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Abstract—Modern efficient Convolutional Neural Networks
(CNNs) are able to perform semantic segmentation both swiftly
and accurately, which covers typically separate detection tasks
desired by Intelligent Vehicles (IV) in a unified way. Most of
the current semantic perception frameworks are designed to
work with pinhole cameras and benchmarked against public
datasets with narrow Field-of-View (FoV) images. However, there
is a large accuracy downgrade when a pinhole-yielded CNN
is taken to omnidirectional imagery, causing it unreliable for
surrounding perception. In this paper, we propose an omnisu-
pervised learning framework for efficient CNNs, which bridges
multiple heterogeneous data sources that are already available
in the community, bypassing the labor-intensive process to have
manually annotated panoramas, while improving their reliability
in unseen omnidirectional domains. Being omnisupervised, the
efficient CNN exploits both labeled pinhole images and unlabeled
panoramas. The framework is based on our specialized ensemble
method that considers the wide-angle and wrap-around features
of omnidirectional images, to automatically generate panoramic
labels for data distillation. A comprehensive variety of experi-
ments demonstrates that the proposed solution helps to attain
significant generalizability gains in panoramic imagery domains.
Our approach outperforms state-of-the-art efficient segmenters
on highly unconstrained IDD20K and PASS datasets.

Index Terms—Intelligent Vehicles, Scene Understanding, Se-
mantic Segmentation, Scene Parsing, Omnisupervised Learning,
Omnidirectional Images.

I. INTRODUCTION

THE breakthrough of Convolutional Neural Networks
(CNNs) has greatly advanced the frontiers of computer

vision algorithms, as in image classification [1], cropping [2],
segmentation [3] and tracking [4][5]. Vision-based semantic
segmentation unifies typically separate detection tasks by
rendering a pixel-wise scene understanding [6]. It allows to
solve many problems at once and therefore has been allied to
the perception in Intelligent Vehicles (IV) [7]. CNNs excel at
this task due to the development of deep architectures [8][9]
and the emergence of large datasets [10][11]. Modern efficient
networks become capable of performing road-driving scene se-
mantic segmentation both swiftly and accurately [12][13][14],
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Fig. 1. Overview of the proposed omnisupervised solution: an efficient
CNN is trained using multi-source labeled images and unlabeled panoramas,
yielding a single model suitable for omnidirectional road sensing domains.

which provides a rich resource of processed high-level infor-
mation for upstream navigational applications.

At the same time, omnidirectional images are omnipresent
in IV systems thanks to their complete surrounding sensing
capacity. However, most of the current semantic segmenters
are predominantly designed to work with forward-facing cam-
eras [10][15], which heavily limits the Field of View (FoV)
and the sufficiency of acquired information. One of the essen-
tial reasons lies in that most publicly available datasets merely
contain pinhole images. Nevertheless, when taking a pinhole-
yielded CNN to omnidirectional imagery, the performance
drops significantly and even catastrophically [14], causing it
unreliable for the perception of the whole surroundings.

While the straightforward solution is to create a large-
scale surround-view dataset for fully supervised training,
the ground-truth acquisition entails extremely time-consuming
and error-prone labeling procedures. It is particularly ex-
acerbated for omnidirectional data, where human annota-
tion is highly prohibitive [16]. There are a few wide-angle
datasets [17][18][19], but their scene diversity and annotation
density are far lower than popular pinhole databases [10][11].
This is due to the novelty of omnidirectional sensors as
well as the higher complexities and distortions implicated in
wide-FoV images [20][21]. It motivates a subset of research
works to synthesize omnidirectional data from conventional
pinhole segmentation sets [22][23][24]. Nevertheless, the large
discrepancy between synthetic and real-world imagery sparks
further domain adaptation methods [25][26][27], which require
having access to images from a specific target environment,
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but struggle to generalize in open panoramic domains. An-
other cluster of methods [7][14][16], with the aim of re-
using knowledge learned from pinhole data, separates the
panorama into several segments for semantic maps prediction
and fusion. However, this induces significant computation
complexity [16]. Besides, while panoramas allow to analyze
the whole scene with all the context available, these solutions
fail to leverage the global contextual cues with the panorama
partitioned into discrete segments.

To address these issues, we propose an omnisupervised
learning framework for efficient semantic segmentation CNNs,
which bridges multiple heterogeneous data sources (see
Fig. 1). Being omnisupervised, the efficient CNN exploits
both labeled pinhole images and unlabeled 360◦ full-view
panoramas. Precisely, the omnisupervised learning concept is
approached through data distillation [28], where we distill
knowledge of a teacher model by creating an ensemble of its
predictions run on multiple transformations of the panoramas.
We put forward a specialized ensemble method for panoramas
by taking into consideration their wrap-around connections
along with the Panoramic Annular Semantic Segmentation
(PASS) pipeline [16], which facilitates the generation of well-
defined omnidirectional labels, bypassing the laborious per-
pixel manual annotation process.

The proposed omnisupervised solution produces a single
student model trained on the union of manually annotated and
automatically generated data. The designed multi-source train-
ing helps the learner to attain significant generalizability ben-
efits when taken to unseen domains. Moreover, while yielded
as a single segmenter, it is able to deliver outputs in multiple
semantic spaces, enriching the recognizable classes required
to fully understand real-world unconstrained surroundings. As
the efficient CNN has been exposed to omnidirectional data in
the training stage, it is directly suitable in panoramic imagery
without any adaptation/separation, while retaining access to
the crucial global contextual information.

A comprehensive variety of experiments is conducted with
our high-efficiency ERF-PSPNet [6], while we study in a
general way that is applicable to any efficient architecture.
Our approach outperforms previous state-of-the-art efficient
segmenters on the challenging IDD20K [15] and PASS [16]
datasets. The omnisupervised CNN is further deployed on
an instrumented vehicle, where we collect panoramic images
under various weather and illumination conditions, as well as
in different cities, verifying the generalization capacity of our
solution. Our datasets and codes are open-sourced at.1

II. RELATED WORK

A. Efficient Semantic Segmentation

Fully Convolutional Networks (FCNs) [8] started the era
of end-to-end semantic segmentation, whose performance was
outsripped by SegNet [29], DRNet [30], PSPNet [31] and
DeepLab [32]. A host of modules have been adopted to

1Datasets and Codes for Omnisupervised Omnidirectional Semantic Seg-
mentation: https://github.com/elnino9ykl/OOSS

aggregate the crucial contextual information. PSPNet ap-
plies a Pyramid Pooling Module (PPM) to capture multi-
scale context, which is similarly achieved by using Atrous
Spatial Pyramid Pooling (ASPP) as introduced in DeepLab.
DenseASPP [33] extends ASPP by incorporating dense con-
nections. DANet [34] captures long-range dependencies via
a self-attention mechanism while OCNet [35] harvests object
context. ACNet [36] exploits complementary features in an
attention-bridged way. In [37], the semantic granularity gap is
alleviated to improve the fusion of shallow and deep features.
These works have achieved high-quality segmentation on ex-
isting pinhole benchmarks. However, the developed networks
are computationally-intensive, limiting the deployability in
response time-critical IV applications.

