
Apex: Automatic Programming Assignment Error Explanation

Dohyeong Kim
Department of Computer Science,

Purdue University, USA
kim1051@purdue.edu

Yongwhi Kwon
Department of Computer Science,

Purdue University, USA
kwon58@purdue.edu

Peng Liu
Department of Computer Science,

Purdue University, USA
peng74@purdue.edu

I Luk Kim
Department of Computer Science,

Purdue University, USA
kim1634@purdue.edu

David Mitchel Perry
Department of Computer Science,

Purdue University, USA
perry74@purdue.edu

Xiangyu Zhang
Department of Computer Science,

Purdue University, USA
xyzhang@cs.purdue.edu

Gustavo Rodriguez-Rivera
Department of Computer Science, Purdue University, USA

grr@purdue.edu

Abstract
This paper presents Apex, a system that can automatically
generate explanations for programming assignment bugs, re-
garding where the bugs are and how the root causes led to the
runtime failures. It works by comparing the passing execution
of a correct implementation (provided by the instructor) and
the failing execution of the buggy implementation (submitted
by the student). The technique overcomes a number of tech-
nical challenges caused by syntactic and semantic differences
of the two implementations. It collects the symbolic traces of
the executions and matches assignment statements in the two
execution traces by reasoning about symbolic equivalence.
It then matches predicates by aligning the control depen-
dences of the matched assignment statements, avoiding direct
matching of path conditions which are usually quite different.
Our evaluation shows that Apex is every effective for 205
buggy real world student submissions of 4 programming as-
signments, and a set of 15 programming assignment type of
buggy programs collected from stackoverflow.com, pre-
cisely pinpointing the root causes and capturing the causality
for 94.5% of them. The evaluation on a standard benchmark
set with over 700 student bugs shows similar results. A user

study in the classroom shows that Apex has substantially
improved student productivity.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging

Keywords Automated Feedback Generation, Computer-
Aided Education

1. Introduction
According to a report in 2014 [18], computing related job
opportunities are growing at two times the CS degrees granted
in US. The US Bureau of Labor Statistics predicts there
will be one million more jobs than students in just six years.
As a result, CS enrollment surges in recent years for many
institutes. With the skyrocketing enrollments, the luxury
of one-to-one human attention in grading programming
assignments may no longer be afforded. Automating grading
is of a pressing need. In the current practice, automated
programming assignments grading is mainly by running the
submissions on a test suite. Failing cases are returned to the
students, who may have to spend a lot of time to debug their
implementation if they receive no hints about where the bug is
and how to fix it. While the instructor may manually inspect
the code and provide such feedback, these manual efforts can
hardly scale to large classes.

In a recent notable effort [43], researchers have proposed
to use program synthesis to correct buggy programming
assignments. Given a correct version and a set of correction
rules, the technique tries to sketch corrections to the buggy
programs so that their behavior match with the correct version.
Despite of the effectiveness of the technique, the demand

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4444-9/16/11...$15.00

http://dx.doi.org/10.1145/2983990.2984031

311

of providing the correction rules adds to the burden of
the instructor. Later in [26], a technique was proposed to
detect the algorithm used in a functionally correct student
submission and then suggest improvement accordingly. The
onus is on the instructor to prepare the set of possible
algorithms and the corresponding suggestions.

In this paper, we aim to develop an automatic bug ex-
planation system for programming assignments. It takes a
buggy submission from the student, a correct implementation
from the instructor, and a failing test case, then produces
a bug report that indicates the root cause and explains the
failure causality. Since the submission and the correct im-
plementation are developed by different programmers, they
are usually quite different. Different variable names, control
structures, data structures, and constant values may be used
(Section 2). Note that the faulty statements are part of such
differences. Recognizing them from the benign differences is
highly challenging.

Debugging by comparing programs and program execu-
tions is not new. Equivalence checking [33, 38] was lever-
aged in [32] to derive simple and partial fixes to internal
faulty state, guided by a correct execution. However, substan-
tial structural changes between versions often make fixing
internal state difficult. Weakest pre-conditions that induce
behavioral differences across versions were identified and
used to reason about bugs [22]. This technique relies on SMT
solver and focuses on finding root cause conditions. It hardly
explains the causality of failures, which is equally impor-
tant. Another kind of techniques is dynamic analysis based.
Comparative causality [44], dual slicing [45], and delta de-
bugging [46] compare a passing run with a failing run and
generate a causal explanation of the failure. However, they
often assume the executions are from the same program to
preclude syntactic differences that are difficult for dynamic
analysis.

