Debt Stories: Capturing Social and Technical Debt in the Industry

Nicolas Riquet
NADYI, University of Namur
Namur, Belgium
nicolas.riquet@unamur.be

ABSTRACT

In today’s organizations, software is mission-critical. However, the
legacy of past decisions can make tasks related to artifacts increas-
ingly inefficient or risky, creating debt. While most researchers and
practitioners mainly focus on technical debt, some have investi-
gated its social dimensions, known as social debt. We argue that
organizations developing software need to tackle debt holistically,
as it is intrinsically a socio-technical issue. In this short paper, we
rely on a definition of socio-technical debt based on the existing
literature to define Debt Stories: a tool based on the User Story
format, that can help capture debt elements directly from the stake-
holders involved in software development. A debt story includes
information about the role of the stakeholder in the development
process, the social or technical context, and the impact of the debt
element on the different tasks performed by the stakeholder. We
provide a first empirical evaluation of the usage of Debt Stories in
an industrial context, demonstrating the relevance of Debt Stories
to express and communicate socio-technical debt.

CCS CONCEPTS

« Software and its engineering — Agile software development;
Software maintenance tools; « Social and professional topics
— Software maintenance.

KEYWORDS

socio-technical debt, debt stories, empirical software engineering

ACM Reference Format:

Nicolas Riquet, Xavier Devroey, and Benoit Vanderose. 2024. Debt Stories:
Capturing Social and Technical Debt in the Industry. In International Con-
ference on Technical Debt (TechDebt "24), April 14—15, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3644384.3644473

1 INTRODUCTION

Software is critical to the efficient operations, performance and
productivity of a vast majority of organizations [13, 38]. As a result,
executives increasingly integrate technology aspects to their or-
ganization’s strategy to preserve their competitive advantage [22].
However, developing and maintaining applications that can endure
the passage of time is not easy: new requirements are expressed,
change requests are made, bugs are found, and an application must
evolve to remain relevant to the business. And implementation
choices can have a significant impact on the quality, and devel-
opment and maintenance time. For instance, shortcuts taken to

TechDebt "24, April 14-15, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in International
Conference on Technical Debt (TechDebt "24), April 14-15, 2024, Lisbon, Portugal, https:
//doi.org/10.1145/3644384.3644473.

Xavier Devroey
NADYI, University of Namur
Namur, Belgium
xavier.devroey@unamur.be

Benoit Vanderose
NADI, University of Namur
Namur, Belgium
benoit.vanderose@unamur.be

implement the changes in the required time frame or issues left
for later fixes can require heavy refactoring afterwards. If such
problems accumulate over time, they can become a liability as they
make it increasingly harder to bring changes to the concerned
applications in a timely, cost-effective, and quality-oriented way.
This phenomenon is referred to by both researchers and practition-
ers as technical debt, a metaphor first used by Ward Cunningham
[11, 12]: “the longer you sit on technical debt of any kind, the more
time-consuming and expensive it will be to fix.”

Technical debt is a widely used concept nowadays but there is
no real consensus on what exactly it encompasses [45] and many
different definitions have been proposed [2, 3, 7, 20, 23, 26, 39, 48].
The term technology debt is sometimes used in management circles
as a synonym of technical debt or as a somewhat broader concept,
and its impact on the performance of organizations is quite well
documented [18, 28—-30]. More recently, Tamburri et al. [42-44]
focused on the social aspects of debt in software engineering and
defined social debt as “the unforeseen project cost connected to a "sub-
optimal’ development community” [42]. It may comprise elements
such as community smells [21, 24, 41, 44], communication networks
[15], and culture [15, 17]. Social debt researchers also use the term
socio-technical when discussing phenomenons or dynamics that
involve both social and technical dimensions, or when one of these
dimensions affects the other. For instance, Conway’s Law [10] (i.e.,
“Any organization that designs a system will produce a design whose
structure is a copy of the organization’s communication structure.”)
shows the impact of an organization’s communication structures
on the design of systems. To the best of our knowledge, there is,
however, no common definition of socio-technical debt. For organi-
zations, debt is a source of technical, social, and organizational risks
that must be identified and addressed [5]. They need to identify and
tackle both technical debt in the artifacts they produce and social
debt in their organizational structures and processes. This is not
trivial as it requires first to be able to identify debt elements.

