Explore-Exploit in Top-N Recommender Systems
via Gaussian Processes

Hastagiri P Vanchinathan
ETH Ziirich
hastagiri@inf.ethz.ch

Isidor Nikolic *
... Microsoft, Zirich
inikolic@microsoft.com

Fabio De Bona
Google, Zirich
fdb@google.com

Andreas Krause
ETH Zurich
krausea@ethz.ch

ABSTRACT

We address the challenge of ranking recommendation lists based
on click feedback by efficiently encoding similarities among users
and among items. The key challenges are threefold: (1) combinato-
rial number of lists; (2) sparse feedback and (3) context dependent
recommendations. We propose the CGPRANK algorithm, which ex-
ploits prior information specified in terms of a Gaussian process ker-
nel function, which allows to share feedback in three ways: Between
positions in a list, between items, and between contexts. Under our
model, we provide strong performance guarantees and empirically
evaluate our algorithm on data from two large scale recommendation
tasks: Yahoo! news article recommendation, and Google books. In
our experiments, our CGPRANK approach significantly outperforms
state-of-the-art multi-armed bandit and learning-to-rank methods,
with an 18% increase in clicks.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Relevance feedback;
H.3.5 [Online Information Services]: Web-based Services

Keywords

Recommender systems; CGPRANK; User feedback; Kernel meth-
ods; Exploration—exploitation tradeofts

1. INTRODUCTION

Traditionally, recommender systems relied on supervised learning
on a batch of data. Existing approaches like collaborative filtering,
content based filtering or learning to rank techniques all try to learn
a fixed optimal recommendation model given training data. These
approaches fail to capture the dynamic nature of the user preferences
and inventory. An ideal recommendation list for a given user/context
has to take recent feedback into account.

Learning this optimal ordering leads to an “explore—exploit” trade-
off, where we need to gather information about the effectiveness of
orderings, while at the same time maximizing conversions based

*Work done while the author was a student at ETH, Ziirich and
working as an intern at Google, Ziirich

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or corecsysercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions @acm.org.

RecSys 2014, Foster City, USA

ACM 978-1-4503-2668-1/14/10 ...$15.00.
http://dx.doi.org/10.1145/2645710.2645733.

on the estimated data. Standard multi-arm bandit algorithms which
solve such tasks either use similarity information or cannot select
lists of items. On a web scale, this is a daunting task, for mainly
three reasons: (1) There is an exponential number of lists to choose
from; (2) the number of items available for recommendation is
often large, compared to the relatively sparse click feedback; (3)
optimality of the ordering depends on the context which in itself
could be from a large set (e.g., user to whom the item should be
recommended).

In this work, we propose an algorithm — CGPRANK - for (re-)
ranking recommendations from click feedback. In order to address
above challenges, it uses a positive definite kernel function to en-
code prior assumptions about the similarity of items (and possible
user features). This kernel is then used to share and exploit sparse
feedback in multiple ways: across positions in the list (1), across
items (2) and across users/contexts (3). CGPRANK navigates the
exploration—exploitation tradeoft by predicting performance of as
yet unexplored lists using nonparametric Gaussian process models,
whose regularity is captured in the kernel function. Exploiting such
regularity allows our algorithm to be statistically efficient, i.e., max-
imize the benefit drawn from sparse observations about the users’
preferences.

We prove strong performance guarantees for our CGPRANK al-
gorithm. In particular, we analyze its regret, i.e., the loss in conver-
sions/clicks compared to using (hindsight) optimal orderings. We
prove that under natural separability and regularity assumptions, the
average regret vanishes. Further, we analyze the effect of increasing
list sizes, and find a surprising theoretical result: Under some natural
conditions, increasing the list size can parallelize exploration in a
way to accelerate convergence, instead of an exponential slowdown.
We extensively evaluate our approaches on two large datasets from
real world recommendation tasks: Firstly, we consider news article
recommendation, using data provided by Yahoo! . Secondly, we
evaluate CGPRANK on Google’s infrastructure, using clickstream
data from Google’s ebooks store, demonstrating a significant im-
provement over existing multi-armed bandit and learning-to-rank
techniques. In particular, our approach provides an 18% lift in total
clicks compared to the existing approaches.

2. RELATED WORK

Our approach relates and builds on work in multiple areas.
Recommender systems, ranking and relevance: Popular tech-
niques include collaborative filtering, matrix factorization and fre-
quent item set mining [21], as well as learning to rank approaches
[2]. These approaches usually estimate user’s preferences (“‘ex-

"http://webscope.sandbox.yahoo.com/

ploit”) from a fixed training set collected a priori, and generally do
not address how to dynamically collect data (“explore”) for training
in order to adapt to changing inventories and user bases. We em-
pirically compare to learning to rank (LTR) approaches that learn
from user interactions and demonstrate the benefit of our exploration
strategy.

Multi-arm bandits (MAB): For single item recommendation,
MAB is a classical formalism for studying the explore-exploit
dilemma incurred when optimizing an unknown payoff function
with noisy feedback limited only to the choices made. Early ap-
proaches such as e-Greedy, UCB1 [3], do not exploit the similarity
information between the choices, and thus fail when feedback is
sparse. Modern research has addressed this challenge, under assump-
tions of linear [17] and Lipschitz [12] continuous payoff functions,
as well as functions with regularity explained by a kernel [24, 15].
However, these approaches do not consider the challenges arising
when selecting sets and lists.