Apex is built on both symbolic and dynamic analysis,
leveraging the former to handle syntactic differences and
using the latter to generate high quality trace matches and
causal explanations. It works by comparing the passing
execution from the correct implementation and the failing
execution from the buggy implementation. It collects both
concrete execution traces and symbolic traces. The latter
captures the symbolic expressions for the values occurring
during execution. It then uses a novel iterative algorithm
to compute matchings that map a statement instance to
some instance(s) in the other version. The matchings are
computed in a way aiming to maximize the number of
equivalent symbolic expressions and respect a set of well-
formedness constraints. A comparative dependence graph is
constructed representing the dynamic dependences from both
executions. It merges all the matched statement instances and
their dependences to single nodes and edges respectively, and
highlights the differences. A comparative slice is computed
starting from the different outputs. A bug report is derived

from the slice to capture the root cause and failure causality.
Our contributions are summarized as follows.
• We formally define the problem and identify a few key

constraints in constructing well-formed matchings. Specif-
ically, we have formulated the main challenge of generat-
ing statement instance matchings as a partial maximum
satisfiability (PMAX-SAT) problem.
• We develop an iterative algorithm that guarantees well-

formedness while approximating maximality.
• We develop a prototype Apex. Our evaluation on 205

buggy real world buggy student submissions from 4 pro-
gramming assignments and a set of 15 programming as-
signment type of programs collected from [17] shows that
Apex can correctly identify the root causes and causality
in 94.5% of the cases and generate very concise bug re-
ports. The evaluation on a standard benchmark set [35]
with over 700 student bugs shows similar results. A user
study in the classroom shows that Apex has substantially
improved student productivity.

2. Motivation
In our context, the buggy and the correct implementations
are developed by different programmers. As such, they often
have substantial differences representing the various ways
to implement the same algorithm. We call them the benign
differences. However, they are mixed with buggy differences.
Our tool needs to distinguish the two. We classify popular
benign differences into two categories.
Type I: Syntactic Differences. The two implementations may
use different variable names and different expressions, such as
int pivot= low + (high - low) / 2 versus int pivot=
(hi - lo) / 2 . These differences may be eliminated by
comparing their symbolic expressions.
Type II: Semantic Differences. (1) Different conditional state-
ments or loop structures may be used.
Example. Consider the code snippets in Fig. 1. They are
part of two programs collected from stackoverflow.com
that compute the sum of even fibonacci numbers. The initial
numbers are N0, N1, and the upper bound is N. Program (b)
represents a correct implementation. The buggy version in (a)
leverages that an even fibonacci number occurs after every
two odd numbers. It hence uses a for loop in lines 4-12 to
compute fibonacci numbers in groups of three and add the
last one (the even number) to the sum. The bug is at line 8.
While the predicate should test if the new fibonacci number
exceeds the upper bound, the developer forgot that i1 has
been updated at line 7 and mistakenly used i1+i0 to denote
the new number. As a result, the execution terminates earlier,
missing a fibonacci number in the sum. Observe that the two
implementations have different control structures. �

(2) Different values may be used in achieving similar exe-
cution control. For example, in two Dijkstra implementations
collected from stackoverflow.com, one uses a boolean array

312

1 i n t s u m _ o f _ e v e n _ f i b o n a c c i (i n t N0 , i n t N1 , i n t N) {
2 i n t i 0=N0 , i 1=N1 , sum=0 , n=N, eSum=2 , s t a t u s =1;
3 whi le (i 1 < n && s t a t u s == 1) {
4 f o r (i n t c y c l e = 3 ; c y c l e > 0 ; c y c l e −−) {
5 sum = i 0 + i 1 ;
6 i 0 = i 1 ;
7 i 1 = sum ;
8 i f ((i 1 + i 0) > n) { / ∗ buggy , s h o u l d be (i 1 > n) ∗ /

9 s t a t u s = 0 ;
10 break ;
11 }
12 }
13 i f (s t a t u s == 1)
14 eSum += sum ;
15 }
16 re turn eSum ;
17 }

