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Abstract—Developers often look for solutions to programming
problems in community Q&A sites like Stack Overflow. Due
to the crowdsourcing nature of these Q&A sites, many user-
provided answers are wrong, less optimal or out-of-date. Relying
on community-curated quality indicators (e.g., accepted answer,
answer vote) cannot reliably identify these answer problems. Such
problematic answers are often criticized by other users. However,
these critiques are not readily discoverable when reading the
posts. In this paper, we consider the answers being criticized
and their critique posts as controversial discussions in commu-
nity Q&A sites. To help developers notice such controversial
discussions and make more informed choices of appropriate
solutions, we design an automatic open information extraction
approach for systematically discovering and summarizing the
controversies in Stack Overflow and exploiting official API
documentation to assist the understanding of the discovered
controversies. We apply our approach to millions of java/android-
tagged Stack overflow questions and answers and discover a large
scale of controversial discussions in Stack Overflow. Our manual
evaluation confirms that the extracted controversy information is
of high accuracy. A user study with 18 developers demonstrates
the usefulness of our generated controversy summaries in helping
developers avoid the controversial answers and choose more
appropriate solutions to programming questions.

Index Terms—Controversial discussion, Stack Overflow, Open
information extraction, Sentence embedding

I. INTRODUCTION

In community Q&A sites like Stack Overflow, users com-
monly rely on community-curated quality indicators, such as
the answer accepted by the question asker and the community
votes on the answer, to choose the appropriate solution to the
question, especially when the question has multiple answers.
However, we observe that many answers, even the accepted or
high-vote answers, may be wrong, less optimal or out-of-date.
Such answer issues may be warned in the comments on the
answers and/or other answers to the same question.

Table I presents such as example. The question asks How
do I fix android.os.NetworkOnMainThreadException?. The
accepted answer suggests “Run your code in AsyncTask”, As
of 11th May, 2019, this question has been viewed 1,090,842
times and the accepted answer has received 2413 votes. This
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indicates that the solution in the accepted answer could be
adopted by many developers in their applications. Unfortu-
nately, this accepted answer violates an official API caveat
of using AsyncTask, as pointed out by a comment on the
accepted answer and the other answer that receives only 144
votes and is ranked 4th by community votes. In this work,
we refer to answers being criticized as controversial answers
and comments/answers criticizing other answers as critique
posts. Critique posts sometimes reference the links of official
API documents or discuss (may paraphrase) API caveats in
official documentation to support or explain their critiques.
A controversial answer, its critique posts (one or more) and
relevant explanatory API links/caveats (if any) constitute a
controversial discussion thread.

There has been much work on investigating question and
answer quality in community Q&A sites [1]–[4], but con-
troversial discussions have not been systematically studied.
We conduct an empirical study of controversial discussions
in java/android-tagged Stack Overflow questions and answers
(see details in Section II). Among 2,469,536 java/android-
tagged questions in the latest Stack Overflow data dump
(released on 4th March, 2019), we find that 18.85% questions
have at least one controversial answer. Among all 3,899,653
answers, 21.48% of them are controversial. We found that
410,063 controversial discussion threads are API related.
Among these 410,063 API-related controversial discussion
threads, our explain-controversy approach (see Section III-C)
identifies that 28.17% threads discuss relevant API caveats
in official Java and Android documentation and that 35.62%
threads reference the links of official API documents.

The large scale of controversial discussions in Stack Over-
flow is unsurprising in that there is almost no barrier to
participate in Stack Overflow question answering. Due to the
lack of certain API caveat knowledge, users are likely to
contribute some solutions that they believe to be good but
actually violate API usage caveats (e.g., Table I), or are less
optimal (e.g., Table II), or are out-of-date (e.g., Table III)
Other users may warn readers of such problematic answers
by criticizing them in answer comments and other answers.
Although such critiques signal the potential controversies of
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certain solutions, they may be overshadowed by other answer-
quality signals (e.g., the answer acceptance by the question
asker or the high votes by many less knowledgeable users).

In this paper, we design an automatic open information
extraction (OpenIE) approach for systematically discovering,
explaining and summarizing controversies in community Q&A
discussions. Our approach detects critique posts by mining
critique sentences. It infers controversial answers being criti-
cized by either explicit answer references or a text-summary-
and-matching based method. A controversial answer and its
critique posts are summarized as a controversial discussion
thread. Our approach detects API mentions in a controversial
answer or a critique post against an API inventory crawled
from official API reference. For the mentioned APIs, it further
extracts the discussed API caveats and the referenced API doc-
ument links in the controversial answer and the critique posts,
as official references to explain the discovered controversies.
We apply the API caveat mining approach [5] to extract
API caveat sentences from official API documentation, and
design a weighted word-embedding based sentence matching
method which is robust to match the paraphrased API-caveat
explanations in the answers/comments and the original API-
caveat sentences in official documentation, even in face of the
lexical gap between the sentences.

We apply our approach to Java/Android-tagged Stack Over-
flow questions and answers in the latest Stack Overflow
data dump. We use the statistical sampling method [6] to
evaluate the accuracy of each information extraction step of
our approach at 5% error margin and 95% confidence level.
The identified critique posts and controversial answers reach
the accuracy 99.5% and 95.1% respectively. The accuracy
of identifying API-related controversial answers and critique
posts is 99.2%. The accuracy of extracting the API-caveat
sentences from official Java/Android API documentation is
99.2%, which is consistent with the results reported in [5].
The accuracy of extracting the discussed API-caveat sentences
in the controversial answers and critique posts is 90.4%.

We conduct a user study in which 18 Java developers
are asked to identify the most appropriate solutions to eight
Stack Overflow questions by reading the answers to these
questions on Stack Overflow. 18 participants are divided into
three equal-size groups: the first group (G1) read answers
without any controversial reminders; the second group (G2)
read answers with only a general warning statement on the
controversial answers; the third group (G3) read answers
augmented with the detailed controversy summary produced
by our approach (see Section III-D). The third group achieves
the highest correctness. Five participants in G3 answer six or
seven questions correctly, while seven participants in G1 and
G2 answer four or less questions correctly. Compared with the
group G2, the group G3 completes the task 15.4% faster.

In this paper, we make the following contributions:
• To the best of our knowledge, we are the first to system-

atically investigate the controversial discussions in Stack
Overflow, including their scale, impact, typical cases and
connection to API documentation.

• We design an automatic approach for discovering and
summarizing controversial discussions in Stack Overflow
and exploiting official API links/caveats as reference to
explain the controversies.

• We conduct extensive experiments to evaluate the accu-
racy of our approach for controversy-related information
extraction, as well as the usefulness of the generated
controversy summary for identifying the most appropriate
solutions in crowd answers to programming questions.

