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Abstract

As more historical texts are digitized, there
is interest in applying natural language pro-
cessing tools to these archives. However, the
performance of these tools is often unsatisfac-
tory, due to language change and genre dif-
ferences. Spelling normalization heuristics are
the dominant solution for dealing with histori-
cal texts, but this approach fails to account for
changes in usage and vocabulary. In this em-
pirical paper, we assess the capability of do-
main adaptation techniques to cope with his-
torical texts, focusing on the classic bench-
mark task of part-of-speech tagging. We eval-
uate several domain adaptation methods on
the task of tagging Early Modern English and
Modern British English texts in the Penn Cor-
pora of Historical English. We demonstrate
that the Feature Embedding method for unsu-
pervised domain adaptation outperforms word
embeddings and Brown clusters, showing the
importance of embedding the entire feature
space, rather than just individual words. Fea-
ture Embeddings also give better performance
than spelling normalization, but the combina-
tion of the two methods is better still, yielding
a 5% raw improvement in tagging accuracy on
Early Modern English texts.

1 Introduction

There is growing interest in applying natural lan-
guage processing (NLP) techniques to historical
texts (Piotrowski, 2012), with applications in infor-
mation retrieval (Dougherty, 2010; Jurish, 2011),
linguistics (Baron et al., 2009; Rayson et al., 2007),
and the digital humanities (Hendrickx et al., 2011;

Original: and drewe vnto hym all ryottours & wylde dys-
posed persones
Normalization: and drew unto him all ryottours & wild
disposed persons

Figure 1: An example sentence from Early Modern English
and its VARD normalization.

Muralidharan and Hearst, 2013; Pettersson and
Nivre, 2011). However, these texts differ from con-
temporary training corpora in a number of linguistic
respects, including the lexicon (Giusti et al., 2007),
morphology (Borin and Forsberg, 2008), and syn-
tax (Eumeridou et al., 2004). This imposes signif-
icant challenges for modern NLP tools: for exam-
ple, the accuracy of the CLAWS part-of-speech Tag-
ger (Garside and Smith, 1997) drops from 97% on
the British National Corpus to 82% on Early Mod-
ern English texts (Rayson et al., 2007). There are
two main approaches that could improve the accu-
racy of NLP systems on historical texts: normaliza-
tion and domain adaptation.

Normalization Spelling normalization (also
called canonicalization) involves mapping histor-
ical spellings to their canonical forms in modern
languages, thus bridging the gap between contem-
porary training corpora and target historical texts.
Figure 1 shows one historical sentence and its
normalization by VARD (Baron and Rayson, 2008).
Rayson et al. (2007) report an increase of about
3% accuracy on adaptation of POS tagging from
Modern English texts to Early Modern English texts
if the target texts were automatically normalized
by the VARD system. However, normalization
is not always a well-defined problem (Eisenstein,



2013), and it does not address the full range of
linguistic changes over time, such as unknown
words, morphological differences, and changes
in the meanings of words (Kulkarni et al., 2015).
In the example above, the word ‘ryottours’ is not
successfully normalized to ‘rioters’; the syntax is
comprehensible to contemporary English speakers,
but usages such as ‘wild disposed’ and ‘drew unto’
are sufficiently unusual as to pose problems for
NLP systems trained on contemporary texts.

Domain adaptation A more generic machine
learning approach is to apply unsupervised domain
adaptation techniques, which transform the repre-
sentations of the training and target texts to be more
similar, typically using feature co-occurrence statis-
tics (Blitzer et al., 2006; Ben-David et al., 2010).
It is natural to think of historical texts as a dis-
tinct domain from contemporary training corpora,
and Yang and Eisenstein (2014, 2015) show that
the accuracy of historical Portuguese POS tagging
can be significantly improved by domain adaption.
However, we are unaware of prior work that em-
pirically evaluates the efficacy of this approach on
Early Modern English texts. Furthermore, histor-
ical texts are often associated with multiple meta-
data attributes (e.g., author, genre, and epoch), each
of which may influence the text’s linguistic prop-
erties. Multi-domain adaptation (Mansour et al.,
2009) and multi-attribute domain adaptation (Joshi
et al., 2013; Yang and Eisenstein, 2015) can poten-
tially exploit these metadata attributes to obtain fur-
ther improvements.