(a) Buggy implementation

1 i n t s u m _ o f _ e v e n _ f i b o n a c c i (i n t N0 , i n t N1 , i n t N) {
2 i n t n0=N0 , n1=N1 , n2 =0 , n=N, sum=2;
3 f o r (; ;) {
4 n2 = n0 + n1 ;
5 i f (n2 > n)
6 break ;
7 i f (n2 % 2 == 0)
8 sum += n2 ;
9 n0 = n1 ; n1 = n2 ;

10 }
11 re turn sum ;
12 }

(b) Correct implementation

Figure 1: Sum of even fibonacci numbers from stackoverflow.com [14]. Both assume N0=1 and N1=2 so that eSum starts with 2.

Figure 2: Program Differences Difficult for Sequence Alignment.
Only the highlighted entries in (c) and (d) are matched.

visited[i] to denote if a node i has been visited whereas
the other uses an integer array perm[i] with values MEMBER
and NONMEMBER to denote the same thing.

(3) Various data structures may be used. These differences,
when mixed with the differences caused by bugs, make it
very challenging to meet our goal. Note that equivalence
checking [33] that reasons about the symbolic equivalence of
final outputs is less sensitive to these differences as it does
not care about equivalence of internal states. However in our
context, we need to align internal states to generate failure
explanations.
Limitations of Sequence Alignment. A widely used approach
to aligning program traces is sequence alignment [27] that
identifies the longest common subsequence of two traces.
It seems that we could extend the algorithm to match the
sequences of symbolic expressions to identify the parts that
are bug-free. However, we found that such an algorithm did
not perform well in our context because the two programs are
often quite different. Consider Fig. 2. In (a), the loop in the
left program is partitioned to two in the right program, which
are semantically equivalent to the original loop. As a result,
statements S1 and S2 have different orders in the traces in (c).
The traces cannot be fully matched by sequence alignment
although they are semantically equivalent. Similarly, the
statement reordering in (b) also leads to that trace entries
cannot be fully matched in (d). Furthermore, the two versions

may use completely different path conditions (e.g., Fig. 1).
As such, sequence alignment cannot match the symbolic
expressions of the predicates even though they may serve the
same functionalities.

Illustrative Example. Next, we are going to use the example
in Fig. 1 to illustrate the results produced by Apex.

Fig. 3 shows part of the traces for the implementations
in Fig. 1. The first columns show the dynamic labels (e.g.
52 denotes the second instance of statement 5). The second
column presents the dynamic control dependences (DCD).
For instance, DCD(41)=E-31 means that 41 is dynamically
control dep. on 31, which is further control dep. on the en-
try E. The third columns show the executed statements. The
fourth columns present the symbolic expressions with re-
spect to the input variables (for the assignment statements).
The last columns show the values. From the symbolic traces,
our tool will identify the equivalent symbolic expressions
leveraging a SMT solver, as illustrated by the lines in Fig. 3.
The tool then matches the DCDs of the matched symbolic
expressions. Note that we cannot match DCDs by the sym-
bolic equivalence of the predicate expressions as they are
often different. Instead, we match them by well-formedness
constraints (Section 3).

The lines in Fig. 1 represent the computed statement
matchings. Lines 3, 4 and 8 in (a) are matched with 5 in
(b), as they are the loop conditions. Line 5 in (a) is matched
with line 4 in (b), denoting the computation of the new
fibonacci number. Lines 13-14 in (a) are matched with lines
7-8 in (b), both updating the sum. These statement matchings
can be considered as a common sub-program of the two
versions. Intuitively, we reduce the problem to analyzing the
two executions of the common sub-program.

From the trace matching results, a dynamic comparative
dependence graph (DCDG) is constructed. The graph rep-
resents dynamic dependences in both executions. It merges
statement instances and dependences that match. In the pres-
ence of bugs, a statement may have some of its instances

313

label DCD code symb expr c.value
31 E i1 < n - True
41 E-31 cycle > 0 - True
51 E-31-41 sum=i0+i1 N0+N1 3
81 E-31-41 (i1 + i0) > N - False
42 E-31-41-81 cycle > 0 - True
52 E-31-41-81-42 sum=i0+i1 N1+N0+N1 5
82 E-31-41-81-42 (i1+i0)>N - False
...
53 E-31-41-81-42-82-43 sum=i0+i1 N1+N0+N1+ 8

