
A log-linear model for unsupervised
text normalization

Yi Yang and Jacob Eisenstein

Georgia Institute of Technology

Lexical variation

I Social media language is di�erent from standard
English.

I Tweet: ya ur website suxx brah
I Standard: yeah, your website sucks bro

I Word variants: phonetic substitutions,
abbreviations, unconventional spellings, etc.

I Normalization: map from orthographic
variants to standard spellings.

I Large label space.
I No labeled data.

Lexical variation

I Social media language is di�erent from standard
English.

I Tweet: ya ur website suxx brah
I Standard: yeah, your website sucks bro

I Word variants: phonetic substitutions,
abbreviations, unconventional spellings, etc.

I Normalization: map from orthographic
variants to standard spellings.

I Large label space.
I No labeled data.

Lexical variation

I Social media language is di�erent from standard
English.

I Tweet: ya ur website suxx brah
I Standard: yeah, your website sucks bro

I Word variants: phonetic substitutions,
abbreviations, unconventional spellings, etc.

I Normalization: map from orthographic
variants to standard spellings.

I Large label space.
I No labeled data.

Lexical variation

I Social media language is di�erent from standard
English.

I Tweet: ya ur website suxx brah
I Standard: yeah, your website sucks bro

I Word variants: phonetic substitutions,
abbreviations, unconventional spellings, etc.

I Normalization: map from orthographic
variants to standard spellings.

I Large label space.
I No labeled data.

Why normalization?

I Improve downstream NLP applications.
I Part-of-speech tagging [6]
I Dependency parsing [11]
I Machine translation [7, 8]

I Is there more systematic variation in social
media?

I Mine patterns in how words are spelled.
I Discover coherent orthographic styles.

Why normalization?

I Improve downstream NLP applications.
I Part-of-speech tagging [6]
I Dependency parsing [11]
I Machine translation [7, 8]

I Is there more systematic variation in social
media?

I Mine patterns in how words are spelled.
I Discover coherent orthographic styles.

Related work

Method Surface Context Final System
Han & Baldwin
2011

edit distance
LCS

language model
syntax

linear
combination

Liu et al. 2012 character-based
translation

distributional
similarity

decoding with
language model

Hassan et al.
2013

edit distance
LCS

random walk decoding with
language model

Our approach edit distance
LCS, word pairs

language model uni�ed model
with features

Our approach

I Unsupervised

I Featurized

I Context-driven

I Joint

Characteristics

Unsupervised

I Labeled data for Twitter normalization is limited.

I Language changes, annotations may become
stale and ill-suited to new spellings and words.

Term frequency of �af� over months

Term frequency of �lml� over months

Characteristics

Featurized: permitting overlapping features

I String similarity features.

I Lexical features that memorize conventionalized
word pairs, e.g. you/u, to/2.

Characteristics

Context-driven

give me suttin to believe in

I Unsupervised normalization needs strong cue of
local context.

I String similarity needs to be overcome by
contextual preference.

I Edit-Dist(button/suiting, suttin) = 2
I Edit-Dist(something, suttin) = 5

Characteristics

Joint

gimme suttin 2 beleive innnn

I No words are in the standard vocabulary.

I Joint inference is needed to take advantage of
context information.

Normalization in a probabilistic model

Maximize likelihood of observed (Twitter) text,
marginalizing over normalizations.

P(s) P(ya ur website suxx brah)

=
∑
t

P(s, t) P(ya ur website . . . , yam urn website . . .)

+ P(ya ur website . . . , yak your website . . .)

+ P(ya ur website . . . , yea cure website . . .)

+ . . .

Normalization in a probabilistic model

Maximize likelihood of observed (Twitter) text,
marginalizing over normalizations.

P(s) P(ya ur website suxx brah)

=
∑
t

P(s, t) P(ya ur website . . . , yam urn website . . .)

+ P(ya ur website . . . , yak your website . . .)

+ P(ya ur website . . . , yea cure website . . .)

+ . . .

A noisy channel model

P(s, t) = Pt(t)Pe(s|t) Pe(ya ur . . . |yam urn . . .)

× Pt(yam urn website . . .)

I The language model can be estimated o�ine.

I The emission model is locally normalized and log-linear.

Pe(s|t) =
∏
n

Pe(sn|tn) Pe(ya|yam)Pe(ur|urn) . . .

Pe(sn|tn) =
exp (θ′f (sn, tn))

Z (tn)

exp (θ′f (ur, your))

Z (your)

A noisy channel model

P(s, t) = Pt(t)Pe(s|t) Pe(ya ur . . . |yam urn . . .)