To achieve real-time inference, enormous efforts have
been paid by proposing efficient networks like ENet [38],
ERFNet [12], LinkNet [39], SQNet [40], ICNet [41], ESP-
Net [42], EDANet [43], BiSeNet [44], CGNet [45], ERF-
PSPNet [6], ERF-APSPNet [16], SwiftNet [13] and Swaft-
Net [14]. Specifically, ENet and ERFNet follow asymmetric
encoder-decoder structures with early downsampling, while
ICNet and BiSeNet are built on multi-branch setups. In
LinkNet and SwiftNet, the compact U-shape architectures
are completed with skip connections and ladder-style upsam-
pling, while CGNet is packed with context guided blocks in
all stages. SwaftNet [14] is crafted for high-resolution data
like panoramas with squeeze-and-excite [46] in the lateral
connections to enhance detail sensitivity. Nevertheless, most
efficiency-oriented networks are designed to solve the trade-
off between efficiency and accuracy in conventional imagery,
while the yielded segmenters suffer from significant accuracy
drops when taken to omnidirectional domains [16].

B. Omnidirectional Semantic Segmentation

To enlarge the FoV of semantic perception, researchers
proposed to use fisheye sensors [21][24] or install an array
of cameras as a surround-view platform [20][47]. This often
entails the use of multiple cameras but the number of devices
is one of the most critical parameters to be optimized for
IV systems. Zhang et al. [22] proposed to use a single
spherical input and converted it to an unfolded icosahedron
mesh for a holistic labeling of the surroundings. They created
an Omni-SYNTHETIA dataset which was produced from the
virtual road-driving SYNTHIA dataset [48]. Sharing a similar
spirit, Xu et al. [23] introduced a SYNTHIA-PANO dataset
by stitching different directions of synthetic observation into
a panoramic image. In this line, Budvytis et al. [19] per-
formed joint semantic scene understanding and localization
with a CamVid-360 panoramic dataset, which was collected
by cycling along the original path of the well-known CamVid
database [49]. The models in these works were trained with
their omnidirectional data, which are far less realistic nor
diverse than large-scale pinhole natural image sets [11].

In contrast, Yang et al. [7][16] proposed a Panoramic
Annular Semantic Segmentation (PASS) framework. Unlike
approaches that are dependent on omnidirectional labeled data,
they trained on conventional images and deployed in unseen

https://github.com/elnino9ykl/OOSS
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panoramas. They used a distortion-controlled panoramic annu-
lar camera for their navigation assistance application, where
360◦ semantic segmentation was predicted in a single process
on the unfolded panorama. This paradigm unlocked the use of
panoramic sensing system in a great variety of scenarios by
taking the advantage of the wealth of pinhole image datasets.
They further applied PASS to support visual odometry and
proposed SwaftNet [14] for detail-aware driving scene parsing.
In spite of being deployed with efficient CNNs, running time
is significantly higher than that of end-to-end prediction [16],
as the panoramic maps are first separated and then fused in
their PASS pipeline. As another consequence, the segmenter
fails to exploit the crucial global contextual information with
the single-shot panorama partitioned into pieces for several
forward passes. Unlike previous works, we aim to produce a
single model directly applicable in omnidirectional imagery
without any separation/adaptation that hurts inference effi-
ciency. Our omnisupervised learning framework, which covers
panoramic imagery in training, is orthogonal to the prior works
that focus on the adaptation in deployment.

C. Knowledge Distillation and Domain Adaptation
CNN architectures have a high reliance on large-scale visual

data. To address the lack of annotated data and boost the effi-
ciency in vision systems, knowledge distillation has been intro-
duced to transfer information from one model to another [50],
e.g., from an accurate yet computation-intensive model to a
fast one. Thereby, knowledge distillation is often characterized
as a teacher-student training framework. It has been widely
investigated in classification [51][52][53], tracking [54] and
re-identification [55] tasks. In [50], a systematic analysis of
knowledge distillation methods was provided. Here, we mainly
review some related knowledge distillation methods on the
unification of multi-source supervision.

In [52], distillation was formalized to unify heterogeneous
classifiers from multiple sources that cannot directly share
their data, which allows to transfer the knowledge without
requiring the target classes of all teacher and student models
to be the same. Such class contradiction problems exist in
semantic segmentation, which are usually addressed by reg-
ulating the complex class hierarchies among datasets [56].
In [53], a self-paced distillation scheme was designed to
aggregate knowledge from multiple experts that are learned on
less imbalanced subsets of the entire long-tailed distribution.
While it facilitates to yield a unified student model, re-
training of multiple large teacher networks is necessitated.
In [54], mutual learning was enabled through a multi-students
learning mechanism with knowledge shared between students.
In [57], a relational knowledge distillation method was pre-
sented to transfer mutual relations of data examples. Recently,
knowledge distillation has also been extended to semantic
segmentation with the aim of training compact networks with
the help of cumbersome networks [58][59][60]. For example,
local pixel-wise probabilities were mainly distilled in [58] to
transfer the knowledge gained by a heavy network to guide
the learning of fast networks.

Our omnisupervised solution also pursues multi-source dis-
tillation but we aim to improve the reliability of a sin-

gle student network across domains, i.e., from pinhole to
panoramic imagery. Unlike previous model distillation meth-
ods that ensemble multiple experts but entail re-training differ-
ent heavy networks, we perform data distillation [28] with a
single teacher architecture, arguably more flexible in the large
database case. We avoid the complex regulation of the class
conflictions between datasets by appending multiple heads
and using the unlabeled panoramas as a bridge. Compared
to the data distillation work for human keypoint detection
that requires huge amounts of extra generated data [28], we
only use a moderate amount of unlabeled panoramas, while
largely robustifying omnidirectional semantic segmentation.
In our omnisupervised learning system, the knowledge is
distilled from a light-weight ensemble formed by multiple data
transformations considering the wide-angle and wrap-around
connections of panoramic images. In addition, our framework,
being simple and effective, does not require to drastically
modify network structures or impose consistency by adding
any extra loss terms.

There is also a great volume of works on domain adap-
tation [25][26][27][61][62][63] for semantic segmentation.
In [25][27], image-level style transfers were performed to
bridge the day and night domain gap. In [26], a battery of input
adapters was used depending on the weather conditions. These
largely sacrifice the inference efficiency of semantic perception
frameworks when deployed in IV applications. Another trend
of methods [61][62][63] reduced the gap between the feature
distributions across domains without the need of generating
new images in the testing. However, they require having access
to a large set of images from the specific target domain during
training. Contrarily, our omnisupervised solution operates in
the domain generalization paradigm by using a set of unlabeled
panoramas irrelevant of the target domains. We expect the
yielded model to generalize to panoramic imagery of open
domains and previously unseen environments.

III. FRAMEWORK

The diagram of the proposed omnisupervised learning
framework for omnidirectional semantic segmentation is de-
picted in Fig. 2. In the preparation stage, we generate an-
notations for unlabeled panoramas by using a large teacher
architecture and ensembling the teacher model’s predictions.
In the training phase, we blend multi-source pinhole images
with manually annotated labels and panoramas with automat-
ically generated labels to train the student network. In the
deployment phase, the yielded CNN can run in real time due
to the student model’s efficiency, while becoming suitable
for omnidirectional semantic segmentation. In the following
subsections, we describe in detail the preparation (Sec. III-
A), training (Sec. III-B) and deployment (Sec. III-C) of
efficient CNNs for omnisupervised omnidirectional semantic
segmentation. In Sec. III-D, we describe the efficient learner
ERF-PSPNet, which is used as the student model illustrated
in Fig. 2 and its architecture variants.

