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ABSTRACT
Onboarding new developers is a challenge for any software project.
Addressing this challenge relies on human resources (e.g., having
a senior developer write documentation or mentor the new de-
veloper). One promising solution is using annotated code tours.
While this approach partially lifts the need for mentorship, it still
requires a senior developer to write this interactive form of docu-
mentation. This paper argues that a Large Language Model (LLM)
might help with this documentation process. Our approach is to
record the stack trace between a failed test and a faulty method.
We then extract code snippets from the methods in this stack trace
using CodeQL, a static analysis tool and have them explained by
gpt-3.5-turbo-1106, the LLM behind ChatGPT. Finally, we evalu-
ate the quality of a sample of these generated tours using a checklist.
We show that the automatic generation of code tours is feasible but
has limitations like redundant and low-level explanations.
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• Software and its engineering → Software development pro-
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1 MOTIVATION
For most software projects, successfully onboarding new develop-
ers is crucial to guarantee continued productivity. However, each
project has unique tools, practices, and codebase peculiarities that
can overwhelm newcomers [6, 8, 12]. Moreover, poor documenta-
tion and limited project knowledge further hinder the process [12].

Current onboarding strategies, such as assigning mentors, pro-
viding training, and documentation[12], are limited as they divert
human resources from development activities. It has been suggested
that annotated code tours might help developers navigate a new
codebase more efficiently. However, writing code tours remains
time-consuming and automating this onboarding approach would
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ease its adoption. We argue that LLMs might help generate code
tours since they are already used for generating documentation
and explaining code [11, 13]. In this paper, we look at 1) the extent
to which we can automatically generate such code tours; and 2) the
strengths and limitations of using LLMs for generating code tours.
We also provide a replication package [2].

2 BACKGROUND AND RELATEDWORK
Onboarding. Onboarding is the process of transitioning new
employees into members of the organisation [3]. Lack of docu-
mentation, unfamiliarity with the team’s work methodology, and
unfamiliarity with technologies and tools are common obstacles for
onboarding [12]. Assigning mentors, providing training, making
documentation available, and monitoring newcomers’ progress is
recommended [12]. Additionally, comprehensive documentation,
regular feedback, and a supportive learning environment should
be provided to improve learning, confidence, and socialisation [8].
Early task experimentation, understanding project structure and
culture, and regular progress validation are crucial for successful
integration [6]. Taylor and Clarke [17] show that, while possibly
limiting the broader exploration of a codebase, code tours (i.e., a se-
quence of interactive steps that describe the code) help understand
and navigate codebases. CodeTour [5] is a plugin for Visual Studio
Code that allows the creation of such tours

As related work highlights, documenting and guiding newcom-
ers is crucial for onboarding. But documentation is also a time-
consuming task that requires some automation in a time-sensitive
context. Large Language Models (LLMs) are highly versatile for nat-
ural language processing (NLP) tasks. They are initially pre-trained
on extensive datasets but may be fine-tuned for specific tasks [4],
which makes them good candidates to accomplish said automation.
Automated documentation. Nam et al. [13] explore an in-IDE
tool using LLM to aid in understanding and writing code. While
the tool enhances task completion by allowing users to complete
more sub-tasks compared to traditional web searches, it does not
significantly improve task completion speed or deepen code under-
standing. User feedback indicates that the tool is perceived as more
useful and user-friendly than web searches, particularly because of
code context in responses. However, the tool’s effectiveness varies
among users, depending on their background and experience, with
some suggesting that combining it with other resources like search
engines or API documentation could enhance its utility. MacNeil et
al. [11] investigates the use of LLM-generated code explanations for
web software development education. It reveals that while students
find these explanations helpful, their engagement varies based on
explanation type and code complexity. The study notes some issues
with relevance and detail in LLM outputs.

To the best of our knowledge, no attempt to use an LLM to gen-
erate documentation that displays the gradual quality of code tours
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has been reported yet. Although we have chosen an LLM-based
approach because of the growing interest in LLM, there are alter-
natives such as term-based, template-based, external description-
based, and machine learning-based summaries for generating natu-
ral language descriptions from source code [21].