Bandits for subset selection and ranking have been studied be-
fore in both ordered and unordered subset selection settings [14].
In particular, the best subset selection under ’bandit-feedback’ set-
ting has been studied [11]. In [26, 25], the authors study a similar
problem under the setting that the feedback of a set is a submodular
function of the concepts covered by the set, which allows to capture
diversity, but no similarity among items. [23] considers choosing di-
verse rankings exploiting item similarity for the problem of ranked
document retrieval. Our approach, while similar in principle to
some of these works, is the first to systematically exploit sharing of
feedback among items, contexts and positions.

Top-N recommendations are an important subclass of recom-
mendation problems [21]. Researchers have long expressed the
importance of explore—exploit schemes in dynamic top-N recom-
mendation problems [16] and also found deficiencies in using RMSE
optimisation techniques for online recommendations [7]. We de-
velop efficient techniques for managing the explore-exploit tradeoff
and use appropriate regret measures to show a marked improvement
over RMSE based schemes.

3. PROBLEM STATEMENT

We have a set of items S = {s1, s2,..., sn} that we consider
for recommendation (e.g., books, articles etc.). We model the rec-
ommendation task as a sequential decision problem over 7" rounds,
where, in each round ¢, we are given a subset of items S; C S avail-
able for recommendation. To aid in the recommendation task, we
are given a context z € Z, which, e.g., models the key (anchor) item
that the user is currently considering, or possibly also containing
features describing the user. While such context could be presented
as a feature vector, our algorithm does not require such vectorial rep-
resentation. Our task is to select an ordered list £; = [SLI], o 7sy’]]
of b items out of S; that is recommended to the user. In response, we
receive a stochastic vector of rewards, y = [yp], R yib]], where
E[ytm] =f (s,[f] ,Zt,1). Hereby, we assume that there is some un-
derlying unknown reward function f : S x Z x P — R, such

that the expected reward of recommending item sy] in context z; at

position ¢ € P = {1,...,b} is given by f(s?]7 z,1). For concrete-
ness, f may model the click-through rate (CTR), and the rewards
y,{i] € [0, 1] model whether the user clicks on the item in position
1. The total reward in round ¢ is thus

b
ye=>), (1)
1=1

and our goal is to maximize the expected cumulative reward E[> ", y:].

Note that, in this model, we assume that the items in the list do not

influence the rewards (clicks) received by other items, i.e., we do not
model side effects of other items in the list. In the experiments, we
do study the effect of relaxing this assumption. We further assume
that the expected reward

stz i) = (s, zop(i) 2
factorizes into a relevance term r(sy] ,Z¢) (relevance measures the
relatedness/interestingness of the item to the context which could be
a query, user features or key item) and a position-dependent effect
p(2) € [0, 1]. Without loss of generality, we assume that p(1) = 1,
and for all i < 7, p(i) > p(j) > 0, i.e., showing an item in a later
position in the list can only decrease the expected reward.

Under these assumptions, to maximize the reward (clicks), we
need to position the items in decreasing order of their true relevance
r. For a fixed position ¢ and context z, the expected number of

clicks received by an item s,[f] will be proportional to its relevance

to the context, i.e., r(sy], Zt).

The position dependence p can often be estimated effectively
[6]. However, the true relevance r is a priori unknown, and must
be estimated through experimentation. We face an exploration—
exploitation dilemma, where we have to choose between exploiting
the information we have about the best ordering, and exploring
alternate orderings, which may or may not lead to higher rewards.

Instead of maximizing rewards, in the following we equivalently
wish to minimize the regret. Hereby, the instantaneous regret r;
in round ¢ is given by r; = Z?:l[f(sy]*, Zi,1) — f(sy], Zt,1)],
where L] = [s,[fl]*, e ,sy’]*] is an optimal (in expectation) ordered
list for context z; observed at round ¢. Our goal is to minimize
the cumulative regret, R = 23:1 r¢. In particular, we desire an
algorithm such that the average regret vanishes, i.e., Rp/T — 0 as
T — oo. Note that this is quite a stringent performance requirement:
Vanishing regret requires that the algorithm learns the optimal (in
expectation) mapping from context to recommendations.

4. ccoprrank APPROACH AND ANALYSIS

Given the problem setup, we address the resulting challenges
in this section. In Section 4.1, we show how we can share item
feedback across positions. In Section 4.2, we discuss the use
of statistical models for principled generalization of feedback to
items/contexts that are not yet explored. Finally, the resulting
exploration—exploitation dilemma is addressed in Section 4.3 lead-
ing up to the specification of the CGPRANK algorithm. Before we
describe the algorithm in Section 4.4 and provide theoretical guaran-
tees in Section 4.5, we first highlight the key technical challenges:

1. There is a combinatorial number of possible ordered lists.
When n is large, these exponentially many choices are in-
tractable even for small b. In Section 4.1, we show how we
can share item feedback across positions in order to reduce
this complexity.

2. In many applications, click feedback is sparse, potentially
severely delaying convergence. In Section 4.2, we discuss
the use of statistical models for generalizing the feedback to
items that are not yet explored in a principled way.

3. Once we have settled on a statistical model for learning about
reward, we face the exploration—exploitation dilemma of trad-
ing experimentation (for the purpose of parameter estimation)
and exploitation (using the model’s predictions to maximize
reward). This dilemma is addressed in Section 4.3.

4.1 Sharing feedback across positions

Given a context (e.g., key-item), selecting an optimal ranked list
of b recommendations is challenging due to the combinatorial num-
ber of choices. In general, we may need to estimate the reward
associated with each of the exponentially many rankings. How-
ever, under our assumptions (1) and (2) that the reward of a list
decomposes additively, and that the reward factors into a position-
dependent effect independent of the item and a “relevance” effect
that is position independent, the problem becomes statistically and
computationally more tractable. If we know the position effects
p(4), Vi € {1, ..., b}, we can normalize the feedback received by
an item across all positions that it has been shown at so far. That is,

given context z, if we observe ytm for some item s shown in position
i, y,gi] /p(2) provides an unbiased estimate of r (s, z;). Consequently,
an unbiased estimate for the reward obtained when showing s in
position j instead is given by yf] p(3)/p(%). This insight thus allows
us to share feedback across positions.