A. Preparation Stage
To achieve robust omnidirectional semantic segmentation,

it is important to expose the model to omnidirectional data
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Fig. 2. Diagram of the proposed omnisupervised learning framework for omnidirectional semantic segmentation. During training, both labeled images and
unlabeled panoramas are incorporated. Annotations for unlabeled panoramas are automatically generated by using the specialized ensemble of a teacher model’s
predictions on multiple transformations with the PASS pipeline. During deployment, the yielded student model is not only efficient and suitable for panoramas,
but also robust and capable of delivering multiple sets of visual classes, enriching detectable semantics to fully understand unconstrained surroundings.

in the training stage. Although large-scale annotated omnidi-
rectional vision datasets are scarce, there are a large amount
of unlabeled panoramic images or videos available in the
community. In this work, we leverage a source of unlabeled
panoramas, and propose a method to automatically create their
labels. Following the concept of data distillation [28], we use
a large teacher model whose architecture may be sophisticated
which disqualifies its usage in real-time applications. However,
the teacher’s produced segmentation maps are finely grained
which provide the potential for data distillation. As it is
depicted in Fig. 3, we ensemble the teacher model’s predic-
tions on various transformed copies of a panoramic image
to produce the final annotation. Specifically, the ensemble
process takes into account the wide-angle and wrap-around
features of panoramas.

The teacher network is trained on conventional pinhole
images. The teacher model Ft, can be separated into a feature
model Fte that first predicts high-level abstract features and a
pixel-wise classification model Ftc that maps the features to a
specific semantic space. When generating the annotations, the
panorama Ip (with a size Hp×Wp) is first partitioned into N
segments. As it is shown in Fig. 3, each panorama segment Ii
(size: Hp×Wp

N ) is fed into a feature model to predict a feature
map. This helps to leverage the correspondence between the
features inferred from a panorama segment and the features
learned from pinhole images [16], as they both correspond to
a similar narrow FoV, formally:

N⊎
i=1

Fte

(
I
Hp×

Wp
N

i

)
≈

Nc⊎
j=1

Fte

(
IH×W
cj

)
(1)

where Icj denotes a conventional image, and
⊎

denotes the

Fig. 3. Diagram of the specialized ensemble method with the PASS pipeline
by considering the wide-angle and wrap-around connections of panoramas.

concatenation of feature maps.
After the concatenation and a max-pooling process to re-

cover the feature model size, the classification model Ftc

completes the segmentation to yield the pixel-wise prediction
P

Hp×Wp
p for the panorama:

PHp×Wp
p = Ftc

[
N⊎
i=1

Fte

(
I
Hp×

Wp
N

i

)]
(2)

This is due to that the classification model with lean con-
volution layers, which is also known as the fusion model in
the PASS pipeline, is mainly responsible for the classification
since the semantically-meaningful feature map has already
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(a) Input (b) w.o. Ensemble (c) Ensembled (d) Input (e) w.o. Ensemble (f) Ensembled

Fig. 4. Ensemble helps to generate seamless semantic maps for data distillation as panoramas can be folded into 360◦ cylindrical rings.

been predicted and aggregated. As in many semantic seg-
mentation networks with asymmetric architectures [12][13],
it is preferred to have a powerful backbone for recognizing
semantics and a light-weight upsampling path (e.g., 128 or 256
dimensions) for delineating borders. The fusion model has to
be no leaner to take the local context around the borders of
panorama segments into consideration [14], which is beneficial
for continuous and smooth segmentation. PASS pipeline incurs
nearly N times of computation of a single model, as the
capacity mostly lies in the feature model. Thus, it is suitable
to be used in the preparation stage other than deployment.

In addition, we propose a specialized ensemble method by
taking into considerations the omnidirectional trait of our task
and the wrap-around structure of panoramic images in the
unfolding direction. Precisely, this is achieved by unfolding
a panorama I

Hp×Wp
p from M evenly spaced positions or

rotating the panorama for M times. Each transformed copy

I
Hp×Wp
pk =

⊎N
i=1(I

Hp×
Wp
N

ik
), whose prediction is P

Hp×Wp
pk ,

has a variation of 360◦/M to the neighboring ones. For
instance, Fig. 3 depicts a rotation of 45◦. Then, an ensemble
of the predictions can be created, to have the final annotation
Au for an unlabeled panorama, formally:

Au =

M⊔
k=1

PHp×Wp
pk

=

M⊔
k=1

Ftc

[
N⊎
i=1

Fte

(
I
Hp×

Wp
N

ik

)]
(3)

where
⊔

denotes the ensemble process that can be achieved
by averaging, weighing or aggregating the CNN’s per-pixel
probability maps for the transformed panoramas. An ensemble
of predictions is more robust in nature (compared to a single
pass), since averaging the knowledge of multiple predictions
from one teacher network enables a model to be more prepared
against unseen data. Although this has a direct negative impact
on efficiency since making M predictions is always more com-
plex than computing a forward pass, these operations (includ-
ing PASS pipeline) are processed off-line in the preparation
stage, and they help to better recover the decoupled contextual
information. Overall, the proposed ensemble method helps to
yield dense and more accurate segmentation maps that can
be better trusted for data distillation. Qualitative examples of

the produced fully seamless semantic maps without any blind
zones are shown in Fig. 4.

B. Training Stage

To yield a segmentation model suitable for panoramic im-
ages, we propose to leverage multiple data sources, as a single
training set is limited in the diversity of FoVs, which incurs
a comparatively large overfitting risk, due to all images being
collected with the same camera or certain types of acquisition
setups [10]. Formally, we exploit T large-scale datasets for
training, each of which Di (i = 1∼T ) corresponds to a specific
domain, having labeled samples Sil. The annotations for the
labeled samples are Ail, with a semantic class space Ci. To
train an efficient student CNN Fs, the conventional strategy is
to learn the mapping represented by the following equation:

Fs

(
Sil

)
=⇒ Ail(Ci) (4)

The efficient segmentation model Fs, likewise, can also be
separated into a student feature model Fse and a classification
model Fsc that maps the predicted features to the specific
semantic space, formally:

Fs

(
Sil

)
= Fsc

[
Fse

(
Sil

)]
=⇒ Ail(Ci) (5)

The aim of our multi-source learning is to train a single
model simultaneously in different domains, but the semantic
spaces in disparate datasets are incompatible [64][65]. For
ease of notation, in the case of two domains, C1 6= C2,
which means that the classes are heterogeneous and class
numbers are usually not equivalent, although they are partially
overlapping with each other. For example, road surfaces are
simply defined as road and sidewalk in Cityscapes [10] and
IDD20K [15], but in Mapillary Vistas [11], they are labeled
as road, sidewalk with curbs between them, and additional
roadway classes like crosswalks. In addition, riders in IDD20K
would be distinguished into motorcyclists and bicyclists if
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from Vistas. There are novel safety-critical classes like auto-
rickshaws that are absent in Cityscapes (European urban areas)
but widespread in the unstructured IDD dataset (Asia).

In spite of the different class definitions, we argue that the
relationships encoded in the similar label hierarchies could
positively reinforce the generalizability of feature represen-
tations when learning with multiple disparate domains. For
illustration, street-scene datasets both have flat (road, side-
walk), vehicle (car, bus), road-side object (curb, pole) classes,
even though they are defined with inconsistent taxonomies.
Therefore, we consider that it is fruitful to bridge multiple
datasets for training our student model.

