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Personalized	sen0ment	analysis

‣ 	Goal:	personalized	condi0onal	likelihood,																			.

‣ 	Problem:	we	have	labeled	examples	for	only	a	few	authors.

‣ 					is	the	text,	and						is	the	author.

p(y|x, a)

x

a
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Homophily	to	the	rescue?

Homophily:	neighbors	have	similar	proper0es.

Thelwall	(2009);	AI	Zamal	et	al.	(2012)



5

Homophily	to	the	rescue?

Homophily:	neighbors	have	similar	proper0es.

Thelwall	(2009);	AI	Zamal	et	al.	(2012)



6

Evidence	for	linguis0c	homophily

Pilot	study:	is	classifier	accuracy	assorta0ve	on	the	Twi9er	
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Evidence	for	linguis0c	homophily

Pilot	study:	is	classifier	accuracy	assorta0ve	on	the	Twi9er	
social	network?

‣ 	Whether	a	sen0ment	classifier	tends	to	make	
consistent	predic0ons	for	social	neighbors.
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p(y|x, a) =
KX

k=1

Pr(Za = k|a,G)| {z }
ensemble weights

⇥ p(y|x, Za = k)| {z }
basis models

‣ 	Train	each	basis	model	with	all	the	labeled	data.

‣ 	Apply	linguis0c	homophily:

‣ 	Employ	ConvNets	as	basis	models.

‣ 	Adopt	similar	ensemble	weights	for	social	neighbors.

‣ 	De-correlate	errors	made	by	different	basis	models.
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‣ 	For	each	author,	es0mate	a	node	
embedding								(Tang	et	al.,	2015).va

‣ 	Nodes	who	share	neighbors	get	
similar	embeddings.
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‣ 	For	each	author,	es0mate	a	node	
embedding								(Tang	et	al.,	2015).va

‣ 	Nodes	who	share	neighbors	get	
similar	embeddings.

‣ 	Social	a;en<on:

Pr(Za = k|a,G) = SoftMax(f(va))
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‣ 	Pre-train	basis	models	with	instance-weighted	losses:

‣ 	Jointly	train	with	cross-entropy	loss:

Problem:	network	informa0on	tends	to	be	ignored.	
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‣ 	SemEval	Twi9er	sen0ment	analysis	data.

Nakov	et	al.	(2013);	Rosenthal	et	al.	(2015);	Tang	et	al.	(2012)

‣ 	18,024	tweets
‣ 	Follow,	men0on,	retweet	networks

‣ 	Network	expansion
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‣ 	Ciao	product	review	sen0ment	analysis	data.

‣ 	SemEval	Twi9er	sen0ment	analysis	data.

Nakov	et	al.	(2013);	Rosenthal	et	al.	(2015);	Tang	et	al.	(2012)

‣ 	18,024	tweets
‣ 	Follow,	men0on,	retweet	networks

‣ 	Network	expansion

‣ 	100,000	reviews
‣ 	User	trust	network
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Conclusions	and	future	work

‣ 	Linguis0c	homopily	alleviates	the	data	sparsity	issue	for	
es0ma0ng	personalized	models.

‣ 	Social	a9en0on	mechanism	significantly	improves	accuracy.

‣ 	Language	varia0on	poses	challenges	in	sen0ment	analysis.

21

‣ 	The	socially-infused	ensemble	architecture	can	be	applied	
to	other	tasks	such	as	tagging,	parsing,	etc.	