N0+N1
...
131 E-31 status ≡ 1 - True
141 E-31-131 eSum += sum N1+N0+N1+ 10

N0+N1+2

label DCD code symb expr c.value
41 E n2= n0 + n1 N0+N1 3
51 E n2 > n - False
71 E-51 n2%2==0 - False
42 E-51 n2=n0+n1 N1+N0+N1 5
52 E-51 n2>n - False
72 E-51-52 n2%2==0 - False
43 E-51-52 n2=n0+n1 N1+N0+N1+N0+N1 8
53 E-51-52 n2>n - False
...
73 E-51-52-53 n2%2==0 - True
81 E-51-52-73 sum+=n2 3×N1+2×N0+2 10

Figure 3: Part of the symbolic and concrete traces for Fig. 1 where N0=1, N1=2, N=32. The copy statements are precluded.

matched but not the others. These instances that are supposed
to match but do not are called the aligned but unmatched in-
stances. They are usually bug related. For example in Fig. 1,
line 8 in (a) has all its instances matched with line 5 in (b) ex-
cept the last one, which took the wrong branch outcome due
to the bug. The last one is hence an aligned but unmatched
instance. We also merge such instances in the graph but high-
light their different values. Statement instances that are nei-
ther matched nor aligned are represented separately. Note
that in the paper, words “align” and “match” have different
meanings.

Fig. 4 presents the DCDG for the executions in Fig. 3.
Plain nodes represent matched statement instances. Green
nodes are instances that are aligned but unmatched. Each
plain/green node contains instances from both runs. Red/yel-
low nodes are those only present in the buggy/correct run,
each containing only one instance. Label “a-51” means the
first instance of line 5 in version (a). The concrete values are
also presented in the right side of the nodes. Observe that
the computations of the fibonacci numbers 3, 5, 8, 13, 21,
and 34 are matched (i.e. a-51 vs. b-41,..., a-56 vs. b-46). The
corresponding loop conditions and the first updates of the
sum (i.e. a-141 vs. b-81) are also matched.

The loop conditions a-85:if (i1+i0>n) and b-56:if
(n2>n) are aligned but not matched (i.e. the first green node).
Hence the buggy execution exits the loop whereas the correct
execution continues. Consequently, the conditions guarding
the updates of the sum are also aligned but not matched (i.e.
the second green node). As such, the sum was updated in the
passing run but not in the failing run.

A comparative slice is computed starting from the two
different outputs, denoting the causal explanation of the dif-
ferences. A bug report is generated from the slice, explaining
(1) what the buggy version has done wrong and (2) what is
the correct thing to do. Since part (2) is usually derived from
the correct version invisible to the student, our tool translates
it using the variable names in the buggy version. In Fig. 4,
the two output nodes with triangles are the slicing criterion.
The dotted box represents the slice. The root of the slice is
exactly the buggy statement and its alignment (a-85 vs. b-56),

a-0: Entry
a-31: while(i1 <n && status == 1) : T

b-0:Entry

a-141: eSum += sum : 10
b-81: sum += n2 : 10

a-85: if ((i1 + i0) >n) : T
b-56: if (n2 >n) : F

output-b

a-82: if ((i1 + i0) >n) : F
a-43: for (int cycle=3; cycle>0; cycle–) : T

b-52: if (n2 >n) : F

a-91: status = 0;

a-81: if ((i1 + i0) >n) : F
a-42: for (int cycle=3; cycle >0; cycle–) : T

b-51: if (n2 >n) : F

a-83: if ((i1 + i0) >n) : F
a-45: for (int cycle=3; cycle>0; cycle–) : T

b-54: if (n2 >n) : F

a-84: if ((i1 + i0) >n) : F
a-46: for (int cycle=3; cycle>0; cycle–) : T

b-55: if (n2 >n) : F

a-131: if (status == 1) : T
b-73: if (n2 % 2 == 0) : T

a-52: sum = i0 + i1 : 5
b-42: n2 = n0 + n1 : 5

a-53: sum = i0 + i1 : 8
b-43: n2 = n0 + n1 : 8

a-51: sum = i0 + i1 : 3
b-41: n2 = n0 + n1 : 3

a-54: sum = i0 + i1 : 13
b-44: n2 = n0 + n1 : 13

a-132: if (status == 1) : F
b-76: if (n2 % 2 == 0) : T

a-55: sum = i0 + i1 : 21
b-45: n2 = n0 + n1 : 21

a-56: sum = i0 + i1 : 34
b-46: n2 = n0 + n1 : 34

output-a

b-82: sum += n2 : 44

a-32: while(i1 <n && status == 1) : T
a-44: for (int cycle=3; cycle >0; cycle–) : T