In Fig. 2, we illustrate our framework in the case of two
training domains, but it can be easily scaled up to multiple
domains. Precisely, to address the heterogeneity in the se-
mantic spaces, we append two heads (classification models
Fsc1 and Fsc2 ) to the efficient CNN architecture as depicted
in Fig. 2, each of which is a fully convolutional module with
an upsampling layer for prediction in the specific label space.
Thereby, the training target can be modified into:

Fsc1

[
Fse

(
S1l

)]
, Fsc2

[
Fse

(
S2l

)]
=⇒A1l, A2l (6)

The domain-specific teacher models, have generated two
sets of annotations A1u and A2u for the unlabeled panorama
samples Su. Then, the panoramic data in each label space are
blended with the pinhole images in that domain for training:

Fsci

[
Fse

(
Sil, Su

)]
=⇒

(
Ail, Aiu

)
(Ci) (7)

In this regard, the panoramas also serve as a domain bridge
when performing joint training, as they will be fed to the
student in both semantic spaces but not necessarily in the same
forward/backward passes, which helps to yield more robust
feature representations irrelevant of imagery domains.

C. Deployment Stage

After training, the student CNN is ready for being applied
in omnidirectional imagery, while neither ensembling, fusing
nor post-processing is needed in the deployment phase. The re-
sulted student is a single model, which maintains the efficiency
and simplicity as in the common case of semantic perception
systems. Meanwhile, it possesses several important benefits.
First, since the student has been exposed to omndirectional and
heterogeneous data, its generalizability has been significantly
enhanced in new panoramic domains. Second, the model is
able to deliver diverse sets of detectable semantics:

T∨
i=1

Fsci

[
Fse

(
Ipn

)]
=

T∨
i=1

(
Pi(Ci)

)
(8)

where
∨

denotes a union of operations or semantic maps.
For a new panoramic image Ipn , T predictions of semantic
maps will be generated, each of which Pi corresponds to a
semantic space Ci, supposing a very rich resource of mutu-
ally complementary information for upper-level navigational
applications. Overall, the omnisupervised solution enables
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Fig. 5. Efficient semantic segmentation CNN architecture ERF-PSPNet with
pyramid context pooling.

the efficient CNN to become more prepared and suitable in
any target panoramic domain to fully understand real-world
unconstrained surroundings.

D. Student Learner Architecture

As illustrated in Fig. 5, the student learner follows the
encoder-decoder sequential architecture of ERF-PSPNet [6],
which was designed for navigation assistance applications.
It leverages the encoder of the well-known ERFNet [12] to
achieve a good trade-off between inference speed and seg-
mentation accuracy. The encoder is attached with the pyramid
pooling module in PSPNet [31], where the feature pyramid
is upsampled and concatenated with the input features. Thus,
subsequent convolutions obtain access to broad spatial pools
which increase their receptive field. In this work, with the
purpose of leveraging non-local strategies that help to capture
rich global context-aware features available in omnidirectional
images, we present two variants of the efficient ERF-PSPNet
architecture.

As depicted in Fig. 5, the variants share a similar setup,
both performing pyramidal context pooling in the decoder,
which are denoted using different colors for different pyramid
levels. Our critical modification lies in the combination of
light-weight attention modules with the pyramid structure, to
materialize the potential of global contextual information in
full-view panoramas. Note that this has not been properly
addressed in prior works [14][16] with the input panorama
partitioned into pieces for several forward passes. Contrarily,
our omnisupervised solution that covers panoramic imagery in
the training, helps to unlock the use of long-range contextual
dependencies.

Precisely, the first variant is ERF-PSPNet+OC (Object Con-
text), where the pyramidal pooling module has been appended
with object context aggregation in each pyramid scale. Specif-
ically, OC denotes Object Context, whose estimation [35] is
to produce a fully dense affinity matrix that measures the
similarities of each pixel and each other pixel for the whole
feature map. In this way, ERF-PSPNet+OC can exploit the
degree that indicates pixels fall in the same semantic class,
by transforming the feature map into a per-pixel weighted
one according to the similarities. The second variant is ERF-
PSPNet+scSE (spatial and channel Squeeze-Excitation), where
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Fig. 6. Examples from the extended PASS dataset with annotations on
navigation-critical classes: Car, Road, Sidewalk, Crosswalk, Curb and Person.

the pyramidal pooling module has been appended with con-
current spatial and channel attention [66], which separately
recalibrates the feature maps to be more informative along
channel and space. Here, scSE denotes spatial and channel
Squeeze-Excitation, where the concurrent recalibration ex-
tends the squeeze-and-excitation attention [46] in a way that
complementarily squeezes channel-wise and excites spatially.
The scSE component relaxes the local context constraint and
provides more importance to relevant spatial locations, which
are meaningful features to be exploited in panoramas. In this
sense, it can also be considered as a non-local module when
embedded in our ERF-PSPNet+scSE structure with a feature
pyramid. For both variants, we perform the context aggregation
at low resolutions before upsampling and concatenation with
the original features from the encoder. Thereby, such seamless
integration comes with a slight increase in complexity.

IV. EXPERIMENTS

A. Datasets

Target Testing Dataset. We target the Panoramic Annular
Semantic Segmentation (PASS) database [16], a challenging
dataset to assess the robustness and real-world applicability of
panoramic semantic perception algorithms. It is intended for
testing the generalizability of models trained on other datasets
and does not provide a training set of its own. Representing an
unseen omnidirectional domain, it is a testbed to investigate
the benefits of our omnisupervised solution and compare
the yielded student model with known efficient CNNs. The
PASS dataset contains 400 raw annular and annotated un-
folded panorama pairs. As an evaluation dataset, the original
version [16] has annotations on 4 classes. In this work, we
update the dataset by creating pixel-accurate annotations on
6 navigation-critical classes: Car, Road, Sidewalk, Crosswalk,
Curb and Person (see Fig. 6).

Multi-Source Training Datasets. Our multi-source training
is experimented with two conventional pinhole image datasets:
Mapillary Vistas [11] and IDD20K [15], two of the richest
street scene parsing datasets nowadays. Vistas offers images
with high diversity shot by various cameras across continents.
In addition, it covers a variety of viewpoints with data captured
from the perspective of vehicles (roadways) and pedestrians
(sidewalks). This variability is especially appealing for omnidi-
rectional semantic segmentation because it exposes the learner

Fig. 7. Examples of automatically generated panoramic annotations for the
stitched panoramas using Pittsburgh dataset [67].

to a wide array of observations other than only forward-facing
views. Regarding IDD20K, it imports extremely unstructured
environments, which is attractive due to the cluttered scenes
implicated in panoramic imagery.

Vistas contains 18000/2000/5000 images for training, vali-
dation and testing. IDD20K comprises 14027/2036/4038 im-
ages in the train/val/test subsets. Both ground-truth labels for
the testing images are not openly available, but in this work the
PASS dataset is readily accessible for evaluation. For Vistas,
we use the 25 classes for training and report the segmentation
accuracy on the validation set as shown in Table I. For
IDD20K, we report results for the level-3 labels (26 classes) on
the validation set, as shown in Table II. We adopt the standard
Intersection-over-Union (IoU) as the evaluation metric:

IoU =
TP

TP + FP + FN
(9)

where TP , FP and FN are respectively the number of true
positives, false positives and false negatives at pixel level.