In this work, we aim for an inclusive notion of debt to focus
on capturing social and technical debt for software engineering,
denoted Socio-Technical Debt (STeD), directly from the stakeholders
involved in the software development and maintenance lifecycle.
For that, we rely on the use of debt stories, a tool we created based
on the User Story widely used in Agile development to describe a
user’s need or request [4, 14] and that helps developers understand
and document the context and what the software does [34]. Our
contributions include: (i) a definition of Socio-Technical Debt; (ii) a
tool for identifying and discussing debt elements in organizations
developing software in the form of debt stories; (iii) a first empirical
evaluation of the usage of debt stories in an industrial context; and
(iv) a replication package [36] containing the necessary material to
replicate our evaluation.


https://orcid.org/0000-0003-1864-0121
https://orcid.org/0000-0002-0831-7606
https://orcid.org/0000-0001-9752-0085
https://doi.org/10.1145/3644384.3644473
https://doi.org/10.1145/3644384.3644473
https://doi.org/10.1145/3644384.3644473

TechDebt "24, April 14-15, 2024, Lisbon, Portugal

Industrial context. Our evaluation took place in a Belgian French-
speaking organization counting more than 5,000 employees.! It
has 148 development professionals occupying 16 different roles
and distributed across 19 teams.The organization maintains over
140 applications for a total of over 11 millions lines of code and
actively develops new ones. The development teams implement
Scrum with some adjustments in order to be compatible with higher-
level Prince2 project management. The organization is facing a
significant level of technical debt and has initiated efforts to try to
reduce it. This work has shown that social aspects are also at play
and that it is necessary to approach the problem holistically.

2 CAPTURING SOCIO-TECHNICAL DEBT

We base our definition of debt for software engineering on the
various existing definitions of social and technical debt we found
in the literature [2, 3, 7, 15, 17, 18, 20, 23, 26, 28-30, 39, 41-45, 48].

Definition 2.1 (Socio-Technical Debt (STeD)). Socio-Technical Debt
refers to a phenomenon that occurs when past social and/or tech-
nical decisions lead to inefficiencies or increased risks in designing,
building, maintaining, managing, or using software engineering
artifacts. This, in turn, hampers an organization’s ability to create
value, achieve strategic goals, or pursue the best course of action.
Socio-Technical Debt has the following characteristics: (1) it is cu-
mulative in nature: the longer it stays, the more it costs in the long
run; (2) it requires some effort to eliminate. Significant time and/or
money must be invested to pay it off; and (3) it is inevitable in
most software engineering projects as trade-offs are always being
made, either knowingly or unknowingly. A certain level of Socio-
Technical Debt can always be deemed sustainable, and the return
on investment of paying debt items must be carefully evaluated.

Identifying and tracking Socio-Technical Debt is not trivial. Ex-
isting approaches have focused on source code analysis, and mining
software repositories and issue trackers to identify antipatterns like
code smells and bad programming practices [19, 31, 37, 40, 46, 47],
community [21, 24, 41, 44] or architectural smells [8, 25, 49], loss
of code knowledge and ownership [6, 33, 35], etc. Tools like Sonar-
Qube are used in the industry and can help software engineering
teams to manage their debts. The majority of those methods rely
on heuristics and focus on specific issues to automatically identify
debt elements. Unlike automated approaches, we rely directly on
stakeholders involved in the software engineering process to elicit
debt elements, allowing a wider range of potential issues.

Debt story. To identify and discuss socio-technical debt elements,
we define the debt story format. Similarly to User Stories, widely
used in Agile development [4, 14], debt stories allow one to express
and document the context of a debt element. The most commonly
used format for writing a User Story is “As a [who ]I want to [what]
so that [why], also known as the Connextra format [1], but there
exist several variations [9, 27]. In our case, a debt story includes
information about the role of the stakeholder in the development
process, the social or technical context, and the the impact of the
debt element on the different tasks performed by the stakeholder.