• We release the source code of our approach and the
dataset of our evaluation and userstudy1 to help other
researchers replicate and extend our study.

II. EMPIRICAL STUDY OF CONTROVERSIAL DISCUSSIONS
IN STACK OVERFLOW

Our empirical study on controversial discussions uses the
latest Stack Overflow data dump (released on 4th March,
2019). In this study, we examine java/android-tagged questions
and the answers to these questions. Our study reveals key
insights of controversial discussions, including their scale,
impact, typical cases and connection to API documentation.

The scale of controversies is significant. The data dump
contains 2,469,536 java/android-tagged questions. These ques-
tions have 3,899,653 answers which have 5,525,257 com-
ments. Using our controversy-discovery approach (see Sec-
tion III-B1), we find that 465,399 (18.85%) questions have
at least one controversial answer. 837,719 (21.48%) answers
are controversial as they have been criticized by at least one
comment or answer. We find 408,683 critique answers and
858,072 critique comments. 484,285 (57.81%) controversial
answers have two or more critique comments/answers.

Wrong answer, less optimal answer and out-of-date
answer are typical types of controversies. During the
mining of sample critique sentences (see Section III-B) and
the evaluation of our controversy-discovery approach (see
Section IV), we empirically observe three typical types of
controversies: wrong answer, less optimal answer and out-of-
date answer. The accepted answer in Table I is a wrong answer
because the suggested solution violates the API caveat of
using AsyncTask. The critique comment and answer in Table I
paraphrase the API caveat of AsyncTask to explain their
critiques. The accepted answer in Table II is a less optimal
answer. It has two critique comments: one suggests “This
answer doesn’t help as others do. It shouldn’t be accepted”; the
other suggests “ListPopupWindow is better option” and refers
the readers to the API reference of ListPopupWindow for more
detail. Table III shows an example of partially controversial
answer. The answer is mostly correct, but the use of one API
setDrawerListener is out-of-date because setDrawerListener
is deprecated. The critique comment/answer points out this
API deprecation and suggests an alternative API. The cri-
tique answer also references relevant API link as supporting
resource.

1The replication package can be downloaded at: https://github.com/
goodchar/Controversy-summary-of-Stack-Overflow-posts
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Community-curated quality indicators (e.g., accepted
answer and vote) are not reliable to identify controversial
answers. Only 12,733 (1.52%) controversial answers have
negative votes. 446,504 (53.30%) controversial answers are
marked as accepted answer and/or have the highest positive
votes among all answers to a question. Our user study reveals
that information seekers on Stack Overflow often trust these
community-curated answer-quality indicators when no direct
controversy reminders are present (see Section V-B).

The presence of critique posts does not mean that the
controversies are easily discoverable and accessible to
information seeker. By comparing the vote number of the
controversial answers in the two data dumps (released on 18th
March, 2018 and on 4th March, 2019), we find that the vote
number of 529,271 (63.18%) controversial answers increases
over time. Take the controversial accepted answer in Table I
as an example. The vote on this answer was 2131 as of 18th
March, 2018, and increased to 2379 one year later, and further
increased to 2413 as of 4th May, 2019. The increasing vote on
the controversial answers indicates that many developers still
regard the controversial answers as good solutions to their
problems (there could be even more developers who adopt
the controversial solutions but do not make a vote), even
though these answers have been explicitly criticized by some
comments on them or other answers.

Official API documentation is often referenced to explain
or backup the critiques. Among 837,719 controversial dis-
cussion threads (each is uniquely identified by a controversial
answer), 410,063 (48.95%) of them are API related (i.e.,
mentioning at least one Java/Android API). Among these API-
related controversial discussion threads, 146,064 (35.62%)
explicitly reference the links of official Java and Android
API documents. In addition, using our API-caveat discussion
extraction method (see Section III-C), we find that 115,496
(28.17%) controversial discussion threads discuss some API
caveats from official API documentation, even though they
may not explicitly reference the API document links.

III. APPROACH

The large-scale controversies in Stack Overflow and the in-
terference of these controversies on developers motivate us to
design an approach that turns latent controversial discussions
into salient, concise, semi-structured controversy warnings to
help developers notice the controversies and judge their valid-
ity. As shown in Fig. 1, the raw input to our approach includes
Stack Overflow posts (i.e., answers and comments) and offi-
cial API documentation. Our approach has three main steps:
discover controversies including controversial answers and cri-
tique posts (Section III-B), explain API-related controversies
in terms of API document links referenced and API caveats
discussed in controversial discussions (Section III-C), and
summarize controversies as salient, concise, semi-structured
controversy warnings (Section III-D).

TABLE I
WRONG ANSWER (VIOLATING API CAVEAT)

Question How do I fix an-
droid.os.NetworkOnMainThreadException?

Viewed times 1,090,842 (as of 11th May, 2019)
Accepted but controversial answer (vote=2431): This exception
is thrown when an application attempts to perform a networking
operation on its main thread. Run your code in AsyncTask ...
Critique comment on accepted answer: This is exactly the wrong
answer...AsyncTask should not be used for network activity,
because it’s tied to the activity ...
Critique answer (vote=144): The accepted answer has some
significant downsides. It is not advisable to use AsyncTask for
networking ...AsyncTask’s created as non-static inner classes have
an implicit reference to the enclosing Activity object ... This
reference prevents the Activity from being garbage collected until
the AsyncTask’s background work completes ... these short-term
memory leaks can become a problem ...
Explanatory API caveat of AsyncTask: When using a subclass of
AsyncTask to run network operations, ... don’t create a memory
leak where the Activity that is referenced by the AsyncTask is
destroyed before the AsyncTask finishes its background work.

TABLE II
LESS OPTIMAL ANSWER

Question How to set Spinner default value to null?
Viewed times 109,613 (as of 11th May, 2019)
Accepted but controversial answer (vote=78): Only if there is no
data. If you have 1+ items in the SpinnerAdapter, the Spinner will
always have a selection...
Critique comment-1 on accepted answer: (vote=2) ListPopup-
Window is better option in this case. By replacing spinner from
textView and calling ListPopupWindow.show() on textView click
shows the same behaviour with no drawback of default item
selection. For more detail see this https://developer.android.com/
reference/android/widget/ListPopupWindow.html.
Critique comment-2 on accepted answer: This answer doesn’t
help as others do. It shouldn’t be accepted
Explanatory API document link: https://developer.android.com/
reference/android/widget/ListPopupWindow.html.

TABLE III
OUT-OF-DATE ANSWER

Question How to detect that the DrawerLayout started
opening?