Unlabeled Panoramas Dataset. Regarding the unla-
beled panoramas for data distillation, we use the Pittsburgh
dataset [67]. Each capture is associated with 24 perspective
images with 2 pitch directions and 12 yaw directions. Each
perspective image has a horizontal FoV of 60◦ with overlap-
ping views with the horizontally adjacent ones. We stitch the
lower pitch images whose perspective matches road-driving
imagery by using the known stitching method [68]. Overall,
we obtain 966 stitched panoramas from the query set. Fig. 7
displays examples of the stitched panoramas and generated
annotations with our ensemble method. It can be seen that
although the labels are not as perfect as manually annotated,
they are pretty accurate and well defined. It should also be
noted that the panoramas provide rich and distinctly different
global contextual cues from those of conventional pinhole
images, e.g., various directions of roadways and sidewalks can
be simultaneously observed.
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TABLE I
CLASS-WISE SEGMENTATION ACCURACY OF THE JOINTLY-TRAINED ERF-PSPNET ON MAPILLARY VISTAS DATASET [11].

POL, STL, BIL ETC. ARE ABBREVIATIONS OF THE CLASSES: POLE, STREET LIGHT, BILLBOARD, TRAFFIC LIGHT, CAR, TRUCK, BICYCLE,
MOTORCYCLE, BUS, TRAFFIC SIGN FRONT, TRAFFIC SIGN BACK, ROAD, SIDEWALK, CURB, FENCE, WALL, BUILDING, PERSON, MOTORCYCLIST,

BICYCLIST, SKY, VEGETATION, TERRAIN, ROAD MARKING AND CROSSWALK. MEAN IOU (MIOU): 63.0%.

Pol StL Bil TrL Car Tru Bic Mot Bus SiF SiB Roa Sid
49.6% 27.5% 42.9% 56.9% 90.7% 65.6% 55.3% 55.1% 74.4% 66.9% 29.0% 90.8% 70.3%
Cur Fen Wal Bui Per MoC BiC Sky Veg Ter Mar Cro mIoU

58.2% 55.9% 51.4% 86.5% 71.9% 54.0% 49.3% 98.2% 89.9% 67.1% 53.7% 64.6% 63.0%

TABLE II
CLASS-WISE SEGMENTATION ACCURACY OF THE JOINTLY-TRAINED ERF-PSPNET ON IDD20K DATASET [15].

ROA, DRF, SID ETC. ARE ABBREVIATIONS OF THE CLASSES: ROAD, DRIVABLE FALLBACK, SIDEWALK, NONDRIVABLE FALLBACK, PEDESTRIAN,
RIDER, MOTORCYCLE, BICYCLE, AUTO RICKSHAW, CAR, TRUCK, BUS, VEHICLE FALLBACK, CURB, WALL, FENCE, GUARD RAIL, BILLBOARD,

TRAFFIC SIGN, TRAFFIC LIGHT, POLE, OBSTACLE FALLBACK, BUILDING, BRIDGE, VEGETATION AND SKY. MEAN IOU (MIOU): 64.2%.

Roa DrF Sid NoF Ped Rid Mot Bic AuR Car Tru Bus VeF
93.3% 63.0% 66.2% 49.7% 65.1% 69.1% 73.7% 34.8% 83.0% 88.0% 79.7% 86.7% 41.5%
Cur Wal Fen GuR Bil TrS TrL Pol ObF Bui Bri Veg Sky

74.2% 56.2% 41.1% 50.8% 60.2% 56.4% 23.2% 48.0% 42.8% 72.1% 65.7% 87.4% 96.7%

(a) Panorama with ground-truth annotation (b) Prediction without any ensemble (c) Prediction with our ensemble method

Fig. 8. Qualitative comparison of the predictions by the teacher model PSPNet50 [31]: (a) Panoramas with ground-truth annotations, (b) Predictions of
PSPNet50 without any ensemble nor PASS pipeline, (c) Predictions of PSPNet50 with the proposed ensemble method.

B. Training Setups

Teacher Network. We use PSPNet50 [31] as the teacher
model, which has mean IoU (mIoU) of 67.1% on Vistas and
66.5% on IDD20K. We experiment with different ensemble
methods and their combinations to generate annotations for
the panoramas. As shown in Table III, PSPNet achieves 41.4%
in the panoramic domain when testing without the PASS
pipeline, and achieves 70.6% with the PASS pipeline but
without any ensemble. This demonstrates that although the
PASS pipeline incurs more computation, the proposed usage
in the data preparation stage helps to generate significantly
more accurate panorama annotations. Regarding ensemble
methods, multi-scale prediction is widely used in semantic
segmentation methods [8][32], which helps to attain higher
accuracy. Horizontal flipping (mirroring) also helps to im-
prove the overall prediction certainty. Since the PASS pipeline
separates the panorama into 4 segments [16], the specialized
ensemble method starts with at least 8 times of rotations.
As shown in Table III, the specialized ensemble strategy

consistently boosts the mIoU, which becomes saturated until
32 times of rotations. Thereby, we use ensemble-32, and
generate duplicates of panoramas jointly with multi-scale and
mirroring transformations. We ensemble the teacher model’s
predictions by aggregating the probability maps for these
copies to form as the annotation of the unlabeled panorama
set for data distillation. Although ensemble increases the time
cost, it is automatically conducted and only used in the data
preparation phase, which does not impair the efficiency of the
student model. Finally, the accuracy boosts to 71.9%. Fig. 8
shows the predictions of PSPNet50 on panoramas from PASS
dataset, which demonstrates that overall the ensemble method
significantly improves the quality of the semantic maps. With
the certainty and continuity benefits that are also demonstrated
in Fig. 4, the automatically generated panoramic annotations
are more trusted for data distillation.

Student Network. For the student architecture, we ex-
periment with ERF-PSPNet [6], due to its real-time perfor-
mance, publicly available ImageNet [69] pre-trained weights
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TABLE III
ACCURACY ANALYSIS OF ENSEMBLE METHODS FOR VISTAS-TRAINED

TEACHER MODEL PSPNET50 [31] ON PASS DATASET.
ENSEMBLE-M: THE PANORAMA IS ROTATED FOR M TIMES WITH

VARIATION OF 360◦ /M TO FORM AS M TRANSFORMATIONS.

Ensemble method mIoU
Without PASS 41.4%

Without ensemble 70.6%
Multi-scale (MS) 71.3%

Mirror (MI) 71.1%
Ensemble-8 71.2%

Ensemble-16 71.3%
Ensemble-32 71.4%
Ensemble-64 71.4%

Ensemble-32+MS+MI 71.9%

and capability to exploit rich contextual priors. The models
are trained under Adam optimization [70] with a Weight
Decay of 2.0×10−4 and an initial Learning Rate of 5.0×10−4

that decreases exponentially over 200 epochs. We feed the
samples with a batch size of 12 and a resolution of 1024×512
as a balance between the two heterogeneous training sets
(Vistas+IDD20K). For the multi-source training, each iteration
comprises a forward pass and a backward pass per dataset
using cross-entropy loss functions. In the omnisupervised
setting, we also experiment with the ERF-PSPNet variants to
study whether they help to gather more global context-aware
features in the panoramas.

C. Semantic Segmentation Accuracy

As shown in Table IV, the ERF-PSPNet trained indepen-
dently on Vistas and IDD20K achieves 61.6% and 63.2% of
mIoU on the respective validation dataset. The joint-training
boosts the scores to 63.0% and 64.2%, which demonstrates
the benefit of multi-source supervision. The improvement is
due to the more generalized feature representation thanks to
our framework that bridges multiple datasets in training. These
results surpass those of previous efficient networks including
SegNet [29], DRNet [30] and ERFNet [12] attempted on
IDD dataset. Compared with the USSS approach [65] which
also trains on multiple sources through a semi-supervised
solution, our score is significantly higher because we are able
to leverage the full IDD20K and Vistas supervision. In Table I
and Table II, we present the class-wise accuracies on Vistas
and IDD20K validation sets obtained by our multi-source
training. This sets the new state of the art among efficient
semantic segmentation CNNs on the challenging unstructured
IDD20K database. Regarding the omnisupervised solution, it
slightly decreases the accuracy on the validation sets, which is
reasonable as the validation data only contain pinhole images,
but the student becomes more generalized and ready to be
deployed in open omnidirectional imagery.