This paper presents the first comprehensive em-
pirical comparison of effectiveness of these ap-
proaches for part-of-speech tagging on historical
texts. We focus on the two historical treebanks of
the Penn Corpora of Historical English — the Penn
Parsed Corpus of Modern British English (Kroch et
al., 2010, PPCMBE) and the Penn-Helsinki Parsed
Corpus of Early Modern English (Kroch et al., 2004,
PPCEME). These datasets enable a range of analy-
ses, which isolate the key issues in dealing with his-
torical corpora:

• In one set of analyses, we focus on the
PPCMBE and the PPCEME corpora, training
on more recent texts and testing on earlier texts.

This isolates the impact of language change on
tagging performance.

• In another set of analyses, we train on the Penn
Treebank (Marcus et al., 1993, PTB), and test
on the historical corpora, using the tag map-
pings from Moon and Baldridge (2007). We
apply the well-known Stanford CoreNLP tag-
ger to this task (Manning et al., 2014), thus
replicating the most typical situation for users
of existing language technology.

• We show that FEMA, a domain adaptation algo-
rithm that is specifically designed for sequence
labeling problems (Yang and Eisenstein, 2015),
achieves an increase of nearly 4% in tagging
accuracy when adapting from the PTB to the
PPCEME.

• We compare the impact of normalization with
domain adaptation, and demonstrate that they
are largely complementary.

• Error analysis shows that the improvements ob-
tained by domain adaptation are largely due to
better handling of out-of-vocabulary (OOV) to-
kens. Many of the most frequent errors on
in-vocabulary (IV) tokens are caused by mis-
matches in the tagsets or annotation guidelines,
and may be difficult to address without labeled
data in the target domain.

2 Data

The Penn Corpora of Historical English consist of
the Penn-Helsinki Parsed Corpus of Middle English,
second edition (Kroch et al., 2010, PPCME2), the
Penn-Helsinki Parsed Corpus of Early Modern En-
glish (Kroch et al., 2004, PPCEME), and the Penn
Parsed Corpus of Modern British English (Kroch
and Taylor, 2000, PPCMBE). The corpora are an-
notated with part-of-speech tags and syntactic pars-
ing trees in an annotation style similar to that of the
Penn Treebank. In this work, we focus on POS tag-
ging the PPCMBE and the PPCEME.1

1Middle English is outside the scope of this paper, because
it is sufficiently unintelligible to modern English speakers that
texts such as Canterbury Tales are published in translation. In
tagging Middle English texts, Moon and Baldridge (2007) apply
bitext projection techniques from multilingual learning, rather
than domain adaptation.



Period # Sentence # Token

1840-1914 17,770 322,255
1770-1839 23,462 427,424
1700-1769 16,083 343,024

Total 57,315 1,092,703

Table 1: Statistics of the Penn Parsed Corpus of Modern British
English (PPCMBE), by time period.

Period # Sentence # Token

1640-1710 29,181 614,315
1570-1639 39,799 706,587
1500-1569 31,416 640,255

Total 100,396 1,961,157

Table 2: Statistics of the Penn Parsed Corpus of Early Modern
English (PPCEME), by time period.

The Penn Parsed Corpus of Modern British En-
glish The PPCMBE is a syntactically annotated
corpus of text, containing roughly one million word
tokens from documents written in the period 1700-
1914. It is divided into three 70-year time periods
according to the composition date of the works. Ta-
ble 1 shows the statistics of the corpus by time pe-
riod.2 In contrast to the PTB, the PPCMBE contains
text from a variety of genres, such as Bible, Drama,
Fiction, and Letters.

The Penn-Helsinki Parsed Corpus of Early Mod-
ern English The PPCEME is a collection of text
samples from the Helsinki Corpus (Rissanen et al.,
1993), as well as two supplements mainly consisting
of text material by the same authors and from the
same editions as the material in the Helsinki Cor-
pus. The corpus contains nearly two million words
from texts in the period from 1500 until 1710, and it
is divided into three 70-year time periods similar to
the PPCMBE corpus. The statistics of the corpus by
time period is summarized in Table 2. The PPCEME
consists of text from the same eighteen genres as the
PPCMBE.

Penn Treebank Release 3 The Penn Tree-
bank (Marcus et al., 1993) is the de facto stan-
dard syntactically annotated corpus for English,

2All the statistics in this section include punctuation, but ex-
clude extra-linguistic material such as page numbers or token
ID numbers.

which is used to train software such as Stanford
CoreNLP (Manning et al., 2014). When using this
dataset for supervised training, we follow Toutanova
et al. (2003) and use WSJ sections 0-18 for training,
and sections 19-21 for tuning. When applying un-
supervised domain adaptation, we use all WSJ sec-
tions, together with texts from the PPCMBE and the
PPCEME.

