
From Soundiness to
Soundness

Yannis Smaragdakis
 University of Athens

Soundness

An oft-used term in program analysis
Example quotes in recent keynote:

 “A parallel library for the static analysis of Java
bytecode”

 “based on abstract interpretation”
 “hence sound”

2Yannis Smaragdakis
University of Athens

Define Soundness!

What does it mean for an
analysis to be sound?

either a static one or a dynamic one

3Yannis Smaragdakis
University of Athens

Sound =
 “It works well” ?

4Yannis Smaragdakis
University of Athens

Sound =
 “It has a theory behind it” ?

5Yannis Smaragdakis
University of Athens

Sound =
 “There is a proof of some property” ?

6Yannis Smaragdakis
University of Athens

No!

Soundness has a well-defined meaning
It only has to do with the analysis itself

not with what we can prove about it

Sound = “analysis claim implies truth”
Same definition as in mathematical logic:

proof of P implies P
often:

“the logic can only prove true theorems”

7Yannis Smaragdakis
University of Athens

Sound =
 AnalysisClaim(P) → P

8Yannis Smaragdakis
University of Athens

Examples

Analysis: the program has a race →
the race is real (“no false positives”)

Analysis: the program is well-typed →
no run-time type errors (“no false negatives”)

Analysis: call may invoke these N methods →
no others ever called (“overapproximate”)

Analysis: expressions must be aliases →
they can never have different values
(“underapproximate”)

9Yannis Smaragdakis
University of Athens

Hold on! You Just Told Us
Soundness Means 4 Things?

Yes! And that’s the first difficulty
sound may mean “underapproximate”, but

also “overapproximate”
sound may mean “no false positives”, but

also “no false negatives”
Sound = AnalysisClaim(P) → P
But what claim does an analysis make?
Often only in the mind of its user:

claim is a matter of interpretation

10Yannis Smaragdakis
University of Athens

Example Analysis Claims

An analysis returns x results
is it a claim that these are the only ones?

a “may-analysis”

is it a claim that at least these are valid?
a “must-analysis”

An analysis warns of bugs
is it a claim that these are real bugs?

a “bug-detector”

is it a claim that no other bugs exist?
a “verifier”

11Yannis Smaragdakis
University of Athens

Common Patterns for
Correctness Analyses

Dynamic analyses are usually bug detectors
i.e., analysis claims to find bugs
sound = only true warnings
e.g., race detection, fuzzing, dynamic-

symbolic execution
Static analyses are often verifiers

analysis certifies the absence of errors
sound = finds all errors
e.g., type systems, data-flow analyses

12Yannis Smaragdakis
University of Athens

What About Other Analyses?

In the static analysis world:
may/possible-analysis = aims to be

overapproximate
sound = all actual behaviors are captured

must/definite-analysis = aims to be
underapproximate
sound = only captures actual behaviors

13Yannis Smaragdakis
University of Athens

Now “Complete”

We saw: Sound = AnalysisClaim(P) → P
Complete = P → AnalysisClaim(P)

Sound =
AnalysisClaim(P) → P ≡
P → AnalysisClaim(P) ≡
P → AnalysisClaim(P)

An analysis that is sound for a property P
is complete for property P, and vice versa
e.g., a sound verifier is a complete bug finder

14Yannis Smaragdakis
University of Athens

Soundness In Static Analysis

There is no practical static whole-program
may-analysis that is sound

 (whole-program: models the heap)
 this is remarkable!

What about all these soundness proofs, claims,
etc.?

proof/claim is for a limited language
unsoundness is due to highly dynamic features in

full language:
reflection, dynamic loading, setjmp/longjmp, eval

15Yannis Smaragdakis
University of Athens

Soundiness [CACM’15]

Soundy analysis:
sound handling of most language features
deliberately unsound handling of a feature

subset
subset well recognized by experts

A soundy analysis aims to be as sound as
possible without compromising precision and/or
scalability

All “sound” analyses are really just soundy

16Yannis Smaragdakis
University of Athens

Why Is Soundness Difficult?

x = y.f;
z = y.f;

x == y?
y may have escaped to other thread

w.foo(); // only one foo in the program
 is it the one called? Maybe more loaded

dynamically

c = Class.forName(str);
should it return all possible classes? Too

imprecise

17Yannis Smaragdakis
University of Athens

Why Is Soundness Difficult?