Viewed times 38,850 (as of 11th May, 2019)
Accepted but controversial answer (vote=68): There are 2 possi-
ble ways to do that: 1) Use onDrawerSlide(View drawerView, float
slideOffset) callback ... mDrawerLayout.setDrawerListener ... 2)
Use onDrawerStateChanged(int newState) callback ... mDrawer-
Layout.setDrawerListener ...
Critique comment on accepted answer: setDrawerListener is
deprecated. Changed to addDrawerListener.
Critique answer (vote=32): Currently accepted answer by
Pavel Dudka is already deprecated. Please use mDraw-
erLayout.addDrawerListener() method instead to set a lis-
tener https://developer.android.com/reference/android/support/v4/
widget/DrawerLayout.html
Explanatory API caveat of setDrawerListener: setDrawerListener
(DrawerLayout.DrawerListener listener) ... was deprecated in API
level 24.1.0. Use addDrawerListener (DrawerListener)
Explanatory API document link: https://developer.android.com/
reference/android/support/v4/widget/DrawerLayout.html
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Fig. 1. The Framework of Our Approach

A. Input Documentation

Our approach discovers the controversies in Stack Overflow
posts (i.e., answers and comments) and finds the explanations
of the controversies in official API documentation. We use
Stack Overflow data because Stack Overflow is the most
popular social information seeking platform for computer pro-
gramming. We focus on java/android-tagged Stack Overflow
questions in this work. Stack Overflow post content (including
answer body and comment content) can be directly retrieved
from the Stack Overflow data dump (the latest data dump
released on 4th March, 2019 is used in this study).

For the official API documentation, we consider both API
references and API tutorials. We crawl Java and Android API
references from Android API reference and Java SDK API
specification respectively, and crawl Java and Android API
tutorials from Android Developer Guides and Java Tutorials
respectively. We discard web page navigation content and
retain the main API reference and tutorial content.

Both Stack Overflow post content and API reference/tutorial
content are contained in webpages. We follow the steps that
are commonly used for preprocessing web content [7], [5],
[8], [9]. We preserve textual content but remove HTML
tags. Stand-alone code snippets (e.g., those in <pre> tag in
Stack Overflow posts) are removed because our focus is on
controversial discussions in text. But code elements in natural
language sentences are kept in order to retain the sentence
integrity. The text content is then tokenized. Software text con-
tains API mentions, such as AsyncTask, ListPopupWindow,
mDrawerLayout.addDrawerListener() and addDrawerListen-
er(DrawerListener) in the answer/comment/API-caveat exam-
ples in Table I, Table II and Table III. API tokens usually
contain special characters such as “.”, “()”, “[]”, “ ”. In face
of these special characters, a general text tokenizer usually
breaks one API token into several tokens, such as “addDraw-
erListener”, “(”, “DrawerListener”, “)” for the API token
“addDrawerListener(DrawerListener)”. This will disturb the
sentence integrity. Therefore, we adopt the software-specific
tokenizer [9] for extracting API mentions in natural language

sentences. Our software-specific tokenizer retains the integrity
of API tokens during text tokenization. After tokenization, we
use Stanford CoreNLP [10] to split texts into sentences, which
are the basic text units in our work.

B. Discovering Controversies

First, our approach detects critique posts by mining critique
sentences, and then it infers controversial answers being
criticized based on explicit answer references in critique posts
and a text-summary-and-matching method.

1) Detecting critique posts: Two of our authors randomly
select 5000 answers and 5000 comments to read, from which
we identify in total 3206 critique sentences with Cohen’s
Kappa more than 0.800. All these critique sentences contain
some critique indicators. We classify the critique indicators
into three categories: judgment, sentiment and opinion. Ta-
ble IV lists the top-4 most frequent critique indicators for each
category identified during our manual post examination.

On Stack Overflow, the similar sentence semantics are often
expressed in many different ways [11]. Table V shows variant
critique sentences with similar critique semantics.We can see
that simply using a set of critique indicators to pattern-match
critique sentences likely misses many critique posts in which
the critiques are not expressed in the exact form of these cri-
tique indicators. To overcome this issue, we compile the 3206
critique sentences identified in our manual examination into a
corpus of sample critique sentences. If a sentence is similar
enough (the similarity score, which is computed with our pre-
trained domain-specific word embedding dictionary (see part
2 in Fig. 1) > 0.8 in this work) to at least one sentence in
the corpus of sample critique sentences, this sentence will be
considered as a critique sentence. The sentence similarity is
computed using the sentence matching method described in
Section III-C3. If an answer or a comment contains at least one
critique sentence, this answer or comment will be identified
as a critique post.

2) Identifying controversial answers: Some critique posts
have explicit references to the controversial answers being

https://developer.android.com/reference/classes
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TABLE IV
EXAMPLES OF CRITIQUE INDICATORS

Category Top-4 Frequent Critique Indicators
Judgement wrong answer, out of date, incorrect, not work
Sentiment stupid, unfortunately, dislike, disagree
Opinion better answer, a little bit vague, not think so, not sure

TABLE V
EXAMPLES OF VARIANT CRITIQUE SENTENCES

Critique
Semantics Variant Critique Sentences

Wrong
Answer

Unfortunately the accepted answer is wrong.
ERROR Make sure the Cursor is initialized correctly before
accessing data from it.. checking in API 19.
Doesn’t work for me.

Less
Optimal
Answer

Rather than creating a Dialog with a list of Intent options,
it is much better to use Intent.createChooser...
Not the Perfect Solution.
I’m not satisfied with it.

Out-of-
date
Answer

recyclerView.getChildPosition(v); is depricated now use
recyclerView. indexOfChild(v);
These answers were outdated for me, so here’s how it
worked out.
It is long outmoded, and java.time the modern Java date
and time API is so much nicer to work with..

criticized. If a critique post is a comment, the answer being
commented is the controversial answer. We observe that a
critique answer often references the answer being criticized
by “this accepted answer” (e.g., Table I) or the author of the
answer (e.g., Table III). If such explicit answer references
exist in a critique answer, we analyze the answer metadata
to identify the referenced controversial answer.

Even when a critique answer does not explicitly reference
the controversial answer, we observe that a critique answer
has to reference the content of the controversial answer and
explains what problems it has and why. This implicit content
reference usually makes the relevance between the critique
answer and the controversial answer higher than their rele-
vance to other answers (if any). Based on this observation,
we develop a text-summary-and-matching method to identify
the controversial answer that is not explicitly referenced in
the critique answer. Note that when a question has only two
answers, we heuristically identify the answer other than the
critique answer as the controversial answer without the need
to check explicit reference or content relevance.