b-53: if (n2 >n) : F

a-41: for (int cycle=3; cycle >0; cycle–) : T
b-0:Entry

matched instructions
aligned but unmatched
instructions only exist
in the buggy implementation.
instructions only exist
in the correct implementation.
slicing criteria.
data dependencies.
control dependencies.
computed slice.

Figure 4: DCDG for the Example in Fig. 1.

314

Definitions:
Label `, t LabelInst `i/t j : the i/j-th instance of label `/t
ispred(`i): if `i is a predicate instance
sym_expr(`i) : symbolic expression of `i
DCD(`i) : predicate instances that `i directly/transitively control dep. on
`i { `

′
k : `′k is directly/transitively dependent on `i

`i ↔ t j : the statement instance at `i matches with that at t j

Well-Formedness Constraints:

[WF-SYM]
`i ↔ t j =⇒ (¬ispred(`i) =⇒ sym_expr(`i) ≡ sym_expr(t j))
[WF-CD]
`i ↔ t j =⇒ (∀`′k ∈ DCD(`i), ∃t′l ∈ DCD(t j) `′k ↔ t′l) ∧

(∀t′l ∈ DCD(t j), ∃`′k ∈ DCD(`i) `′k ↔ t′l)
[WF-X]
`i ↔ t j =⇒ ¬∃`′k , t

′
l , `
′
k ↔ t′l ∧ ((`′k { `i ∧ t j { t′l)∨

(`i { `′k ∧ t′l { t j))

Figure 5: Definitions and Constraints for Instance Matching.

which have different branch outcomes. The interpretation of
the slice, in the language of the buggy version, is that “State-
ment 8 if(i1+i0>n) should have taken the false branch. As
a result, statement 9 status=0 should not have been exe-
cuted. Consequently, statement 13 if(status==1) should
have taken the true branch, eSum+=sum should have been
executed, and eventually eSum should have been 44 instead
of 10”. It precisely catches the root cause and failure causality,
and provides strong hints about the fix. Note that the yellow
node b-82:sum+=n2 is translated to eSum+=sum in the buggy
version.

3. Problem Formalization
The key challenge is to generate statement instance match-
ings. We use labels ` and t to denote statements in the two
respective implementations. Due to implementation differ-
ences, an instance in one execution can match with multiple
instances in the other execution.

Intuitively, if two assignment instances match, their sym-
bolic expressions should be equivalent. Furthermore, their
control dependences need to match. It does not mean the
corresponding comparison expressions (at the control depen-
dence predicates) need to be equivalent. In fact they are often
different. Hence, we ignore the expressions in predicates,
treating them as place holders. We match the label instances
of these predicates based on the matchings of the assign-
ments control dependent on the predicates and a set of well-
formedness constraints defined in Fig. 5. Rule [WF-SYM]
denotes that if the matching is for assignments, the symbolic
expressions must be equivalent. Rule [WF-CD] means that if
two instances `i and t j match, a (transitive) dynamic control
dependence of `i/t j must match with a (transitive) control
dependence of t j/`i. Rule [WF-X] indicates that if `i and t j

match, there must not be another match `′k and t′l such that `i
is dependent on `′k and t′l is dependent on t j, or vice versa. Oth-
erwise, a cycle of dependence is formed, which is impossible
in program semantics. Note that matching of transitive data

dependences is already implicitly enforced by the symbolic
equivalence in [WF-SYM], because two symbolic expres-
sions are equivalent means that their computations (i.e., data
slices) are equivalent.
Example. Fig. 6 shows part of the executions from Fig. 3
in their dependence graph view. The lines across executions
denote matches. Figure (a) shows matchings satisfying the
well-formedness constraints. To satisfy a-51 ↔ b-41, their
dynamic control dependences need to match (Rule [WF-CD]).
The only legitimate matchings are ENTRY ↔ ENTRY ,
a-31 ↔ ENTRY and a-41 ↔ ENTRY . To satisfy the sec-
ond assignment matching a-52 ↔ b-42, the DCDs of a-52,
including ENTRY , a-31, a-41, a-81 and a-42, should match
with those of b-42, including ENTRY and b-51.

