

Fast Easy Unsupervised Domain Adaptation with Marginalized Structured Dropout

DOMAIN ADAPTATION

Example: Part-of-speech Tagging

And God said, Let ... CC NNP VBD, VB . . .

- Mid said source spec
- Prev God cross domain
- Next Let source spec

Target:

And God seide, Lift ... CC NNP VBD, VB ...

Features:

- Mid_seide target spec
- Prev_God cross domain
- Next_Liyt target spec
- ▶ ...

\mathbf{f}_1	1		1		1			1	
\mathbf{f}_2				1		1		1	1
\mathbf{f}_3	1	1		1			1		
\mathbf{f}_4	1				1			1	
\mathbf{f}_5	1		1				1		
\mathbf{f}_6		1			1	1		1	1
\mathbf{f}_7	1	1	1			1			1
\mathbf{f}_8		1		1			1		1
\mathbf{f}_9		1			1	1			
10			1			1			1

Learr					
	S	OI			
	\mathbf{x}_1^S	x			
\mathbf{f}_1	1				
\mathbf{f}_2					
\mathbf{f}_3	1	-			
\mathbf{f}_4	1				
\mathbf{f}_5	1				
\mathbf{f}_6		-			
\mathbf{f}_7					
\mathbf{f}_8					

İ9

 \mathbf{f}_{10}

EVALUATION: SAME ACCURACY, 25X FASTER!

Portu

Data

Ove

Experiment setup:

Representation learning time:

Met

Tir

Yi Yang and Jacob Eisenstein

Representation Learning

Datasets: Tycho Brahe corpus (historical

iguese	e texts v	with 383	3 tags)			
aset		#	≠ of Tok	ens		
	Total	Narrative	Letters	Dissertation	Theatre	
0-1849	125719	91582	34137	0	0	
0-1799	202346	57477	84465	0	60404	
0-1749	278846	0	130327	148519	0	
0-1699	248194	83938	115062	49194	0	
0-1649	295154	117515	115252	62387	0	
0-1599	148061	148061	0	0	0	
0-1549	182208	126516	0	55692	0	
erall	1480528	625089	479243	315792	60404	

- *CRF tagger*: 16 feature types, 372,902 features, and 1572 pivots.
- *Methods*: baseline, PCA, SCL
- *Parameters*: decided with development data on the training set.

$\begin{array}{rcl} & \rightarrow 103 \\ \hline \rightarrow 160 \\ \rightarrow 155 \\ \hline ne \ (sec) \ 7,779 \ 38,849 \ 8,939 \ \ 339 \end{array} \qquad \begin{array}{rcl} \rightarrow 103 \\ \rightarrow 160 \\ \rightarrow 150 \\ \rightarrow 150 \end{array}$	thod	РСА	SCL	mDA		_	$\rightarrow 1700$ $\rightarrow 1650$
me (sec) 7,779 38,849 8,939 339 \rightarrow 155 \rightarrow 150				dropout	structured	_	\rightarrow 1600 \rightarrow 1600
	ne (sec)	7,779	38,849	8,939	339	- -	$\rightarrow 1550$ $\rightarrow 1500$

REFERENCES

John Blitzer et al. Domain Adaptation with Structural Correspondence Learning. In EMNLP'06.

[2] Xavier Glorot et al. Domain Adaptation for Large-Scale Sentiment ClassiïňĄcation: A Deep Learning Approach. In ICML '11

[3] Minmin Chen et al. Marginalized Denoising Autoencoders for Domain Adaptation. In ICML '12

ACKNOWLEDGMENTS

This research was supported by National Science Foundation award 1349837. The first author was also supported by National Science Foundation ACL travel award.

Results:

	1.08	Γ
	1.06	
er ratio	1.04	
Iransfe	1.02	
	1	×
	0.98 17	5

Task from 1800-1849 ightarrow 1750

ightarrow 1700

ightarrow 1600

ightarrow 1550

Representation learning for domain adaptation:

• Structural Corresponding Learning (SCL) [1]

Brown Clustering

• (marginalized) Stacked Denoising Autoencoders (SDA/mSDA) [2,3]

• Latent Variable Models

• Neural Probabilistic Language Model

