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Lexical variation

I Social media language is di�erent from standard
English.

I Tweet: ya ur website suxx brah
I Standard: yeah, your website sucks bro

I Word variants: phonetic substitutions,
abbreviations, unconventional spellings, etc.

I Normalization: map from orthographic
variants to standard spellings.

I Large label space.
I No labeled data.
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Why normalization?

I Improve downstream NLP applications.
I Part-of-speech tagging [6]
I Dependency parsing [11]
I Machine translation [7, 8]

I Is there more systematic variation in social
media?

I Mine patterns in how words are spelled.
I Discover coherent orthographic styles.
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Our approach

I Unsupervised

I Featurized

I Context-driven

I Joint



Characteristics

Unsupervised

I Labeled data for Twitter normalization is limited.

I Language changes, annotations may become
stale and ill-suited to new spellings and words.

Term frequency of �af� over months

Term frequency of �lml� over months



Characteristics

Featurized: permitting overlapping features

I String similarity features.

I Lexical features that memorize conventionalized
word pairs, e.g. you/u, to/2.



Characteristics

Context-driven

give me suttin to believe in

I Unsupervised normalization needs strong cue of
local context.

I String similarity needs to be overcome by
contextual preference.

I Edit-Dist(button/suiting, suttin) = 2
I Edit-Dist(something, suttin) = 5



Characteristics

Joint

gimme suttin 2 beleive innnn

I No words are in the standard vocabulary.

I Joint inference is needed to take advantage of
context information.



Normalization in a probabilistic model

Maximize likelihood of observed (Twitter) text,
marginalizing over normalizations.

P(s) P(ya ur website suxx brah)

=
∑
t

P(s, t) P(ya ur website . . . , yam urn website . . . )

+ P(ya ur website . . . , yak your website . . . )

+ P(ya ur website . . . , yea cure website . . . )

+ . . .
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A noisy channel model

P(s, t) = Pt(t)Pe(s|t) Pe(ya ur . . . |yam urn . . . )

× Pt(yam urn website . . . )

I The language model can be estimated o�ine.

I The emission model is locally normalized and log-linear.

Pe(s|t) =
∏
n

Pe(sn|tn) Pe(ya|yam)Pe(ur|urn) . . .

Pe(sn|tn) =
exp (θ′f (sn, tn))

Z (tn)

exp (θ′f (ur, your))

Z (your)
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Features

String similarity

I Combine edit distance and longest-common
subsequence (LCS) [3]:

I Bin to create binary features, e.g.,

top5(s, t) =

{
1, t ∈ Top5(s)

0, otherwise

Word pairs

I Assign weights to commonly occurring word
pairs, e.g. you/u, sucks/suxx.

I This allows the model to �memorize� frequent
substitutions.



Features

String similarity

I Combine edit distance and longest-common
subsequence (LCS) [3]:

I Bin to create binary features, e.g.,

top5(s, t) =

{
1, t ∈ Top5(s)

0, otherwise

Word pairs

I Assign weights to commonly occurring word
pairs, e.g. you/u, sucks/suxx.

I This allows the model to �memorize� frequent
substitutions.



Learning

Our goal is to learn to weight these features.
We compute the gradient of the likelihood...

CRF

`(θ) = logP(y |x)
∂`

∂θ
= f (x , y)− Ey |x ;θ[f (x , y)]

Our model (MRF)

`(θ) = logP(s)

∂`

∂θ
= Et|s [f (s, t)− Es′|t [f (s, t)]]
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Dynamic programming
In a locally-normalized model, these expectations can be

computed from the marginals P(tn|s1:N) [1].

ya ur website suxx brah
yam urn website sucks bra

◦ you your suck brat ◦
yeah you're six bro
. . . . . . . . . . . .

I Outer expectation Et|s : forward-backward

I Inner expectation Es ′|t : sum over all possible
sn at each n.

I Time complexity: O(NV 2
T + NV 2

TVS) ...
But VT ,VS > 104
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Sequential Monte Carlo
A randomized algorithm to approximate P(t|s) as a
weighted sum,

P(t|s) ≈
∑
k

ω(k)δ
t
(k)(t)

P(t|ya ur website . . . ) ≈


0.2× δ(you your website . . . )
0.6× δ(yeah your website . . . )

. . .
0.1× δ(you you're website . . . )

I e�cient and simple
I easy to parallelize
I number of samples K provides intuitive tuning
between accuracy and speed



Sequential Importance Sampling (SIS)
At each n, for each sample k

I Draw t
(k)
n from the proposal distribution

Q(t).

I Update ω
(k)
n so that

ω(k)
n ∝

P(t
(k)
1:n|s1:n)

Q(t
(k)
1:n)

= . . .