4.2 Sharing across items/contexts via kernels

In order to generalize feedback across items/contexts, we need
to incorporate prior information about their respective similarities.
We assume that this prior information is presented in terms of an
arbitrary positive definite kernel function r : (S x Z)? — R.
Hereby, for two item-context pairs (s,z) and (s’,z’), the kernel
r((s,z), (s',2")) represents our assumptions about how similar we
expect the rewards of presenting item s in context z, as opposed
to presenting item s’ in z’ are. A multitude of kernel functions are
available for accurately capturing similarity among various types
of data [22]. We detail our specific choice in Section 6. What
are the consequences of choosing any particular kernel? We effec-
tively assume the reward function r can be represented as a linear
combination

r(s,z) = ZO@'F&((S»Z% (Sj7zj))v

i.e., as a basis function expansion around a set of context—item pairs
((sj,25));j. Such functions span the Reproducing Kernel Hilbert
Space (RKHS) associated with kernel k, and the norm of 7 in that
space,

Irlle = ciaji((si), (s5,25)),
i3

measures the “complexity” (regularity) of function r. The perfor-
mance of our algorithm, as analyzed in Theorem 1, will depend on
this norm. Intuitively, if the kernel matches the regularity present in
real data well, the norm will be small. Capturing similarity via ker-
nels has important consequences: In particular, it allows interpreting
the relevance function r as a sample from a Gaussian Process (GP)
prior [20], with covariance (or kernel) function k. Consequently,
one interprets the relevance as a collection of normally distributed
random variables, one for each item—context pair. They are jointly
distributed in a dependent manner, such that their covariances are
given by the kernel:

Cov(r(s, z),7(s;, Z]‘)) = K((S, z), (sj, Zj)).

This joint distribution then allows us to make predictions about
unobserved item—context pairs via inference in the GP model. In
particular, suppose we have already observed feedback for ¢ recom-
mendations, i.e., obtained data

D ={(s1,21,¥1);- - -, (St, Zt, y) }. Then, for a new item—context
pair (s, z), its predictive distribution for (s, z) is Gaussian, with

mean and variance” given by
ue(s,2) =ku(s,2)" (Ko + 1) 'y, 3)
Jt2 (S, Z) = K;((Sv Z)a (57 Z)) —k¢ (Sv Z)T(Kt + H)ilkt (Sv Z)’ 4

where k¢ (s, z) = [x((s1,21), (5,2)),...,5((st,2¢), (s,2))]” and
K is the positive semi-definite kernel matrix such that K; ; ; =
[((si,24), (s5,25))]-

Choice of Kernels. Often, kernels over item—context pairs are
naturally expressed as tensor products, where

k((s,2),(s',2")) = ks(s,s")) - kz(z,2).

Hereby, ks : S — R is a kernel (similarity) among items, and
kz : 22 — Ris a kernel (similarity) among contexts. This choice
of kernel expresses our prior assumption of how smoothly the CTR
changes over the item-context space.

The choice of kernel xs depends on the particular recommenda-
tion problem. Often, similarity between items is given by a usually
symmetric similarity function sim : S* — R. A valid kernel func-
tion however must additionally be positive definite (i.e., all resulting
covariance matrices must be positive definite). Among various avail-
able candidates, we use diffusion kernels, a family of kernels first
introduced in [13]. The first step is to consider the items S as nodes
in a weighted, undirected graph G, so that the weight w(%, j) of
each edge (¢, j) is given by the similarity function sim(%, j). The
diffusion kernel is then given as matrix-exponential Ks = exp(aL)
of the graph Laplacian L of G. In the contextual setting, if the con-
text is given as a key item, the same diffusion kernel can be used
both for items and contexts. If the context is given in terms of user
features, #z can be chosen, e.g., as linear kernel k2 (z,2’) = 2" 7,
or Gaussian kernel xz(z,2’') = exp(||z — 2'||3/h?). If no simi-
larity information is known between contexts, the diagonal kernel
kz(2,2") = 1}, can be used. When features are explicitly avail-
able, we can use linear kernels, other kernels defined over Euclidean
spaces or combinations thereof. In a special case of CGPRANK, we
can recover the exact algorithms presented presented in [4] and [18]
by choosing appropriate linear kernels. We employ CGPRANK with
both diffusion and linear kernels and demonstrate their performance.
However, in several real world applications, features are not easily
available either for the contexts or the items and the nature of CG-
PRANK allows us to use any kind of kernel that can be computed
from the similarity information that is available.

4.3 Explore-Exploit in List Selection

How should we use the predictive model (Equations (3) and (4))
to make recommendations? One approach could be to greedily
maximize the expected reward according to our current model (i.e.,
rank items in order of their predictive mean (3)). However, this
approach ignores the predictive uncertainty (4). If our goal were to
conduct experiments to most effectively reduce uncertainty about
the model, we may instead consider to pick items according to the
predictive variance (4). Such an approach however would incur
much regret, since it would equally explore high- and low value
items. Therefore, in each step, we must trade off experimentation
(showing items we have not explored yet) and exploitation (showing
items with high expected reward). One way to achieve this is linearly
trade off the relative importance of the predictive mean and the
predictive variance to score each candidate item, i.e., select the item
s that maximizes, for the current context z; the surrogate objective
UCBs,z, , where

UCBsa, = pe—1(8,2t) + Bi 2 ov-1(8, 2t).)

using noise variance 1, according to our assumptions

2

For Gaussian predictive distributions, this criterion captures an upper
confidence bound (UCB), i.e., an upper bound on the relevance
function that holds with a certain probability that can be controlled
via the tradeoff factor 3;,s. L.e., the respective weighting of the mean
and variance is handled by an item and time dependent variable,
Bt.s. We show how to pick ;s in Section 4.4 such that, with
high probability, the UCB provides a valid upper bound on the true
mean. At the same time, the choice is small enough so that the
instantaneous regret provably decreases quickly over iterations.