Best-effort handling of complex features is too
expensive!

Different analysis logic: cannot just enumerate
values

More than half of the program non-analyzable
Expensive: work wasted (more on this later)

So, what can we do?

18Yannis Smaragdakis
University of Athens

Approach I: Empirical
Soundness
Empirical soundness:

quantify unsoundness, get it close to zero
It now makes sense to talk about “more sound”

and “less sound”
Try to capture practical usage patterns of

dynamic language features
Common theme in much recent work

Livshits et al. (JavaScript analysis for libraries)
Li et al. (Java reflection analysis)

19Yannis Smaragdakis
University of Athens

Analysis Pattern: Inter-Proc.
Back-Propagation [APLAS’15]

 Create dummy objects, see how they are used,
determine what they could have been!

 Class c = Class.forName(className);
…

Object o = c.newInstance();
…

e = (Event) o;
 c points to a special object, propagates as-if normal
 when it gets to the cast, we can guess what c was

20Yannis Smaragdakis
University of Athens

Analysis Pattern:
Inter-Proc. Back-Propagation
 The same idea applies to lots of patterns

Class c =
Class.forName(className);
…

Field f = c.getField(fieldName);
 when c gets to getField, we can guess what it

was
 if we know (something about) fieldName

21Yannis Smaragdakis
University of Athens

Notes on
Inter-Proc. Back-Propagation
 It is “more sound” to over-guess objects based

on use
 the analysis is a may-analysis

 Livshits et al. and Li et al. do the same but for
fewer patterns, mostly intra-procedurally
 why? To avoid over-guessing for reasons of

precision and analysis cost
 We handle these concerns separately

22Yannis Smaragdakis
University of Athens

Approach II: Full Soundness,
for Parts of the Program

Accept that a sound analysis will only give
results for parts of the program, see how much

Defensive analysis: sound-by-definition static
analysis

Anything that is inferred is guaranteed
conservative (overapproximate)

Need special encoding: a top value (T) to
designate “any value”

Need special handling to avoid wasting work

23Yannis Smaragdakis
University of Athens

Wasting Work
while (...)
{ x = y.fld;
 x.foo(y); }

Say we know all the (currently) possible values
of y and of y.fld

We get values for x
One of these results in a new foo target
Yielding a T for y.fld
This should invalidate all earlier values for x

24Yannis Smaragdakis
University of Athens

Defensive Analysis
while (...)
{ x = y.fld;
 x.foo(y); }

Never infer anything unless guaranteed to have
all values

Values of y and of y.fld remain “unknown”
Defensive: “unknown” and “all values” (T) are

equivalent
Idea: represent both by the empty set of values

25Yannis Smaragdakis
University of Athens

Empty Set

An empty set of values means “cannot bound”
Lots of advantages:

no explicit representation, no cost
naturally encodes defensive behavior

no difference between “cannot be certain the
set of values is bounded” and “the set of values
is unbounded”

no wasted work: sets start empty and only
grow
never revert to empty

26Yannis Smaragdakis
University of Athens

Defensive Analysis: in Doop

Datalog-based analysis framework for Java
[OOPSLA’09, PLDI’10, POPL’11, OOPSLA’13,
 PLDI’13, PLDI’14, SAS’16, …]

2-3K logical rules (20-25KLoC)
Very high performance (often 10x over prior work)
Sophisticated, very rich set of analyses

 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity,
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type
filtering, precise exception analysis

High completeness: full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class

initialization, finalization, cast checking, assignment compatibility

27

http://doop.program-analysis.org

Yannis Smaragdakis
University of Athens

Defensive Analysis Results

Can still cover ~40% of realistic programs
Meaning: 40% of the program variables get

sets of values that are not empty
The rest conservatively over-approximated to

empty, i.e., T

28Yannis Smaragdakis
University of Athens

Conclusions

29Yannis Smaragdakis
University of Athens

Recap

Soundness is a property of an analysis
not a meta-property, nothing to do with proofs

One should be clear on analysis “claims”
 they are subject to interpretation, affect soundness

No practical static analysis* is sound
surprising but true

Once we accept this, we can do interesting stuff
in this space

empirical soundness + defensive (lower coverage)

30Yannis Smaragdakis
University of Athens

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