!For legal and public relations reasons the organization wishes to remain anonymous
(the authors can be contacted for more details on the organization).

Nicolas Riquet, Xavier Devroey, and Benoit Vanderose

Definition 2.2 (debt story). A debt story is a tool to identify and
discuss socio-technical debt elements. It is formatted as follows:

As a(n) [actor role] of [social or technical context]
I find that it is increasingly [impact type] to [task]
because [debt item].

Here are two debt stories used as examples during the second
part of our evaluation: (i) As a back-end developer of Application A, I
find that it is increasingly time-consuming to maintain the document
generation module because the code has become too complex. (ii) As
a(n) developer of the A team, I find that it is increasingly frustrating
to integrate with Application C because the B team does not take our
needs into consideration and keeps breaking compatibility.

3 PRELIMINARY EVALUATION

We tested the potential impact of our idea by performing an empir-
ical case study within our industrial context. We organised work-
shops with ten development experts and two managers to answer
the following research questions:
RQ1 How do development experts and managers perceive the
usefulness of debt stories in expressing debt elements?
RQ2 How do development experts and managers perceive the
usefulness of debt stories in communicating debt elements?
While RQ1 focuses on the expressivity of debt stories, RQ2 focuses
on its adequacy to communicate debt elements to other develop-
ment experts and managers. In a nutshell, we presented to the
participants the suggested definition, our debt story format and
asked them to use a debt story edition tool to communicate debt
elements affecting their work. We then asked the participants to
complete a questionnaire survey to share their opinion on the con-
cepts and tools proposed.

Organization of the workshops. Three identical workshops were
arranged: development experts were invited to either workshop 1
or 2 and managers to workshop 3. This categorization based on job
roles was implemented to prevent development experts from self-
censoring in the presence of managers. Development teams were
notified within the organization through a message on Microsoft
Teams explaining: (1) the goals of the study and how these were
aligned with the needs of the organization; (2) when and how the
study would take place; (3) that volunteers simply had to send a
private Microsoft Teams message or an email to the authors to par-
ticipate; (4) that the participants’ data would be anonymized. This
message was sent three times over a period of two weeks in order to
make sure enough people saw it. In total, four development experts
(one junior analyst, one front-end developer, one security expert,
and one lead developer) participated to the first workshop, six (one
junior developer, two senior developers, one Sharepoint developer,
one web designer, and one team lead) participated to the second
workshop, and two managers, including a director, participated to
the third workshop.

Figure 1 presents an overview of the course of the workshops,
each one lasting between 1:30 and 2:00 hours. (1) The first author, as
workshop facilitator, presents the objectives of the overall research
project, the organization’s motivations for participating in it, and
the scope of the study. Then (2) he offers and explains the definition
of Socio-Technical Debt (see definition 2.1), reminds the participants
of the objective and format of the User Story, and presents the



Debt Stories: Capturing Social and Technical Debt in the Industry

Presentation of the Presentation of the key Round 1 in the Debt Story
research context (1) concepts (2) Editor (3)
Round 2 in the Debt Story Presentation of examples Review of the produced
Editor (6) and voting (5) Debt Stories and voting (4)

Review of the produced ) " .
Debt Stories and voting (7) Questionnaire (8) |

Figure 1: Workshop organization overview

format of the debt story (see definition 2.2). (3) The facilitator gives
a demo of the debt story editor implemented as a spreadsheet and
asks the participants to produce debt stories from scratch. (4) He
presents the upvote sheet, used to vote for debt stories produced
by others that describe a situation affecting the participant’s work
as well. Then the facilitator reads aloud the debt stories produced
during round 1, reminding each time that people who had not
created the debt story could vote for it by adding its identifier to
their upvote sheet.

In the second part of the workshop, in step (5) , the facilitator
starts by showing and reading aloud seven examples of debt stories
created by the authors and, as previously, reminds the participants
to vote for examples affecting their work. (6) Then the facilitator
asks participants to open the second instance of the debt story
editor containing the seven examples and produce debt stories.
Participants did not have any specific instructions and could copy
debt stories from previous rounds if they wanted. (7) Then, again,
the facilitator reads aloud the debt stories for potential upvoting by
the participants. (8) Finally, the facilitator asks the participants to
respond to the questionnaire described hereafter.