In order to pick multiple items in each round, a first attempt
would be to score every item s according to the selection rule (5),
and select the b highest scoring items. However, given the regularity
imposed by the kernel function, for a fixed context z, the highest
scoring items are likely very similar. Thus, the resulting list will
explore sets of highly related items together, in a possibly redundant
manner.

Instead, it may be desirable to encourage diversity when selecting
lists to explore. One natural, and computationally efficient way is to
anticipate the reduction in uncertainty achieved by the items already
selected. Looking at the predictive mean and variance y and o¢ in
Equations (3) and (4), it can be observed that, while p; depends on
the actual feedback ¥ observed so far, the predictive variance o7
does not depend on previous feedback. We can utilize this insight in
the following way. Suppose, in round ¢, we receive context z;, and
wish to recommend a list £; = [SEH, ey sLb]]. We select the first
item s,[fll according to (5). Then, we update the predictive variance
(4) as if we had already observed the feedback for the first item.
The predictive mean is not updated (or equivalently, it is updated
with its own prediction). Note that this will have the effect that the
predictive variance — and hence the score (5) — for similar items
is decreased. We now select the second item s,[f] according to the
updated score, and proceed in this manner until the full list of b
items has been selected.

After the ranked list has been selected, feedback y; = [yE] ey ygb]]
is observed. /[\]ccording to our factorization assumption (2), each

observation y; - in position ¢ provides a noisy observation of the

underlying relevance score E[y,{z]} = p(i) - r(L“ ,2z¢). Hence, we

feed back yt[i] /p(i) as unbiased estimate of r(sgz]) Zt).

4.4 Computing the Tradeoff Parameter

We now describe how to compute a value for 3; s that allows us
to prove rigorous bounds on the regret of CGPRANK. Note that in
practice a more aggressive choice than this conservative prescription
can lead to faster convergence. Our algorithm extends and gener-
alizes the work of [24, 15, 8]. In these, the tradeoff parameter (;
ensures that, in each iteration, the true relevance function is con-
tained within the constructed confidence bands (u+(s) & B0+ (s))
with high probability. Similarly, for our problem, we compute (; s
as

Bis=Cy (2M2+3001n3 (%) (Ct+%1og(1+a*2a?_1(s7 zt)))

(©)

1 1 -2
P07 esiiinm | 110 KL D)

t—1 b
. 1 —2 2 [4]
Cy = > E E log(14+ 0 “o7_1.(s7,27)).

T=11i=1

!
where C}, =

Hereby M is a bound on the RKHS norm of the reward function
r, and Uf,l,i,l (s[ﬁ], z.) is the predictive variance after having se-
lected items 1 to 4 — 1 in iteration 7. Note that C can be computed
efficiently incrementally over the course of the algorithm. C} de-
pends on the maximum determinant of any (posterior) kernel matrix

K:—1(L, L) that can be constructed using at most b items paired
with the current context. While computing this quantity exactly
requires solving a combinatorial optimization problem, it can be
approximated efficiently and accurately during each iteration by
running a simple greedy algorithm (uncertainty sampling) — see the
longer version of the paper for details. For several commonly used
kernel functions (linear, Gaussian and combinations thereof), 5; s
can be tightly bounded by the simple expression §; = C' log‘i/ t
with suitable constants C,d’. It is this form that we use in the
experiments.

Algorithm 1 presents pseudo-code for our CGPRANK algorithm.
The procedure GP—-Inference(k, D) takes a kernel function
and data set D, and returns the predictive mean and variance func-
tions according to (3) and (4).

4.5 Regret Analysis of CGPrank

Our analysis builds on and extends results of [15] for contextual
GP bandit optimization (selecting individual items) and [8] for non-
contextual GP bandit optimization with delayed feedback. We state
our main result in the form of the following theorem and for reasons
of space, reserve the details of the proof to a longer version of this

paper.

THEOREM 1. Let 6 € (0,1), M > 0, and & be a kernel func-
tion, such that ||r||. < M. In each round, choosing B s as specified
in Equation 6 and running CGPRANK for T rounds, it holds that

\/Tb’YTb(C1 + Coyre lns(Tb/é))

Pr{Ry < VI >1}>1-96

p(b)
where C1 = %, C5 = 300 and
Y = max log |1+ o *K(D, D)|

DCSxZ,|D|<n

The regret bound in Theorem 1 depends on the quantity -,
which quantifies the effective degrees of freedom of the kernel
matrix K (D, D) that can be constructed from n context-item pairs.
This quantity was analyzed in prior work [24], showing that for
many common kernels (such as linear and Gaussian), v, only grows
polylogarithmically in n. How can Theorem 1 be interpreted? It is
instructive to consider the average regret per list slot, Rr/Tb. We
can infer that, as long as ~y, grows only polylogarithmically in n
(the common case),

Rr O(p(l)

b

yroM2exp(2v)\ o f M
2(0) Tb)=07(

M exp(2v))
p(b) Ty)’

where the O™ notation hides logarithmic factors in 7" and b. Thus,
for fixed list size b, the average regret per slot decays to O at an
essential rate of O* (ﬁ) It grows linearly with the complexity M
of the reward function r, and inversely proportional to the decay of
the position effect p(b).

