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Reported cases of dengue caused by dengue virus 
(DENV) are increasing. DENV (genus Orthofla-

vivirus, family Flaviviridae) is composed of 4 geneti-
cally distinct serotypes, DENV-1–4. In 2023, a total of 
4.6 million dengue cases were reported in the Ameri-
cas, a record at the time and a 64% increase over 2022 
(1). Those numbers were quickly surpassed in 2024, 
when almost 10 million dengue cases were reported 
through June (1). Of those cases, ≈8.4 million were 
from Brazil (1); however, many countries, including 
Colombia, reported large outbreaks. The Valle del 
Cauca State Health Department in Colombia reported 
≈56,000 dengue cases through May 2024, compared 
with ≈23,000 for all of 2023 and <5,000 in 2022.

The cause of the substantial increase in dengue 
cases is likely multifaceted. Warming temperatures 
caused by climate change increase the transmission 
potential and expand the geographic range of the pri-
mary mosquito vector, Aedes aegypti (2). Moreover, In-
dian Ocean surface temperature anomalies, especially 

El Niño events, are associated with dengue epidem-
ics in the Northern and Southern Hemispheres (3). A 
strong El Niño–Southern Oscillation event occurred 
during 2023–2024, the first since 2015–2016 (Golden 
Gate Weather Services, https://ggweather.com/
enso/oni.htm). Moreover, new DENV introductions, 
perhaps related to resumption of travel after the CO-
VID-19 pandemic (4), could be reaching large suscep-
tible populations. For example, DENV-3 was rarely 
detected in the Americas during the 10 years before 
an introduction into the Caribbean from Asia around 
2021 (5,6). We investigated whether a specific DENV 
serotype or lineage contributed to the recent surge in 
cases in Valle del Cauca, Colombia.

The Study
The Valle del Cauca State Health Department in 
Colombia reported 966 dengue cases in 2019, 655 in 
2020, 8,940 in 2021, 4,630 in 2022, 22,988 in 2023, and 
56,355 cases in 2024 (through May) (Figure 1, panel 
A). To determine which DENV serotypes and lineag-
es were involved, we collected 150–500 µL of serum 
from all 266 confirmed dengue case-patients at Hos-
pital Universitario del Valle (HUV) in Cali, Colombia, 
during April 2023–May 2024. Cases were diagnosed 
by VIDAS anti-DENV IgM and anti-DENV IgG (bio-
Mérieux, https://www.biomerieux.com) assays at 
HUV. Patient ages were 0–77 (mean 16) years, and all 
participants signed an informed consent; parents or 
guardians signed for persons <18 years of age. HUV 
shipped samples to Yale University (New Haven, CT, 
USA) for molecular processing. 

We used the QIAamp Viral RNA Mini Kit (QIA-
GEN, https://www.qiagen.com) to extract RNA 
from 140 µL of each serum sample. We initially deter-
mined DENV serotypes by using a multiplexed quan-
titative reverse transcription PCR (7) before attempt-
ing panserotype whole-genome amplicon sequencing 
with DengueSeq (8). We conducted bioinformatic 
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Dengue cases rose to record levels during 2023–2024. 
We investigated dengue in Valle del Cauca, Colombia, to 
determine if specific virus serotypes or lineages caused 
its large outbreak. We detected all 4 serotypes and mul-
tiple lineages, suggesting that factors such as climatic 
conditions were likely responsible for increased dengue 
in Colombia.
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analysis, including primer trimming and consensus 
sequence generation, by using a previously described 
iVar pipeline (8). We assigned DENV lineages to sam-

ples with >5% genome completeness, which was vali-
dated to be >93% accurate (9), by using the Dengue 
Virus Typing Tool nomenclature system (Genome 

Figure 1. Cases in a study of multiple virus serotypes and lineages during dengue outbreak, Valle del Cauca, Colombia, 2023–2024. A) 
Monthly dengue cases reported by Valle del Cauca State Health Department in Colombia. Samples from confirmed dengue cases (n = 
266) diagnosed at Hospital Universitario del Valle, Cali, Colombia. B) Number of cases per month by serotype during 2023–2024 period of 
increased dengue outbreaks. Serotypes detected by quantitative reverse transcription PCR. Samples with viral levels below detection limit 
are labeled unknown. C) DENV lineage by amplicon-based sequencing listed by serotype, genotype, and lineage. DENV, dengue virus.