Tagsets The Penn Corpora of Historical English
(PCHE) use a tagset that differs from the Penn Tree-
bank, mainly in the direction of greater specificity.
Auxiliary verbs ‘do’, ‘have’, and ‘be’ all have their
own tags, as do words like ‘one’ and ‘else’, due to
their changing syntactic function over time. Over-
all, there are 83 tags in the PPCEME, and 81 in the
PPCMBE, as compared with 45 in the PTB. Further-
more, the tags in the PCHE tagset are allowed to
join constituent morphemes in compounds, yielding
complex tags such as PRO+N (e.g., ‘himself’) and
ADJ+NS (e.g., ‘gentlemen’).

To measure the tagging accuracy of PTB-trained
taggers on the historical texts, we follow Moon and
Baldridge (2007), who define a set of deterministic
mappings from the PCHE tags to the PTB tagset.
For simplicity, we first convert each complex tag to
the simple form by only considering the first simple
tag component (e.g., PRO+N to PRO and ADJ+NS
to ADJ). This has little effect on the tagging per-
formance, as the complex tags cover only slightly
more than 1% of the tokens in the PCHE treebanks.
Among the 83 tags, 74 mappings to the correspond-
ing PTB tags are obtained from Moon and Baldridge
(2007). We did our best to convert the other tags ac-
cording to the tag description. The complete list of
mappings is published in Appendix A.

3 Unsupervised Domain Adaptation

In typical usage scenarios, the user wants to tag
some historical text but has no labeled data in the
target domain (e.g., Muralidharan and Hearst, 2013).
This best fits the paradigm of unsupervised domain
adaptation, when labeled data from the source do-
main (e.g., the PTB) is combined with unlabeled
data from the target domain. Representational dif-
ferences between source and target domains can be
a major source of errors in domain adaptation (Ben-



David et al., 2010), and so several representation
learning approaches have been proposed.

The most straightforward approach is to replace
lexical features with word representations, such as
Brown clusters (Brown et al., 1992; Lin et al., 2012)
or word embeddings (Turian et al., 2010), such as
word2vec (Mikolov et al., 2013). Lexical features
can then be replaced or augmented with the result-
ing word representations. This can assist in domain
adaptation by linking out-of-vocabulary words to in-
vocabulary words with similar distributional proper-
ties.

Word representations are suitable for adapting
lexical features, but a more general solution is to
adapt the entire feature representation. One such
method is Structural Correspondence Learn-
ing (Blitzer et al., 2006, SCL). In SCL, we create ar-
tificial binary classification problems for thousands
of cross-domain “pivot” features, and then use the
weights from the resulting classifiers to project the
instances into a new dense representation. We also
consider a recently-published approach called Fea-
ture Embedding (FEMA), which achieves the state-
of-the-art results on several POS tagging adaptation
tasks (Yang and Eisenstein, 2015). The intuition
of FEMA is similar to SCL and other prior work:
it relies on co-occurrence statistics to link features
across domains. Specifically, FEMA exploits the ten-
dency of many NLP tasks to divide features into
templates, and induces feature embeddings by us-
ing the features in each template to predict the active
features in all other templates — just as the skipgram
model learns word embeddings to predict neighbor-
ing words. The resulting embeddings can be substi-
tuted for the “one-hot” representation of each fea-
ture template, resulting in a dense, low-dimensional
representation of each instance.

A further advantage of FEMA is that it can per-
form multi-attribute domain adaptation, enabling it
to exploit the many metadata attributes (e.g., year,
genre, and author) that are often associated with his-
torical texts. This is done by accounting for the
specific impact of each domain attribute on the fea-
ture predictors, and then building a domain-neutral
representation from the common substructure that is
shared across all domain attributes. In the experi-
ments that follow, we use genre and epoch as domain
attributes.

4 Experiments

We evaluate these unsupervised domain adaptation
approaches on part-of-speech tagging for historical
English (the PPCMBE and the PPCEME), in two
settings: (1) temporal adaptation within each indi-
vidual corpus, where we train POS taggers on the
most modern data in the corpus and test on increas-
ingly distant datasets; (2) adaptation of English POS
tagging from modern news text to historical texts.
The first setting focuses on temporal differences, and
eliminates other factors that may impair tagging per-
formance, such as different annotation schemes and
text genres. The second setting is the standard and
well-studied evaluation scenario for POS tagging,
where we train on the Wall Street Journal (WSJ) text
from the PTB and test on historical texts. In addi-
tion, we evaluate the effectiveness of the VARD nor-
malization tool (Baron and Rayson, 2008) for im-
proving POS tagging performance on the PPCEME
corpus.

