for . 132
Search paths (linker option) . 241
searching in editor windows . 134
Segment map (linker option). 246
segment map, definition of . 270
Segment overlap warnings (linker option) 250
segment parts, including all in list file 247
segment part, definition of . 270
Segment (Raw binary image setting) 241
segments

definition of . 270

overlap errors, reducing . 250
range checks, controlling . 250

selecting text, shortcut key for . 132
semaphores, definition of . 270
Service (External editor option) . 57
Set active ULP Advisor rules (TI ULP Advisor option) . . 256
Set as Active (Workspace window context menu) 101
settings (directory) . 177
severity level

changing default for compiler diagnostics 222
changing default for linker diagnostics 250
definition of . 270

SFR
definition of . 271
in header files. 172

sfr (filename extension) . 177
sharing, definition of. 270
short addressing, definition of. 270
shortcut keys. 132

customizing . 49
Show bookmarks (editor option). 54
Show fold margin (editor option) . 54
Show line break characters (editor option) 55
Show line numbers (editor option) 54
Show right margin (editor option). 53
Show whitespaces (editor option) . 55
side-effect, definition of . 270
signals, definition of . 270
sim (filename extension). 177
Simple format, definition of . 270
simulator, definition of . 270
size optimization. 216
Size (Generate checksum setting) 252
skeleton code, definition of. 271
Small (Data model setting) . 199
Source Browse Log (View menu). 160
Source Browser window. 157

using . 134

UIDETooticki6.4.0-1:1

Index

289

source code
including in compiler list file . 220
templates . 130

Source code color in Disassembly window (IDE option) . . 68
Source Code Control (IDE Options dialog box) 67
Source file excluded from the build (Workspace window
icon) . 98
source files

editing . 126
managing in projects . 91
paths to . 91, 138

special function registers (SFR)
definition of . 271
description files . 172
in header files. 172

speed optimization . 216
src, 430 (subdirectory) . 173
stack frames, definition of. 271
stack segment, definition of . 271
Stack size (general option) . 204
stack usage control file, specifying 254
Stack Usage (linker options) . 245
Stack (IDE Options dialog box) . 70
Stack/Heap (general options) . 204
Standard C

making compiler adhere to. 211
syntax, enabling in compiler . 211

standard libraries, definition of . 271
Standard (Language conformance setting) 211
static analysis, documentation for . 17
static objects, definition of . 271
Static overlay map (linker option). 247
static overlay, definition of . 271
statically allocated memory, definition of 271
status bar. 43
Step into functions (IDE option) . 68
stepping, definition of . 271
STL container expansion (IDE option) 69
Stop build operation on (IDE Project options) 61
Stop Build (Workspace window context menu) 100

Strict (Language conformance setting) 211
strings, text style in editor . 131
structure value, definition of . 271
Subversion states and corresponding icons 106
suc (filename extension) . 177
Support FRWP (general option) . 207
Support IPE (general option) . 206
Support MPU (general option) . 205
Suppress all warnings (linker option) 251
Suppress these diagnostics (compiler option) 222
Suppress these diagnostics (linker option) 251
Symbol listing (Symbols setting) 247
Symbol (Raw binary image setting) 241
symbolic location, definition of . 271
symbols

See also user symbols
defining in linker . 249
definition of . 271

Symbols (linker option) . 247
symbols, defining . 221, 231
syntax coloring

configuration files . 172
in editor . 131

Syntax Coloring (Editor colors and fonts option) 59
Syntax highlighting (editor option) 54
syntax highlighting, in editor window. 131

T
Tab Key Function (editor option) . 52
Tab size (editor option). 52
Tab spacing (assembler option) . 230
Target (general options) . 197
$TARGET_BNAME$ (argument variable) 82
$TARGET_BPATH$ (argument variable) 82
$TARGET_DIR$ (argument variable) 82
$TARGET_FNAME$ (argument variable). 82
$TARGET_PATH$ (argument variable) 82
target, definition of . 271

