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The sequence data for clinical outbreak strain  
L. monocytogenes N23-0035 have been deposited in the 
National Center for Biotechnology Information Nucleotide 
database under BioProject no. PRJNA935533 and accession 
no. JBDQYW000000000.
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Recent detection of highly pathogenic avian in-
fluenza A(H5N1) virus in US dairy cows raises 

serious public health concerns (1–3). Pasteurization, 
a common process for ensuring milk safety, involves 
heating milk to specific temperatures for specific 
lengths of time to eliminate disease-causing bacteria. 
The most common methods in the United States (4) 
are low-temperature long-time (LTLT, 63°C for 30 
minutes) and high-temperature short-time (HTST, 
72°C for 15–20 seconds) pasteurization. Recent stud-
ies have shown that unpasteurized milk from H5N1-
infected cows contains enough virus to infect suscep-
tible animals (5). 

We examined pasteurizing milk at various tem-
peratures to evaluate how temperature affects virus 
viability (Figure 1). It is crucial to emphasize that 
we do not assert that those conditions in a test tube 
setting simulate the actual pasteurization process. 
We used 4 influenza virus strains in this study: 1 
laboratory-adapted strain (PR8) and 3 H5N1 strains 
(Figures 1, 2; Appendix; https://wwwnc.cdc.gov/
EID/article/30/11/24-0772-App1.pdf). We spiked 
commercially available pasteurized whole milk 
(3.25% fat) with virus strains at a concentration of 
108 50% tissue culture infectious dose/mL of milk or 
Opti-MEM control media (Fisher Scientific, https://
www.fishersci.com). We subjected varying sample 
volumes (200 µL, 20 µL, and 2 µL) to 3 distinct heat 
treatments: 63°C for 30 minutes, 72°C for 20 seconds, 
and 91°C for 20 seconds. In addition, we tested the 
PR8 strain in both pasteurized and unpasteurized 

Highly pathogenic avian influenza A(H5N1) detected in 
dairy cows raises concerns about milk safety. The ef-
fects of pasteurization-like temperatures on influenza 
viruses in retail and unpasteurized milk revealed virus 
resilience under certain conditions. Although pasteuri-
zation contributes to viral inactivation, influenza A virus, 
regardless of strain, displayed remarkable stability in 
pasteurized milk. 
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milk to investigate the effect of preheating milk at 
37°C for 1 minute before subjecting it to HTST-like 
conditions. After treatment, we adjusted samples to 
a final volume of 200 µL and titrated (6). 

We observed no significant (i.e., p<0.05) differ-
ence in viral titer between influenza viruses diluted in 
control media and in milk. All 3 viruses tested in this 
assay (PR8, VN/04 ∆H5N1, and ty/IN/22) behaved 
similarly (Figure 1, panels A–C). Heat treatment at 
63°C for 30 minutes effectively reduced viral viabil-
ity below the limit of detection. For samples treated 
at 72°C for 20 seconds, titer reduction was inversely 
proportional to sample volume, with a nonsignificant 
decrease observed in 200-µL samples. Conversely, 
we observed significant (p<0.05) titer reduction in 20 
µL and 2-µL samples at 72°C. Treatment at 91°C for 
20 seconds also resulted in significant titer reduction 
inversely proportional to sample volume. Preheating 
samples to 37°C for 1 minute before beginning HTST 
(Figure 1, panels D, E) accelerated virus inactivation 

and was more pronounced in smaller volumes of 
milk (Figure 1, panel A). 

To investigate how different types of milk and 
storage temperatures affected the stability of influ-
enza virus strains (Figure 2, panel B), we tested pas-
teurized milk, unpasteurized colostrum milk (Figure 
2, panel C), and unpasteurized mature milk (Figure 
2, panel D). We stored the milk samples spiked with 
viruses at different temperatures for up to 4 days. 
We included a control sample in virus media for 
comparison. Those viruses showed remarkable re-
silience in unpasteurized milk, remaining infectious 
for >4 days at temperatures other than 63°C, at which 
temperature virus was inactivated within 24 hours. 
Unpasteurized colostrum milk showed increased vi-
rus inactivation, perhaps because of the presence of  
immunoglobulins. 