Figure 2. Time-resolved maximum-likelihood phylogeny of DENV-1 detected during an investigation of multiple virus serotypes and 
lineages during dengue outbreak, Valle del Cauca, Colombia, 2023–2024. The tree includes global DENV-1 sequences downloaded 
from GenBank and was constructed by using IQ-TREE (http://www.iqtree.org). A) Full reconstruction of 1,007 DENV-1 sequences from 
1944–2024 colored by sampling location. B) Detail of the DENV-1V_D clade highlighting sequences from Valle del Cauca, Colombia 
(black) from 2023 through mid-2024. DENV, dengue virus.
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Detective, https://www.genomedetective.com). We 
assigned serotypes to 185 (70%) samples (Figure 1, 
panel B); the assay was not able to detect serotypes in 
the remaining 81 samples because of low virus con-
centrations. Of the 185 samples with a serotype as-
signment, we assigned lineages to 171 (92%) samples 
via sequencing (Figure 1, panel C; Appendix Table, 
https://wwwnc.cdc.gov/EID/article/30/11/24-
1031-App1.xlsx).

Among 2023–2024 samples, we detected all 4 
DENV serotypes (DENV-1, 35; DENV-2, 85; DENV-
3, 63; and DENV-4, 2) and 81 unknown serotypes 
(Figure 1, panel B). For part of 2023, we detected 
relatively equal proportions of DENV-1, DENV-2, 
and DENV-3, but then DENV-1 decreased as DENV-
2 increased during late 2023 to early 2024. We also 
detected multiple lineages per serotype, except for 
DENV-4. DENV-3 genotype III lineage C.1 (3III_C.1 
[9]), DENV-2III_D.2, DENV-2II_F.1.1.2, and DENV-
1V_D.1 were most common (Figure 1, panel C).

To further investigate DENV lineages, we per-
formed phylogenetic analysis using 79 sequenced 
samples for which we achieved >70% genome cov-
erage: 10 DENV-1 sequences, 38 DENV-2 sequences, 
and 31 DENV-3 sequences. We combined our data 

with a background dataset downloaded from Gen-
Bank (Appendix Table) and then downsampled the 
data per serotype so that we kept all sequences from 
Colombia, 5 per year from the other countries in the 
Americas, and 1 per year from each country outside 
the Americas (1,007 DENV-1, 965 DENV-2, and 542 
DENV-3 sequences). We analyzed the sequences us-
ing the Nextstrain bioinformatic and phylogenetic 
framework (10), and constructed maximum-likeli-
hood trees using IQ-TREE (11) and a general time-
reversible substitution model. 

Our DENV-1 phylogenetic analysis revealed co-
circulation of 2 distinct lineages, DENV-1V_D.1 and 
D.2 (Figure 2). Both lineages were previously detected 
in Colombia and elsewhere in South America (5,12), 
representing ongoing local and regional lineage per-
sistence and diversification for the past ≈15–20 years.

Our DENV-2 phylogenetic analysis presents a 
more complicated picture of 3 genetic clusters and 3 in-
dividual sequences dispersed among 2 defined lineag-
es, DENV-2III_D.2 and DENV-2II_F.1.1.2 (Figure 3). 
Lineage 2III_D.2 is a descendent of the original DENV-
2 genotype III (i.e., Asian-American lineage) that was 
introduced in the Americas during the late 1970s 
and subsequently became established throughout  