3 PRELIMINARY EVALUATION
Due to the limited context length, it is impossible to provide the
entire codebase so that the model can define the tours itself. While
this may be possible with small codebases or models where users
can input up to 100,000 tokens [1], it is not advisable. Indeed, it has
been shown that the longer the prompt, the less able the model is to
retrieve information from the middle of the context [10]. Our first
research question explores how code tours can be generated effec-
tively for tasks commonly used for onboarding new developers, i.e.,
bug-fixing [8]: RQ.1 To what extent can we automatically generate
code tours for debugging? For that, we rely on a finer-grained defini-
tion of code tour: a code tour is a sequence of steps, each explaining
a method between a failed test and a faulty one. An excerpt of a
code tour is found in the replication package [2], along with a more
illustrative pipeline description.

Our second research question investigates the quality of the gen-
erated tours: RQ.2 How effective are the explanations? To assess the
quality of code explanations, we adapt three of the seven goals pro-
posed by Tintarev and Mashtoff [18] from recommendation system
explanations to code explanations: (1) To what extent does the code
tour provide the new developer with a clear understanding of how
the code works? (Transparency) (2) To what extent does the code
tour allow the new developer to identify and report inaccuracies
in the code explanations and the code? (Scrutability) (3) To what
extent does the code tour facilitate quicker comprehension and
navigation of the codebase? (Efficiency)

3.1 Setup and tour generation
For this case study, we use the well-known Defects4j dataset [9],
which contains a diverse and extensive range of actual bugs. It has
a convenient command-line interface to switch between fixed and
faulty versions and run tests. More specifically, we use the data
collected by Sobreira et al. [16] to obtain information on the faulty
method’s location across five projects: Chart, Time, Math, Lang, and
Closure, totalling 357 buggy versions of these projects. This saves
us wasting time calculating it ourselves, although it is possible to do
so. Code tours are based on the stack traces generated by the tests;
one faulty method potentially generates multiple stack traces if
multiple tests fail. We use the CodeQL static analysis tool to extract
code snippets and a Large Language Model (LLM) to explain them:

(1) Initialisation. First, each buggy version of the project is checked
out, and a CodeQL database is created. We rely on CodeQL to easily
extract the faulty methods with their documentation (21 versions
failed at this step and were discarded).
(2) Recording stack traces. For each buggy version, we execute
the tests and record the generated stack traces (6 buggy versions
failed at this step). Out of 1736 pairs of failing tests and faulty meth-
ods, 752 (43%) were direct calls between the test and the method
(so no stack trace to record), and for 64 (4%), the test running failed.

Table 1: Stack traces, each stack trace is used as an input to
generate a code tour.

Generated Successful Selected Sampled

Chart 147 87 (59%) 6 (4%) 4 (3%)
Closure 593 501 (84%) 35 (6%) 4 (1%)
Lang 212 116 (55%) 10 (5%) 4 (2%)
Math 580 146 (25%) 10 (2%) 4 (1%)
Time 204 63 (31%) 8 (4%) 4 (2%)

Tot. 1,736 913 (53%) 69 (4%) 20 (1%)

(3) Extracting methods. For each method appearing in a stack
trace, we run a CodeQL query to extract the methods’ start and end
lines. Seven cases failed at this step, which leaves us with 913 (53%)
stack traces successfully generated (details per project are available
in the second and third columns of Table 1).
(4) Selection.Aswe used theOpenAIAPIwithmodel gpt-3.5-tur-
bo-1106, the generation is not free (Input: $1 per 1M tokens and
Output: $2 per 1M tokens as of now), so for this preliminary eval-
uation, we decided only to generate code tours based on a subset
of stack traces selected using the following criteria: (i) the number
of steps of a stack trace falls within the interquartile range of the
number of steps observed in all stack traces from the same project;
(ii) at least half of the steps are not already in another selected
stack trace. Depending on the selection order, this may result in a
different sub-set. We have used an alphanumeric order according
to the project, version number and tour name; (iii) both the test
and faulty method are unique. Which makes 69 stack traces, each
used to generate a tour (see fourth column of Table 1).
(5) Tour generation. For each method and its corresponding code
snippet appearing in a stack trace, we prompt the OpenAI API. We
use the chat completion API from OpenAI with the model set to
gpt-3.5-turbo-1106; this is the latest version of the model, with
a maximum output of 4K tokens (but we limited to 512 as longer
explanations would likely not be effective for code tour generation)
for a context size of 16K tokens and a knowledge cut-off date of
September 2021. We set the seed to 2023 for reproducible output.
We set the temperature to 𝑂.2, as recommended by Nam et al. [13],
to minimise variations in the explanation quality. We provide an
example of a code snippet with an explanation within the prompt
from Taylor et al. [17], i.e., specification by demonstration [15]. This
should ensure the explanations are consistent with the style in the
original paper. Without this example, the model tended to describe
the methods line-by-line, which is less useful [11]. Since ChatGPT
does not provide a system prompt, we use Llama-2 Chat [19] one,
along with information about the task and the failing test. The
order of the methods’ appearance in the stack trace gives the order
of the explanations in the code tour.