Our text-summary-and-matching method first use Tex-
tRank [12] to extract the most important sentences (up to 5
sentences) in the critique answer and in each of the other
answers to the same question. TextRank ranks the sentence
importance by applying the PageRank algorithm [13] to a
sentence correlation graph for a piece of text. Next, given
the critique answer and one of the other answers to the same
question, we use the sentence matching method described in
Section III-C3 to compute the sentence similarity between
each pair of the importance sentences of the two answers.
And then, we use the bipartite graph matching algorithm [14]
to determine the optimal sentence-matching pairs between the

two answers. Finally, we average the sentence similarity of the
optimal sentence-matching pairs as the similarity of the two
answers. The answer with the highest similarity to the critique
answer is identified as the corresponding controversial answer.

C. Explaining API-related Controversies

As an Q&A site for computer programming, many Stack
Overflow posts are API related. As shown in Table I, Table II
and Table III, when discussing API-related controversies,
critique posts often reference official API document links
or discuss API caveats from official API documentation to
support their critiques. Furthermore, controversial answers
(e.g., the accepted answer in Table I) may discuss some
API usage highly relevant to certain API caveats in offi-
cial documentation. Such API-link references and API-caveat
discussions are an important resource for understanding the
controversies and determining what problems a controversial
answer may have and why. Therefore, our approach identifies
API-related controversial answers and critique posts, and then
extract explanatory API links/caveats from these answers/posts
and the corresponding official documentation.

1) Identifying API-Related Controversies: If a controversial
answer and/or its critique posts mention some API(s) (Java
and Android APIs in this work), the controversy is considered
as API related. To detect API mentions in Stack Overflow
posts, we built an API inventory that stores the fully-qualified
names of all Java/Android SDK APIs and the corresponding
URLs of these APIs in official API reference websites (https://
developer.android.com/reference/classes for Android SDK and
https://docs.oracle.com/javase/8/docs/api/ for Java SDK).

Then, we detect API mentions in two ways. First, if a token
in the post matches an API name in the API inventory, this
token is considered as an API mention. As the examples in
Table I, Table II and Table III show, it is common that a class is
mentioned without package name, and a method is mentioned
without package/class name or parameters. Therefore, we
perform the partial name matching between the post tokens
and the API names. Second, a post may not explicitly mention
the API names but reference the API links in the API reference
website. Therefore, we also examine each hyperlink in the
post. If the domain name of a hyperlink matches the domain
name of the API reference website, this hyperlink is considered
as an API mention. We then search the API hyperlink in the
API inventory to find the corresponding API.

2) Extracting Explanatory API Links/Caveats: Extracting
explanatory API document links is straightforward. The API
hyperlinks identified in the last step are explanatory API links
relevant to the controversy. However, extracting explanatory
API caveats is challenging because of the lexical gap between
the paraphrased API-caveat explanations in Stack Overflow
posts and the original API-caveat sentences in official doc-
umentation. Table VI shows some examples. Such lexical
gaps render keyword-matching based method ineffective to
determine the relevance between the paraphrased API-caveat
explanations in Stack Overflow posts and the original API-
caveat sentences in official documentation. Therefore, we

https://developer.android.com/reference/classes
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develop a weighted word-embedding based sentence matching
method (see Section III-C3) to battle the lexical gap between
the paraphrased and original API-caveat descriptions.

We adopt the API-caveat mining method developed by Li et
al. [5] to extract API caveat sentences from Java and Android
API documentation. Li et al. define an API caveat as a sentence
that specifies some constraint, contract or guideline of API
usage. They develop a set of sentence syntactic patterns for
extract three general categories and 10 subcategories of API
caveats - explicit (error/exception, recommendation, alterna-
tive, imperative, note), restricted (conditional, temporal), and
generic (affirmative, negative, emphasis).

For each mentioned API in a Stack Overflow post, we rank
the sentences in the post by their relevance to each of this
API’s caveat sentence mined by [5]. Although an API can
have many caveats, we observe that usually only one API
caveat is relevant to a specific question. Therefore, we use the
pair of post sentence and official API-caveat sentence with
the highest relevance score (the similarity metric > 0.8) as
the explanatory API caveat for a particular API involved the
controversy, for example, the sentences highlighted in blue in
Table I. If a post mentions multiple APIs, we will find one
explanatory API caveat for each mentioned API.

3) Weighted Word-Embedding Based Sentence Matching:
We compute the relevance between a sentence in a S-
tack Overflow post and an official API caveat sentence
based on word embeddings [15] and Term-Frequency-Inverse-
Document-Frequency (TF-IDF) [16]. This sentence-matching
method is also used to identify critique sentences similar to
sample critique sentences in Section III-B1 and to identify the
controversial answers that are not explicitly referenced in the
critique posts in Section III-B2.

Word embedding techniques [17]–[19] assume that words
appear in similar context tend to have similar meanings [20],
[21]. By word embedding, words are no longer represented as
sparse one-hot vectors, but are mapped to a real-valued dense
vector space. Each dimension of a word vector represents
a latent semantic or syntactic feature of the word. In this
work, we adopt the continuous skip-gram model [17], [22],
which is one of the state-of-the-art algorithms for learning
word embeddings using a neural network model. We train the
continuous skip-gram model using the text corpus of Stack
Overflow posts and API documentation built in Section III-A.
Following the previous work to learn word embeddings from
Stack Overflow posts and API documentation [23], we set the
dimension of word embeddings at 200.

TD-IDF is a statistical metric to evaluate the importance of
a word in a document [24], [25]. By TD-IDF, the importance
of a word is proportional to the number of times it appears in
the document, but is inverse-proportional to the frequency of
its occurrence in the corpus. We compute the TF-IDF metric of
each word in the text corpus of Stack Overflow posts and API
documentation built in Section III-A. Each Stack Overflow
answer, comment or API document is a document. We assign
a weight to a word t in a document d by scoret = tft,d ∗ idft.
tft,d is computed by nt,d/

∑
k nk,d where nt,d is the term

frequency of the word t in the document d. We normalize
nt,d by the total number of words

∑
k nk,d in the document.

This prevents tft,d from skewing toward long files, because
the same word tends to have a higher frequency in a long
document than in a short one, regardless of its importance. idft
is computed by log(|D|(1+ |d ∈ D : t ∈ d|) where |D| is the
total number of documents in the corpus and |d ∈ D : t ∈ d|
is the number of documents where the word t appears.

