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Abstract

Representation learning is the dominant tech-
nique for unsupervised domain adaptation, but
existing approaches have two major weak-
nesses. First, they often require the spec-
ification of “pivot features” that generalize
across domains, which are selected by task-
specific heuristics. We show that a novel but
simple feature embedding approach provides
better performance, by exploiting the feature
template structure common in NLP problems.
Second, unsupervised domain adaptation is
typically treated as a task of moving from a
single source to a single target domain. In
reality, test data may be diverse, relating to
the training data in some ways but not oth-
ers. We propose an alternative formulation,
in which each instance has a vector of do-
main attributes, can be used to learn distill the
domain-invariant properties of each feature.1

1 Introduction

Domain adaptation is crucial if natural language
processing is to be successfully employed in high-
impact application areas such as social media, pa-
tient medical records, and historical texts. Unsuper-
vised domain adaptation is particularly appealing,
since it requires no labeled data in the target domain.
Some of the most successful approaches to unsu-
pervised domain adaptation are based on representa-
tion learning: transforming sparse high-dimensional
surface features into dense vector representations,

1Source code and a demo are available at https://
github.com/yiyang-gt/feat2vec
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Figure 1: Domain graph for the Tycho Brahe cor-
pus (Galves and Faria, 2010). Suppose we want to adapt
from 19th Century narratives to 16th Century disser-
tations: can unlabeled data from other domains help?

which are often more robust to domain shift (Blitzer
et al., 2006; Glorot et al., 2011). However, these
methods are computationally expensive to train, and
often require special task-specific heuristics to select
good “pivot features.”

A second, more subtle challenge for unsupervised
domain adaptation is that it is normally framed as
adapting from a single source domain to a single tar-
get domain. For example, we may be given part-
of-speech labeled text from 19th Century narratives,
and we hope to adapt the tagger to work on academic
dissertations from the 16th Century. This ignores
text from the intervening centuries, as well as text
that is related by genre, such as 16th Century narra-
tives and 19th Century dissertations (see Figure 1).
We address a new challenge of unsupervised multi-
domain adaptation, where the goal is to leverage this
additional unlabeled data to improve performance in
the target domain.2

2Multiple domains have been considered in supervised do-
main adaptation (e.g., Mansour et al., 2009), but these ap-
proaches are not directly applicable when there is no labeled
data outside the source domain.



Figure 2: Representation learning techniques in structured feature spaces

We present FEMA (Feature EMbeddings for do-
main Adaptation), a novel representation learning
approach for domain adaptation in structured feature
spaces. Like prior work in representation learning,
FEMA learns dense features that are more robust to
domain shift. However, rather than performing rep-
resentation learning by reconstructing pivot features,
FEMA uses techniques from neural language mod-
els to obtain low-dimensional embeddings directly.
FEMA outperforms prior work on adapting POS tag-
ging from the Penn Treebank to web text, and it eas-
ily generalizes to unsupervised multi-domain adap-
tation, further improving performance by learning
generalizable models across multiple domains.

2 Learning feature embeddings

Feature co-occurrence statistics are the primary
source of information driving many unsupervised
methods for domain adaptation; they enable the
induction of representations that are more similar
across the source and target domain, reducing the
error introduced by domain shift (Ben-David et al.,
2010). For example, both Structural Correspon-
dence Learning (SCL; Blitzer et al., 2006) and De-
noising Autoencoders (Chen et al., 2012) learn to
reconstruct a subset of “pivot features”, as shown in
Figure 2(a). The reconstruction function — which
is learned from unlabeled data in both domains — is
then employed to project each instance into a dense
representation, which will hopefully be better suited
to cross-domain generalization. The pivot features
are chosen to be both predictive of the label and gen-
eral across domains. Meeting these two criteria re-
quires task-specific heuristics; for example, differ-

ent pivot selection techniques are employed in SCL
for syntactic tagging (Blitzer et al., 2006) and senti-
ment analysis (Blitzer et al., 2007). Furthermore, the
pivot features correspond to a small subspace of the
feature co-occurrence matrix. In Denoising Autoen-
coders, each pivot feature corresponds to a dense
feature in the transformed representation, but large
dense feature vectors impose substantial computa-
tional costs at learning time. In SCL, each pivot fea-
ture introduces a new classification problem, which
makes computation of the cross-domain representa-
tion expensive. In either case, we face a tradeoff
between the amount of feature co-occurrence infor-
mation that we can use, and the computational com-
plexity for representation learning and downstream
training.