× Pt(yam urn website . . .)

I The language model can be estimated o�ine.

I The emission model is locally normalized and log-linear.

Pe(s|t) =
∏
n

Pe(sn|tn) Pe(ya|yam)Pe(ur|urn) . . .

Pe(sn|tn) =
exp (θ′f (sn, tn))

Z (tn)

exp (θ′f (ur, your))

Z (your)

Features

String similarity

I Combine edit distance and longest-common
subsequence (LCS) [3]:

I Bin to create binary features, e.g.,

top5(s, t) =

{
1, t ∈ Top5(s)

0, otherwise

Word pairs

I Assign weights to commonly occurring word
pairs, e.g. you/u, sucks/suxx.

I This allows the model to �memorize� frequent
substitutions.

Features

String similarity

I Combine edit distance and longest-common
subsequence (LCS) [3]:

I Bin to create binary features, e.g.,

top5(s, t) =

{
1, t ∈ Top5(s)

0, otherwise

Word pairs

I Assign weights to commonly occurring word
pairs, e.g. you/u, sucks/suxx.

I This allows the model to �memorize� frequent
substitutions.

Learning

Our goal is to learn to weight these features.
We compute the gradient of the likelihood...

CRF

`(θ) = logP(y |x)
∂`

∂θ
= f (x , y)− Ey |x ;θ[f (x , y)]

Our model (MRF)

`(θ) = logP(s)

∂`

∂θ
= Et|s [f (s, t)− Es′|t [f (s, t)]]

Learning

Our goal is to learn to weight these features.
We compute the gradient of the likelihood...

CRF

`(θ) = logP(y |x)
∂`

∂θ
= f (x , y)− Ey |x ;θ[f (x , y)]

Our model (MRF)

`(θ) = logP(s)

∂`

∂θ
= Et|s [f (s, t)− Es′|t [f (s, t)]]

Learning

Our goal is to learn to weight these features.
We compute the gradient of the likelihood...

CRF

`(θ) = logP(y |x)
∂`

∂θ
= f (x , y)− Ey |x ;θ[f (x , y)]

Our model (MRF)

`(θ) = logP(s)

∂`

∂θ
= Et|s [f (s, t)− Es′|t [f (s, t)]]

Dynamic programming
In a locally-normalized model, these expectations can be

computed from the marginals P(tn|s1:N) [1].

ya ur website suxx brah
yam urn website sucks bra

◦ you your suck brat ◦
yeah you're six bro
.

I Outer expectation Et|s : forward-backward

I Inner expectation Es ′|t : sum over all possible
sn at each n.

I Time complexity: O(NV 2
T + NV 2

TVS) ...
But VT ,VS > 104

Dynamic programming
In a locally-normalized model, these expectations can be

computed from the marginals P(tn|s1:N) [1].

ya ur website suxx brah
yam urn website sucks bra

◦ you your suck brat ◦
yeah you're six bro
.

I Outer expectation Et|s : forward-backward

I Inner expectation Es ′|t : sum over all possible
sn at each n.

I Time complexity: O(NV 2
T + NV 2

TVS) ...
But VT ,VS > 104

Dynamic programming
In a locally-normalized model, these expectations can be

computed from the marginals P(tn|s1:N) [1].

ya ur website suxx brah
yam urn website sucks bra

◦ you your suck brat ◦
yeah you're six bro
.

I Outer expectation Et|s : forward-backward

I Inner expectation Es ′|t : sum over all possible
sn at each n.

I Time complexity: O(NV 2
T + NV 2

TVS) ...
But VT ,VS > 104

Sequential Monte Carlo
A randomized algorithm to approximate P(t|s) as a
weighted sum,

P(t|s) ≈
∑
k

ω(k)δ
t
(k)(t)

P(t|ya ur website . . .) ≈


0.2× δ(you your website . . .)
0.6× δ(yeah your website . . .)

. . .
0.1× δ(you you're website . . .)

I e�cient and simple
I easy to parallelize
I number of samples K provides intuitive tuning
between accuracy and speed

Sequential Importance Sampling (SIS)
At each n, for each sample k

I Draw t
(k)
n from the proposal distribution

Q(t).

I Update ω
(k)
n so that

ω(k)
n ∝

P(t
(k)
1:n|s1:n)

Q(t
(k)
1:n)

= . . .