Figure 3. Time-resolved maximum-likelihood phylogeny of DENV-2 detected during an investigation of multiple virus serotypes and 
lineages during dengue outbreak, Valle del Cauca, Colombia, 2023–2024. The tree includes global DENV-2 sequences downloaded 
from GenBank and was constructed by using IQ-TREE (http://www.iqtree.org). A) Full reconstruction of 965 DENV-2 sequences from 
1964–2024 colored by sampling location. B) Detail of the DENV-2III_D.2 clade highlighting sequences from Valle del Cauca, Colombia 
(black) from 2023 through mid-2024. C) Detail of DENV-2II_F.1.1.2 clades highlighting sequences from Valle del Cauca, Colombia 
(black) from 2023 through mid-2024. DENV, dengue virus.
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the region, including in Colombia (13). DENV-2 geno-
type II (a.k.a. Cosmopolitan lineage) was recently in-
troduced into the Americas from Asia and was first 
detected during a dengue outbreak in Peru in 2019 
(14). Detection of DENV-2II_F.1.1.2 in Valle del Cauca 
demonstrates that the emerging Cosmopolitan geno-
type can become established alongside the existing 
Asian-American genotype.

One hypothesis for the sudden increase in dengue 
cases is the introduction and rapid spread of a new 
DENV-3 lineage from Asia (5). DENV-3 can go unde-
tected for long time periods in the Americas, some-
times for more than a decade, leaving large portions of 
the population potentially susceptible to this serotype 
(4,6,15). Therefore, detection of an emerging DENV-
3III_B.3.2 lineage in the Caribbean (5), Brazil (6), Nica-
ragua (4), and elsewhere in the Americas was alarm-
ing. We detected 1 dengue case from January 2024 in 
Valle del Cauca with a likely 3III_B.3.2 infection (18% 
genome coverage), but 97% (61/63) of DENV-3 infec-
tions were lineage 3III_C.1 (Figure 1, panel C), and 
the lineage from 1 DENV-3 infection could not be as-
signed. DENV-3III_C was likely first introduced into 
the Americas in the early 1990s (13). Our findings 
show that DENV-3III_C has persisted through long 
periods of low detection (Figure 4), including sporadic  

detections of 3III_C.1 in Colombia since the early 2000s. 
Therefore, our results suggest that populations in the 
Americas might be susceptible to DENV-3 in general 
and not just the emerging 3III_B.3.2 lineage.

Conclusions
We investigated DENV infections from Valle del 
Cauca, Colombia, to determine if a specific virus se-
rotype or lineage might be driving the record num-
ber of dengue cases in that state (1). We detected all 4 
serotypes and found DENV-1, DENV-2, and DENV-
3 shared dominance and at least 8 separate defined 
lineages were involved. Those lineages included 
multiple DENV-1 genotype V and DENV-2 genotype 
III lineages that have circulated in the Americas for 
≈40 years (13), as well as an emerging DENV-2 geno-
type lineage. Moreover, despite the rapid spread of a 
new DENV-3III_B.3.2 lineage in the Americas (4–6), 
we found that the dominant DENV-3 lineage was 
3III_C.1, which has been sporadically detected in Co-
lombia for ≈20 years. Although multiple DENV se-
rotypes are often detected during endemic transmis-
sion, our results were unexpected because outbreaks 
are typically dominated by a single serotype. 

In summary, DENV lineages can have variable 
phenotypes that affect virulence, transmissibility, and 

Figure 4. Time-resolved maximum-likelihood phylogeny of DENV-3 detected in an investigation of multiple virus serotypes and lineages 
during dengue outbreak, Valle del Cauca, Colombia, 2023–2024. The tree includes global DENV-3 sequences downloaded from 
GenBank and was constructed by using IQ-TREE (http://www.iqtree.org). A) Full reconstruction of 542 DENV-3 sequences from 1964 
through 2024 colored by sampling location. B) Detail of the DENV-3III_C.1 clade highlighting sequences from Valle del Cauca, Colombia 
(black) from 2023 through mid-2024. 
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immune evasion. Detecting several co-dominating 
serotypes and lineages in Valle del Cauca suggests 
that the specific viruses were not the primary driver 
of the large outbreak. Our study demonstrates how 
genomic surveillance can help investigate causes of 
outbreaks and aid public health responses.

Sequencing data are available at National Center for Bio-
technology Information BioProject (https://www. 
ncbi.nlm.nih.gov/bioproject; accession no. PRJNA1132139). 
Alignments, trees, and Nextstrain outputs are available at 
https://github.com/grubaughlab/DENV-genomics/tree/
master/paper_2024-CO.
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