D. Generalization in Panoramic Domain

We step further to study the generalizability in panoramic
domain by using the Panoramic Annular Semantic Segmenta-
tion (PASS) database. In Table V, we present the accuracy,
Memory Access Costs (MACs) and Parameters (PARAMs)

TABLE IV
ACCURACY ANALYSIS ON IDD20K DATASET [15] IN MIOU.

Network IDD20K Vistas
SegNet [29] 38.4% NA

DRNet (ResNet18) [30] 52.2% NA
USSS (ResNet18) [65] 27.5% NA
USSS (ResNet50) [65] 55.1% NA

ERFNet [12] 55.4% NA
ERF-PSPNet (Vistas-trained) NA 61.6%
ERF-PSPNet (IDD-trained) 63.2% NA

ERF-PSPNet (Jointly-trained) 64.2% 63.0%
ERF-PSPNet (Omnisupervised) 64.0% 62.9%

ERF-PSPNet+OC (Omnisupervised) 64.2% 63.2%
ERF-PSPNet+scSE (Omnisupervised) 64.2% 63.6%

of four computation-expensive networks SegNet [29], PSP-
Net50 [31], DenseASPP [33] with DenseNet121 [9] and
DANet [34] with ResNet50 [1], both trained on Mapillary
Vistas by using the proposed hyper-parameters for them in
their respective publications. They are tested by viewing the
panorama as a single segment without any ensemble nor
separation. We also include a variety of efficient networks
including ENet [38], LinkNet [39], SwiftNet [13], Swaft-
Net [14], etc. These real-time networks experimented by [14],
are also tested in an end-to-end way. But they rely on a het-
erogeneous set of data augmentation and style transfer-based
domain adaptation strategies, which are known beneficial for
improving the performance in target domains [16][25]. In
comparison, our approach is more realistic as normally the
style and knowledge about the target domain are inaccessible.
Overall, as shown in Table V, our omnisupervised solution
with ERF-PSPNet outperforms state-of-the-art networks on
PASS dataset without using any domain adaptation strategy
nor increasing any computation complexity.

On the Benefit of Multi-Source Training. PASS is a
highly unconstrained domain as in panoramic imagery, traffic
participants with diverse orientations can be simultaneously
observed (see examples in Fig. 2). In addition, sometimes
there are many close pedestrians present in the images from
PASS dataset. In Table VI, we perform ablation studies and
analyses of different training methods. As the annotations of
the PASS dataset for testing were created according to the
labels definition of Mapillary Vistas, in most cases we evaluate
the performance with the Vistas-space result. However, we
could also evaluate by using the IDD-space result, but the score
is lower due to the discrepancy of the classes. For instance,
in IDD20K space, curb class is defined in a different way.
Accordingly, as shown in Table VI, Vistas-trained and IDD-
supervised ERF-PSPNet achieves 32.2% and 20.1% of mIoU
on the PASS dataset, respectively.

Surprisingly, our jointly-supervised ERF-PSPNet based on
Vistas and IDD20K boosts the mIoU to 41.0%, significantly
higher than independent-training results (20.1% and 32.0%).
The huge robustness gains are obtained owing to the well
generalized feature representation offered by our training
with multiple heterogeneous datasets. Specifically, IDD20K-
supervision exhibits the student to highly unstructured scenes
while Vistas-supervision affords the high data diversity, which
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TABLE V
ACCURACY AND COMPUTATION COMPLEXITY ANALYSIS ON PANORAMIC ANNULAR SEMANTIC SEGMENTATION (PASS) DATASET.

ALL NETWORKS ARE TESTED BY VIEWING THE PANORAMA AS A SINGLE SEGMENT WITHOUT ANY SEPARATION.

Network Car Road Sidewalk Crosswalk Curb Person mIoU MACs PARAMs
SegNet [29] 57.5% 52.6% 17.9% 11.3% 11.6% 3.5% 25.7% 398.3G 28.4M

PSPNet (ResNet50) [31] 76.2% 67.9% 34.7% 19.7% 27.3% 22.6% 41.4% 403.0G 53.3M
DenseASPP (DenseNet121) [33] 65.8% 62.9% 30.5% 8.7% 23.0% 8.7% 33.3% 78.3G 8.3M

DANet (ResNet50) [34] 70.0% 67.8% 35.9% 21.3% 12.6% 25.9% 38.9% 114.1G 47.4M
ENet [38] 59.4% 59.6% 27.1% 16.3% 15.4% 8.2% 31.0% 4.9G 0.4M

LinkNet [39] 62.6% 64.9% 23.2% 6.6% 18.1% 7.5% 30.5% 25.8G 11.5M
SQNet [40] 56.5% 57.2% 19.1% 21.4% 10.4% 3.0% 27.9% 206.7G 16.3M
ICNet [41] 49.3% 52.4% 20.0% 16.7% 6.7% 9.3% 25.7% 10.3G 11.6M

ESPNet [42] 52.6% 51.4% 21.6% 10.5% 6.5% 5.6% 24.7% 5.6G 0.2M
EDANet [43] 61.4% 64.0% 28.1% 6.3% 15.2% 8.1% 30.5% 9.0G 0.7M
BiSeNet [44] 61.8% 58.3% 17.3% 12.7% 10.8% 5.3% 27.7% 26.1G 12.9M
CGNet [45] 65.2% 56.9% 23.7% 3.8% 11.2% 21.4% 30.4% 7.0G 0.5M
ERFNet [12] 70.0% 57.3% 25.4% 22.9% 15.8% 15.3% 34.3% 30.3G 2.1M

PSPNet (ResNet18) [31] 64.1% 67.7% 31.2% 15.1% 17.5% 12.8% 34.8% 235.0G 17.5M
ERF-PSPNet [7] 71.8% 65.7% 32.9% 29.2% 19.7% 15.8% 39.2% 26.6G 2.5M

ERF-APSPNet [16] 72.3% 71.4% 32.6% 5.6% 16.3% 14.5% 35.5% 26.6G 2.5M
SwiftNet [13] 67.5% 70.0% 30.0% 21.4% 21.9% 13.7% 37.4% 41.7G 11.8M
SwaftNet [14] 76.4% 64.1% 33.8% 9.6% 26.9% 18.5% 38.2% 41.8G 11.9M

ERF-PSPNet (Omnisupervised) 81.4% 71.9% 39.1% 24.6% 26.4% 44.1% 47.9% 26.6G 2.5M
ERF-PSPNet+OC (Omnisupervised) 85.1% 76.8% 41.2% 11.8% 27.9% 53.9% 49.5% 32.5G 2.5M

ERF-PSPNet+scSE (Omnisupervised) 83.3% 75.4% 46.8% 33.3% 28.2% 51.3% 53.0% 26.7G 2.6M

are both important for robust semantic segmentation in om-
nidirectional imagery. Overall, our multi-source joint-training
already achieves greater mIoU than the best efficient networks
previously attempted on PASS dataset.