=

Emission model︷ ︸︸ ︷
Pe(sn|t(k)n)

Language model︷ ︸︸ ︷
Pt(t

(k)
n |t

(k)
n−1)

Q(t(k)n |t
(k)
n−1, sn)︸ ︷︷ ︸

Proposal distribution

ω
(k)
n−1

Computing the gradient from SIS

I Outer expectation:

Et|s [f (s, t)] =
K∑
k

ω
(k)
N

N∑
n

f (sn, t
(k)
n)

I Inner expectation: draw L samples of s ′n|tn:

Et|s [Es ′|tf (s
′, t)]] =

K∑
k

ω
(k)
N

N∑
n

1

L

L∑
`

f (s(`,k)n , t(k)n)

(In practice, we set K = 10 and L = 1)

Computing the gradient from SIS

I Outer expectation:

Et|s [f (s, t)] =
K∑
k

ω
(k)
N

N∑
n

f (sn, t
(k)
n)

I Inner expectation: draw L samples of s ′n|tn:

Et|s [Es ′|tf (s
′, t)]] =

K∑
k

ω
(k)
N

N∑
n

1

L

L∑
`

f (s(`,k)n , t(k)n)

(In practice, we set K = 10 and L = 1)

Computing the gradient from SIS

I Outer expectation:

Et|s [f (s, t)] =
K∑
k

ω
(k)
N

N∑
n

f (sn, t
(k)
n)

I Inner expectation: draw L samples of s ′n|tn:

Et|s [Es ′|tf (s
′, t)]] =

K∑
k

ω
(k)
N

N∑
n

1

L

L∑
`

f (s(`,k)n , t(k)n)

(In practice, we set K = 10 and L = 1)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).

Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya)

ω
(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya)

ω
(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea

youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).

Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur)

ω
(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu

website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
.

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).

Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)

The proposal distribution

A proposal distribution can guide sampling focuses
on high-probability region.

1. Q(tn|sn, tn−1) = P(tn|sn, tn−1) ∝ P(sn|tn)P(tn|tn−1)
I Accurate (optimal!)
I Not fast: computing P(sn|tn) costs O(VTVS)

2. Our proposal

Q(tn|sn, tn−1) ∝ P(sn|tn)Z (tn)P(tn|tn−1)
= exp (θ′f (sn, tn))P(tn|tn−1)

I Fast: O(VS + VT) to compute ω
(k)
n

I Fairly accurate: biased by a factor of Z (tn)

The proposal distribution

A proposal distribution can guide sampling focuses
on high-probability region.

1. Q(tn|sn, tn−1) = P(tn|sn, tn−1) ∝ P(sn|tn)P(tn|tn−1)
I Accurate (optimal!)
I Not fast: computing P(sn|tn) costs O(VTVS)

2. Our proposal

Q(tn|sn, tn−1) ∝ P(sn|tn)Z (tn)P(tn|tn−1)
= exp (θ′f (sn, tn))P(tn|tn−1)

I Fast: O(VS + VT) to compute ω
(k)
n

I Fairly accurate: biased by a factor of Z (tn)

The proposal distribution

A proposal distribution can guide sampling focuses
on high-probability region.

1. Q(tn|sn, tn−1) = P(tn|sn, tn−1) ∝ P(sn|tn)P(tn|tn−1)
I Accurate (optimal!)
I Not fast: computing P(sn|tn) costs O(VTVS)

2. Our proposal

Q(tn|sn, tn−1) ∝ P(sn|tn)Z (tn)P(tn|tn−1)
= exp (θ′f (sn, tn))P(tn|tn−1)

I Fast: O(VS + VT) to compute ω
(k)
n

I Fairly accurate: biased by a factor of Z (tn)

Implementation details

unLOL: unsupervised normalization in a LOg-Linear model

I Decoding: propose K sequences t(k), perform
Viterbi within this limited set.

I Normalization targets:
I Training: all alphanumeric strings not in aspell
I Test: normalization targets are given

(standard in this task)

I Language model: Kneser-Ney smoothed
trigram model, from tweets with no OOV words

I Training data: For each OOV word in the test
set, draw 50 tweets from Edinburgh corpus [10]
and Twitter API.

Evaluation

Datasets

I LWWL11 [9]: 3802 isolated words

I LexNorm1.1 [5]: 549 tweets with 1184
nonstandard tokens

I LexNorm1.2: 172 manual corrections to
LexNorm1.1 (www.cc.gatech.edu/
~jeisenst/lexnorm.v1.2.tgz)

www.cc.gatech.edu/~jeisenst/lexnorm.v1.2.tgz
www.cc.gatech.edu/~jeisenst/lexnorm.v1.2.tgz

Results

Adding L1 Regularization

79

80

81

82

83

0 100000 200000 300000 400000
number of features

F-measure

•

•

•

• • •

λ = 1e − 04

λ = 5e − 05

λ = 1e − 05

λ = 5e − 06 λ = 1e − 06 λ = 0

Analysis

Can normalization help identify orthographic styles?