3.2 Data analysis
To assess the quality (RQ.2) of the explanation, one evaluator man-
ually analysed 20 (4 randomly sampled from each project) code
tours generated by the LLM to identify common problems. From
Tintarev and Mashtoff [18], we derived the following checklist:
Transparency. (i) Unexplained terms: Are there any unexplained
business terms? For example, hyperplane, a mathematical term unfa-
miliar to a junior developer, must be clarified, while the recursion is
unlikely to require explanation. Moreover, are there any references
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Figure 1: Distribution of the number of steps per code tour.

Table 2: Manual analysis results

Project Unrelated
explanation

Ack’t of lim-
itations

Redundant
explanation

Low-level
explanation

Tot.

Chart 0 (0%) 2 (10%) 17 (81%) 19 (90%) 21
Closure 2 (6%) 0 (0%) 24 (69%) 34 (97%) 35
Lang 0 (0%) 3 (19%) 12 (75%) 9 (56%) 16
Math 2 (6%) 0 (0%) 3 (25%) 11 (92%) 12
Time 3 (21%) 0 (0%) 11 (79%) 12 (86%) 14

Tot. 7 (7%) 6 (6%) 67 (68%) 85 (87%) 98

to other code parts (e.g., a class) without prior explanation? (ii) Lack
of context: Is there a lack of context about the tour? (iii) Lack of link
between steps: Is there a lack of linking between the steps?
Scrutability. (i)Unrelated explanation: Are there explanation seg-
ments unrelated to lines of code? (ii) Inaccurate explanation: Are
there any inaccuracies or false explanations? (iii) Acknowledgement
of limitations: Are there any passages where the model states that
it cannot provide a complete or accurate explanation?
Efficiency. (i) Redundant explanation: Are there any parts of the
explanation that can be understood by reading the signature or the
documentation? For example, restating the signature. (ii) Low level
explanation: Are there any line-by-line explanation?

In this preliminary evaluation, we focus on four elements related
to known common limitations of LLMs: unrelated explanation, ac-
knowledgement of limitations, redundant explanation, and low-level
explanation. Other elements will be evaluated in future work.

3.3 Results
RQ.1 Generation. As illustrated in Table 1, we generated 913 stack
traces (53%) out of 1,736 pairs of failing tests and faulty methods
from 357 projects’ versions from 5 different projects. Figure 1 re-
ports the distribution of the number of steps in the different tours.
The number of steps in tours ranged from 1 to 29 steps. Closure
seems to be an outlier with a median of 9 steps, while the medians
for the other step lengths are between 2 and 5. 69 tours were gener-
ated, totalling 440 steps. In summary, we can see that it is possible
to generate code tours for debugging by relying on a stack trace,
denoting how an unexpected exception propagates in the code.
RQ.2 Quality. To answer RQ2, one evaluator analysed a sample of
20 tours (4 in each project), totalling 98 steps. The table 2 provides a
preliminary quantitative response for the four items on the checklist
for which we establish a list of keywords. We are confident that
the figures are consistent for these, as we can use the keywords to
back up our judgement. The other ones would be meaningless, so

we only discuss them in the discussion section. We found 7 (7%)
instances where the explanation is about the example given in the
prompt. Additionally, we found 5 (5%) instances where the model
acknowledges the need for more context or the unavailability of all
information in the code snippet. In 67 (68%) instances, the model
restates information already given in the documentation, such as
the parameters, return value, or exception thrown. Furthermore, in
85 (87%) instances, the explanation provides a low-level, line-by-line
code breakdown. In summary, we can see that out of the 98 steps
analysed, redundant and low-level explanations are the prevalent
issues GPT faces when generating code tours for debugging.

3.4 Discussion and future work
Transparency. After manual analysis of the sampled tours, we saw
that the model does not explain business terms or terms related
to the code source. This could be expected because we have not
specifically asked the model to explain the terms in the prompt
(either directly or indirectly through the example). An example
where the terms are explained could be included in the prompt
to have a more consistent behaviour. Considering the variety of
projects, it might be difficult to determine which terms should be
explained. Interview developers unfamiliar with the codebase and
too see which terms they would seek clarification on, depending
on the project and their background is part of our future work to
devise general guidelines for designing the prompt.