On the Benefit of Omni-Supervised Training. Moreover,
our multi-source omnisupervised solution, denoted as ERF-
PSPNet (Omnisupervised) in Table VI, further dramatically
boosts the mIoU from 41.0% to 47.9%, even exceeding by
6.5% and 9.7% the computation-intensive PSPNet and the
detail-sensitive SwaftNet, respectively. This increase is due
to our omnisupervised proposal that exposes the student to
omnidirectional data in the training phase.

We additionally compare with two training methods. The
first is to directly train the model using Pittsburgh dataset
(panoramic data) with the generated labels, which achieves
29.7%. The second is to finetune the model ERF-PSPNet
(IDD20K+Vistas) on the Pittsburgh dataset also in a multi-
source training way, which decreases the accuracy from 41.0%
to 39.0%. They are not helpful due to the low diversity in
the training panoramas and the gap between training/testing
panoramic domains. In contrast, our omnisupervised solution
effectively bridges multiple sources, successfully exploiting
both the diversity in pinhole images and the knowledge in
panoramic data, therefore the mIoU is rocked to 47.9% in the
unseen omnidirectional domain.

We also compare with other distillation methods. First, we
experiment with standard data distillation methods that use
conventional pinhole images instead of panoramic images. We
leverage the unlabeled images in the testing sets of Mapillary
Vistas and IDD20K. It achieves 38.0% when trained in a
multi-source manner. In another setting, we perform data
distillation with Mapillary Vistas and ADE20K [71], which
achieves 37.8%, still far lower than our approach. These
show that the benefit of our omnisupervised solution is not
merely owing to the increased amount of training samples

but also importantly the knowledge in omnidirectional images.
Second, we compare with two distillation methods including
Local knowledge distillation [58] by distilling the probability
outputs, and Relational knowledge distillation [57] by using
the distance-wise loss [57] on the feature maps before final
upsampling and classification. They are both trained in the
multi-source manner. However, both of them are not as effec-
tive as our omnisupervised approach in terms of mIoU. Finally,
we evaluate in the single-source data distillation setting by
using the panoramas with automatically generated labels in
the Vistas space, which achieves 46.3%, clearly lower than
our multi-source omnisupervised solution.

To further verify that the proposal allows the student to
exploit the global contextual information in the panoramas,
we perform experiments with the architecture variants ERF-
PSPNet+OC and ERF-PSPNet+scSE. Both the non-local at-
tention operations employed in these architectures help to
capture global context cues [35][66]. Thus, the omnisupervised
solution based on these architecture variants leads to higher
mIoU (49.5% and 53.0%). The benefits are more evident
on the panoramic dataset than those on the pinhole datasets
(see Table IV). This indicates that the leveraged non-local
operations are exceptionally beneficial for exploiting the global
features that are distinctly rich and important in the panoramic
data. It again demonstrates the significance of our omnisuper-
vised solution that covers panoramic imagery in the training,
and therefore enables the student to access and harvest the rich
contextual priors in panoramas. Especially, ERF-PSPNet+scSE
clearly stands out in front of previous works, outstripping
by large margins the scores achieved with state-of-the-art
accuracy/efficiency-oriented networks.

In Table VII, we compare our omnisupervised ERF-
PSPNets against three high-efficiency networks as well as
DenseASPP [33], a top-accuracy sophisticated architecture
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TABLE VI
ACCURACY ANALYSIS OF DIFFERENT TRAINING AND DISTILLATION METHODS ON PANORAMIC ANNULAR SEMANTIC SEGMENTATION (PASS) DATASET.

BOLD FONTS DENOTE THE METHODS OF THIS WORK.

Method Car Road Sidewalk Crosswalk Curb Person mIoU
Vistas-trained 68.8% 62.0% 26.6% 3.9% 17.5% 14.1% 32.2%

IDD20K-trained 53.4% 51.2% 3.2% 0.0% 2.3% 10.6% 20.1%
Pittsburgh-trained 71.1% 68.7% 26.3% 0.0% 11.9% 0.2% 29.7%

Multi-source trained (IDD20K+Vistas) 75.5% 70.9% 32.5% 13.0% 20.6% 33.5% 41.0%
Fine-tuned (IDD20K+Vistas) 82.6% 74.1% 21.6% 0.6% 25.7% 29.4% 39.0%

Standard data distillation (IDD20K+Vistas) 74.4% 68.5% 31.3% 10.9% 18.3% 24.3% 38.0%
Standard data distillation (ADE20K+Vistas) 68.4% 74.0% 39.6% 11.6% 18.7% 14.8% 37.8%

Relational knowledge distillation [57] 81.4% 75.6% 35.8% 15.2% 28.0% 38.8% 45.8%
Local knowledge distillation [58] 81.9% 70.9% 26.6% 0.0% 26.9% 16.9% 37.2%

Single-source data distillation 83.9% 77.4% 46.4% 4.1% 25.4% 40.8% 46.3%
Our omnisupervised solution 81.4% 71.9% 39.1% 24.6% 26.4% 44.1% 47.9%

while only requiring moderate computation power. We com-
pare the accuracy in mIoU on PASS dataset (the same in
Table V) and speed in Frames Per Second (FPS) at the
resolution of 1024×512. The FPS metric directly corresponds
to the processing time tested on different GPU processors
including NVIDIA Titan RTX, GTX 1080Ti and RTX 2080Ti,
where the batch size has been set to 1 to simulate real-
time applications. We report the mean FPS values over 400
forward passes running through all panoramas in the PASS
dataset. It can be seen that our ERF-PSPNets reach high
accuracies while running with inference speeds far above the
real-time constraint. In addition, the ERF-PSPNet variants with
attention operations only increase the computation complexity
by small fractions. A comprehensive speed comparison with
more efficient networks can be found in [16].

TABLE VII
ACCURACY IN MIOU AND SPEED IN FRAMES PER SECOND (FPS) OF

OMNISUPERVISED ERF-PSPNET VARIANTS COMPARED WITH THE STATE
OF THE ART ON PASS DATASET [16].

Network Accuracy Speed on GPU processors
PASS Titan RTX 1080Ti 2080Ti

DenseASPP [33] 33.3% 70.6 30.8 57.7
ERFNet [12] 34.3% 148.7 78.4 105.6
EDANet [43] 30.5% 152.7 76.9 106.4
CGNet [45] 30.4% 93.1 49.0 68.7
ERF-PSPNet 47.9% 164.7 91.2 132.1

ERF-PSPNet+OC 49.5% 121.3 72.0 87.6
ERF-PSPNet+scSE 53.0% 139.5 74.3 115.0

E. Qualitative Analysis and Discussion

Fig. 9 displays representative predictions of our omnisuper-
vised ERF-PSPNet in multiple semantic spaces. On the one
hand, clear and highly robust segmentation can be observed.
Besides, in this demonstration, it is shown that while only
a single model is yielded, it delivers multiple sets of visual
classes that are complementary to each other. For example, in
the Vistas space, crosswalks and curbs can be predicted which
are absent in IDD20K space (see Fig. 9), but IDD20K-space
results can help to foresee safety-critical classes like auto-
rickshaws whose behavior is highly unpredictable, as shown
from the 4th to 6th rows (denoted in yellow). As a result,
the detectable semantics and recognizable classes have been

enriched, which are often required to fully understand real-
world unconstrained surroundings. Fig. 10 further visualizes
predictions of our approach in contrast with the state-of-
the-art top-accuracy network DANet. It can be seen that
DANet suffers from large accuracy downgrade when taken
to omnidirectional imagery, while our omnisupervised high-
efficiency ERF-PSPNet maintains a good performance in the
previously unseen panoramic domain.