Questionnaire. The questionnaire was divided into four groups of
questions: (Part I) five questions about the participant’s professional
experience, (Part II) 10 closed-ended questions about their opinion
on Socio-Technical Debt, (Part III) 15 closed-ended questions about
their opinion on the debt story tool based on Likert-type scales, and
(Part IV) six open-ended questions. The questionnaire is available
in our replication package [36].

Data preparation and analysis. This study relies on both quan-
titative and qualitative data. Qualitative data was gathered from
participants’ answers to open-ended questions and the debt stories
they created.? Quantitative data are derived from questionnaires
by assigning values on a scale of 1 to 5 to Likert-type responses. As
we used five-point scales, we adopted a neutral value of 3 for the
agreement, frequency, and clarity scales and classify responses in
broader categories: > 3 (positive rating), = 3 (neutral rating), and
< 3 (negative rating). These broader categories were also employed
for the other (non Likert-type) scales, when applicable, to further
classify our participants: e.g., employee categories, such as junior,
medior, and senior profiles, as defined by the organization. Addi-
tionally, we summed the number of upvotes received by each debt
story to gain further insights.

4 RESULTS

Responses show that all 12 participants (100%) found the definition
of Socio-Technical Debt (STeD) to be clear or perfectly clear. Eleven

2All answers were translated into English to ensure replicability of the data analysis.
Translation and deeper analysis of the debt stories is part of our future work.

TechDebt *24, April 14-15, 2024, Lisbon, Portugal

(91.7%) agreed or strongly agreed that STeD elements made their
tasks less efficient and 10 (83.3%) agreed or strongly agreed that
STeD elements affecting their work posed risks to the organiza-
tion. Moreover, 10 (83.3%) reported that STeD elements affected
their work often or very often, illustrating the importance of Socio-
Technical Debt in our industrial context. However, only six partici-
pants (50%) reported that they often or very often discussed STeD
elements affecting their tasks with their immediate colleagues, and
only three (25%) said they discussed the subject often or very often
with their manager or supervisor. Additionally, all 12 participants
(100%) agreed or strongly agreed that they were familiar with the
format of User Stories traditionally used in agile development to
describe a user’s need or request.

RQ1 (Expressing STeD). Eleven participants (91.7%) agreed or
strongly agreed that the format proposed for the Debt Story allowed
them to express STeD elements that affected their tasks, and all 12
(100%) agreed or strongly agreed that it provided them with enough
flexibility to cover both technical and social debt elements affecting
their work. Ten (83.3%) agreed or strongly agreed that the fact that
the Debt Story was inspired by the User Story made it easier for
people with experience in agile development to adopt the tool. Eight
participants (66.7%) agreed or strongly agreed that they found it
easy to formulate Debt Stories during round 1 of the workshops
(before having seen any examples) and all 12 participants (100%)
agreed or strongly agreed that they found it easy to formulate Debt
Stories during round 2 after having seen some examples, confirming
the relevance of our format in Def. 2.2 in our industrial context.
A total of 97 Debt Stories were generated during the workshops.
One of these was eliminated because it was formulated as a joke. Out
of the remaining 96, 69 received at least one upvote. To assess their
alignment with Def. 2.1, each of the three first authors individually
evaluated each Debt Story and discussed to reach a consensus in
case of disagreement. The Fleiss’ kappa [16] inter-rater agreement is
0.141 (p —value = 0.0166), indicating slight agreement. This number
can be explained by the background of the three authors. Only the
first author is part of our industrial context, and, as such, has a
deeper knowledge and understanding of the collected debt stories.
In total, 69 Debt Stories (71.9%) were considered consistent with the
proposed definition for STeD, while the others primarily addressed
organizational issues that could lead to STeD but do not concern
an identified software engineering artifact. In our future work, we
plan to further analyse the collected debt stories to identify the
different STeD elements discussed by the participants, and replicate
our evaluation in a different context to strengthen our conclusions.