I Use unLOL to automatically label lots of tweets

I Use Levenshtein alignment between original and
normalized tweets to �nd substitution patterns,
e.g., ng/n_

I Use matrix factorization to �nd sets of patterns
that are used by the same set of authors.

tweets

authors

tweets

authors

unLOL
normalized

tweets

tweets

authors

unLOL
normalized

tweets

aligner character
patterns

e.g., t/_, ng/n_

tweets

authors

unLOL
normalized

tweets

aligner

author-
pattern
matrix

character
patterns

tweets

authors

unLOL
normalized

tweets

aligner

author-
pattern
matrix au

th
or

lo

ad
in

gs

style dictionaries

NMF

character
patterns

Observations

Some styles mirror phonological variables:
g-dropping, (TH)-stopping, t-deletion... [4]

style rules examples

g-dropping g*/_*

ng/n_

g/_

goin, talkin, watchin, feelin, makin

t-deletion t*/_*

st/s_
t/_

jus, bc, shh, wha, gota, wea, mus,
firts, jes, subsistutes

th-stopping h/_
*t/*d

th/d_
t/d

dat, de, skool, fone, dese, dha, shid,
dhat, dat’s

Observations

Others are known
�netspeak� phenomena, like expressive lengthening [2]

style rules examples

(kd)-adding i_/id
_/k _/d
_*/k*

idk, fuckk, okk, backk, workk, badd,
andd, goodd, bedd, elidgible, pidgeon

o-adding o_/oo

_*/o*

_/o

soo, noo, doo, oohh, loove, thoo,
helloo

e-adding _/i
e_/ee

_/e
_*/e*

mee, ive, retweet, bestie, lovee,
nicee, heey, likee, iphone, homie, ii,
damnit

Observations

We get meaningful styles even from mistaken
normalizations! (e.g., i'm/ima, out/outta)

style rules examples

a-adding _/a
__/ma

_/m
_*/a*

ima, outta, needa, shoulda, woulda,
mm, comming, tomm, boutt, ppreci-

ate

Summary

I unLOL: joint, unsupervised, and log-linear
I Features balance between edit distance and

conventionalized word pairs.
I Main challenge: massive label space, in which

quadratic algorithms are not practical.
I Solution: approximate gradient with SMC
I Proposal distribution focuses the samples on

the high-likelihood part of the search space.

I Normalization enables the study of systematic
orthographic variation.

References I
T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein.

Painless unsupervised learning with features.

In Proceedings of NAACL, pages 582�590, 2010.

S. Brody and N. Diakopoulos.

Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to
detect sentiment in microblogs.

In Proceedings of EMNLP, 2011.

D. Contractor, T. A. Faruquie, and L. V. Subramaniam.

Unsupervised cleansing of noisy text.

In Proceedings of COLING, pages 189�196, 2010.

J. Eisenstein.

Phonological factors in social media writing.

In Proceedings of the NAACL Workshop on Language Analysis in

Social Media, 2013.

References II

B. Han and T. Baldwin.

Lexical normalisation of short text messages: makn sens a #twitter.

In Proceedings of ACL, pages 368�378, 2011.

B. Han, P. Cook, and T. Baldwin.

Lexical normalization for social media text.

ACM Transactions on Intelligent Systems and Technology, 4(1):5,
2013.

H. Hassan and A. Menezes.

Social text normalization using contextual graph random walks.

In Proceedings of ACL, 2013.

References III

W. Ling, C. Dyer, I. Trancoso, and A. Black.

Paraphrasing 4 microblog normalization.

In Proceedings of the 2013 Joint Conference on Empirical Methods

in Natural Language Processing and Computational Natural

Language Learning, Seattle, USA, October 2013. Association for
Computational Linguistics.

F. Liu, F. Weng, B. Wang, and Y. Liu.

Insertion, deletion, or substitution?: normalizing text messages
without pre-categorization nor supervision.

In Proceedings of ACL, pages 71�76, 2011.

S. Petrovi¢, M. Osborne, and V. Lavrenko.

The edinburgh twitter corpus.

In Proceedings of the NAACL HLT Workshop on Computational

Linguistics in a World of Social Media, pages 25�26, 2010.

References IV

C. Zhang, T. Baldwin, H. Ho, B. Kimelfeld, and Y. Li.

Adaptive parser-centric text normalization.

In Proceedings of ACL, pages 1159�1168, 2013.