This tradeoff can be avoided by inducing low
dimensional feature embeddings directly. We ex-
ploit the tendency of many NLP tasks to divide fea-
tures into templates, with exactly one active fea-
ture per template (Smith, 2011); this is shown in
the center of Figure 2. Rather than treating each
instance as an undifferentiated bag-of-features, we
use this template structure to induce feature embed-
dings, which are dense representations of individual
features. Each embedding is selected to help pre-
dict the features that fill out the other templates: for
example, an embedding for the current word feature
is selected to help predict the previous word feature
and successor word feature, and vice versa; see Fig-
ure 2(b). The embeddings for each active feature are
then concatenated together across templates, giving
a dense representation for the entire instance.

Our approach is motivated by word embeddings,



in which dense representations are learned for indi-
vidual words based on their neighbors (Turian et al.,
2010; Xiao and Guo, 2013), but rather than learning
a single embedding for each word, we learn embed-
dings for each feature. This means that the embed-
ding of, say, ‘toughness’ will differ depending on
whether it appears in the current-word template or
the previous-word template (see Table 6). This pro-
vides additional flexibility for the downstream learn-
ing algorithm, and the increase in the dimensional-
ity of the overall dense representation can be off-
set by learning shorter embeddings for each feature.
In Section 4, we show that feature embeddings con-
vincingly outperform word embeddings on two part-
of-speech tagging tasks.

Our feature embeddings are based on the
skip-gram model, trained with negative sam-
pling (Mikolov et al., 2013a), which is a simple
yet efficient method for learning word embeddings.
Rather than predicting adjacent words, the training
objective in our case is to find feature embeddings
that are useful for predicting other active features in
the instance. For the instance n ∈ {1 . . . N} and
feature template t ∈ {1 . . . T}, we denote fn(t) as
the index of the active feature; for example, in the in-
stance shown in Figure 2, fn(t) = ‘new’ when t in-
dicates the previous-word template. The skip-gram
approach induces distinct “input” and “output” em-
beddings for each feature, written ufn(t) and vfn(t),
respectively. The role of these embeddings can be
seen in the negative sampling objective,

`n =
1

T

T∑
t=1

T∑
t′ 6=t

[
log σ(u>fn(t)vfn(t′))

+kE
i∼P (n)

t′
log σ(−u>fn(t)vi)

]
, (1)

where t and t′ are feature templates, k is the num-
ber of negative samples, P (n)

t′ is a noise distribution
for template t′, and σ is the sigmoid function. This
objective is derived from noise-contrastive estima-
tion (Gutmann and Hyvärinen, 2012), and is cho-
sen to maximize the unnormalized log-likelihood of
the observed feature co-occurrence pairs, while min-
imizing the unnormalized log-likelihood of “nega-
tive” samples, drawn from the noise distribution.

Feature embeddings can be applied to domain
adaptation by learning embeddings of all features

on the union of the source and target data sets; we
consider the extension to multiple domains in the
next section. The dense feature vector for each in-
stance is obtained by concatenating the feature em-
beddings for each template. Finally, since it has been
shown that nonlinearity is important for generating
robust representations (Bengio et al., 2013), we fol-
low Chen et al. (2012) and apply the hyperbolic tan-
gent function to the embeddings. The augmented
representation x

(aug)
n of instance n is the concatena-

tion of the original feature vector and the feature em-
beddings,

x(aug)
n = xn ⊕ tanh[ufn(1) ⊕ · · · ⊕ ufn(T )],

where ⊕ is vector concatenation.

3 Feature embeddings across domains

We now describe how to extend the feature em-
bedding idea beyond a single source and target do-
main, to unsupervised multi-attribute domain adap-
tation (Joshi et al., 2013). In this setting, each in-
stance is associated with M metadata domain at-
tributes, which could encode temporal epoch, genre,
or other aspects of the domain. The challenge of
domain adaptation is that the meaning of features
can shift across each metadata dimension: for ex-
ample, the meaning of ‘plant’ may depend on genre
(agriculture versus industry), while the meaning of
‘like’ may depend on epoch. To account for this, the
feature embeddings should smoothly shift over do-
main graphs, such as the one shown in Figure 1; this
would allow us to isolate the domain general aspects
of each feature. Related settings have been consid-
ered only for supervised domain adaptation, where
some labeled data is available in each domain (Joshi
et al., 2013), but not in the unsupervised case.