Finally, we compute the sentence embedding vs of a sen-
tence as the TD-IDF weighted average of the word embeddings
of the words in the sentence, i.e, vs = 1

|s|
∑

t∈s scoret ∗ vt,
where t is a word in the sentence s, scoret is t’s TD-
IDF weight, vt is t’s word vector, and |s| is the number
of words in the sentence. We use the cosine similarity of
the sentence embeddings of two sentences to measure the
relevance between the two sentences.

D. Summarizing Controversies

The current form of the controversies in Stack Overflow
is latent. First, critique comments/answers may be buried in
many other comments/answers. Second, critique answers and
controversial answers have no direct links in between. Third,
critique sentences, controversy-related content in between cri-
tique posts and controversial answers, and explanations of API
caveats are hidden in text. Such latent information organization
makes it difficult to discover and understand the controversies
in Stack Overflow Q&A discussions.

To facilitate the discovery and understanding of contro-
versial discussions, we design a controversy-oriented way
to organize and present controversial discussions. First, a
controversial answer, its critique posts and relevant official
API links/caveats (if any) are summarized in a semi-structured
controversial discussion thread (similar to the examples shown
in Table I, Table II and Table III). We use the text-summary-
and-matching method described in Section III-B2 to extract
relevant sentence pairs in between the controversial answer
and its critique posts. Based on these relevant sentence pairs,
we compose an excerpt for the controversial answer and each
critique post. These excerpts help users quickly review the
controversy-related content in the controversial answer and
the critique posts. The controversial discussion thread lists all
explanatory API document links as supporting resources to
understand the controversies. If any explanatory API caveats
are found in a post, the official API caveats will be listed
under the post, and the corresponding explanations of the API
caveats in the post will be added to the post excerpt.

When users are viewing a Stack Overflow question, our
browser-plugin tool can display the generated controversy
summary as an explicit and concise controversy warning to
help users choose appropriate solution to the question. The
critique sentences in the critique posts will be highlighted to
attract the users’ attention to the controversies. The API-caveat
explanations in the post (if any) will also be highlighted to help
users quickly judge the validity of the controversy against the
relevant official API caveats.



TABLE VI
EXAMPLES OF LEXICAL GAP BETWEEN PARAPHRASED AND ORIGINAL API CAVEATS

NO. API Caveats in Stack Overflow Posts Original API caveats in API Documentation

1
... if you want to be able to add or remove elements from the returned
list in your code, you’ll need to wrap it in a new ArrayList. Otherwise
you’ll get an UnsupportedOperationException.

To implement a modifiable collection, the programmer must addi-
tionally override this class’s add method (which otherwise throws
an UnsupportedOperationException), and the iterator returned by the
iterator method must additionally implement its remove method.

2
NoSuchMethodError happens if one class expects a method in another
class (and was compiled with that method in place), but at runtime
the other class does not have that method.

NoSuchMethodError Thrown if an application tries to call a specified
method of a class (either static or instance), and that class no longer
has a definition of that method.

3 And if we want an item to occupy full span we need to set isFullSpan
when creating render info:

boolean isFullSpan() Returns whether this View occupies all available
spans or just one.

4 The WifiP2pManager includes APIs that allow you to: Initialize your
application for P2P connections by calling initialize()

The application needs to do an initialization with initialize (Context,
Looper, WifiP2pManager.ChannelListener) before doing any p2p op-
eration.

IV. ACCURACY OF CONTROVERSY EXTRACTION
METHODS

Our approach is an open information extraction (OpenIE)
method to extract controversy-related knowledge from textual
Q&A discussions and API documentation. In this section, we
evaluate the accuracy of the four key steps of our approach:
detecting critique posts, identifying controversial answers,
identifying API-related controversies, and extracting explana-
tory API caveats. We also evaluate the accuracy of the adopted
API-caveat mining method [5] on our dataset.

A. Experimental Dataset and Evaluation Methods

We use the latest Stack Overflow data dump released
on 4th March, 2019 in this study. This data dump has
2,469,536 java/android-tagged questions, 3,899,653 answers
to these questions, and 5,525,257 comments on the answers.
Using our controversy extraction method, we identify 837,719
controversial answers, 408,683 critique answers and 858,072
critique comments, 410,063 API-related controversial discus-
sion threads, and 115,496 API-related answers and comments
containing explanatory API caveats. Using the API caveat
mining method [5], we extract 389,871 API caveat sentences
from Java and Android API documentation.

As each step of our approach extracts a large number of
data instances, we adopt a statistical sampling method [6] to
examine the minimum number MIN of data instances for
each step. This sampling method ensures that the estimated
accuracy is in a certain error margin at a certain confidence
level. We use the error margin 0.05 at 95% confidence level
in our evaluation. Given the large number of data instances,
MIN is approximately 384 at this statistical setting. There-
fore, we examine 384 data instances for each step. For the
identification of controversial answers, we consider only the
controversial answers that are not explicitly referenced by the
critique posts, because those that are explicitly referenced by
the critique posts can be identified without errors. We do not
need to examine the extracted explanatory API links because
they are identified by straightforward domain name matching.

The two authors independently evaluate the accuracy of a
data instance (binary decision: whether a critique post points
out a controversy, whether a controversial answer is the actual

answer being criticized by a critique post, whether an API-
related answer or comment mentions the identified APIs,
whether the identified explanatory API caveat is discussed
in an answer or comment, and whether an API caveat from
official documentation reveals certain API usage constraint,
contract or guideline). We compute Cohen’s Kappa [26] to
evaluate the inter-rater agreement. For the data instances that
the two authors disagree, they have to discuss and come to a
final decision. Based on the final decisions, we compute the
accuracy of each information extraction step.

Table VII reports the accuracy results. The columns Acc1
and Acc2 show the accuracy results determined by the two
annotators independently, and the column AccF is the final ac-
curacy after resolving the disagreements. The column Kappa
is the inter-rater agreement.

B. Results - Discovering Controversies

The first two rows in Table VII report the accuracy of
detecting critique posts and the accuracy of identifying con-
troversial answer being criticized by a critique post. For the
detected critique posts, the final accuracy is 99.5% and the
Cohen’s Kappa is 0.80 which indicate substantial agreement
between the labeling decisions of the two annotators. Detecting
critique posts is accurate because we manually identify a
set of high-quality sample critique sentences. Furthermore,
our sentence matching method can accurately identify variant
critique sentences such as those in Table V. A small number
of errors are caused by some complex sentences, such as the
sentence “the User might not want to agree to those and didn’t
update intentionally.”. Although “not agree to” is a common
critique indicator, this sentence is not a critique sentence.