UIDETooticki6.4.0-1:1

290
IDE Project Management and Building Guide
for MSP430

task, definition of . 271
Template dialog box (Edit menu) 163
templates for code, using . 130
tentative definition, definition of. 271
Terminal I/O window, definition of 271
Terminal I/O (IDE Options dialog box) 72
terminal I/O, simulating . 243
terminology. 18, 259
testing, of code . 115
Text file (Workspace window icon) 98
Text (File format setting) . 247
thread, definition of . 271
timer, definition of . 272
timeslice, definition of . 272
Tool Output window. 47
toolbar, IDE . 40

customizing . 29
toolchain

extending . 109
overview . 23

$TOOLKIT_DIR$ (argument variable) 82
tools icon, in this guide . 19
Tools menu . 193
tools, user-configured . 74
trademarks . 2
transformations, enabled in compiler 217
translation unit, definition of. 272
translator platform . 2
trap, definition of . 272
Treat all warnings as errors (compiler option) 223
Treat these as errors (compiler option) 223
Treat these as errors (linker option) 251
Treat these as remarks (compiler option) 222
Treat these as warnings (compiler option) 223
Treat these as warnings (linker option) 251
tutorials, 430 (subdirectory) . 173
type qualifiers, definition of . 272
Type (External editor option) . 57
type-checking, disabling at link time 250

typographic conventions . 19

U
UBROF

creating output in . 242
definition of . 272
tool for generating . 272

Update intervals (IDE option). 69
Use Code Templates (editor option) 58
Use colors (IDE option) . 69
Use command line options (compiler option) . . 224, 233, 254
Use Custom Keyword File (editor option) 58
Use External Editor (External editor option). 56
Use MathLib (general option). 202
Use only library calls (Hardware multiplier setting) 200
User symbols are case sensitive (assembler option) 228
$USER_NAME$ (argument variable) 82

V
value expressions, definition of. 272
variable length arrays . 211
variables, using in arguments . 75
version, of this guide. 2
Version Control System menu . 105
Version Control System (Workspace
window context menu) . 101
version number, of Embedded Workbench 196
View menu . 186
virtual address, definition of . 272
virtual space

definition of . 272
enabling in the editor . 55

Visual State
part of the tool chain . 25
project file . 177

volatile storage, definition of . 272
von Neumann architecture, definition of. 272

UIDETooticki6.4.0-1:1

Index

291

vsp (filename extension) . 177

W
Warn when exceeding stack threshold (Stack option). 70
Warn when stack pointer is out of bounds (Stack option) . . 70
warnings

assembler . 232
compiler. 223
linker . 251

Warnings from to (Warning setting) 232
warnings icon, in this guide . 19
Warnings (assembler option) . 232
Warnings/Errors (linker option) . 251
watchpoints, definition of . 272
web sites, recommended . 18
When source resolves to multiple function instances 68
whitespace, showing in editor . 55
Window menu. 195
windows

about organizing on the screen. 25
how to organize on the screen . 28

With I/O emulation modules (Format setting) 243
With runtime control modules (Format setting) 242
word completion, in editor . 129
Workspace window . 97

drag-and-drop of files . 92
Workspace window icons . 98
Workspace (Workspace window icon) 98
workspaces

creating . 93
using . 93

wsdt (filename extension) . 177

X
XAR, definition of . 272
xcl (filename extension) . 177
XLIB, definition of . 272

XLINK, definition of . 273

Z
zero-initialized sections, definition of 273
zero-overhead loop, definition of 273
zone, definition of . 273

Symbols
@brief (doxygen keyword) . 138
#define options (linker options) . 249
#define (Include cross-reference setting) 230
#included text (Include listing setting) 229
#pragma directive, definition of . 268
% stack usage threshold (Stack option). 70
$CONFIG_NAME$ (argument variable) 81
CUR_DIR (argument variable) . 81
CUR_LINE (argument variable) 81
$DATE$ (argument variable) . 81
EW_DIR (argument variable) . 81
EXE_DIR (argument variable) . 81
$FILE_DIR$ (argument variable). 81
$FILE_FNAME$ (argument variable) 81
$FILE_PATH$ (argument variable) 81
$LIST_DIR$ (argument variable). 81
OBJ_DIR (argument variable) . 81
$PROJ_DIR$ (argument variable) 81
$PROJ_FNAME$ (argument variable) 81
$PROJ_PATH$ (argument variable). 82
$TARGET_BNAME$ (argument variable) 82
$TARGET_BPATH$ (argument variable) 82
$TARGET_DIR$ (argument variable) 82
$TARGET_FNAME$ (argument variable). 82
$TARGET_PATH$ (argument variable) 82
$TOOLKIT_DIR$ (argument variable) 82
$USER_NAME$ (argument variable) 82

UIDETooticki6.4.0-1:1

292
IDE Project Management and Building Guide
for MSP430

Numerics
20-bit context save on interrupts (compiler option). 215
32 bits (Floating-point setting) . 199
64 bits (Floating-point setting) . 199