4.1 Experimental Settings

The datasets used in the experiments are described
in § 2. All the hyperparameters are tuned on devel-
opment data in the source domain. In the case where
there is no specific development dataset (adaptation
within the historical corpora), we randomly sample
10% sentences from the training datasets for hyper-
parameter tuning.

4.1.1 Baseline systems
We include two baseline systems for POS tag-

ging: a classification-based support vector machine
(SVM) tagger and a bidirectional maximum en-
tropy Markov model (MEMM) tagger. Specif-
ically, we use the L2-regularized L2-loss SVM
implementation in the scikit-learn package (Pe-
dregosa et al., 2011) and L2-regularized bidirec-
tional MEMM implementation provided by Stanford
CoreNLP (Toutanova et al., 2003; Manning et al.,
2014).

Following Yang and Eisenstein (2015), we apply
the feature templates defined by Ratnaparkhi (1996)
to extract the basic features for all taggers. There are
three broad types of templates: five lexical feature
templates, eight affix feature templates, and three or-
thographic feature templates.



Task baseline SCL Brown word2vec FEMA

SVM MEMM
(Stanford)

single
embedding

attribute embeddings
(error reduction)

Modern British English (training from 1840-1914)
! 1770-1839 96.30 96.57 96.42 96.45 96.44 96.80 96.84 (15%)
! 1700-1769 94.57 94.83 95.07 95.15 94.85 95.65 95.75 (22%)
AVERAGE 95.43 95.70 95.74 95.80 95.64 96.23 96.30 (19%)

Early Modern English (training from 1640-1710)
! 1570-1639 93.62 93.98 94.23 94.36 94.18 95.01 95.20 (25%)
! 1500-1569 87.59 87.47 89.39 89.73 89.30 91.40 91.63 (33%)
AVERAGE 90.61 90.73 91.81 92.05 91.74 93.20 93.41 (30%)

Table 3: Accuracy results for temporal adaptation in the PPCMBE and the PPCEME of historical English. Percentage error
reduction is shown for the best-performing method, FEMA-attribute.

4.1.2 Domain adaptation systems
We consider the unsupervised domain adaptation

methods described in § 3: structural correspondence
learning (SCL), Brown clustering, word2vec,3 and
FEMA, which we train in both the single embedding
mode (FEMA-single), where metadata attributes
are ignored, and in multi-attribute mode (FEMA-
attribute), where metadata attributes are used. The
domain adaptation models are trained on the union
of the (unlabeled) source and target datasets. This
ensures that there are no out-of-vocabulary items for
the word or feature embeddings.

Following Yang and Eisenstein (2015), we do not
learn feature embeddings for the three orthographic
feature templates: as each orthographic feature tem-
plate represents only a binary value, it is unneces-
sary to replace it with a much longer numerical vec-
tor. The learned representations are then concate-
nated with the basic surface features to form the aug-
mented representations. For computational reasons,
the domain adaptation systems are all based on the
SVM tagger, as pilot studies showed that Viterbi tag-
ging offers minimal improvements.

4.1.3 Parameter tuning
We choose the SVM regularization parameter by

sweeping the range {0.1, 0.3, 0.5, 0.8, 1.0}. Fol-
lowing Blitzer et al. (2006), we consider pivot fea-
tures that appear more than 50 times in all the do-
mains for SCL. We empirically fix the number of
singular vectors of the projection matrix K to 25,

3https://code.google.com/p/word2vec/

and also employ feature normalization and rescal-
ing, as these settings yield best performance in prior
work. The number of Brown clusters is chosen
from the range {50, 100, 200, 400}. For FEMA and
word2vec, we choose embedding sizes from the
range {50, 100, 200, 300} and fix the numbers of
negative samples to 15. The window size for train-
ing word embeddings is set as 5. Finally, we adopt
the same regularization penalty for all the attribute-
specific embeddings of FEMA, which is selected
from the range {0.01, 0.1, 1.0, 10.0}. All parame-
ters were tuned on development data in the source
domain. We train the Stanford MEMM tagger using
the default configuration file.

