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Tree-based Models

‣Why tree-based models?
‣ Handle categorical features and count data better.
‣ Implicitly perform feature selection.

‣ Empirical successes
‣ Information retrieval [LambdaMART; Burges, 2010] 
‣ Computer vision [Babenko et al., 2011]
‣ Real world classification [Fernandez-Delgado et al., 2014]
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Contribution
‣ We present S-MART: Structured Multiple Additive Regression 

Trees
‣ A general class of tree-based structured learning algorithms.
‣ A friend of problems with dense features.

‣ We apply S-MART to entity linking on short and noisy texts
‣ Entity linking utilizes statistics dense features.

‣ Experimental results show that S-MART significantly 
outperforms all alternative baselines.
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Structured Learning

‣ Model a joint scoring function          over an input 
structure    and an output structure 

S(x,y)

x

y

‣Obtain the prediction requires inference  (e.g., 
dynamic programming)

b
y = argmax

y2Gen(x)
S(x,y)
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Structured Multiple Additive  
Regression Trees (S-MART)

‣ Assume a decomposition over factors

‣ Optimize with functional gradient descents

‣ Model functional gradients using regression trees hm(x,yk)

F (x,yk) = FM (x,yk) =
MX

m=1

⌘mhm(x,yk)



Gradient Descent



Gradient Descent

F (x,yk) = w

>f(x,yk)

‣ Linear combination of parameters and feature functions



Gradient Descent

F (x,yk) = w

>f(x,yk)

wm = wm�1 � ⌘m
@L

@wm�1

‣ Linear combination of parameters and feature functions

‣ Gradient descent in vector space



Gradient Descent

F (x,yk) = w

>f(x,yk)

wm = wm�1 � ⌘m
@L

@wm�1 w0 w1

w2 w3

‣ Linear combination of parameters and feature functions

‣ Gradient descent in vector space
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Gradient Descent in Function Space

F0(x,yk) = 0

Fm(x,yk) = Fm�1(x,yk)� ⌘mgm(x,yk)

Fm(x,yk)
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Model Functional Gradients
‣ Pointwise Functional Gradients
‣ Approximation by regression

�gm(x,yk)
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Entity Linking in Short Texts

‣ Data explosion: noisy and short texts
‣ Twitter messages
‣Web queries

‣ Downstream applications
‣ Semantic parsing and question answering [Yih et al., 

2015]
‣ Relation extraction [Riedel et al., 2013]
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Entity Linking meets Dense Features

‣ Short of labeled data
‣ Lack of context makes annotation more challenging.
‣ Language changes, annotation may become stale and ill-suited 

for new spellings and words. [Yang and Eisenstein, 2013]

‣ Powerful statistic dense features [Guo et al., 2013]
‣ The probability of a surface form to be an entity
‣ View count of a Wikipedia page
‣ Textual similarity between a tweet and a Wikipedia page
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System Overview

‣ Structured learning: select the best non-overlapping entity assignment 
‣ Choose top 20 entity candidates for each surface form
‣ Add a special NIL entity to represent no entity should be fired here
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and 

Disambiguation

Tokenized
Message

Eli Manning and the New York Giants are going to win the World Series

Eli_Manning

Entity Linking 
Results
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S-MART for Tweet Entity Linking

‣ Logistic loss

‣ Point-wise gradients

L(y⇤, S(x,y)) =� logP (y

⇤|x)
= logZ(x)� S(x,y⇤

)

gku =
@L

@F (x, yk = uk)

= P (yk = uk|x)� 1[y⇤k = uk]

Non-overlapping 
Inference
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Data
‣ Named Entity Extraction & Linking (NEEL) Challenge datasets 

[Cano et al., 2014]
‣ TACL datasets [Fang & Chang, 2014] 

Data #Tweet #Entity Date

NEEL Train 2,340 2,202 Jul. ~ Aug. 11

NEEL Test 1,164 687 Jul. ~ Aug. 11

TACL-IE 500 300 Dec. 12

TACL-IR 980 - Dec. 12
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Evaluation Methodology 
‣ IE-driven Evaluation [Guo et al., 2013]

‣ Standard evaluation of the system ability on 
extracting entities from tweets
‣ Metric: macro F-score 

‣ IR-driven Evaluation [Fang & Chang, 2014]

‣ Evaluation of the system ability on disambiguation  
of the target entities in tweets
‣ Metric: macro F-score on query entities



Algorithms
Structured Non-linear Tree-based

Structured Perceptron

Linear SSVM*

Polynomial SSVM

LambdaRank

MART#

S-MART

# winning system of NEEL challenge 2014

* previous state of the art system
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Conclusion

‣ A novel tree-based structured learning framework S-MART
‣ Generalization of TreeCRF

‣ A novel inference algorithm for non-overlapping structure of 
the tweet entity linking task.

‣ Application: Knowledge base QA (outstanding paper of ACL’15)
‣ Our system is a core component of the QA system.

‣ Rise of non-linear models
‣ We can try advanced neural based structured algorithms
‣ It’s worth to try different non-linear models



Thank you!