=

Emission model︷ ︸︸ ︷
Pe(sn|t(k)n )

Language model︷ ︸︸ ︷
Pt(t

(k)
n |t

(k)
n−1)

Q(t(k)n |t
(k)
n−1, sn)︸ ︷︷ ︸

Proposal distribution

ω
(k)
n−1



Computing the gradient from SIS

I Outer expectation:

Et|s [f (s, t)] =
K∑
k

ω
(k)
N

N∑
n

f (sn, t
(k)
n )

I Inner expectation: draw L samples of s ′n|tn:

Et|s [Es ′|tf (s
′, t)]] =

K∑
k

ω
(k)
N

N∑
n

1

L

L∑
`

f (s(`,k)n , t(k)n )

(In practice, we set K = 10 and L = 1)
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Example
sn ya ur website . . .

yam urn website . . .

t
(k)
n

you your . . .

yeah you're . . .
. . . . . . . . .

ω
(k)
n

P(yeah,ya|◦)
Q(yeah|◦,ya) ω

(k)
1

P(your,ur |yeah)
Q(your|yeah,ur) ω

(k)
2

Pt(website,website|your)
Q(website|your,website)

. . .

s
(`)
n

yea youu website . . .

Sample t
(k)
n according to Q(t|◦, ya).Sample s
(l)
n according to P(s|yeah).Update:

ω
(k)
N (f (yeah, ya)− f (yeah, yea)

+ f (your,ur)− f (your, youu) + . . .)
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The proposal distribution

A proposal distribution can guide sampling focuses
on high-probability region.

1. Q(tn|sn, tn−1) = P(tn|sn, tn−1) ∝ P(sn|tn)P(tn|tn−1)
I Accurate (optimal!)
I Not fast: computing P(sn|tn) costs O(VTVS)

2. Our proposal

Q(tn|sn, tn−1) ∝ P(sn|tn)Z (tn)P(tn|tn−1)
= exp (θ′f (sn, tn))P(tn|tn−1)

I Fast: O(VS + VT ) to compute ω
(k)
n

I Fairly accurate: biased by a factor of Z (tn)
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Implementation details

unLOL: unsupervised normalization in a LOg-Linear model

I Decoding: propose K sequences t(k), perform
Viterbi within this limited set.

I Normalization targets:
I Training: all alphanumeric strings not in aspell
I Test: normalization targets are given

(standard in this task)

I Language model: Kneser-Ney smoothed
trigram model, from tweets with no OOV words

I Training data: For each OOV word in the test
set, draw 50 tweets from Edinburgh corpus [10]
and Twitter API.



Evaluation

Datasets

I LWWL11 [9]: 3802 isolated words

I LexNorm1.1 [5]: 549 tweets with 1184
nonstandard tokens

I LexNorm1.2: 172 manual corrections to
LexNorm1.1 (www.cc.gatech.edu/
~jeisenst/lexnorm.v1.2.tgz)

www.cc.gatech.edu/~jeisenst/lexnorm.v1.2.tgz
www.cc.gatech.edu/~jeisenst/lexnorm.v1.2.tgz


Results



Adding L1 Regularization
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Analysis

Can normalization help identify orthographic styles?

I Use unLOL to automatically label lots of tweets

I Use Levenshtein alignment between original and
normalized tweets to �nd substitution patterns,
e.g., ng/n_

I Use matrix factorization to �nd sets of patterns
that are used by the same set of authors.
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Observations

Some styles mirror phonological variables:
g-dropping, (TH)-stopping, t-deletion... [4]

style rules examples

g-dropping g*/_*

ng/n_

g/_

goin, talkin, watchin, feelin, makin

t-deletion t*/_*

st/s_
t/_

jus, bc, shh, wha, gota, wea, mus,
firts, jes, subsistutes

th-stopping h/_
*t/*d

th/d_
t/d

dat, de, skool, fone, dese, dha, shid,
dhat, dat’s



Observations

Others are known
�netspeak� phenomena, like expressive lengthening [2]

style rules examples

(kd)-adding i_/id
_/k _/d
_*/k*

idk, fuckk, okk, backk, workk, badd,
andd, goodd, bedd, elidgible, pidgeon

o-adding o_/oo

_*/o*

_/o

soo, noo, doo, oohh, loove, thoo,
helloo

e-adding _/i
e_/ee

_/e
_*/e*

mee, ive, retweet, bestie, lovee,
nicee, heey, likee, iphone, homie, ii,
damnit



Observations

We get meaningful styles even from mistaken
normalizations! (e.g., i'm/ima, out/outta)

style rules examples

a-adding _/a
__/ma

_/m
_*/a*

ima, outta, needa, shoulda, woulda,
mm, comming, tomm, boutt, ppreci-

ate



Summary

I unLOL: joint, unsupervised, and log-linear
I Features balance between edit distance and

conventionalized word pairs.
I Main challenge: massive label space, in which

quadratic algorithms are not practical.
I Solution: approximate gradient with SMC
I Proposal distribution focuses the samples on

the high-likelihood part of the search space.

I Normalization enables the study of systematic
orthographic variation.
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