4.2 Temporal Adaptation

In the temporal adaptation setting, we work within
each corpus, training on the most recent section,
and evaluating on the two earlier sections. For
PPCMBE, the source domain is the period from
1840 to 1914; for PPCEME, the source domain is
the period from 1640 to 1710. All earlier texts are
treated as target domains. We transform the tags
to the PTB tagset for evaluation, so that results can
be compared with the next experiment, in which the
PTB is used for supervision.

Settings We randomly sample 10% sentences
from the training data as the development data for
optimizing hyperparameters, and then retrain the
models on the full training data using the best pa-
rameters. For FEMA, we consider domain attributes



for 70-year temporal periods and genres, resulting in
a total of 21 attributes for each corpus. The numbers
of pivot features used in SCL are 4400 and 5048 for
the PPCMBE and the PPCEME respectively. The
best number of Brown clusters is 200, and the best
embedding sizes are 200 and 100 for word2vec and
FEMA.

Results As shown in Table 3, accuracies are
significantly improved by domain adaptation, es-
pecially for the PPCEME. English spelling had
become mostly uniform and stable since around
1700 (Baron et al., 2009), which may explain why
improvements on the PPCMBE are relatively mod-
est, especially in the 1770-1839 epoch. Among
the two baseline systems, MEMM performs slightly
better than SVM, showing a small benefit to struc-
tured prediction. Among the domain adaptation al-
gorithms, FEMA clearly outperforms SCL, Brown
clustering and word2vec, with an averaged increase
of about 0.5% and 1.5% accuracies on the PPCMBE
and the PPCEME test sets respectively. The meta-
data attribute information boosts performance by a
small but consistent margin, 0.1-0.2% on average.

4.3 Adaptation from the Penn Treebank
Newspaper text is the primary data source for
training modern NLP systems. For example,
most “off-the-shelf” English POS taggers (e.g., the
Stanford Tagger (Toutanova et al., 2003), SVM-
Tool (Giménez and Marquez, 2004), and CRFTag-
ger (Phan, 2006)) are trained on the WSJ por-
tion of the Penn Treebank, which is composed of
professionally-written news text from 1989. This
motivates this evaluation scenario, in which we train
the tagger on the Penn Treebank WSJ data and ap-
ply it to historical English texts, using all sentences
of the PPCMBE and PPCEME for testing.

Settings The feature representations are trained on
the union of the PTB and the PPCEME. The domain
attributes for FEMA are set to include the three cor-
pora themselves (PTB, PPCMBE, and PPCEME),
and the genre attributes in the historical corpora.
Note that all sentences in the Penn Treebank WSJ
data belong to the same genre (news). For SCL,
we use the same threshold of 50 occurrences for
pivot features, and include 8089 features that pass
this threshold. PTB WSJ sections 19-21 are used for

parameter tuning: we find that the best number of
Brown clusters is 200, and the optimum embedding
sizes are 200 and 100 for word2vec and FEMA.

Spelling normalization Spelling variants lead to a
high percentage of out-of-vocabulary (OOV) tokens
in historical texts, which poses problems for POS
tagging. We normalize the PPCEME sentences us-
ing VARD (Baron and Rayson, 2008), a widely used
spelling normalization tool that has been proven to
improve performance on POS tagging (Rayson et
al., 2007) and syntactic parsing (Schneider et al.,
2014). VARD is designed specifically for Early
Modern English spelling variation, and additional
labeled data and training are required for other
forms of spelling variation, which we do not con-
sider here. Following Schneider et al. (2014), we
utilize VARD’s auto-normalization function with a
50% normalization threshold, achieving a balance
between precision and recall. At this threshold, a
total of 12% (236298/1961157) of the tokens in the
PPCEME are normalized.4

Results As shown in Table 4, this task is consid-
erably more difficult, with even the best systems
achieving accuracies that are nearly 15% worse than
in-domain training. Nonetheless, domain adapta-
tion can help: FEMA improves performance by 1.3%
on the PPCMBE data, and by 3.8% on the unnor-
malized PPCEME data. Spelling normalization also
helps, improving the baseline systems by more than
2.5%. The combination of spelling normalization
and domain adaptation gives an overall improve-
ment in accuracy from 74.2% to 79.1%. The relative
error reduction is lower than in the temporal adap-
tation setting: only 19% at best, versus 30% error
reduction in temporal adaptation. This is because
there are now at least two sources of error — lan-
guage change and tagset mismatch — and unsuper-
vised domain adaptation cannot address mismatches
in the tag set.