More formally, we assume each instance n is
augmented with a vector of M binary domain at-
tributes, zn ∈ {0, 1}M . These attributes may over-
lap, so that we could have an attribute for the epoch
1800-1849, and another for the epoch 1800-1899.
We define zn,0 = 1 as a shared attribute, which is
active for all instances. We capture domain shift
by estimating embeddings h

(m)
i for each feature i

crossed with each domain attribute m. We then
compute the embedding for each instance by sum-
ming across the relevant domain attributes, as shown



Figure 3: Aggregating multiple embeddings.

in Figure 3. The local “input” feature embedding
ufn(t) is then defined as the summation, ufn(t) =∑M

m=0 zn,mh
(m)
fn(t)

.

The role of the global embedding h
(0)
i is to cap-

ture domain-neutral information about the feature
i, while the other embeddings capture attribute-
specific information. The global feature embed-
dings should therefore be more robust to domain
shift, which is “explained away” by the attribute-
specific embeddings. We therefore use only these
embeddings when constructing the augmented rep-
resentation, x(aug)

n . To ensure that the global embed-
dings capture all of the domain-general information
about each feature, we place an L2 regularizer on
the attribute-specific embeddings. Note that we do
not learn attribute-specific “output” embeddings v;
these are shared across all instances, regardless of
domain.

The attribute-based embeddings yield a new train-
ing objective for instance n,

`n =
1

T

T∑
t=1

T∑
t′ 6=t

[
log σ([

M∑
m=0

zn,mh
(m)
fn(t)

]>vfn(t′))

+kE
i∼P (n)

t′
log σ(−[

M∑
m=0

zn,mh
(m)
fn(t)

]>vi)

]
. (2)

For brevity, we omit the regularizer from Equa-
tion 2. For feature fn(t), the (unregularized) gra-
dients of h(m)

fn(t)
and vfn(t′) w.r.t `n,t are

∂`n,t

h
(m)
fn(t)

=
1

T

T∑
t′ 6=t

zn,m

[
(1− σ(u>fn(t)vfn(t′)))vfn(t′)

−kE
i∼P (n)

t′
σ(u>fn(t)vi)vi

]
(3)

∂`n,t
vfn(t′)

=
1

T

T∑
t′ 6=t

(1− σ(u>fn(t)vfn(t′)))ufn(t). (4)

For each feature i drawn from the noise distribu-
tion P (n)

t′ , the gradient of vi w.r.t `n,t is

∂`n,t
vi

= − 1

T
σ(u>fn(t)vi)ufn(t). (5)

4 Experiments

We evaluate FEMA on part-of-speech (POS) tagging,
in two settings: (1) adaptation of English POS tag-
ging from news text to web text, as in the SANCL
shared task (Petrov and McDonald, 2012); (2) adap-
tation of Portuguese POS tagging across a graph
of related domains over several centuries and gen-
res, from the Tycho Brahe corpus (Galves and Faria,
2010). These evaluations are complementary: En-
glish POS tagging gives us the opportunity to eval-
uate feature embeddings in a well-studied and high-
impact application; Portuguese POS tagging enables
evaluation of multi-attribute domain adaptation, and
demonstrates the capability of our approach in a
morphologically-rich language, with a correspond-
ingly large number of part-of-speech tags (383). As
more historical labeled data becomes available for
English and other languages, we will be able to
evaluate feature embeddings and related techniques
there.

4.1 Implementation details
While POS tagging is classically treated as a struc-
tured prediction problem, we follow Schnabel and
Schütze (2014) by taking a classification-based ap-
proach. Feature embeddings can easily be used in
feature-rich sequence labeling algorithms such as
conditional random fields or structured perceptron,
but our pilot experiments suggest that with suffi-
ciently rich features, classification-based methods
can be extremely competitive on these datasets, at
a fraction of the computational cost. Specifically,
we apply a support vector machine (SVM) classifier,



Component Feature template

Lexical (5) wi−2 = X,wi−1 = Y, . . .

Affixes (8) X is prefix of wi, |X| ≤ 4
X is suffix of wi, |X| ≤ 4

Orthography (3) wi contains number, uppercase char-
acter, or hyphen

Table 1: Basic feature templates for token wi.

adding dense features from FEMA (and the alterna-
tive representation learning techniques) to a set of
basic features.