We also perform an experiment by testing with different
FoVs of inputs in the panorama. As shown in Fig. 11, we
crop different FoVs around the unfolded panorama center
with variations of 10◦ for each point, and input the cropped
images from the PASS dataset to the Vistas-trained ERF-
PSPNet (baseline) and Omni-supervised ERF-PSPNet (our
proposal). As it can be clearly seen, our proposal outperforms
the baseline for all FoVs of inputs, while the gap is especially
large for ultra-wide angles. In this sense, the proposal is
not strictly tied to 360◦ panorama segmentation, but can be
effective and deployed with other wide-angle omnidirectional
cameras, e.g., fisheye, catadioptric and polydioptric lenses.
However, while our omnisupervised solution has reaped huge
generalization gains for large-FoV omnidirectional data, the
performance is still not as accurate as the most comfortable
angles. Thereby, if the computation budget is available, one
can also use the PASS pipeline [16], or the ensemble methods
in the deployment to further improve the reliability.

F. Deployment on an Instrumented Vehicle

To verify the applicability for IV systems, we deploy our
omnisupervised ERF-PSPNet on a fully electric instrumented
vehicle as shown in Fig. 12a. We use a newly designed
panoramic annular lens system, which images a FoV of
360◦×70◦. It has been installed on the top of the instrumented
vehicle with a LiDAR sensor. It has a FoV of 40◦ above the
horizontal plane, and a surrounding view with 30◦ vertical
FoV below, which allows to perceive more information about
the roadways than the PASS data [16]. We use an NVIDIA
Jetson Nano that is very portable to be deployed on driving
systems, where a single forward pass of ERF-PSPNet achieves
15.9FPS at the resolution of 1024×512. In contrast, the
previous PASS [16] system runs only at 4.2FPS due to the
computation-intensive operations burdened on the segmenter.
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(a) Raw (b) Unfolded (c) Prediction in Vistas space (d) Prediction in IDD20K space

Fig. 9. Qualitative examples of omnisupervised omnidirectional semantic segmentation on images from PASS dataset: (a) Raw, (b) Unfolded panoramas,
(c) Predictions in Vistas space and (d) IDD20K space.

This demonstrates that our omnisupervised solution enables to
fulfill omnidirectional semantic segmentation in near real time
even on an embedded processor, because the efficient CNN is
directly applicable via a single pass, without any panorama
separation nor domain adaptation that would incur additional
computationally costly processing.

We perform a cross-season data collection with the in-
strumented vehicle at the Chengyuan campus of Zhejiang
University in both summer and winter (see Fig. 12). This
dataset has also been made publicly available together with
the extended PASS dataset. Owing to the proposed solution
that benefits the generalization and the panoramic imaging
FoV that matches with the instrumented vehicle, the predicted
semantic maps are highly precise and robust under different
weather and illumination conditions.

Furthermore, we experiment by virtually navigating the
instrumented vehicle in nine cities: New York, Beijing, Shang-
hai, Changsha, Hangzhou, Huddersfield, Madrid, Karlsruhe
and Sydney, which exhibits a significantly larger variability
in terms of geographic origins. This is achieved by using
Google Street View to generate panoramas of the regions.
For each panorama of 13312×6656 pixels, we crop 70◦ of
vertical FoV with the pitch directions from −30◦ to 40◦, which
corresponds to the FoV of the panoramic annular camera
on the instrumented vehicle. For each city, we gather 20
panoramas, to form as a set of 180 panoramas provided to the
community. As shown in Fig. 13, the proposed omnisupervised

solution helps the student generalize well to broader areas
of the world than our campus thanks to multi-source data
distillation. Even in adverse conditions such as the nighttime
and rainy scenes (see Beijing and Shanghai examples in the
2nd/3rd rows of Fig. 13), panoramic segmentation maintains
qualified. In summary, from both efficiency and generaliz-
ability perspectives, our approach is ideally suitable for IV
applications. Meanwhile, it leaves rich opportunities to fuse
the 360◦ semantics with LiDAR point clouds for complete
scene understanding.

V. CONCLUSIONS

In this work, we have proposed an omnisupervised omni-
directional semantic segmentation framework, which bridges
multiple heterogeneous data resources. We show that omnisu-
pervised learning approached by multi-source data distillation
has empowered the learner to gain significant benefits, making
efficient CNNs like our ERF-PSPNet become suitable for
wide FoV omnidirectional semantic segmentation. While only
a single model is yielded in the omnisupervised training, it
delivers multiple sets of visual classes, enriching the detectable
semantics required to fully understand complex real-world
unconstrained surroundings.

We show that 360◦ scene parsing can be addressed by run-
ning the single model in a single pass, without any panorama
separation, fusion nor domain adaptation, so the inference
efficiency of the CNN is maintained in the deployment phase.
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(a) Panorama with ground-truth annotation (b) DANet50 (c) Our omnisupervised ERF-PSPNet

Fig. 10. Qualitative comparison of our approach with the state of the art: (a) Panoramas with ground-truth annotation, (b) Predictions of DANet (with
ResNet50) [34], (c) Predictions of our solution (omnisupervised ERF-PSPNet).
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Fig. 11. Accuracy curves of the proposed omni-supervised ERF-PSPNet
compared with the baseline measured in mIoU by using different FoVs of
inputs from the panoramas.

Besides, it allows the segmenter to exploit the distinctly rich
global context-aware features in the panoramas with non-
local attention operations. We integrate the omnisupervised
ERF-PSPNet on an instrumented vehicle with a panoramic
annular lens, demonstrating that from both efficiency and
generalizability perspectives, the system is ideally suitable for
IV applications. In the future, we aim to obtain a large-scale
panoramic dataset with images from all of the world, and
achieve panoramic panoptic segmentation to enable a more
unified scene perception.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2016, pp. 770–778.

[2] W. Wang, J. Shen, and H. Ling, “A deep network solution for attention
and aesthetics aware photo cropping,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 7, pp. 1531–1544, 2018.

[3] W. Wang, X. Lu, J. Shen, D. Crandall, and L. Shao, “Zero-shot
video object segmentation via attentive graph neural networks,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
IEEE, pp. 9235–9244.

[4] X. Dong, J. Shen, D. Wu, K. Guo, X. Jin, and F. Porikli, “Quadruplet
network with one-shot learning for fast visual object tracking,” IEEE
Transactions on Image Processing, vol. 28, no. 7, pp. 3516–3527, 2019.

[5] Z. Liang and J. Shen, “Local semantic siamese networks for fast
tracking,” IEEE Transactions on Image Processing, vol. 29, pp. 3351–
3364, 2019.

[6] K. Yang, L. M. Bergasa, E. Romera, R. Cheng, T. Chen, and K. Wang,
“Unifying terrain awareness through real-time semantic segmentation,”
in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp.
1033–1038.

[7] K. Yang, X. Hu, L. M. Bergasa, E. Romera, X. Huang, D. Sun, and
K. Wang, “Can we pass beyond the field of view? panoramic annular
semantic segmentation for real-world surrounding perception,” in 2019
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 446–453.

[8] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2015, pp. 3431–3440.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 2261–
2269.

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2016, pp.
3213–3223.

[11] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The mapillary
vistas dataset for semantic understanding of street scenes,” in 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, 2017, pp.
5000–5009.

[12] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Erfnet: Effi-
cient residual factorized convnet for real-time semantic segmentation,”
IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 1,
pp. 263–272, 2018.
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