How does the regret scale with list size? Since exp(7y,) = £(b),
as the list size b increases, straightforward application of the al-
gorithm will incur average regret per slot that increases with b.
However, in the non-contextual case (or the case of a finite set
of contexts), it is possible to slightly modify the algorithm, such
that, as long as b = O(logT), it can be ensured that -y, remains
bounded irrespective of b, at the cost of additional regret bounded by
O(poly log(T")). Thus, in this setting, one can achieve an average
regret per slot of

7 =9 GV w) g

Algorithm 1 The CGPRANK algorithm

Input: Kernel , selection batch size, b
Initialize data set of observations D = {}.
fort=1,2,...,T do
Observe context z; € Z
Receive set of available items S
Set D « D
fori=1,2,...,bdo
[(+), 0%(-)] + GP-Inference(r, D)
s argmax,cg, 4(s, zt) + ﬂtl,/fa(s,zt)]
D« DU{(s{", 20, u(s}",2))}
end for
Recommend list £; = [SE], ce s,[fb]}

Observe feedback y; = [yE], ceey yib]]

D« DU{(s{",ze, i /p(1)), ..., (51, 2e, " /(b))
end for

This result suggests that, perhaps surprisingly, as long as p(b) >
1/ V/b, increasing the list size can lead to faster convergence. This
finding is further supported by our experimental results in Section 7.

S. SCALING cGprrank TO WEB SCALE REC-
OMMENDATION TASKS

Naively implementing Algorithm 1 can be prohibitively slow for
large data sets. For general kernels, the data set size D grows with
the number of observations 7'b, and performing exact Bayesian
inference according to Equations (3) and (4) requires solving linear
systems in 7'b variables.

Scaling GP Inference. Fortunately, much work has been done
scaling GP inference to massive data sets [20], also in online/streaming
settings [10]. Since such inference is the essential subroutine in CG-
PRANK, it can immediately benefit from these techniques. Further-
more, in many practical applications (such as the recommendation
tasks considered in our experiments), the kernel « is of bounded
rank d, in which case inference only requires solving a linear sys-
tem in d dimensions. Often, approximate solution is acceptable for
practical performance.

Speeding up selection. In order to speed up the selection rule (5),
another computational trick can dramatically accelerate performance.
Note that, in order to evaluate (5) naively, the mean ut_l(s, zt)
and variance o;_; (s, z:) has to be computed for each choice of
s € S;. Inspecting Equations (3) and (4), it can be seen that com-
puting (3) requires solving only one linear system, while computing
(4) requires solving |S¢| linear systems. By exploiting the fact
that, in GPs, predictive variance must monotonically decrease, i.e.,
o?(s,z) > o741(s,2), previous estimates can be used as upper
bounds. This insight allows to use priority queues to dramatically
reduce the number of linear systems that need to be solved. Similar
ideas have been exploited in [8].

Delaying feedback. Instead of continuously performing updates,
CGPRANK can be accelerated by reusing the same recommenda-
tion multiple times, accumulating feedback and performing delayed
updates. However, delaying feedback for long periods of time can
incur higher regret in the intermediate period where a fixed subop-
timal ordering is chosen. Hence, careful choice of the frequency
depending on the problem domain and taking into consideration
speed of accumulation of feedback is an important aspect of scaling
up CGPRANK.

For instance, exploiting some of these techniques, in our exper-
iments with the Yahoo! dataset and using linear kernels, we were

able to achieve an average selection time of 0.4 millisecond per
slot including updating the model based on non-delayed feedback
(timed on unoptimized C++ code compiled using gnu compiler and
running on a single core of a Quad Core Intel Xeon E3, 3.5GHZ
machine with 32GB RAM).

6. EXPERIMENTS

We extensively evaluate CGPRANK on two real-world recom-
mendation tasks. The following questions guide our experimental
study:

1. Can we exploit similarity to achieve accelerated convergence?

2. Can one parallelize exploration across lists to achieve faster
convergence?

3. Can improved performance be achieved by incorporating con-
text?

Benchmarks. In our experiments, we use the following ap-
proaches and compare the performance:

o CGPRANK-LIn, as described in Section 4. This builds on
the LINUCB-HYBRID algorithm for single-item selection
discussed in [17], which can be seen as a special case of
CGPRANK.

o CGPRANK-G, is the version of CGPRANK with graph kernels
on the items and clustering of contexts to model similarity.
and can be used when we do not have access to user or item
features. We use this version of CGPRANK for the experi-
ments on Google books data.

e CGPRANK-b-Lin, which simply selects the top b items ac-
cording to score (5)

e UCBI of [3]. For list selection, we pick the top b items
according to the UCB score. We also use a clustered version
where we maintain an independent instance of the algorithm
per cluster of contexts.

e Hierarchical versions of both UCB1 and CGPRANK (RANK-
UCB and RANK-LINUCB), based on [26, 25].

e Learning to Rank Approaches: These are non-adaptive base-
lines that use a fraction of the data to train the model and
then provide a ranking for every user request. In particular,
we compare against two best performing algorithms from the
RankLib module of the Lemur Toolkit software * (Coordinate
Ascent (LTR-CA) [19] and Rank Boost (LTR-RB) [9])

e Random selection of lists.

e Hindsight-Fixed selection: Picking lists that are optimized in
hindsight. This is an (unrealistic) upper bound benchmark.