4.1.1 Basic features
We apply sixteen feature templates, motivated by

by Ratnaparkhi (1996). Table 1 provides a summary
of the templates; there are four templates each for
the prefix and suffix features. Feature embeddings
are learned for all lexical and affix features, yield-
ing a total of thirteen embeddings per instance. We
do not learn embeddings for the binary orthographic
features. Santos and Zadrozny (2014) demonstrate
the utility of embeddings for affix features.

4.1.2 Competitive systems
We consider three competitive unsupervised do-

main adaptation methods. Structural Correspon-
dence Learning (Blitzer et al., 2006, SCL) creates
a binary classification problem for each pivot fea-
ture, and uses the weights of the resulting classifiers
to project the instances into a dense representation.
Marginalized Denoising Autoencoders (Chen et al.,
2012, mDA) learn robust representation across do-
mains by reconstructing pivot features from artifi-
cially corrupted input instances. We use structured
dropout noise, which has achieved state-of-art re-
sults on domain adaptation for part-of-speech tag-
ging (Yang and Eisenstein, 2014). We also directly
compare with WORD2VEC3 word embeddings, and
with a “no-adaptation” baseline in which only sur-
face features are used.

4.1.3 Parameter tuning
All the hyperparameters are tuned on develop-

ment data. Following Blitzer et al. (2006), we con-
sider pivot features that appear more than 50 times in

3https://code.google.com/p/word2vec/

all the domains for SCL and mDA. In SCL, the pa-
rameter K selects the number of singular vectors of
the projection matrix to consider; we try values be-
tween 10 and 100, and also employ feature normal-
ization and rescaling. For embedding-based meth-
ods, we choose embedding sizes and numbers of
negative samples from {25, 50, 100, 150, 200} and
{5, 10, 15, 20} respectively. The noise distribution
P

(n)
t is simply the unigram probability of each fea-

ture in the template t. Mikolov et al. (2013b) argue
for exponentiating the unigram distribution, but we
find it makes little difference here. The window size
of word embeddings is set as 5. As noted above,
the attribute-specific embeddings are regularized, to
encourage use of the shared embedding h(0). The
regularization penalty is selected by grid search over
{0.001, 0.01, 0.1, 1.0, 10.0}. In general, we find that
the hyperparameters that yield good word embed-
dings tend to yield good feature embeddings too.

4.2 Evaluation 1: Web text

Recent work in domain adaptation for natural lan-
guage processing has focused on the data from the
shared task on Syntactic Analysis of Non-Canonical
Language (SANCL; Petrov and McDonald, 2012),
which contains several web-related corpora (news-
groups, reviews, weblogs, answers, emails) as well
as the WSJ portion of OntoNotes corpus (Hovy et
al., 2006). Following Schnabel and Schütze (2014),
we use sections 02-21 of WSJ for training and sec-
tion 22 for development, and use 100,000 unlabeled
WSJ sentences from 1988 for learning representa-
tions. On the web text side, each of the five target
domains has an unlabeled training set of 100,000
sentences (except the ANSWERS domain, which has
27,274 unlabeled sentences), along with develop-
ment and test sets of about 1000 labeled sentences
each. In the spirit of truly unsupervised domain
adaptation, we do not use any target domain data for
parameter tuning.

Settings For FEMA, we consider only the single-
embedding setting, learning a single feature embed-
ding jointly across all domains. We select 6918 pivot
features for SCL, according to the method described
above; the final dense representation is produced by
performing a truncated singular value decomposi-
tion on the projection matrix that arises from the



Target baseline MEMM SCL mDA word2vec FLORS FEMA

NEWSGROUPS 88.56 89.11 89.33 89.87 89.70 90.86 91.26
REVIEWS 91.02 91.43 91.53 91.96 91.70 92.95 92.82
WEBLOGS 93.67 94.15 94.28 94.18 94.17 94.71 94.95
ANSWERS 89.05 88.92 89.56 90.06 89.83 90.30 90.69
EMAILS 88.12 88.68 88.42 88.71 88.51 89.44 89.72

AVERAGE 90.08 90.46 90.63 90.95 90.78 91.65 91.89

Table 2: Accuracy results for adaptation from WSJ to Web Text on SANCL dev set.