For the accuracy of identifying controversial answers, the
final accuracy is 95.1% and the Cohen’s Kappa is 0.76 which
indicate substantial agreement between the two annotators.
This result shows that our text-summary-and-matching method
can accurately identify the controversial answers that are not
explicitly referenced in the critique posts. Most matching
errors are caused by the short controversial answers and/or
the short critique answers. These short answers are usually not
self-contained, but refer readers to some other online materials
for more details. As such, they do not have enough content
for reliable matching.

https://stackoverflow.com/questions/39698709/its-possible-to-programatically-update-google-play-services/39698748#39698748
https://stackoverflow.com/questions/39698709/its-possible-to-programatically-update-google-play-services/39698748#39698748


TABLE VII
ACCURACY RESULTS OF CONTROVERSY EXTRACTION STEPS

OpenIE Output Acc1 Acc2 AccF Kappa
CritiquePost 98.9% 99.5% 99.5% 0.80

ControversialAnswer 95.8% 94.0% 95.1% 0.76
APIRelatedPost 99.5% 99.2% 99.2% 0.80

APICaveatDiscussed 87.2% 91.4% 90.4% 0.73
APICaveatinOfficialDoc 99.0% 99.2% 99.2% 0.86

C. Results - Explaining Controversies

The last three rows in Table VII report the accuracy of
identifying API-related answers/comments, the accuracy of
identifying explanatory API caveats discussed in an answer
or comment, and the accuracy of extracting API caveats from
official documentation. For the accuracy of identifying API-
related answers/comments, the Cohen’s Kappa between the
two annotators is 0.80, which indicates substantial agreement
between the two annotators. The final accuracy after resolving
the disagreements is 99.2%. This suggests that our API-
mention detection method can accurately detect the mentions
of Java and Android APIs in Stack Overflow discussions. A
small number of errors are caused by ambiguous API class or
method names, such as “job”, “observable’, “database” which
can either be API mentions or common words.

For the accuracy of identifying explanatory API caveats dis-
cussed in an answer/comment, the Cohen’s Kappa between the
two annotators is 0.73, which indicates substantial agreement.
The final accuracy is 90.4%. This high accuracy suggests that
our sentence matching method can accurately identify API
caveats discussed in an answer/comment even in face of the
lexical gap between the paraphrased API-caveat explanations
in the answer/comment and the original API caveat sentences
in official documentation. The matching errors are usually
caused by long sentences which have complex sentence se-
mantics, in which some parts of the sentences match certain
API caveats, but the whole sentences are not completely about
the matched API caveats.

For the accuracy of extracting API caveat sentences from
official API documentation, the Cohen’s Kappa between the
two annotators is 0.86, which indicates the almost perfect
agreement. The final accuracy is 99.2%. This result is con-
sistent with the accuracy result reported in Li et al. [5],
and confirms again the effectiveness of the carefully-designed
caveat-indicating sentence patterns in [5].

Our open information extraction methods can accurately
extract controversy-related knowledge from textual Q&A
discussions and API documentation.

V. USEFULNESS OF CONTROVERSY SUMMARY

Our empirical study in Section II reveals that the scale of
controversial discussions in Stack Overflow is significant. We
also observe that these controversies may not be easily dis-
coverable by community-curated quality factors and critiques
when developers seek solutions to their problems on Stack
Overflow. Having evaluated the accuracy of our approach

for extracting controversy-related knowledge, we now would
like to investigate the usefulness of our generated controver-
sy summary, compared with the existing community-curated
quality indicators and critiques, for helping developers notice
the controversies in Stack Overflow discussions and select the
most appropriate solutions to Stack Overflow questions in face
of such controversial discussions.

A. User Study Design

1) Experimental Tasks: As our study focuses on the in-
terference of controversial discussions on the developers’
information seeking on Stack Overflow, we select experimental
tasks from our dataset of controversial discussion threads.
For the purpose of evaluating the usefulness of the generat-
ed controversy summary, we follow the following selection
criteria. First, the view counts of the questions should be
5000 or above, which indicates that developers frequently
encounter similar problems. Second, the questions should
have different numbers of answers. Third, the controversial
answers to the questions should have positive votes, which
indicates that they have been adopted by some developers.
Fourth, the controversial answers should cover different types
of controversies (wrong answer, less optimal answer and out-
of-date answer). Fifth, the controversial answers should be
criticized by different means (comments, answers or both),
and the critique posts may or may not suggest the remedies.
Finally, the controversy can be concerned about the whole
answer or only some parts of the answer. According to these
selection criteria, we select eight Stack Overflow questions
as our experimental tasks (see Table VIII). We select more
Android-related questions than Java-related questions, because
Android APIs are relatively more challenging to use than Java
APIs for ordinary developers.

2) Experimental Procedure: In our study, we ask the study
participants to read the Q&A discussions on one selected ques-
tion at a time on the Stack Overflow website, and determine
the most appropriate solution they would like to adopt to solve
the question. The participants can access online materials (e.g.,
API documentation) referenced in the Q&A discussions to
understand and judge the validity of certain solutions. Each
question is allocated up to eight minutes, and the whole
study completes in about an hour. We use screen-casting
software to record the participants’ task completion process.
In post-experiment analysis, we determine to use screencasts
to evaluate our results. We also interview each participant to
collect the rationale behind his/her choices of certain solutions.

3) Participants and Experimental Groups: We recruit 18
developers from an IT company that have over 2000 devel-
opers. These 18 developers have 1 to 5 years (on average
3.2 years) of Java and Android development experience on
either commercial or open-source projects. Based on the
development experience of these developers, we divide them
into three “comparable” groups: G1, G2 and G3. Each group
has six developers. All groups read the Q&A discussions
on Stack Overflow. G1 is the control group. Its participants
do not know the study is about the controversies in Stack



TABLE VIII
EIGHT EXPERIMENTAL TASKS IN OUR USER STUDY

Question Selection Criteria

View
Times Answers Votes for Contro-

versial Answer
Controversy
Type

Critique
Posts
(Comment
or answer)

Complete or Par-
tial Controversy

Q1: How to log JSON responses in Dropwizard (Jersey) 6,800 5 10 Out-of-date Both Complete
Q2: How to enable / disable a Preference? 6,062 2 12 Less optimal Answer Complete
Q3: Android center view in FrameLayout doesn’t work 83,354 5 34 Less optimal Both Complete
Q4: Determine when a ViewPager changes pages 96,726 4 108 Out-of-date Both Complete
Q5: Set EditText cursor color 244,947 17 1007 Wrong Comment Complete
Q6: Running cordova build android - unable to
find attribute android:fontVariationSettings and an-
droid:ttcIndex

40,922 24 100 Less optimal Both Partial

Q7: Difference between Date class in Package java.util
& Package java.sql 10,297 5 16 Out-of-date Answer Partial