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	Introduction to the IAR Embedded Workbench IDE
	Briefly about the IDE and the build toolchain
	Tools for analyzing and checking your application
	An extensible and modular environment
	The layout of the windows on the screen

	Using and customizing the IDE
	Running the IDE
	Double-clicking the workspace filename

	Working with example projects
	Organizing windows on the screen
	Specifying tool options
	Adding a button to a toolbar
	Removing a button from a toolbar
	Showing/hiding toolbar buttons
	Recognizing filename extensions
	Getting started using external analyzers
	Invoking external tools from the Tools menu
	Adding command line commands to the Tools menu
	Using an external editor

	Reference information on the IDE
	IAR Embedded Workbench IDE window
	Customize dialog box
	Button Appearance dialog box
	Tool Output window
	Common Fonts options
	Key Bindings options
	Language options
	Editor options
	Configure Auto Indent dialog box
	External Editor options
	Editor Setup Files options
	Editor Colors and Fonts options
	Messages options
	Project options
	External Analyzers options
	External Analyzer dialog box
	Source Code Control options (deprecated)
	Debugger options
	Stack options
	Terminal I/O options
	Configure Tools dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Product Info dialog box
	Argument variables
	Configure Custom Argument Variables dialog box

	Project management
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	The IDE interacting with version control systems

	Managing projects
	Creating and managing a workspace and its projects
	Viewing the workspace and its projects
	Interacting with Subversion
	Viewing the Subversion states

	Reference information on managing projects
	Workspace window
	Create New Project dialog box
	Configurations for project dialog box
	New Configuration dialog box
	Add Project Connection dialog box
	Version Control System menu for Subversion
	Subversion states

	Building projects
	Introduction to building projects
	Briefly about building a project
	Extending the toolchain
	Tools that can be added to the toolchain

	Building a project
	Setting project options using the Options dialog box
	Building your project
	Correcting errors found during build
	Using pre- and post-build actions
	Using pre-build actions for time stamping

	Building multiple configurations in a batch
	Building from the command line
	Adding an external tool

	Reference information on building
	Options dialog box
	Build window
	Batch Build dialog box
	Edit Batch Build dialog box

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor
	Briefly about source browse information
	Customizing the editor environment

	Editing a file
	Indenting text automatically
	Matching brackets and parentheses
	Splitting the editor window into panes
	Dragging text
	Code folding
	Word completion
	Code completion
	Parameter hint
	Using and adding code templates
	Syntax coloring
	Adding bookmarks
	Using and customizing editor commands and shortcut keys
	Displaying status information

	Programming assistance
	Navigating in the insertion point history
	Navigating to a function
	Finding a definition or declaration of a symbol
	Finding references to a symbol
	Finding function calls for a selected function
	Switching between source and header files
	Displaying source browse information
	Text searching
	Accessing online help for reference information

	Reference information on the editor
	Editor window
	Find dialog box
	Find in Files window
	Replace dialog box
	Find in Files dialog box
	Replace in Files dialog box
	Incremental Search dialog box
	Declarations window
	Ambiguous Definitions window
	References window
	Source Browser window
	Source Browse Log window
	Resolve File Ambiguity dialog box
	Call Graph window
	Template dialog box
	Editor shortcut key summary

	Part 2. Reference information
	Product files
	Installation directory structure
	Root directory
	The 430 directory
	The common directory
	The install-info directory

	Project directory structure
	Various settings files
	Files for global settings
	Files for local settings

	File types

	Menu reference
	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Tools menu
	Window menu
	Help menu

	General options
	Description of general options
	Target options
	Output
	Library Configuration
	Library Options
	Stack/Heap
	MPU/IPE/FRWP
	MISRA C

	Compiler options
	Description of compiler options
	Multi-file Compilation
	Language 1
	Language 2
	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	MISRA C
	Extra Options
	Edit Include Directories dialog box

	Assembler options
	Description of assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Description of custom build options
	Custom Tool Configuration

	Build actions options
	Description of build actions options
	Build Actions Configuration

	Linker options
	Description of linker options
	Config
	Output
	Extra Output
	Stack Usage
	List
	Log
	#define
	Diagnostics
	Checksum
	Extra Options
	Edit Control Files dialog box

	TI ULP Advisor™ Software options
	Description of TI ULP Advisor options
	TI ULP Advisor

	Library builder options
	Description of library builder options
	Output

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