Target baseline MEMM SCL mDA word2vec FLORS FEMA

NEWSGROUPS 91.02 91.25 91.51 91.83 91.35 92.41 92.60
REVIEWS 89.79 90.30 90.29 90.95 90.87 92.25 92.15
WEBLOGS 91.85 92.32 92.32 92.39 92.42 93.14 93.43
ANSWERS 89.52 89.74 90.04 90.61 90.48 91.17 91.35
EMAILS 87.45 87.77 88.04 88.11 88.28 88.67 89.02

AVERAGE 89.93 90.28 90.44 90.78 90.68 91.53 91.71

Table 3: Accuracy results for adaptation from WSJ to Web Text on SANCL test set.

weights of the pivot feature predictors. The mDA
method does not include any such matrix factor-
ization step, and therefore generates a number of
dense features equal to the number of pivot features.
Memory constraints force us to choose fewer pivots,
which we achieve by raising the threshold to 200,
yielding 2754 pivot features.

Additional systems Aside from SCL and
mDA, we compare against published results of
FLORS (Schnabel and Schütze, 2014), which uses
distributional features for domain adaptation. We
also republish the baseline results of Schnabel and
Schütze (2014) using the Stanford POS Tagger, a
maximum entropy Markov model (MEMM) tagger.

Results As shown in Table 2 and 3, FEMA outper-
forms competitive systems on all target domains ex-
cept REVIEW, where FLORS performs slightly bet-
ter. FLORS uses more basic features than FEMA;
these features could in principle be combined with
feature embeddings for better performance. Com-
pared with the other representation learning ap-
proaches, FEMA is roughly 1% better on average,
corresponding to an error reduction of 10%. Its
training time is approximately 70 minutes on a 24-
core machine, using an implementation based on

Figure 4: Accuracy results with different latent dimen-
sions on SANCL dev sets.

gensim.4 This is slightly faster than SCL, although
slower than mDA with structured dropout noise.

Figure 4 shows the average accuracy on the
SANCL development set, versus the latent dimen-
sions of different methods. The latent dimension of
SCL is modulated by the number of singular vec-
tors; we consider sizes 10, 25, 50, 75, and 100. In
mDA, we consider pivot feature frequency thresh-
olds 500, 400, 300, 250, and 200. For FEMA, we
consider embedding sizes 25, 50, 100, 150, and
200. The resulting latent dimensionality multiplies
these sizes by the number of non-binary templates

4http://radimrehurek.com/gensim/



Task baseline SCL mDA word2vec FEMA

single
embedding

attribute
embeddings

from 1800-1849
→ 1750 88.74 89.31 90.11 89.24 90.25 90.59
→ 1700 89.97 90.41 91.39 90.51 91.61 92.03
→ 1650 85.94 86.76 87.69 86.22 87.64 88.12
→ 1600 86.21 87.65 88.63 87.41 89.39 89.77
→ 1550 88.92 89.92 90.79 89.85 91.47 91.78
→ 1500 85.32 86.82 87.64 86.60 89.29 89.89
AVERAGE 87.52 88.48 89.37 88.30 89.94 90.36

from 1750-1849
→ 1700 94.37 94.60 94.86 94.60 95.14 95.22
→ 1650 91.49 91.78 92.52 91.85 92.56 93.26
→ 1600 91.92 92.51 93.14 92.83 93.80 93.89
→ 1550 92.75 93.21 93.53 93.21 94.23 94.20
→ 1500 89.87 90.53 91.31 91.48 92.05 92.95
AVERAGE 92.08 92.53 93.07 92.80 93.56 93.90

Table 4: Accuracy results for adaptation in the Tycho Brahe corpus of historical Portuguese.

13. FEMA dominates the other approaches across
the complete range of latent dimensionalities. The
best parameters for SCL are dimensionality K = 50
and rescale factor α = 5. For both FEMA and
WORD2VEC, the best embedding size is 100 and the
best number of negative samples is 5.

4.3 Evaluation 2: Historical Portuguese

Next, we consider the problem of multi-attribute do-
main adaptation, using the Tycho Brahe corpus of
historical Portuguese text (Galves and Faria, 2010),
which contains syntactic annotations of Portuguese
texts in four genres over several centuries (Figure 1).
We focus on temporal adaptation: training on the
most modern data in the corpus, and testing on in-
creasingly distant historical text.