RQ2 (Communicating STeD). Eleven participants (91.7%) found
that the Debt Stories from other people are clear or perfectly clear
to them. Eleven (91.7%) agreed or strongly agreed that the Debt
Story is a suitable tool for discussing socio-technical debt elements,
and 11 (91.7%) agreed or strongly agreed that the Debt Story is a
tool that encourages bringing STeD issues affecting their work to
the attention of their hierarchy. Ten participants (83.3%) agreed or
strongly agreed that using Debt Stories would bring value to the
organization, and eight (66.7%) agreed or strongly agreed that there
would be added value in integrating the use of Debt Stories into
their tools (e.g., Azure DevOps boards). Those results suggest that



TechDebt "24, April 14-15, 2024, Lisbon, Portugal

Debt Stories can indeed be used as a basis for communicating STeD
elements in our industrial context.

5 DISCUSSION

Our results indicate that debt stories can help both development
experts and managers to express and communicate debt elements in
our industrial context. Although confirming those results in another
context is part of our future work, we see that there are no differ-
ences in the responses between development experts and managers.
Managers did report, however, that they discussed debt elements
with their immediate colleagues or their own managers less fre-
quently. This could be expected, as their (manager) colleagues are
responsible for unrelated activities, and their own managers are
less involved in operational matters.

Expressing STeD. Responses to the open-ended questions indicate
that 8 participants (66.7%) did not find that there were elements
that made their tasks less efficient or riskier and that were not
covered by the proposed definition of socio-technical debt. Some
participants mentioned that personal behavioral issues, higher-
level process aspects, and lack of strategy were potentially not
covered. Although important, we believe that these elements are
broader organizational issues that are out of the scope of Def. 2.1
when they do not involve software engineering artifacts. Such
elements were observed in the collected debt stories but were hard
to identify without a deeper knowledge of our industrial context,
also explaining the slight inter-rater agreement observed for RQ1.

When participants were asked open-ended questions about the
difficulties they encountered in formulating Debt Stories, one partic-
ipant mentioned that several impact types could be used to describe
a given issue. Indeed, a time-consuming debt element incurs higher
costs and represents a budget risk. However, we do not perceive
this as an issue, as the primary purpose of the tool is to identify and
discuss issues in a semi-structured format. The tool is flexible and
allows for conveying a broad spectrum of impact types. Debt Stories
can and should be further elaborated upon during later discussions.
Similarly, some participants reported that it was not always easy to
choose the right role or context, as several could be suitable. Our
advice is to choose the first one that comes to mind and discuss this
choice in a later phase.

Communicating STeD. Most difficulties are related to the fact
that some debt stories were too specific to a role or context, making
it challenging for participants to relate. Some participants also
mentioned that certain debt stories produced by other participants
were too long or complex. The same reasons were provided by
most people when asked why they did not upvote a particular Debt
Story. When asked about modifications they would like to make
to Def. 2.2, half of the participants reported that they would not
change anything, while the others mentioned issues with some debt
stories that are too long or complicated, or for which the impact
types or roles are questionable. Although these remarks are not
directly related to formatting issues (as confirmed by the answers
to the closed-ended questions), they do point out the importance
of adhering to shared guidelines and best practices when creating
and using debt stories. This would ensure maximum clarity and
relevance across different roles and contexts.

Nicolas Riquet, Xavier Devroey, and Benoit Vanderose

Managing STeD. One participant expressed the need to involve
people from other departments (such as IT Infrastructure, User
Support, etc.) to effectively and efficiently manage debt. This is
a valuable insight, which we will address in our future work to
define a methodology and tools to help characterize socio-technical
debt items and determine appropriate mitigation actions. We also
plan to study the relationship between socio-technical debt and
DevOps concepts and practices, among which those related to the
responsibilities of IT operations experts.