6.1 Yahoo! news article recommendation

Data set. We first evaluate our algorithm on clickstream data
made available by Yahoo! as part of the Yahoo! Webscope program
[1]. Specifically, we use the R6A dataset containing a part of the
user view/click log for articles displayed on the Today Module of
Yahoo! during ten contiguous days. This data was collected in May
2009 and the displayed article was chosen uniformly at random
from the list of available articles. This makes this dataset ideal for
unbiased, offline evaluation of exploration—exploitation approaches.
One can find detailed information on the dataset, the data collection
methodology and an explanation of the unbiased offline evaluation
in [1, 18, 5]. The dataset consists of more than 45 million lines of
log. Each line consists of the following information:

e The timestamp of the user visit.

*http://http://www.lemurproject.org/

4 4
1“_x10‘ 8% 10 8X1D
Hindsight-fixet
Hindsight Fixed 3 7t \ e 7|
12 | s CGPrank-G
.- CGPrank-Lin
6 1 6
10, CGPrank - Lin - .
CGPrank-b-Lin CGPrank-Lin
\ 5t g 5 K
8 - 2 2
1] s
G g] o 3] .
3 4 3 = Rank-LinUCB
4 " LTR-CA 0
) 2 LTR-RB R 2] o
P top-b
- UCB1 Random it 7
2 - 1 1r 1 7 Rank-UCB
CGPrank - G Random
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000
x 10000 lterations x10000 Iterations x10000 terations

(a) Article selection on Yahoo! News

(b) Clicks over time, b=4

(c) Clicks over time, b=4

Figure 1: (a): Total clicks received by the algorithms when employed to select a single article per round, using unbiased estimates
from log data. (b): Contextual list selection task with b = 4. These results are based on click feedback simulated according to the

logs. (c): Similar to 1(b). Contextual list selection task with b = 4.

3
117, oX 10
«
Ee 18 CGPrank-G
&
2115 - 1.6
5
3 214l Top b UCB1
2 114 5 °
5 o 1.2 8
2 2
FREE B 3
= o 1 3
B e 2
5 1.12 ° g Existing
£ 08/ 5 Algorithm
£ o z
11 8 06l
L <
ke
S 14 0.4F
b}
°
5 109 0.2F
. . 0 = y —— ’ L L L L L
09 08 07 06 05 04 03 02 ol 5 10 15 20 25 30 0 2 4 6 8 10 12 14
P(2) - normalization factor for position 2 x 10000 lterations X 3 Days

(a) Position effects for b=2

(b) Average regret per slot

(c) Performance on Google logs

Figure 2: (a) Effect of p(b) on the total regret demonstrated for a b = 2 item selection task. The regret increases as p(2) decreases, but
not dramatically so. (b) demonstrates the power of parallelizing exploration within lists to achieve accelerated convergence. In terms
of the per-slot average regret, it shows how the relative performance compared to Ideal — perhaps surprisingly —increases with b (also
compare Section 4.5). (c): Results of using CGPRANK-G to rerank recommendations on a clickstream log from Google’s ebooks store.
For confidentiality, we only present normalized numbers. Note that CGPRANK-G offers a significant (~18%) improvement over the

existing non-adaptive method and also outperforms top-b UCB1.

e The article ID of the actual displayed article and whether a
click was recorded or not.

e Anonymized user features denoting the context

o Article features for all the articles that were available in the
pool for selection

Parameter choice. We initially chose the first 10% of the log entries
as initialization data for optimizing parameters of the algorithms,
training the learning-to-rank methods, and also to extract user fea-
tures for clustering (see below). We used the results of this clustering
for the contextual versions of CGPRANK-G and UCB1. We ignored
this part of the data for all further evaluations the results reported
are completely evaluated on the remaining 90% of the log entries.

The hindsight-fixed benchmark for these experiments used a
weight vector obtained by solving to a linear regression problem
for the click prediction task based on the entire log. The result is
a single weight vector that maps any item-context pair (s, z) to an
expected click probability.

The nature of the data set makes linear kernels the ideal choice for
this task. With this choice, CGPRANK-Lin for single-item selection
corresponds to the LINUCB-HYBRID algorithm as provided in [18].
In order to use CGPRANK-G on this dataset, we require a kernel
function on the articles. We decided to model the articles as nodes in
a graph. The weight on the edge connecting any two articles is sim-

ply the euclidean distance between their feature vectors. This choice
allows us to compute a diffusion kernel on the articles. Note that
computation of an appropriate diffusion kernel requires tuning of the
heat parameter «. For our evaluations, we used the article features
and their corresponding clickthrough rates to tune the parameter
alpha « on the first 10% of the data.

For contextual versions of CGPRANK-G and UCBI1, we used a
simple technique of clustering the user features given in the logs, and
maintaining one instance of all the evaluated algorithms per cluster
(corresponding to a diagonal kernel xz). We used k-means cluster-
ing on the user contexts extracted from the initialization bucket with
k = 10, picking the best solution from multiple random restarts.
During the actual evaluation, in each round ¢, the user context given
in the log line was mapped to its nearest cluster center, and z; was
set to this cluster index.

We carry out experiments both in the contextual and non-contextual
setting, and vary the size of the lists selected. For list size b = 1, we
use the actual click feedback given by the log. For b > 1, we use
simulated click feedback as described above. In order to maintain
consistency over the amount of feedback available, we randomly
sample portions of the actual log during our simulated feedback
since the rejection sampling technique used for b = 1 provides
feedback once in 20 iterations on an average.

Feedback. While the goal of our work was to choose the optimal
ordered list for recommendation, this dataset only contains click
stream data for the choice of a single item. Hence, for the purpose of
evaluating the list selection procedures, we simulated list feedback.
The feedback for an article at a given position depended on the
base Clickthrough rate (CTR hereafter) of the article and the bias
introduced by the position. Hence, given context z, if an article
s with base CTR (s, z) was shown at position j with a bias of
p(7), then the stochastic feedback for this placement was simulated
as a Bernoulli draw with click probability 7 (s, z)p(j). Estimating
the positional effects p(j) on CTR is a well studied problem. The
base CTR r(s, z) used in the simulation was computed as the CTR
predicted by the hindsight-fixed algorithm for the given (s, z) pair.