Settings For FEMA, we consider domain attributes
for 50-year temporal epochs and genres; we also cre-
ate an additional attribute merging all instances that
are in neither the source nor target domain. In SCL
and mDA, 1823 pivot features pass the threshold.
Optimizing on a source-domain development set, we
find that the best parameters for SCL are dimension-
ality K = 25 and rescale factor α = 5. The best
embedding size and negative sample number are 50
and 15 for both FEMA and WORD2VEC.

Results As shown in Table 4, FEMA outperforms
competitive systems on all tasks. The column “sin-
gle embedding” reports results with a single feature
embedding per feature, ignoring domain attributes;
the column “attribute embeddings” shows that learn-
ing feature embeddings for domain attributes further
improves performance, by 0.3-0.4% on average.

5 Similarity in the embedding space

The utility of word and feature embeddings for POS
tagging task can be evaluated through word simi-
larity in the embedding space, and its relationship
to type-level part-of-speech labels. To measure the
label consistency between each word and its top Q
closest words in the vocabulary we compute,

Consistency =

∑|V |
i=1

∑Q
j=1 β(wi, cij)

|V | ×Q
(6)

where |V | is the number of words in the vocabulary,
wi is the i-th word in the vocabulary, cij is the j-
th closest word to wi in the embedding space (using
cosine similarity), β(wi, cij) is an indicator function
that is equal to 1 if wi and cij have the same most
common part-of-speech in labeled data.

We compare feature embeddings of different tem-
plates against WORD2VEC embeddings. All em-
beddings are trained on the SANCL data, which is



Embedding Q = 5 Q = 10 Q = 50 Q = 100

WORD2VEC 47.64 46.17 41.96 40.09
FEMA-current 68.54 66.93 62.36 59.94
FEMA-prev 55.34 54.18 50.41 48.39
FEMA-next 57.13 55.78 52.04 49.97
FEMA-all 70.63 69.60 65.95 63.91

Table 5: Label consistency of the Q-most similar words
in each embedding. FEMA-all is the concatenation of the
current, previous, and next-word FEMA embeddings.

also used to obtain the most common tag for each
word. Table 5 shows that the FEMA embeddings
are more consistent with the type-level POS tags
than WORD2VEC embeddings. This is not surpris-
ing, since they are based on feature templates that
are specifically designed for capturing syntactic reg-
ularities. In simultaneously published work, Ling
et al. (2015) present “position-specific” word em-
beddings, which are an alternative method to induce
more syntactically-oriented word embeddings.

Table 6 shows the most similar words for three
query keywords, in each of four different embed-
dings. The next-word and previous-word embed-
dings are most related to syntax, because they help
to predict each other and the current-word feature;
the current-word embedding brings in aspects of or-
thography, because it must help to predict the affix
features. In morphologically rich languages such as
Portuguese, this can help to compute good embed-
dings for rare inflected words. This advantage holds
even in English: the word ‘toughness’ appears only
once in the SANCL data, but the FEMA-current em-
bedding is able to capture its morphological simi-
larity to words such as ‘tightness’ and ‘thickness’.
In WORD2VEC, the lists of most similar words tend
to combine syntax and topic information, and fail to
capture syntactic regularities such as the relationship
between ‘and’ and ‘or’.

6 Related Work

Representation learning Representational differ-
ences between source and target domains can be a
major source of errors in the target domain (Ben-
David et al., 2010). To solve this problem, cross-
domain representations were first induced via auxil-
iary prediction problems (Ando and Zhang, 2005),
such as the prediction of pivot features (Blitzer et

‘new’
FEMA-current nephew, news, newlywed, newer,

newspaper
FEMA-prev current, local, existing, interna-

tional, entire
FEMA-next real, big, basic, local, personal
WORD2VEC current, special, existing, newly,

own
‘toughness’
FEMA-current tightness, trespass, topless, thick-

ness, tenderness
FEMA-prev underside, firepower, buzzwords,

confiscation, explorers
FEMA-next aspirations, anguish, pointers, or-

ganisation, responsibilities
WORD2VEC parenting, empathy, ailment, rote,

nerves
‘and’
FEMA-current amd, announced, afnd, anesthetized,

anguished
FEMA-prev or, but, as, when, although
FEMA-next or, but, without, since, when
WORD2VEC but, while, which, because, practi-

cally

Table 6: Most similar words for three queries, in each
embedding space.

al., 2006). In these approaches, as well as in later
work on denoising autoencoders (Chen et al., 2012),
the key mechanism is to learn a function to predict a
subset of features for each instance, based on other
features of the instance. Since no labeled data is re-
quired to learn the representation, target-domain in-
stances can be incorporated, revealing connections
between features that appear only in the target do-
main and features that appear in the source domain
training data. The design of auxiliary prediction
problems and the selection of pivot features both in-
volve heuristic decisions, which may vary depend-
ing on the task. FEMA avoids the selection of pivot
features by directly learning a low-dimensional rep-
resentation, through which features in each template
predict the other templates.