6 THREATS TO VALIDITY

Internal validity. To prevent priming during the creation of debt
stories, we ensured that examples were presented only after the
initial round in the Debt Story editor tool (step 5 in Figure 1). Also,
to ensure that participants did not upvote their own debt stories,
we employed debt story identifiers that included the participant’s
number. Regarding the questionnaire, we used distinct formatting
to prevent any confusion between the terms "Debt Story" and "User
Story": the former was consistently written in bold font, while
the latter was underlined. The translation of the content and data
into English was carried out to the best of our abilities, and we
sought assistance from ChatGPT [32], a large language model-
based chatbot, when we were unsure about the most idiomatic way
of translating some sentences. We plan to apply the same approach
for translating the debt stories collected during the evaluation.

External validity. Our workshops involved only 12 participants,
all from the same organization, which limits the generalizability of
our results (a common threat when performing empirical evaluation
in an industrial context). However, this threat is mitigated by several
elements: the organization employs standard tools and methodolo-
gies, making it a representative example of large enterprises that
develop software to support complex business operations. It has
been engaged in application development for decades, which has
exposed it to the challenges of adapting to evolving business needs,
including the creation of new applications and substantial main-
tenance efforts for existing ones. Regarding the selection of the
participants, we believe it is representative of the various teams,
roles, and career experience levels within the development depart-
ment. Replicating our evaluation in a different industrial context to
further address external validity is part of our future work.

Replicability. The replication package [36] includes the following
(both in English and in French): the Debt Story editor template and
instances for rounds 1 and 2, the upvote sheet, the questionnaire and
the responses data. This case study was conducted in French and all
English translations were done for the purpose of reproducibility.

7 CONCLUSION

In this short paper, we presented debt stories, a tool to help stake-
holders involved in the software development and maintenance
lifecycle to express and communicate STeD elements. Our initial
results confirm that Socio-Technical Debt and debt stories would
indeed help software engineering practitioners from our industrial
context expressing and communicating debt elements.

In our future work, we plan to replicate our workshop in other
industrial context and analyse the debt stories produced more in-
depth to identify which actor roles, social or technical context,



Debt Stories: Capturing Social and Technical Debt in the Industry

impact type, and debt elements are expressed. Based on this analy-
sis we will propose methods and refined tools to assist teams and
their managers in characterizing the identified debt elements, defin-
ing the possible mitigating actions, and their prioritization. We also
intend to investigate how the various aspects of Socio-Technical
Debt intersect with common DevOps concepts such as waste and
how the implementation of DevOps practices and tools can help
reduce the overall debt level and the production of new debt. The
overall goal of our research project is to propose a management
framework for defining, identifying, characterizing, communicat-
ing, and managing Socio-Technical Debt.

REFERENCES

[1] Agile Alliance. 2020. User Story Template.

[2

[12

[13

[14

[15
[16

(17

[18

[19

[20

[22

[23

[

]

]

]

]

https://www.agilealliance.org/
glossary/user-story-template. Accessed: 2023-08-07.

Areti Ampatzoglou, Apostolos Ampatzoglou, Paris Avgeriou, and Alexander
Chatzigeorgiou. 2015. Establishing a framework for managing interest in techni-
cal debt. In BMSD °15.

Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016.
Managing technical debt in software engineering (dagstuhl seminar 16162). In
Dagstuhl reports, Vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Kent Beck. 2000. Extreme programming explained: embrace change. addison-
wesley professional.

Terese Besker, Antonio Martini, and Jan Bosch. 2017. Time to Pay Up: Technical
Debt from a Software Quality Perspective. In CIbSE. 235-248.

Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t Touch My Code! Examining the Effects of
Ownership on Software Quality. In ESEC/FSE ’11 (Szeged, Hungary). ACM, 4-14.
Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. 2010.
Managing technical debt in software-reliant systems. In Proceedings of the FSE/SDP
workshop on Future of software engineering research. 47-52.

Alexandra-Maria Chaniotaki and Tushar Sharma. 2021. Architecture Smells and
Pareto Principle: A Preliminary Empirical Exploration. In MSR °21. 190-194.
Mike Cohn. 2004. User stories applied: For agile software development. Addison-
Wesley Professional.

Melvin E Conway. 1968. How do committees invent. Datamation 14, 4 (1968),
28-31.