6.2 Google e-books recommendation

Data set. We carry out our second set of experiments on click-
stream logs from the Google ebooks store. Here, the recommenda-
tion task is, given a key book (context) the user is currently exploring,
recommend a set of related books that the user may also be inter-
ested in. At the time of this work, Google used metadata information
about the books and also inputs from other sources to compute the
ordering of the related list of books to any given key book. This is a
good first approximation of true “relatedness” in the absence of any
real click data. But, as we receive feedback in terms of clicks on
the recommendations, we can modify the original ordering in order
to reflect the tastes of the users and this new ordering represents
the true “relatedness" of books in the presence of a large number
of clicks. In this dataset, the only context available was the current
item being viewed (key item).

We evaluated our algorithm on the clicklog data of Google’s book
store that was collected over 42 days in the beginning of 2012. Each
event in the anonymized click log data consists of two components:

e The volume id, identifying the key book (anchor item);

e The position of the related book on which the user clicked in
the related list.

We estimated the unbiased position effect on the CTR using standard
techniques.

Parameter choice. For each key book z, we created a graph struc-
ture capturing the initial ordering given by the metadata-similarity in
terms of the edge weights. Because of computational considerations,
we only consider the similarity between the key book z; and all of
its candidate books S¢, but not the similarities between the candidate
books themselves. This results in a star graph with the key book
in the center. The weights on the edges are the similarity scores
between the books as computed using the metadata of the books.
Using the obtained related graph G, the diffusion kernel K can be
computed using techniques presented in [13].

Feedback. Based on the data, we simulate feedback for each
item when it was displayed in a specific related list. Note that the
clicks are being aggregated over users and sessions such that we
group feedback on a specific related list. Position independent base
CTR models how much the users prefer seeing a related book s in
the recommendation list of key item z. We define this CTR as the
number of position-normalized clicks that item s got while being
shown in the related list for key book z, divided by the position-
normalized number of times s was shown as a related book for z.

Based on these estimates, we use offline evaluation techniques
to simulate feedback for any new ordering. Since we computed the
position independent feedback for each of the items in the original
list and we also have the position weight terms p(j), given context
z, we simulate feedback for any item s with base CTR r(s, z) at

position j with position weight p(j) by sampling from a Bernoulli
distribution with bias (s, z)p(j).

7. RESULTS AND DISCUSSION

Performance comparison. The results on the Yahoo! webscope
dataset presented in Figure 1(a) and the results from the Google
books evaluation presented in Figure 2(c) show that all versions
of CGPRANK offers a consistent performance improvement over
approaches that do not take item similarity into account. The abil-
ity of CGPRANK to generalize feedback received from few items
to a larger set of related items allows it to quickly estimate their
relevance. Also, in a dynamic system where new items regularly
become available for selection, this feature of CGPRANK allows it
to reliably estimate relevance of new items faster. Thus, CGPRANK
is well suited to handle the cold start problem in recommendations.
For the Yahoo! Webscope dataset, CGPRANK produced an overall
final CTR of 0.0496 for the context-free setting and 0.0603 for the
contextual setting, which compares favorably with the Ideal policy
(0.0559 and 0.064). In the case of the Google books dataset, CG-
PRANK outperformed the then-existing algorithm by a margin of
18%. These findings substantiate our first hypothesis, that sharing
feedback across similar items helps.

Performance without features. We decided to further test the
performance of CGPRANK in settings where no explicit features are
available. Instead, similarity information was provided in the form
of a kernel function and the similarity between contexts was taken
into account by clustering. The evaluation of this is also presented in
Figures 1(a) and 1(c). While the overall performance of CGPRANK-
G was outperformed by CGPRANK-Lin (CTR of 0.0574 compared
to 0.0603 for single item selection), it still manages to perform well
and is applicable even when explicit features are not present.

Figures 1(b) and 1(c) present the results of the list selection task
with b = 4. From the plots, it can be inferred that adaptively learning
the order is better than any fixed model learnt from training data. It
can also be seen that even using context in an arguably naive manner
(in terms of clustering users) provides a substantial improvement
over not using context. For the single article selection case with
actual click feedback, there was a 14% increase in the CTR while
utilizing context information, further substantiating our hypothesis
that exploiting context helps.

Relaxing the independence assumption. CGPRANK assumes
that items do not influence the feedback of other items within a list.
This simplifies the algorithm and its analysis, but is not necessarily
true in practice. Hence, we relax this assumption by clustering
the articles and model the user as diversity-preferring by ensuring
that at most one article from a cluster is clicked on in a round.
The recommended list might still contain multiple items from the
same cluster. Although the total regret is ~ 5% more than in the
independent case, CGPRANK still outperforms all other baselines
and is better than the next best baseline by ~10%.

Parallelizing exploration within lists. In our analysis in Sec-
tion 4.5, we found that, perhaps surprisingly, increasing the list size
can lead to accelerated convergence — at least under certain technical
assumptions — as exploration is “parallelized” across list slots. We
empirically assess this finding in Figure 2(b) which considers the
per-slot average regret. In this experiment, we apply CGPRANK
on the log data, using different batch sizes b. As b increases, faster
convergence is obtained in relative terms compared to the hindsight-
fixed predictions.