Q8: Software keyboard resizes background image on
Android 56,789 13 179 Less optimal Both Complete

TABLE IX
RESULTS OF USER STUDY

Metrics Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Average

Correctness
G1 2 1 2 2 1 1 3 1 27.1%
G2 3 4 4 4 3 2 5 1 54.2%
G3 6 5 5 6 4 4 6 2 79.2%

Average1 61.1% 55.6% 61.1% 66.7% 44.4% 38.9% 77.8% 22.2% -

Completion Time
G1 212.3 (25.4) 195.2 (26.6) 260.8 (70.5) 233.0 (33.5) 463.3 (58.9) 364.8 (108.1) 312.5 (61.5) 488.0 (71.7) 311.3 (57.0)
G2 275.2 (67.3) 245.3 (34.0) 381.5 (51.1) 315.3 (47.8) 556.0 (38.5) 573.8 (33.5) 477.7 (77.3) 564.7 (36.7) 432.7 (48.3)
G3 220.7 (26.1) 203.8 (25.6) 304.3 (67.5) 215.7 (26.5) 469.5 (40.6) 444.7 (53.7) 407.5 (62.9) 460.3 (28.5) 340.8 (41.4)

Average2 236.1 (39.6) 214.8 (28.7) 315.6 (63.0) 254.7 (35.9) 496.3 (46.0) 461.1 (65.1) 399.2 (67.2) 491.0 (45.7) -

Overflow, and they use the standard Stack Overflow user
interface without any annotation of controversial answers and
critique posts. G2 and G3 are the experiment groups with
different levels of controversy warnings. For G2, the detected
controversial answers are annotated with a general warning
“This answer may be controversial”, but no details about
critique posts and explanatory API links/caveats are provided.
For G3, the detected controversial answers are annotated with
the detailed controversy summary generated by our approach
(see Section III-D). Setting up G2 and G3 allows us to confirm
the advantages of detailed controversy summary over general
controversy warning.

4) Evaluation Metrics: We use the two metrics to evalu-
ate the participants’ performance: task completion time and
answer correctness. Task completion time evaluates how fast
a participant can find the solution that they believe to be the
most appropriate one to an experimental question. From the
screencasts of the participants’ task completion process, we
determine the time.

Answer correctness evaluates whether the solution submit-
ted by a participant is actually the most appropriate solution
to the question. The two authors collaboratively determine
the ground-truth solution to each experimental question by
carefully reading the whole Q&A discussion on the question
and any referenced online materials. The ground-truth answer
to a question can be in three forms: a single correct answer,
the combination of several answers when some parts of an
answer is controversial, or no appropriate answer when the
controversy has been pointed out but no remedy has been

suggested. If the submitted solution to a question matches the
ground-truth solution, the participant get 1 mark, otherwise 0
mark. We use Wilcoxon signed-rank test [27] with Bonferroni
correction [28] to determine if the performance difference
across different groups is statistically significant, We consider
one group performs better than the other at the confidence level
of 95%, if the corresponding Wilcoxon signed-rank test result
(i.e., p − value) is less than 0.05. We also use the Cliff’s
delta (δ) [29] to quantify the amount of difference between
the two groups. The amount of difference is considered
negligible (|δ| < 0.147),small (0.147 6 |δ| < 0.33), moderate
(0.33 6 |δ| < 0.474), or large (|δ| > 0.474), respectively.

B. Results - Answer Correctness

In Table IX, the first row shows the answer correctness
results. It lists the number of correct answers by each group on
each question. The last column shows the answer correctness
rate for each group (out of 48 answers submitted by six par-
ticipants on eight questions). The group G1 that complete the
tasks without any controversy warnings achieve the average
answer correctness rate 27.1%. Except for Q7, the other seven
questions have only one or two correct answers (that is, only
one or two participants answer them correctly). Compared
with G1, the group G2 that complete the tasks with general
controversy warnings achieve relatively better average answer
correctness rate 54.2%. Except for Q6 and Q8, three or more
participants answer the other six questions correctly. The group
G3 that complete the task with detailed controversy summaries
achieves the highest average answer correctness rate 79.2%.

https://stackoverflow.com/questions/17213568/how-to-log-json-responses-in-dropwizard-jersey/4726649#4726649
https://stackoverflow.com/questions/22444773/how-to-enable-disable-a-preference
https://stackoverflow.com/questions/4051604/android-center-view-in-framelayout-doesnt-work
https://stackoverflow.com/questions/11293300/determine-when-a-viewpager-changes-pages/30867709#30867709
https://stackoverflow.com/questions/7238450/set-edittext-cursor-color
https://stackoverflow.com/questions/49162538/running-cordova-build-android-unable-to-find-attribute-androidfontvariation
https://stackoverflow.com/questions/49162538/running-cordova-build-android-unable-to-find-attribute-androidfontvariation
https://stackoverflow.com/questions/49162538/running-cordova-build-android-unable-to-find-attribute-androidfontvariation
https://stackoverflow.com/questions/5298450/difference-between-date-class-in-package-java-util-package-java-sql/4726649#4726649
https://stackoverflow.com/questions/5298450/difference-between-date-class-in-package-java-util-package-java-sql/4726649#4726649
https://stackoverflow.com/questions/4287473/software-keyboard-resizes-background-image-on-android
https://stackoverflow.com/questions/4287473/software-keyboard-resizes-background-image-on-android


All six participants answer Q1/Q4/Q7 correctly, and four or
five participants answer Q2/Q3/Q5/Q6 correctly.

The Wilcoxon signed-rank test shows that the differences of
the answer correctness rates between G1 and G2, G1 and G3,
and G2 and G3 are statistically significant at p−value < 0.05.
The Cliff’s delta of G1 versus G2 and G1 versus G3 are
more than 0.600, which indicate that some forms of explic-
itly controversy warnings can significantly improves answer
correctness by a large margin, compared with relying on only
community-curated quality indicators and critiques. Further-
more, the Cliff’s delta of G2 and G3 is also more than 0.600,
which indicates that our detailed controversy summary can
significantly improves answer correctness by a large margin,
compared with just general controversy warning.

The Average1 row shows the answer correctness rate for
each question (out of the 18 answers). Among the eight
questions, Q5/Q6/Q8 have relatively lower answer correctness
rates. These three questions have large numbers of answers,
which make it difficult to determine the most appropriate
solutions to the questions. Especially for Q8, it involves
more than 3 controversial discussion threads, which make it
even more challenging to determine the appropriate solution
in between alternative answers. However, with the help of
either general controversy warnings or detailed controversy
summaries, more participants in G2 and G3 answer these
three questions correctly, compared with G1. For the other five
questions that have small numbers of answers, the generated
controversy warnings are even more effective in help the
participants G2 and G3 avoid the controversial answers and
choose the correct solutions. In contrast, the participants in
G1 mainly base their choices of appropriate answers on the
accepted answers and the answers with the highest votes, but
fail to notice the critique comments or other critique answers
pointing out the controversies in the selected answers. This
leads to the G1’s very low answer correctness rate.