5 Analysis

As expected, the Early Modern English dataset
(PPCEME) is considerably more challenging than
the Modern British English dataset (PPCMBE): the

4We only consider 1 : 1 mappings, and ignore 328 normal-
izations corresponding to 1 : n mappings.



Target Normalized baseline SCL Brown word2vec FEMA

SVM MEMM
(Stanford)

single
embedding

attribute embeddings
(error reduction)

PPCMBE No 81.12 81.35 81.66 81.65 81.75 82.34 82.46 (7%)
PPCEME No 74.15 74.34 75.89 76.04 75.85 77.77 77.92 (15%)
PPCEME Yes 76.73 76.87 77.61 77.65 77.76 78.85 79.05 (19%⇤)

Table 4: Accuracy results for adapting from the PTB to the PPCMBE and the PPCEME of historical English. ⇤Error reduction for
the normalized PPCEME is computed against the unnormalized SVM accuracy, showing total error reduction.

baseline accuracy is 7% worse on the PPCEME than
the PPCMBE. However, the PPCEME is also more
amenable to domain adaptation, with FEMA offering
considerably larger improvements. One reason is
that the PPCEME has many more out-of-vocabulary
(OOV) tokens: 23%, versus 9.2% in the PPCMBE.
Both domain adaptation and normalization help to
address this specific issue, and they yield further im-
provements when used in combination. This section
offers further insights on the sources of errors and
possibilities for improvement on the PPCEME data.

5.1 Feature Ablation

Table 5 presents the results of feature ablation ex-
periments for the non-adapted SVM tagger. Word
context features are important for obtaining good
accuracies on both IV and OOV tokens. Affix fea-
tures, particularly suffix features, are crucial for the
OOV tokens. The orthographic features are shown
to be nearly irrelevant, as long as affix features are
present. Overall, the high percentage of OOV to-
kens can be a major source of errors, as the tag-
ging accuracy on OOV tokens is below 50% in our
best baseline system. Note that these results are
for a classification-based tagger; while the Viterbi-
based MEMM tagger performs only marginally bet-
ter overall (⇠ 0.2% improvement), it is possible that
its error distribution might be different due to the ad-
vantages of structured prediction.

5.2 Error Analysis

The accuracy on out-of-vocabulary (OOV) tokens
is generally low, and spelling variation is a major
source of OOV tokens. For instance, ‘ye’ and ‘thy’,
the older forms of ‘the’ and ‘your’, are often incor-
rectly tagged as NN and JJ in the PPCEME. In gen-
eral, the per-tag accuracies are roughly correlated

Feature set IV OOV All

All features 81.68 48.96 74.15

– word context 79.69 38.62 70.23

– prefix 81.61 46.11 73.43
– suffix 81.36 38.13 71.40
– affix 81.22 34.40 70.44

– orthographic 81.68 48.92 74.14
Table 5: Tagging accuracies of adaptation of our baseline SVM
tagger from the PTB to the PPCEME in ablation experiments.

with the percentages of OOV tokens. Some excep-
tions including VB, NNP and NNS, where the affix
features can be very useful for tagging OOV tokens.

That said, the cross-domain accuracy on in-
vocabulary (IV) tokens is also low, at roughly 80%
when adapting from the PTB to the PPCEME. A
major source of error here is the mismatch in an-
notation schemes between the two datasets, which is
only partially addressed by a deterministic tag map-
ping. Table 6 presents the SVM accuracy per tag,
and the most common error correspondingly. Most
of the errors shown in the table are owing to different
annotations of the same token in the two corpora.

One major cause of errors is in misalignments of
punctuations and their POS tags. For example, in
the PPCEME, 16.6% of commas are labeled as .
(sentence-final punctuation), and 12.3% periods are
labeled as , (sentence-internal punctuation); these
punctuations are less ambiguous in the PTB. The
historical corpora lack special tags for colons and
ellipses, which are present in the PTB. In contrast
to the PTB, there is no distinction between opening
quotation mark and closing quotation mark in the
PPCEME. Moon and Baldridge (2007) avoid these
difficulties by mapping all the punctuation tokens