The experiments with multiple item selection corroborate our
theoretical claims that having to select multiple items is beneficial if
we consider the per slot regret as long as we gather enough feedback
in the lower ranked slots. From the figures, it can be seen that

while average regret per slot decreases as we move from single
item selection to 2 and then 4 items, there is diminishing returns
when we select 8 items. This is due to the low position CTR at
positions higher than 4 and also the sparse nature of feedback in
the problem. As long as p(¢) is high enough to garner enough
feedback, the opportunity cost incurred by making mistakes down
the order is less than that at the top of the list. This is because of the
decreasing expected CTR p(7) as position ¢ increases. During the
actual execution, it can be noticed that CGPRANK quickly settles
on the top positions while continuing to experiment with different
articles down the order.

To assess the quantitative dependence of the regret on the smallest
CTR p(b), we conduct an experiment varying p(2) (for b = 2),
shown in Figure 2(a). We note that the ratio of ideal clicks to clicks
garnered by CGPRANK increases as p(2) decreases. While our
theoretical results suggests a much stronger dependence on p(b),
the effect is not as dramatic in the experiments. This is explained by
the fact that our bounds are high probability bounds and in reality,
the feedback is more benign.

8. CONCLUSION

We have developed a novel algorithm — CGPRANK- for effi-
ciently reranking lists to reflect user preferences over the items
displayed, taking context into account. It exploits assumptions
on similarity of items and contexts as given by a positive definite
kernel function, and separability assumptions on position depen-
dence. In this way, CGPRANK is able to share sparse feedback
across positions, items and contexts. We proved strong theoretical
guarantees on its regret, indicating that, perhaps surprisingly, un-
der natural assumptions, parallelization of exploration across lists
can help accelerate convergence. Support for computational and
statistical parallelism makes it a suitable candidate for adoption
for large-scale online recommendation engines. We extensively
evaluate CGPRANK on two real world recommendation tasks. On
the Google ebooks recommendation task, CGPRANK achieves 18%
click lift over the previous state of the art recommender system. We
also showed significant improvements over state-of-the-art bandit
and learning-to-rank approaches on the Yahoo! Webscope dataset.
The experiments with the Yahoo! dataset demonstrates empirically
our claim about being able to exploit similarity between items and
context information and also shows that parallelizing exploration
across the list leads to better performance compared to the single
item selection problem. We believe our results present an impor-
tant step towards addressing challenging, large-scale exploration—
exploitation tradeoffs in practical recommender systems.

9. ACKNOWLEDGMENTS

This research was supported in part by SNSF grant 200021_137971,
ERC StG 307036 and a Microsoft Research Faculty Fellowship.

References

[1] Yahoo! webscope program. http://webscope.
sandbox.yahoo.com. Accessed: 20/02/2013.

[2] E. Agichtein, E. Brill, and S. Dumais. Improving web search
ranking by incorporating user behavior information. In ACM
SIGIR, 2006.

[3] P. Auer, N. C. Bianchi, and P. Fischer. Finite-time Analysis
of the Multiarmed Bandit Problem. Machine Learning, 47(2-
3):235-256, May 2002.

[4] W. Chu, L. Li, L. Reyzin, and R. E. Schapire. Contextual
bandits with linear payoff functions. In AISTATS, 2011.

[5] W. Chu, S.-T. Park, T. Beaupre, N. Motgi, A. Phadke,
S. Chakraborty, and J. Zachariah. A case study of behavior-
driven conjoint analysis on yahoo!: front page today module.
In ACM SIGKDD, 2009.

[6

—_

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experi-
mental comparison of click position-bias models. In WSDM,
2008.

[7] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recom-
mender algorithms on top-n recommendation tasks. In RecSys,
2010.

[8] T. Desautels, A. Krause, and J. Burdick. Parallelizing
exploration-exploitation tradeoffs with gaussian process bandit
optimization. In /ICML, 2012.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. J. Mach. Learn.
Res., 4:933-969, Dec. 2003.

[9

—

[10] R. Gomes and A. Krause. Budgeted nonparametric learning
from data streams. In /CML, 2010.

[11] S. Kale, L. Reyzin, and R. E. Schapire. Non-stochastic bandit
slate problems. In NIPS, 2010.

[12] R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits
in metric spaces. In STOC, 2008.

[13] R. 1. Kondor and J. Lafferty. Diffusion kernels on graphs and
other discrete structures. In /CML, 2002.

[14] W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging
structured concepts. In COLT, 2010.

[15] A. Krause and C. S. Ong. Contextual gaussian process bandit
optimization. In NIPS, 2011.

[16] R.Lempel. Recommendation challenges in web media settings.
In RecSys, 2012.

[17] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-
bandit approach to personalized news article recommendation.
In WWW, 2010.

[18] L. Li, W. Chu, J. Langford, and X. Wang. Unbiased offline
evaluation of contextual-bandit-based news article recommen-
dation algorithms. In WSDM, 2011.

[19] D. Metzler and W. Bruce Croft. Linear feature-based models
for information retrieval. Inf. Retr., 10(3):257-274, June 2007.

[20] C.E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine
Learning). The MIT Press, 2005.

[21] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, editors.
Recommender Systems Handbook. Springer, 2011.

[22] B. Scholkopf and A.J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
MIT Press, Cambridge, MA, USA, 2001.

[23] A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally
diverse rankings over large document collections. In ICML,
2010.

[24] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Information-
theoretic regret bounds for gaussian process optimization in
the bandit setting. /[EEE Transactions on Information Theory,
58(5):3250-3265, May 2012.

[25] M. Streeter, D. Golovin, and A. Krause. Online learning of
assignments. In NIPS, 2009.

[26] Y. Yue and C. Guestrin. Linear submodular bandits and their
application to diversified retrieval. In NIPS, 2011.