C. Results - Task Completion Time

The second row in Table IX shows the average task com-
pletion time of each group on each question and on all eight
questions (last column). The numbers in brackets are standard
deviation. The G1 participants take the shortest time to com-
plete the tasks, the G2 participants take the longest time, and
the task completion time of the G3 participants is in between.
The G1 participants mostly select the accepted answer or
the highest-vote answers as their solutions, without much
checking of other answers. So they complete the tasks faster.
In contrast, some forms of controversy warnings make the
G2 and G3 participants more cautious in selecting solutions.
They will spend more time on checking the controversy and
other answers. Our explicit, concise controversy summaries
can facilitate such checking. As such, the G3 participants can
complete the tasks faster than those in G2.

The Wilcoxon signed-rank test shows that the differences of
the task completion time between G1 and G2, G1 and G3, and
G2 and G3 are statistically significant at p − value < 0.05.
The Cliff’s delta of G1 versus G2 and G1 versus G3 are more

than 0.500, which indicate that some forms of controversy
warnings can “force” the developers spend significantly more
time to investigate the controversies and select the appropriate
solutions, compared with relying on only community-curated
quality indicators and critiques. The Cliff’s delta of G2 and
G3 is 0.350, which indicates that our detailed controversy
summary can save some investigation time by a moderate
margin, compared with just general controversy warning.

Comparing the average task completion time on each ques-
tion (the last row Average2 in Table IX), we can see that
the questions (Q5/Q6/Q8) with large numbers of answers
take longer time to complete than those with small numbers
of answers. However, without the help of some forms of
controversy warnings, spending more time on a question does
not necessarily lead to higher answer correctness rate. The G1

participants comment that they often go back to the accepted
answers or the highest-vote answers after scanning many other
answers to Q5/Q6/Q8, because they are often overwhelmed by
the information in all these answers.
Direct controversy warnings on the controversial answer-
s can more effectively raise developers’ attention to the
potential issues in the answers, compared with latent cri-
tique posts. Both general controversy warnings and detailed
controversy summaries can reduce the chance of selecting
inappropriate solutions. Furthermore, detailed controversy
summaries can further facilitate the investigation of the
controversies than general controversy warnings.

VI. THREATS TO VALIDITY

Threats to internal validity The threats to internal validity
relate to errors in our experimental data, tool implementa-
tion and personal bias in user studies. To avoid errors in
experimental data, we carefully tested our data processing
tool and verify the accuracy of our tool implementation by
manually examining a large number of data instances outputted
by each step of our tool. To reduce the personal bias in the
manual examination of the extracted controversy information,
the two authors annotate the data instances independently and
the Cohen’s Kappas indicate the substantial or almost perfect
agreement between the two annotators.

Threats to external validity The threats to external validity
relate to the generalizability of our experiment results and
findings. In this work, we study the controversies in Stack
Overflow and focus on java/android-related questions and
answers, because Stack Overflow is the most popular Q&A
site for computer programming and Java and Android are
among the most discussed programming techniques on Stack
Overflow. However, further studies are needed to validate and
generalize our findings to other domain-specific Q&A sites
and the Q&A discussions on other programming techniques.
Furthermore, our user study is small scale. More user eval-
uation is needed to confirm and improve the usefulness of
our generated controversy summaries. We will release our
webbrowser-plugin for annotating Stack Overflow posts with
controversy summaries for public evaluation.



VII. RELATED WORK

Software developers learn to use APIs from both official
API documentation and crowd documentation such as Stack
Overflow questions and answers. Official API documentation
is often criticized as being incomplete or stale, while crowd
documentation enter as a rescue to keep official documentation
up-to-date [30]–[32] or enrich official documentation with
crowd insights [33], [34]. Different from these studies, our
work focuses on making the latent controversies in Q&A sites
explicit and facilitating the understanding of the discovered
controversies with relevant API links/caveats.

A recent work by Li et al. [5] points out that high-quality,
well-maintained official documentation do exist, and they mine
a large number of API usage caveats that developers should
be aware of from official Android API documentation. They
also find that many API caveats are either directly quoted or
paraphrased to help answer questions in Stack Overflow. Our
empirical study shows that official API caveats are also often
used to explain the controversies. We adopt the API-caveat
mining method [5] for building a knowledge base of official
API caveats, from which we identify explanatory API caveats
in the controversial discussions.

Many information extraction techniques have been devel-
oped to extract software engineering knowledge embedded in
software text, such as API extraction [35], [36], mining API
usage examples [30], [37]. To battle the information overload
problem in Q&A sites, text summarization techniques have
been developed to generate query-specific post summary [38]
or technology comparison report [39], [40]. Different from
these works, our work distill controversy-related knowledge
from community Q&A discussions and exploit the discovered
controversies as a new means of judging the answer quality.

Word embedding techniques have recently been adopted
to improve document retrieval [15], [37], to find domain-
specific synonyms [41], to recommend analogical libraries and
APIs [42], [43]. Traceability recovery in software text has been
widely studied [30], [35], [44]–[47]. In this work, we develop a
weighted word-embedding based sentence matching approach
to recover the traceability links between the controversial
answers and the critique posts and between the API caveats
discussed in the Stack Overflow posts and the API caveats in
official documentation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we systematically investigate the controversial
discussions in Stack Overflow. Our study shows that there ex-
ists a large scale of controversies in Stack Overflow, involving
many wrong answers, less optimal answers and out-of-date
answers. Unfortunately, neither community-curated answer-
quality indicators (e.g., accepted answer, answer vote) can
reliably identify such controversial answers, nor are existing
critiques readily discoverable and accessible to developers who
seek solutions to their programming problems in community
Q&A sites . Consequently, many controversial solutions have
been adopted by developers as evident in the high votes on
many controversial solutions. To reduce the negative impact

of such controversial answers on developers, we design an
open information extraction method that turns latent contro-
versial discussions into salient, concise and semi-structured
controversy warnings. Our evaluation validates the practicality
of our approach for extracting controversy-related knowledge
from a large corpus of textual Q&A discussions and API
documentation, as well as the usefulness of the controversy
summaries generated by our approach for helping developers
make more informed choices of appropriate solutions to pro-
gramming questions in community Q&A sites.
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