Although our study offers valuable insights, it is 
critical to note that spiking viruses into milk might 
not perfectly mimic a natural infection. However,  

Figure 1. Heat treatment of influenza virus in milk. A–C) We diluted influenza A viruses in Opti-Mem control media (Fisher Scientific, 
https://www.fishersci.com) or commercial off-the-shelf pasteurized whole milk and heat-treated samples of different volumes at the 
times and temperatures shown; we calculated time from the moment the sample was placed in the heat block. A sandwich design 
in a heat block ensured uniform temperature exposure. After treatment, we chilled samples on ice for 5 minutes, adjusted them to a 
final volume of 200 µL, and titrated by TCID50 in MDCK cells (10). Results are shown for reverse genetics wild-type strain A/Puerto 
Rico/8/1934 (H1N1) (A); Vietnam/1203/04, a reverse genetics virus carrying the H5 hemagglutinin and N1 neuraminidase segments 
from A/Vietnam/1203/2004 (H5N1) in the background of PR/8/34, with the H5 segment modified with a monobasic cleavage site (Δ) 
(B); and a field isolate of the wild-type highly pathogenic strain A/turkey/Indiana/3707-003/2022 (H5N1) (C). D, E) A/Puerto Rico/8/1934 
(H1N1) strain was spiked on pasteurized (D) and unpasteurized (E) milk samples at the times and temperatures shown. Circles indicate 
individual measurements; error bars indicate 95% CIs. Light gray shaded area indicates log10 TCID50 value of 1. NS, not significant; 
TCID50, 50% tissue culture infectious dose.
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influenza viruses, being enveloped, are generally less 
stable than the nonenveloped viruses used in previ-
ous studies, showcasing this limitation (7). 

Commercially available milk undergoes pas-
teurization and homogenization processes. Whereas 
H5N1 vRNA has been detected in some store-bought 
milk, the consistent absence of viable virus suggests 
the pasteurization and homogenization processes 
might contribute to viral inactivation. Several studies 
have investigated temperature conditions that mimic 
HTST pasteurization, with conflicting results. One 
study (5) observed complete virus inactivation only 
when samples were heated in a PCR machine with 
the lid on at 105°C but not at 72°C when the lid was 
replaced with a heat block. That observation aligns 
with our findings. Another study (8) demonstrated 
complete H5N1 inactivation in spiked milk samples 
treated under HTST conditions using a thermomixer; 
however, the timer was initiated only after the sam-
ples reached the target temperature (≈58 seconds lat-
er), potentially influencing the results. There is com-
pelling evidence of virus inactivation under real-life 
HTST conditions, suggesting it can effectively lead to 

complete virus inactivation (9). That study estimated 
that standard US continuous flow HTST parameters 
would inactivate a significantly higher viral load than 
typically detected in unpasteurized milk, suggest-
ing the milk supply is likely safe. However, caution 
is warranted because the industry lacks mandatory 
testing for H5N1 in milk. Definitively ruling out the 
presence of live virus might require multiple blind 
passages in eggs, as is standard procedure in surveil-
lance studies. Our results with the laboratory-adapt-
ed PR8 strain are significant in this context, because 
PR8-spiked milk could serve as an ideal surrogate for 
testing under commercial pasteurization conditions. 
Our research, along with understanding factors influ-
encing virus survival in milk, will inform targeted in-
terventions to enhance milk safety and reassure con-
sumers regarding emerging viral threats. 

Funding for this work included grants, contracts, and 
subawards to D.R.P. including National Institute of Food 
and Agriculture and US Department of Agriculture grant 
award nos. 2020-67015-31539, 2021-67015-33406, and 
2024-67015-42736, and National Institute of Allergy and 

Figure 2. Stability of influenza A in 
retail and unpasteurized milk. We 
diluted influenza A viruses in either 
Opti-Mem control media (Fisher 
Scientific, https://www.fishersci.
com) (A), retail off-the-shelf 
pasteurized whole milk (B), or 2 
different sources of unpasteurized 
milk: colostrum milk (C) or mature 
milk (D). We then incubated 200-
µL samples for several days at 
various temperatures, as shown. 
We subsequently titrated samples 
by TCID50 in MDCK cells. We 
tested 3 strains: PR8 (H1N1), ty/
IN/22 (H5N1), and the reverse 
genetics version of TX/24 (H5N1). 
Unpasteurized colostrum milk 
produced during the first few days 
after birth contains high levels of 
immunoglobulins and antimicrobial 
peptides that might have had an 
effect in decreasing virus survival. 
PR8 (H1N1), wild-type strain A/
Puerto Rico/8/1934 (H1N1); 
RT, room temperature; TCID50, 
50% tissue culture infectious 
dose; TX/24, wild-type strain A/
Texas/37/2024 (H5N1); ty/IN/22, 
wild-type highly pathogenic strain 
A/turkey/Indiana/3707-003/ 
2022 (H5N1).
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In Slovenia, whole-cell pertussis vaccine was in-
troduced in 1959 and replaced by acellular pertus-

sis vaccine (ACV) in 1999. ACVs containing pertac-
tin (PRN), a highly immunogenic virulence factor of  
1These first authors contributed equally to this article.

In Slovenia, primary acellular pertussis vaccines (ACVs) 
containing pertactin (PRN) were mostly used during 
1999–2016; ACVs without PRN were introduced in 2017. 
Among 123 Bordetella pertussis strains collected during 
2002–2020, a total of 48 were PRN-deficient; 44 were 
collected after 2017. Changes to ACVs could increase 
PRN-deficient B. pertussis and infections.
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