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Soundness

An oft-used term in program analysis
Example quotes in recent keynote: 

 “A parallel library for the static analysis of Java 
bytecode”

 “based on abstract interpretation”
 “hence sound”
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Define Soundness!

What does it mean for an 
analysis to be sound?

either a static one or a dynamic one
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Sound = 
  “It works well” ?
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Sound = 
  “It has a theory behind it” ?
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Sound = 
  “There is a proof of some property” ?
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No!

Soundness has a well-defined meaning
It only has to do with the analysis itself

not with what we can prove about it

Sound = “analysis claim implies truth”
Same definition as in mathematical logic:

proof of P implies P
often: 

“the logic can only prove true theorems”
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Sound = 
   AnalysisClaim(P) → P
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Examples

Analysis: the program has a race → 
the race is real (“no false positives”)

Analysis: the program is well-typed → 
no run-time type errors (“no false negatives”)

Analysis: call may invoke these N methods →
no others ever called (“overapproximate”)

Analysis: expressions must be aliases → 
they can never have different values 
(“underapproximate”)
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Hold on! You Just Told Us 
Soundness Means 4 Things?

Yes! And that’s the first difficulty
sound may mean “underapproximate”, but 

also “overapproximate”
sound may mean “no false positives”, but 

also “no false negatives”
Sound = AnalysisClaim(P) → P
But what claim does an analysis make?
Often only in the mind of its user:

claim is a matter of interpretation
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Example Analysis Claims

An analysis returns x results
is it a claim that these are the only ones?

a “may-analysis” 

is it a claim that at least these are valid?
a “must-analysis”

An analysis warns of bugs
is it a claim that these are real bugs?

a “bug-detector”

is it a claim that no other bugs exist?
a “verifier”
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Common Patterns for 
Correctness Analyses

Dynamic analyses are usually bug detectors
i.e., analysis claims to find bugs
sound = only true warnings
e.g., race detection, fuzzing, dynamic-

symbolic execution
Static analyses are often verifiers

analysis certifies the absence of errors
sound = finds all errors
e.g., type systems, data-flow analyses
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What About Other Analyses?

In the static analysis world:
may/possible-analysis = aims to be 

overapproximate
sound = all actual behaviors are captured

must/definite-analysis = aims to be 
underapproximate
sound = only captures actual behaviors
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Now “Complete”

We saw: Sound = AnalysisClaim(P) → P
Complete = P → AnalysisClaim(P)
 

Sound = 
AnalysisClaim(P) → P  ≡
P → AnalysisClaim(P) ≡
P → AnalysisClaim(P) 

An analysis that is sound for a property P 
is complete for property P, and vice versa
e.g., a sound verifier is a complete bug finder
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Soundness In Static Analysis

There is no practical static whole-program 
may-analysis that is sound

 (whole-program: models the heap)
 this is remarkable!

What about all these soundness proofs, claims, 
etc.?

proof/claim is for a limited language
unsoundness is due to highly dynamic features in 

full language: 
reflection, dynamic loading, setjmp/longjmp, eval
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Soundiness [CACM’15]

Soundy analysis: 
sound handling of most language features
deliberately unsound handling of a feature 

subset 
subset well recognized by experts

A soundy analysis aims to be as sound as 
possible without compromising precision and/or 
scalability

All “sound” analyses are really just soundy
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Why Is Soundness Difficult?

x = y.f;
z = y.f;

x == y?
y may have escaped to other thread

w.foo();  // only one foo in the program
 is it the one called? Maybe more loaded 

dynamically

c = Class.forName(str);
should it return all possible classes? Too 

imprecise
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Why Is Soundness Difficult?

Best-effort handling of complex features is too 
expensive!

Different analysis logic: cannot just enumerate 
values

More than half of the program non-analyzable
Expensive: work wasted (more on this later)

So, what can we do?
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Approach I: Empirical 
Soundness
Empirical soundness:

quantify unsoundness, get it close to zero
It now makes sense to talk about “more sound” 

and “less sound”
Try to capture practical usage patterns of 

dynamic language features 
Common theme in much recent work

Livshits et al. (JavaScript analysis for libraries)
Li et al. (Java reflection analysis) 
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Analysis Pattern: Inter-Proc. 
Back-Propagation [APLAS’15]

 Create dummy objects, see how they are used, 
determine what they could have been!

 Class c = Class.forName(className);
… 

Object o = c.newInstance();
…

e = (Event) o; 
 c points to a special object, propagates as-if normal
 when it gets to the cast, we can guess what c was
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Analysis Pattern:
Inter-Proc. Back-Propagation
 The same idea applies to lots of patterns

Class c = 
Class.forName(className);
… 

Field f = c.getField(fieldName); 
 when c gets to getField, we can guess what it 

was
 if we know (something about) fieldName
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Notes on
Inter-Proc. Back-Propagation
 It is “more sound” to over-guess objects based 

on use
 the analysis is a may-analysis

 Livshits et al. and Li et al. do the same but for 
fewer patterns, mostly intra-procedurally
 why? To avoid over-guessing for reasons of 

precision and analysis cost
 We handle these concerns separately
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Approach II: Full Soundness, 
for Parts of the Program

Accept that a sound analysis will only give 
results for parts of the program, see how much

Defensive analysis: sound-by-definition static 
analysis

Anything that is inferred is guaranteed 
conservative (overapproximate)

Need special encoding: a top value (T) to 
designate “any value”

Need special handling to avoid wasting work
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Wasting Work
while (...) 
{ x = y.fld;
  x.foo(y); }

Say we know all the (currently) possible values 
of y and of y.fld

We get values for x
One of these results in a new foo target
Yielding a T for y.fld
This should invalidate all earlier values for x
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Defensive Analysis
while (...) 
{ x = y.fld;
  x.foo(y); }

Never infer anything unless guaranteed to have 
all values

Values of y and of y.fld remain “unknown” 
Defensive: “unknown” and “all values” (T) are 

equivalent
Idea: represent both by the empty set of values
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Empty Set

An empty set of values means “cannot bound”
Lots of advantages:

no explicit representation, no cost
naturally encodes defensive behavior

no difference between “cannot be certain the 
set of values is bounded” and “the set of values 
is unbounded”

no wasted work: sets start empty and only 
grow
never revert to empty
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Defensive Analysis: in Doop

Datalog-based analysis framework for Java
[OOPSLA’09, PLDI’10, POPL’11, OOPSLA’13, 
  PLDI’13, PLDI’14, SAS’16, …]

2-3K logical rules (20-25KLoC) 
Very high performance (often 10x over prior work)
Sophisticated, very rich set of analyses

 subset-based analysis, fully on-the-fly call graph discovery, field-sensitivity, context-sensitivity, 
call-site sensitive, object sensitive, thread sensitive, context-sensitive heap, abstraction, type 
filtering, precise exception analysis

High completeness: full semantic complexity of Java
 jvm initialization, reflection analysis, threads, reference queues, native methods, class 

initialization, finalization, cast checking, assignment compatibility
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Defensive Analysis Results

Can still cover ~40% of realistic programs
Meaning: 40% of the program variables get 

sets of values that are not empty
The rest conservatively over-approximated to 

empty, i.e., T
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Conclusions
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Recap

Soundness is a property of an analysis
not a meta-property, nothing to do with proofs

One should be clear on analysis “claims”
 they are subject to interpretation, affect soundness

No practical static analysis* is sound
surprising but true

Once we accept this, we can do interesting stuff 
in this space

empirical soundness + defensive (lower coverage)
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