Ward Cunningham. 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1992), 29-30.

Cunningham, Ward. 2009. Debt Metaphor. https://www.youtube.com/watch?v=
pqeJFYwnkjE. Accessed: 2023-03-27.

Jason Dedrick, Vijay Gurbaxani, and Kenneth L Kraemer. 2003. Information tech-
nology and economic performance: A critical review of the empirical evidence.
ACM Computing Surveys (CSUR) 35, 1 (2003), 1-28.

Sonja Dimitrijevi¢, Jelena Jovanovi¢, and Vladan Devedzi¢. 2015. A comparative
study of software tools for user story management. Information and Software
Technology 57 (2015), 352-368.

Neil Ernst, Rick Kazman, and Julien Delange. 2021. Technical Debt in Practice.
The MIT Press.

Joseph L. Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological Bulletin 76, 5 (Nov. 1971), 378-382.

Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The science of lean
software and devops: Building and scaling high performing technology organizations.
IT Revolution.

Gartner. 2020. Manage Technology Debt to Create Technology Wealth. https:
/[www.gartner.com/en/documents/3989188. Accessed: 2023-03-21.

Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some Code Smells Have a
Significant but Small Effect on Faults. ACM Transactions on Software Engineering
and Methodology 23, 4 (2014), 1-39.

Johannes Holvitie, Sherlock A Licorish, Rodrigo O Spinola, Sami Hyrynsalmi,
Stephen G MacDonell, Thiago S Mendes, Jim Buchan, and Ville Leppanen. 2018.
Technical debt and agile software development practices and processes: An
industry practitioner survey. Information and Software Technology 96 (2018),
141-160.

Zijie Huang, Zhiqing Shao, Guisheng Fan, Jianhua Gao, Ziyi Zhou, Kang Yang, and
Xingguang Yang. 2021. Predicting Community Smells’ Occurrence on Individual
Developers by Sentiments. In ICPC °21. 230-241.

Jeff Immelt. 2015. GE CEO Jeff Immelt: Let’s Finally End the Debate over Whether
We Are in a Tech Bubble. Business Insider 9 (2015).

Clemente Izurieta and James M Bieman. 2013. A multiple case study of design
pattern decay, grime, and rot in evolving software systems. Software Quality
Journal 21 (2013), 289-323.

[24

[25

[26

[28

[29]

[30

@
i

'S
o

'@
&

[39

[40

[41

[42

[43

=
ot

[45

[46

[47]

(48]

N
o)

TechDebt *24, April 14-15, 2024, Lisbon, Portugal

Stefano Lambiase, Gemma Catolino, Damian A. Tamburri, Alexander Serebrenik,
Fabio Palomba, and Filomena Ferrucci. 2022. Good Fences Make Good Neigh-
bours? On the Impact of Cultural and Geographical Dispersion on Community
Smells. In ICSE-SEIS °22. ACM, 67-78.

Ruiyin Li, Peng Liang, Mohamed Soliman, and Paris Avgeriou. 2022. Under-
standing software architecture erosion: A systematic mapping study. Journal of
Software: Evolution and Process 34, 3 (March 2022), e2423.

Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193-220.

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn EM van der Werf, and Sjaak
Brinkkemper. 2016. The use and effectiveness of user stories in practice. In
REFSQ ’16 (Gothenburg, Sweden). Springer, 205-222.

Johan Magnusson and Bendik Bygstad. 2014. Technology debt: Toward a new
theory of technology heritage. In ECIS ’14. 9-11.

Johan Magnusson, Carlos Juiz, Beatriz Gémez, and Belén Bermejo. 2018. Govern-
ing technology debt: beyond technical debt. In TecDebt ’18. 76-84.

McKinsey. 2022. Demystifying digital dark matter: A new standard to tame techni-
cal debt. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/
demystifying-digital-dark-matter-a-new-standard-to-tame- technical-debt. Ac-
cessed: 2023-04-25.

Steffen M. Olbrich, Daniela S. Cruzes, and Dag LK. Sjogberg. 2010. Are all code
smells harmful? A study of God Classes and Brain Classes in the evolution of
three open source systems. In ICSM ’10.

