Part-of-Speech Tagging for Historical English

Yi Yang and Jacob Eisenstein Georgia Tech

- Digital humanities research
 - How does the portrayal of men and women differ in Shakespeare's plays?
 - What's the language use patterns in North American slave narratives?

en and 's plays? terns in yes?

[Muralidharan and Hearst, 2011&2012]

- Digital humanities research
 - How does the portrayal of men and women differ in Shakespeare's plays?
 - What's the language use patterns in North American slave narratives?
- NLP can help!

en and 's plays? terns in yes?

[Muralidharan and Hearst, 2011&2012]

- Digital humanities research
 - How does the portrayal of men and women differ in Shakespeare's plays?
 - What's the language use patterns in North American slave narratives?
- NLP can help!
- Only if NLP works for historical texts ...

[Muralidharan and Hearst, 2011&2012]

Early Modern English

Hee said nobody had said anything agt mee.

[Henry Oxinden, 1660]

He against me Hee said nobody had said anything agt mee.

Spelling variation

[Henry Oxinden, 1660]

Stanford: NNP VBD NN VBD VBN NN NN NN Hee said nobody had said anything agt mee?

Spelling variation

Stanford POS Tagger

Gold: PRP Stanford: N VBD NN

Spelling variation

Stanford POS Tagger

Transfer Loss for POS Tagging

Transfer Loss for POS Tagging

Early Modern English

[Rayson et al., 2007]

Spelling normalization Map from historical spellings to contemporary forms.

Approaches

Rayson et al. (2007) Scheible et al. (2011) Bollmann (2011)

- Spelling normalization
 - Map from historical spellings to contemporary forms.
- Domain adaptation (this work)
 - Build robust NLP systems with representation learning.

Rayson et al. (2007) Scheible et al. (2011) Bollmann (2011)

Yang & Eisenstein (2014)Yang & Eisenstein (2015)

Original: Hee said nobody had said anything agt mee. Normalized: Hee said nobody had said anything aged me.

Original: Hee said nobody had said anything agt mee. Normalized: Hee said nobody had said anything aged me.

Correct normalization

Correct normalization Incorrect normalization

against Original: Hee said nobody had said anything agt mee. Normalized: Hee said nobody had said anything aged me. Х (

He Correct normalization Incorrect normalization False negative

against Original: Hee said nobody had said anything agt mee. Normalized: Hee said nobody had said anything aged me.

Representation Learning

Hee said nobody had said anything agt mee.

Representation Learning

PRPVBDNNINPRPHeesaidnobodyhadsaidanythingagtmee

Representation Learning

Hee said nobody had said anything agt mee.

OOV Context said was came told Hee •••

Model

Hee said nobody had said anything agt mee.

Hee said nobody had said anything agt mee.

Hee said nobody had said anything agt mee.

- CurrWord = hee1NextWord = said2Prefix1 = h3Suffix1 = e4

features **〈**

Feature Embeddings

Hee said nobody had said anything agt mee.

 \bullet \bullet \bullet

CurrWord = hee1NextWord = said2Prefix1 = h3Suffix1 = e4

features **〈**

Hee said nobody had said anything agt mee.

CurrWord = hee 1 NextWord = said 2

features

- $Prefix1 = h \qquad 3$ $Suffix1 = e \qquad 4$

Hee said nobody had said anything agt mee.

CurrWord = hee 1 NextWord = said 2

features

- $Prefix1 = h_{3}$
- Suffix1 = e 4

. . .

$\mathbf{p}(\mathsf{f}_t|\mathsf{f}_2) \propto \exp\left(\mathbf{u}_2^{\top}\mathbf{v}_t\right)$

Input embeddings

3

4

features

- CurrWord = hee 1 NextWord = said 2 \mathbf{u}_2
 - Prefix1 = h
 - Suffix1 = e

. . .

Output embeddings

 \mathbf{V}_3

$$\mathbf{p}(\mathbf{f}_t | \mathbf{f}_2) \propto \exp\left(\mathbf{u}_2^\top \mathbf{v}_t\right)$$
$$\ell = \sum_{t \neq 2}^T \log \mathbf{p}(\mathbf{f}_t | \mathbf{f}_2) \qquad \text{Input}_{embedd}$$

features

currvvora = nee NextWord = said Prefix1 = h3 Suffix1 = e4

 \bullet \bullet \bullet

Feature embeddings

- Word embeddings
 - Generic representations

Feature embeddings

- Word embeddings
 - Generic representations

Feature embeddings Task-specific representations

- Word embeddings
 - Generic representations
 - Word co-occurrences

Feature embeddings Task-specific representations

- Word embeddings
 - Generic representations
 - Word co-occurrences

- Feature embeddings
 - Task-specific representations
 - Feature co-occurrences

Previous work on unsupervised domain adaptation involves in two domains.

