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“I would like to believe he’s
sick rather than just mean
and evil.”

“You could’'ve been getting
down to this sick beat.”
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Personalized sentiment analysis

Goal: personalized conditional likelihood, p(y|x,a).

X is the text, and a is the author.
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Personalized sentiment analysis

» Goal: personalized conditional likelihood, p(y|x,a).

» X is the text, and a is the author.

» Problem: we have labeled examples for only a few authors.
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Homophily: neighbors have similar properties.

Thelwall (2009); Al Zamal et al. (2012)
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Homophily: neighbors have similar properties.

Labeled
data

Unlabeled
data

Thelwall (2009); Al Zamal et al. (2012)



Evidence for linguistic homophily

Pilot study: is classifier accuracy assortative on the Twitter
social network?
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Pilot study: is classifier accuracy assortative on the Twitter
social network?
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Whether a sentiment classifier tends to make
consistent predictions for social neighbors.
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Network rewiring: degree-preserving randomization
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Evidence for linguistic homophily

Network rewiring: degree-preserving randomization
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Personalization by ensemble

K
p(y|x,a) = ZPT(Za = kla,G) X p(y|x, Z, = k)
N —— —

k=1

ensemble weights basis models

Train each basis model with all the labeled data.

Employ ConvNets as basis models.
Apply linguistic homophily:
Adopt similar ensemble weights for social neighbors.

De-correlate errors made by different basis models.



10

Network-driven personalization

For each author, estimate a node
embedding Va (Tang et al., 2015).

Nodes who share neighbors get Co
similar embeddings. AP O
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Network-driven personalization

For each author, estimate a node
embedding Va (Tang et al., 2015).

Nodes who share neighbors get
similar embeddings. S ol

Social attention:

Pr(Z, = kla,G) = SoftMax(f(va))
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» Jointly train with cross-entropy loss:
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Learning

Jointly train with cross-entropy loss:

Zl t|logPr(Y =t | x,a)

Problem: network information tends to be ignored.

Pre-train basis models with instance-weighted losses:

by = —aqr y 1Y* =t]logPr(Y =t |x,2Z, = k)



Experiments
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Data

SemEval Twitter sentiment analysis data.
18,024 tweets
Follow, mention, retweet networks

Network expansion

Nakov et al. (2013); Rosenthal et al. (2015); Tang et al. (2012)
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Data

SemEval Twitter sentiment analysis data.
18,024 tweets
Follow, mention, retweet networks

Network expansion

Ciao product review sentiment analysis data.
100,000 reviews

User trust network

Nakov et al. (2013); Rosenthal et al. (2015); Tang et al. (2012)
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Results: SemEval Twitter data

Our implementation Best published results

+1.9

CNN baseline

F1: 68.4 Mixture of  Random Social
experts attention attention

NLSE

Astudillo et al. (2015)
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Results: SemEval Twitter data

Our implementation Best published results

+1.9

CNN baseline + 0.0 &
F1: 68.4 Mixture of  Random Social NLSE
experts attention attention

Astudillo et al. (2015)
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Results: SemEval Twitter data

Our implementation + 2.8 Best published results

+1.9

CNN baseline + 0.0
F1: 68.4 Mixture of  Random Social NLSE
experts attention attention

Astudillo et al. (2015)
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Variable sentiment words

More positive More negative

1 banging loss fever broken dear like god yeah wow
fucking

2 chilling cold ill sick suck satisfy trust wealth strong
Imao

3 ass damn piss bitch shit talent honestly voting win
clever

4 insane bawling fever weird cry Imao super lol haha hahaha

5 ruin silly bad boring dreadful /ovatics wish beliebers ariana-

tors kendall
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CNN baseline
F1:74.4

Results: Ciao review data

+ 0.0
Mixture of Random Social
experts attention attention

Tang et al. (2012)
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CNN baseline
F1:74.4

Results: Ciao review data
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experts attention attention
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Conclusions and future work

Language variation poses challenges in sentiment analysis.

Linguistic homopily alleviates the data sparsity issue for
estimating personalized models.

Social attention mechanism significantly improves accuracy.

The socially-infused ensemble architecture can be applied
to other tasks such as tagging, parsing, etc.