Tag % of OOV Accuracy Most common error

IN 6.93 82.79 to/TO
NN 48.39 64.74 Lord/NNP
DT 3.45 94.62 that/IN
PRP 13.57 78.80 other/JJ
, 0.41 87.86 ./.
JJ 32.20 48.60 all/DT
CC 1.98 91.29 for/IN
RB 26.22 65.74 such/JJ
. 0.56 54.43 ,/,
VB 34.69 75.06 have/VBP
NNP 58.91 88.31 god/NN
NNS 59.12 73.88 Lords/NNPS
VBD 25.87 81.93 quoth/NN
VBN 37.75 63.09 said/VBD
PRP$ 13.57 85.49 thy/JJ

Table 6: Accuracy (recall) rates per tag with the SVM model,
for the 15 most common tags. For each gold category, the most
common error word and predicted tag are shown.

to a single tag. We did not follow their setting be-
cause it would lead to a significant change of test
data. However, it should be noted that these “er-
rors” are not particularly meaningful for linguistic
analysis, and could easily be addressed by heuristic
post-processing.

The tagging performance is also impaired by the
different annotations of many common words. For
example, in the PTB, more than 99.9% of token ‘to’
are labeled as TO, but in the PCHE this word can also
be labeled as IN, distinguishing the infinitive marker
from the preposition. The words ‘all’, ‘any’ and ‘ev-
ery’ are annotated as quantifiers in the PCHE; this
tag is mapped to JJ, but these specific words are
all labeled as DT in the PTB. A simple remapping
from Q to DT leads to an increase of 0.78% base-
line accuracy; it is possible that other changes to the
tag mappings of Moon and Baldridge (2007) might
yield further improvements, but a more systematic
approach would be outside the bounds of unsuper-
vised domain adaptation.

5.3 Improvements from Normalization

As shown above, the tagging accuracy decreases
from 81.7% on IV tokens to 49.0% on OOV tokens.
Spelling normalization helps to increase the accu-
racy by transforming OOV tokens to IV tokens. Af-
ter normalization, the OOV rate for the PPCEME

System IV OOV All

SVM 81.68 48.96 74.15

SCL 82.01 55.45 75.89
Brown 81.81 56.76 76.04
word2vec 81.79 56.00 75.85
FEMA-single 82.30 62.63 77.77
FEMA-attribute 82.34 63.16 77.92

Table 7: Tagging accuracies of domain adaptation models from
the PTB to the PPCEME.

falls from 23.0% to 13.5%, corresponding to a re-
duction of 41.5% OOV tokens. Normalization is not
perfectly accurate, and the tagging performance for
IV tokens drops slightly to 81.2% on IV tokens. But
due to the dramatic decrease in the number of OOV
tokens, normalization improves the overall accuracy
by more than 2.5%. We also observe performance
drops on tagging OOV tokens after normalization
(49.0% to 48.1%), which suggests that the remain-
ing unnormalized OOV tokens are the tough cases
for both normalization and POS tagging.

5.4 Improvements from Domain Adaptation

As presented in Table 7, the tagging accuracies are
increased on both IV and OOV tokens with the do-
main adaptation methods. Compared against the
baseline tagger, FEMA-attribute achieves an abso-
lute improvement of 14% in accuracy on OOV to-
kens. SCL performs slightly better than Brown clus-
tering and word2vec on IV tokens, but worse on
OOV tokens. By incorporating metadata attributes,
FEMA-attribute performs better than FEMA-single
on OOV tokens, though the accuracies on IV to-
kens are similar. Interestingly, the venerable method
of Brown clustering (slightly) outperforms both
word2vec and SCL.

We further study the relationship between do-
main adaptation and spelling normalization by look-
ing into the errors corrected by both approaches.
Domain adaptation yields larger improvements than
spelling normalization on both IV and OOV tokens,
although as noted above, the approaches are some-
what complementary. The results show that among
the 60,928 error tokens corrected by VARD, 60% are
also corrected by FEMA-attribute, while the remain-
ing 40% would be left uncorrected by the domain



adaptation technique. Conversely, among the errors
corrected by FEMA-attribute, 38% are also corrected
by VARD, while the remaining 62% would be left
uncorrected. The overlap of reduced errors is be-
cause both approaches exploit similar sources of in-
formation, including affixes and local word contexts.