Learning from Multiple Domains

Previous work on unsupervised domain adaptation involves in two domains. Unsupervised multi-domain adaptation

Learning from Multiple Domains

Previous work on unsupervised domain adaptation involves in two domains. Unsupervised multi-domain adaptation

Narrative Letters Dissertation Theatre

Learning from Multiple Domains

1750 1700 1650 1600 1550 1500

Hee said nobody had said anything agt mee.

Domain Attributes:

Hee said nobody had said anything agt mee.

Domain Attributes:

Hee said nobody had said anything agt mee.

Domain Attributes:

3

Hee said nobody had said anything agt mee.

CurrWord = hee 1 NextWord = said 2

features

- Prefix1 = h
- Suffix1 = e

Domain Attributes:

3

Hee said nobody had said anything agt mee.

CurrWord = hee 1 NextWord = said 2

features

- Prefix1 = h
- Suffix1 = e

 \bullet \bullet \bullet

Domain Attributes:

features

- Prefix1 = h3
- Suffix1 = e

Hee said nobody had said anything agt mee.

Hee said nobody had said anything agt mee.

CurrWord = hee 1 NextWord = said 2

features

- $Prefix1 = h_{3}$
- Suffix1 = e 4

 $\mathbf{u}_2 = \mathbf{h}_2^{(\text{shared})} + \mathbf{h}_2^{(\text{letters})} + \mathbf{h}_2^{(1600+)}$

Hee said nobody had said anything agt mee.

features **〈**

- CurrWord = hee
NextWord = said
Prefix1 = h1
2Prefix1 = h3Suffix1 = e4

Hee said nobody had said anything agt mee.

Experiments

Penn Corpora of Historical English

Modern British English (MBE)

of tokens

Early Modern English (EME)

of tokens

[Krochand Taylor, 2000; Kroch et al., 2004]

Penn Corpora of Historical English (PCHE) tagset: 83 tags Penn Treebank (PTB) tagset: 45 tags

Tagset Mappings

[Moon and Baldridge, 2007]

Penn Corpora of Historical English (PCHE) tagset: 83 tags Penn Treebank (PTB) tagset: 45 tags

PCHE	
ADJ	
ADV	
ALSO	
VB	
VBI	
•••	

Tagset Mappings

PTB
JJ
RB
VB
• • •

[Moon and Baldridge, 2007]

Support vector machine (SVM) tagger Sixteen basic feature templates by Ratnaparkhi (1996)

Systems

- Support vector machine (SVM) tagger Sixteen basic feature templates by Ratnaparkhi (1996)
- Representation learning methods
 - Structural correspondence learning (SCL)
 - Brown clustering
 - word2vec embeddings
 - Multiple feature embeddings (FEMA)

Systems

[Blitzer et al., 2006; Brown et al., 1992; Mikolov et al., 2013]

Temporal Adaptation

of tokens

(Our method)

(Our method)

Adaptation from PTB

1,000,000 1,500,000 2,000,000 # of tokens

Adaptation from PTB

Standard evaluation scenario for **WALL STREET** English POS tagging. **JOURNAL**

Adaptation from PTB

Standard evaluation scenario for English POS tagging.

Insufficient data annotation for historical texts.

Low resource languages Specific genres, styles, or epochs

WALL STREET **JOIRNAL**

(Our method)

 18.4	18.3	17.5	(- 1.
 Brown	word2vec	FEMA	

Normalization vs. Representation Learning

ntatior ning		 	
.1			
.8)	 	 	
ΛA	 	 	
-			

Normalization vs. Representation Learning

Normalization vs. Representation Learning

token	annotations in PCHE	annotations in PTB
, (comma)	, (comma; 83.4%) . (period; 16.6%)	, (comma)

token	annotations in PCHE	annotations in PTB
, (comma)	, (comma; 83.4%) . (period; 16.6%)	, (comma)
. (period)	, (comma; 12.3%) . (period; 87.7%)	. (period)

token	annotations in PCHE	annotations in PTB
, (comma)	, (comma; 83.4%) . (period; 16.6%)	, (comma)
. (period)	, (comma; 12.3%) . (period; 87.7%)	. (period)
to	TO (54.6%) IN (44.3%)	TO

token	annotations in PCHE	annotations in PTB
, (comma)	, (comma; 83.4%) . (period; 16.6%)	, (comma)
. (period)	, (comma; 12.3%) . (period; 87.7%)	. (period)
to	TO (54.6%) IN (44.3%)	TO
all/any/every	JJ (quantifier)	DT

Conclusions

Conclusions

Feature embeddings outperform word embeddings by exploiting task-specific information in feature templates.

Feature embeddings outperform word embeddings by

Representation learning and spelling normalization are complementary for improving tagging performance.

- exploiting task-specific information in feature templates.

- Feature embeddings outperform word embeddings by exploiting task-specific information in feature templates.
- Representation learning and spelling normalization are complementary for improving tagging performance.
- Tagset mismatches make it hard to evaluate modern POS taggers for historical English.