
Part-of-Speech	Tagging	for	Historical	English

Yi	Yang	and	Jacob	Eisenstein	
Georgia	Tech



[Muralidharan	and	Hearst,	2011&2012]

‣ 	Digital	humaniEes	research

‣ 	How	does	the	portrayal	of	men	and	
women	differ	in	Shakespeare’s	plays?

‣ 	What’s	the	language	use	paMerns	in	
North	American	slave	narraEves?



[Muralidharan	and	Hearst,	2011&2012]

‣ 	NLP	can	help!

‣ 	Digital	humaniEes	research

‣ 	How	does	the	portrayal	of	men	and	
women	differ	in	Shakespeare’s	plays?

‣ 	What’s	the	language	use	paMerns	in	
North	American	slave	narraEves?



[Muralidharan	and	Hearst,	2011&2012]

‣ 	NLP	can	help!

‣ 	Digital	humaniEes	research

‣ 	How	does	the	portrayal	of	men	and	
women	differ	in	Shakespeare’s	plays?

‣ 	What’s	the	language	use	paMerns	in	
North	American	slave	narraEves?

‣ 	Only	if	NLP	works	for	historical	texts	…



Early	Modern	English

Hee	said	nobody	had	said	anything	agt	mee	.

[Henry	Oxinden,	1660]



Early	Modern	English

Hee	said	nobody	had	said	anything	agt	mee	.

‣	Spelling	variaEon

He againstHe me

[Henry	Oxinden,	1660]



Stanford	POS	Tagger

Hee	said	nobody	had	said	anything	agt	mee	.

‣	Spelling	variaEon

Stanford:



Stanford	POS	Tagger

Hee	said	nobody	had	said	anything	agt	mee	.
X X X

‣	Spelling	variaEon

Stanford:
Gold:



Transfer	Loss	for	POS	Tagging

0

5

10

15

20

25

3.0

Er
ro
r	r
at
e

Modern	English

[Rayson	et	al.,	2007]



Transfer	Loss	for	POS	Tagging

0

5

10

15

20

25

18.0

3.0

Er
ro
r	r
at
e

Modern	English

Early	Modern	English

[Rayson	et	al.,	2007]



Approaches

‣ 	Spelling	normalizaEon }‣ 	Map	from	historical	spellings	to	
contemporary	forms.

Rayson	et	al.	(2007)
Scheible	et	al.	(2011)
Bollmann	(2011)



Approaches

‣ 	Domain	adaptaEon	(this	work)

‣ 	Spelling	normalizaEon }‣ 	Map	from	historical	spellings	to	
contemporary	forms.

‣ 	Build	robust	NLP	systems	with	
representaEon	learning.

Rayson	et	al.	(2007)
Scheible	et	al.	(2011)
Bollmann	(2011)

}Yang	&	Eisenstein	(2014)
Yang	&	Eisenstein	(2015)
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ADJ

PCHE PTB
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ADV
ALSO RB

VB VB
VBI
… …
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‣	Support	vector	machine	(SVM)	tagger
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‣	Structural	correspondence	learning	(SCL)
‣	Brown	clustering
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Conclusions

‣ 	RepresentaEon	learning	and	spelling	normalizaEon	are	
complementary	for	improving	tagging	performance.

‣ 	Tagset	mismatches	make	it	hard	to	evaluate	modern	POS	
taggers	for	historical	English.

‣ 	Feature	embeddings	outperform	word	embeddings	by	
exploiEng	task-specific	informaEon	in	feature	templates.