OpenAl 2022. ChatGPT. https://openai.com/chatgpt. Accessed: 2023-08-07.
Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, Experience and
Defects: A Fine-Grained Study of Authorship. In ICSE ’11 (Waikiki, Honolulu, HI,
USA). ACM, 491-500.

Paul Ralph. 2015. The sensemaking-coevolution-implementation theory of soft-
ware design. Science of Computer Programming 101 (2015), 21-41.

Nicolas Riquet, Xavier Devroey, and Benoit Vanderose. 2022. GitDelver Enter-
prise Dataset (GDED): An Industrial Closed-source Dataset for Socio-Technical
Research. In MSR ’22. Pittsburgh, PA, USA.

Nicolas Riquet, Xavier Devroey, and Benoit Vanderose. 2024. https://zenodo.
org/doi/10.5281/zenodo.10518270 Replication package.

José Amancio M. Santos, Jodo B. Rocha-Junior, Luciana Carla Lins Prates,
Rogeres Santos do Nascimento, Mydia Falcio Freitas, and Manoel Gomes de
Mendonga. 2018. A systematic review on the code smell effect. Journal of Systems
and Software 144, March (2018), 450-477.

Petra Schubert and Uwe Leimstoll. 2007. Importance and use of information
technology in small and medium-sized companies. Electronic Markets 17, 1 (2007),
38-55.

Carolyn Seaman and Yuepu Guo. 2011. Measuring and monitoring technical debt.
In Advances in Computers. Vol. 82. Elsevier, 25-46.

Dag LK. Sjoberg, Aiko Yamashita, Bente C.D. Anda, Audris Mockus, and Tore
Dyba. 2013. Quantifying the effect of code smells on maintenance effort. IEEE
Transactions on Software Engineering 39, 8 (2013), 1144-1156. ISBN: 0098-5589.
Damian A Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The architect’s role
in community shepherding. IEEE Software 33, 6 (2016), 70-79.

Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2013.
What is social debt in software engineering?. In CHASE ’13. IEEE, 93-96.
Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2015.
Social debt in software engineering: insights from industry. Journal of Internet
Services and Applications 6 (2015), 1-17.

Damian A Tamburri, Fabio Palomba, and Rick Kazman. 2019. Exploring com-
munity smells in open-source: An automated approach. IEEE Transactions on
software Engineering 47, 3 (2019), 630-652.

Edith Tom, Aybiike Aurum, and Richard Vidgen. 2013. An exploration of technical
debt. Journal of Systems and Software 86, 6 (2013), 1498-1516.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di
Penta, Andrea De Lucia, and Denys Poshyvanyk. 2017. When and Why Your
Code Starts to Smell Bad (and Whether the Smells Go Away). IEEE Transactions
on Software Engineering 43, 11 (Nov. 2017), 1063-1088.

Aiko Yamashita and Leon Moonen. 2013. To what extent can maintenance
problems be predicted by code smell detection? -An empirical study. Information
and Software Technology 55, 12 (2013), 2223-2242.

Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In Proceedings
of the 2nd Workshop on Managing Technical Debt (Waikiki, Honolulu, HI, USA)
(MTD ’11). ACM, 17-23.

Chenxing Zhong, Huang Huang, He Zhang, and Shanshan Li. 2022. Impacts,
causes, and solutions of architectural smells in microservices: An industrial
investigation. Software: Practice and Experience 52, 12 (Dec. 2022), 2574-2597.


https://www.agilealliance.org/glossary/user-story-template
https://www.agilealliance.org/glossary/user-story-template
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.youtube.com/watch?v=pqeJFYwnkjE
https://www.gartner.com/en/documents/3989188
https://www.gartner.com/en/documents/3989188
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://openai.com/chatgpt
https://zenodo.org/doi/10.5281/zenodo.10518270
https://zenodo.org/doi/10.5281/zenodo.10518270

	Abstract
	1 Introduction
	2 Capturing socio-technical debt
	3 Preliminary Evaluation
	4 Results
	5 Discussion
	6 Threats to validity
	7 Conclusion
	References