Regarding the lack of links between steps, despite the use of chat
history, connections between previous steps in a tour are rare,
if nonexistent. This is unfortunate, especially when it comes to
generic or utility methods, where explaining why the method is
called is more interesting than simply stating what it does without
any context. One solution we envision for our future work is to
explicitly ask for a connection in the system or an explanation
prompt. However, more than this may be required, as making a
connection requires having an explanation of the entire tour. There-
fore, another generation phase could be added, where the model is
asked to create a link between explanations.

Finally, the lack of context is a major issue. After investigation,
we discovered that, in our case, it is due to the extraction process via
CodeQL: the query we used could not extract the methods linked
to the test for two projects, Closure and Chart. As a result, all the
tours for these projects start somewhere in the stack trace. This
is likely due to the folder structure being different from the other
three projects. This stresses that the tests are crucial entry points
for a debugging tour to understand the context of the tour.
Scrutability. Regarding unrelated explanations, LLMs are known to
confabulate [7], yet we did not find obvious instances of confabula-
tion in the examined tours. However, we found multiple instances
where the model talked about a "second code snippet" or some ob-
ject starting with the name "Paint", which was not related to the
targeted code snippet. Using "Paint" and "second code snippet" for
keyword-based detection, we found a total of 30 instances over
440 steps (7%), which is on par with the prevalence in the manual
inspection. We also found six (6%) instances in the sampled steps
where the explanation is duplicated from the previous step without
being the same method called recursively.
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Assessing the presence of inaccurate explanation without a good
knowledge of the codebase is complicated. Despite inaccurate ex-
planations examples, further validation is required and part of our
future work, for instance, using interviews with senior developers.
Efficiency. The model often provides redundant explanations from
the documentation or the methods’ signatures. Usually, it is when it
explains things already described in the Javadoc or are obvious, like
the signature, the return value, or the exception thrown. We have
defined a preliminary list of keywords that can be used to highlight
cases where it restates the signature or information that should be
available, at the very least, in a good Javadoc. We found 311 (71%)
instances with the keywords param, return, takes in, and thrown.
Note that the param keyword sometimes gives false positives be-
cause there can be variables or methods named as PARAM_LIST or
guessParametersErrors. Generally, the method has no parame-
ters when a model does not reformulate the parameters.

Regarding low-level explanation, our initial attempts with the
model often result in line-by-line enumerations. However, accord-
ing to the relatedwork, students prefer summarized explanations [11].
Thus, we used an example from Taylor et al.’s paper [17] to guide
the model. Unfortunately, this has not eliminated the issue of low-
level explanation. Interestingly, the model tends to add a summary
at the end of the explanation, indicating that the model is doing
a chain of thought. Ideally, we only need this summarised bit. For
that, we propose to prompt the model twice. First, ask it to explain
the method using the chain of thought. Then, ask it to provide a
summarized explanation based on its chain of thought. Experiments
with different prompting strategies are part of our future work.
Threats to validity. The study’s validity presents some limita-
tions: the use of well-known projects possibly included in the Large
Language Models’ training data, the subjective evaluation by a sin-
gle person unfamiliar with the codebase, the focus on small Java
projects with English explanation generated by GPT 3.5 limiting
broader applicability, and the lack of real developer involvement in
the study. Future work should address these issues by incorporating
various code bases the model has never seen, multiple evaluators, a
wider range of languages and project sizes, real developer partici-
pation for a complete evaluation and other LLMs.

4 CONCLUSION
Overall, our preliminary evaluation shows that while generating
code tours using LLMs and stack traces for debugging and on-
boarding new developers is feasible, several limitations must be
addressed. The LLM sometimes acknowledges information gaps,
but explanations can lack focus, repeat information from signatures
and documentation and offer low-level code explanations.

Future efforts will explore additional strategies to generate and
correct the code tour steps and evaluate subjective aspects like
transparency with junior developers and scrutability with senior
developers. To mitigate low-level explanations, we will refine our
prompting strategy and use a double-prompt chain-of-thought and
a final prompt to link the steps coherently.

Although GPT-4 [14] is better than gpt-3.5 models, some com-
panies may prefer open-weight options like Mixtral-8x7B for con-
fidentiality reasons. It has demonstrated superior performance com-
pared to the gpt-3.5 models and even comes close to matching

GPT-4 in some benchmarks [20], all with lower resource demands.
We plan to further study its potential in our future work.
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