An alternative is to link unsupervised learning in
the source and target domains with the label dis-
tribution in the source domain, through the frame-
work of posterior regularization (Ganchev et al.,
2010). This idea is applied to domain adaptation
by Huang and Yates (2012), and to cross-lingual



learning by Ganchev and Das (2013). This approach
requires a forward-backward computation for repre-
sentation learning, while FEMA representations can
be learned without dynamic programming, through
negative sampling.

Word embeddings Word embeddings can be
viewed as special case of representation learning,
where the goal is to learn representations for each
word, and then to supply these representations in
place of lexical features. Early work focused on
discrete clusters (Brown et al., 1990), while more
recent approaches induce dense vector representa-
tions; Turian et al. (2010) compare Brown clus-
ters with neural word embeddings from Collobert
and Weston (2008) and Mnih and Hinton (2009).
Word embeddings can also be computed via neu-
ral language models (Mikolov et al., 2013b), or
from canonical correlation analysis (Dhillon et al.,
2011). Xiao and Guo (2013) induce word em-
beddings across multiple domains, and concate-
nate these representations into a single feature vec-
tor for labeled instances in each domain, following
EasyAdapt (Daumé III, 2007). However, they do
not apply this idea to unsupervised domain adapta-
tion, and do not work in the structured feature setting
that we consider here. Bamman et al. (2014) learn
geographically-specific word embeddings, in an ap-
proach that is similar to our multi-domain feature
embeddings, but they do not consider the applica-
tion to domain adaptation. We can also view the dis-
tributed representations in FLORS as a sort of word
embedding, computed directly from rescaled bigram
counts (Schnabel and Schütze, 2014).

Feature embeddings are based on a different phi-
losophy than word embeddings. While many NLP
features are lexical in nature, the role of a word
towards linguistic structure prediction may differ
across feature templates. Applying a single word
representation across all templates is therefore sub-
optimal. Another difference is that feature embed-
dings can apply to units other than words, such as
character strings and shape features. The tradeoff
is that feature embeddings must be recomputed for
each set of feature templates, unlike word embed-
dings, which can simply be downloaded and plugged
into any NLP problem. However, computing fea-
ture embeddings is easy in practice, since it requires

only a light modification to existing well-optimized
implementations for computing word embeddings.

Multi-domain adaptation The question of adap-
tation across multiple domains has mainly been ad-
dressed in the context of supervised multi-domain
learning, with labeled data available in all do-
mains (Daumé III, 2007). Finkel and Manning
(2009) propagate classification parameters across a
tree of domains, so that classifiers for sibling do-
mains are more similar; Daumé III (2009) shows
how to induce such trees using a nonparametric
Bayesian model. Dredze et al. (2010) combine clas-
sifier weights using confidence-weighted learning,
which represents the covariance of the weight vec-
tors. Joshi et al. (2013) formulate the problem of
multi-attribute multi-domain learning, where all at-
tributes are potential distinctions between domains;
Wang et al. (2013) present an approach for automat-
ically partitioning instances into domains according
to such metadata features. Our formulation is related
to multi-domain learning, particularly in the multi-
attribute setting. However, rather than partitioning
all instances into domains, the domain attribute for-
mulation allows information to be shared across in-
stances which share metadata attributes. We are
unaware of prior research on unsupervised multi-
domain adaptation.

7 Conclusion

Feature embeddings can be used for domain adap-
tation in any problem involving feature templates.
They offer strong performance, avoid practical
drawbacks of alternative representation learning ap-
proaches, and are easy to learn using existing word
embedding methods. By combining feature em-
beddings with metadata domain attributes, we can
perform domain adaptation across a network of in-
terrelated domains, distilling the domain-invariant
essence of each feature to obtain more robust rep-
resentations.
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