6 Related Work

Domain adaptation Early work on domain adap-
tation focuses on supervised setting, in which some
amount of labeled instances are available in the
target domain (Jiang and Zhai, 2007; Daumé III,
2007; Finkel and Manning, 2009). Unsupervised
domain adaptation is more challenging but attrac-
tive in many applications, and several representation
learning methods have been proposed for address-
ing this problem. Structural Correspondence Learn-
ing (Blitzer et al., 2006, SCL) and marginalized
denoising autoencoders (Chen et al., 2012, mDA)
seek cross-domain representations that are useful
to predict a subset of features in the original in-
stances, called pivot features. Schnabel and Schütze
(2014) directly induce distributional representations
for POS tagging based on local left and right neigh-
bors of the token. More recent work trains cross-
domain representations with neural networks, with
additional objectives such as minimizing errors in
the source domain and maximizing domain confu-
sion loss (Ganin and Lempitsky, 2015; Tzeng et al.,
2015). We show the Feature Embedding model,
which is specifically designed for NLP problems
with feature templates (Yang and Eisenstein, 2015),
achieves strong performance on historical adapta-
tion tasks.

Historical texts Historical texts differ from mod-
ern texts in spellings, syntax and semantics, pos-
ing significant challenges for standard NLP systems,
which are usually trained with modern news text.
Numerous resources have been created for over-
coming the difficulties, including syntactically an-
notated corpora (Kroch et al., 2004; Kroch et al.,
2010; Galves and Faria, 2010) and spelling normal-
ization tools (Giusti et al., 2007; Baron and Rayson,
2008). Most previous work focuses on normaliza-
tion, which can significantly increase tagging ac-
curacy on historical English (Rayson et al., 2007)
and German (Scheible et al., 2011). Similar im-

provements have been obtained for syntactic pars-
ing (Schneider et al., 2014). Domain adaptation of-
fers an alternative approach which is more generic
— for example, it can be applied to any corpus with-
out requiring the design of a set of normalization
rules. As shown above, when normalization is pos-
sible, it can be combined with domain adaptation to
yield better performance than that obtained by either
approach alone.

7 Conclusion

Syntactic analysis is a key first step towards pro-
cessing historical texts, but it is confounded by
changes in spelling and usage over time. We empir-
ically evaluate several unsupervised domain adapta-
tion approaches for POS tagging of historical En-
glish texts. We find that domain adaptation meth-
ods significantly improve the tagger performance on
two historical English treebanks, with relative error
reductions of 30% in the temporal adaptation set-
ting. FEMA outperforms other domain adaptation
approaches, showing the importance of adapting the
entire feature vector, rather than simply using word
embeddings. Normalization and domain adaptation
combine to yield even better performance, with a to-
tal of 5% raw accuracy improvement over a baseline
classifier in the most difficult setting. Error anal-
ysis reveals that tagset mismatch is the most com-
mon source of errors for in-vocabulary words. We
hope that our work encourages further research on
domain adaptation for historical texts and provides
useful baselines in these efforts.
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A Appendix: Tag Mappings

This table provides the full mapping from Penn-Corpus of Historical English tags to Penn Treebank Tags
used in our evaluation.

PCHE ! PTB PCHE ! PTB PCHE ! PTB
, (sent-internal) ! , (comma) ELSE! RB OTHER! PRP
. (sent-final) ! . (sent-final) EX! EX OTHER$! PRP
’ (single quote) ! ’’ (closing quote) FOR! IN OTHERS$! PRP
¨ (double quote) ! ’’ (closing quote) FP! CC OTHERS! PRP
$! PRP$ FW! FW P! IN
ADJ! JJ HAG! VBG PRO! PRP
ADJR! JJR HAN! VBN PRO$! PRP$
ADJS! JJS HV! VB Q! JJ
ADV! RB HVD! VBD QS! RBS
ADVR! RBR HVI! VB QR! RBR
ADVS! RBS HVN! VBN RP! RB
ALSO! RB HVP! VBP SUCH! RB
BAG! VBG INTJ! UH TO! TO
BE! VB MD! MD VAG! VBG
BED! VBD N! NN VAN! VBN
BEI! VB N$! NN VB! VB
BEN! VBN NEG! RB VBD! VBD
BEP! VBZ NPR! NNP VBI! VB
C! IN NPR$! NNP VBN! VBN
CONJ! CC NPRS! NNPS VBP! VBP
D! DT NPRS$! NNPS WADV! WRB
DAG! VBG NS! NNS WARD! VB
DAN! VBN NS$! NNS WD! WDT
DO! VB NUM! CD WPRO! WP
DOD! VBD NUM$! CD WPRO$! WP$
DOI! VB ONE! PRP WQ! IN
DON! VBN ONES! PRP X! X
DOP! VBP ONE$! PRP$