Figures (b) and (c) show two options. In (b), I1 ↔ E
(i.e. a-81 ↔ ENTRY). However, this matching and the
assignment matching +1 ↔ +1 together violate Rule [WF-X],
because of +1 { I1 on the left (line 8 depends on line 7
and then line 5 according to Fig. 1(a)) and ENTRY { +1
on the right. Since the match edges are bi-directional, the
four edges in the shaded region form a cycle. Similarly, (c)
shows another ill-formed matching in which F1 ↔ I1 induces
a cycle. The only legitimate matching is the one shown in
figure (a), in which a-81 ↔ b-51 and a-42 ↔ b-51. �

Since one execution is buggy, total matching is impossible.
Our goal is hence to maximize the number of matches. We re-
duce the problem to a partial maximum satisfiability (PMAX-
SAT) problem. Given an UNSAT conjunction of clauses, the
maximum satisfiability (MAX-SAT) problem aims to gen-
erate assignments to variables that maximizes the number
of clauses that are satisfied. PMAX-SAT is an extension of
MAX-SAT, which aims to ensure the satisfiability of a subset
of clauses while maximizing the satisfiability of the remain-
ing clauses. In our context, we want to maximize the number
of assignment matchings while assuring the well-formedness
constraints are satisfied. We consider assignments more es-
sential than predicates because the symbolic expressions of
predicates are often quite different across programs even
when they serve the same purpose. Our problem statement is
hence formulated as follows.

Definition 1. Given two executions, let `i ↔ t j be a boolean
function for each pair of assignment statement instances
denoted by `i and t j, with `i ↔ t j = 1 meaning they match.

F =
∧

∀¬ispred(`i), ¬ispred(t j)

`i ↔ t j

(1)
∧ CWF-SYM ∧CWF-CD ∧CWF-X

(2)

, with CWF-SYM, CWF-CD and CWF-X the instantiations of well-
formedness constraints using the relevant label instances.
Our goal is to solve F while ensuring part (2) must be
satisfied and maximizing the satisfiability of part (1).

PMAX-SAT is NP-hard. The formula has quantifiers and
is cubic to the execution length. Solving it is prohibitively
expensive.

315

1

1

1

1

2

2

3

2

1

1

2

2

3

3

2

3

1

1

1

1

2

2

1

1

2

2

2

1

1

1

1

2

2

1

1

2

2

2

Figure 6: Instance Matching for the Example in Fig. 1. The nodes in grey are from the correct implementation. In (b) and (c), node ‘W1’
stands for the first instance of the while loop in (a). Similarly, ‘F’, ‘I’, ‘+’ nodes in (b) an (c) stand for the for loop, if conditions, and the
addition operations.

4. Design
The design of Apex consists of three phases and features
an approximate solution to the statement instance matching
(PMAX-SAT) problem.
In phase (1), an iterative matching algorithm is applied.
In each iteration, sequence alignment is used to match the
symbolic expression traces. Apex then matches the dynamic
control dependences of the matched expressions and checks
well-formedness. In the following iterations, Apex repeats the
same procedure to match the residues, until no more matches
can be identified. This is to handle statement reordering
as exemplified in Fig. 2. In particular, in the first round,
it matches the S1 sequences. Then in the second round, it
matches the S2 sequences.
In phase (2), the (bug related) residues are further aligned (not
matched) based solely on control structure, without requiring
the symbolic expressions to be equivalent. Particularly, Apex
summarizes all the matches identified in the previous phase
to generate a matching at the statement level (not the instance
level). Intuitively, this statement level matching identifies
the common sub-program of the two versions. We then
leverage the statement mapping to identify the entries that
are supposed to match but their symbolic expressions are
different. These entries are likely bug related. Note aligning
these entries allows us to not only identify buggy behavior,
but also suggest the corresponding correct behavior.
In phase (3), a dynamic comparative dependence graph is
constructed and the comparative slice is computed to generate
the bug report.

4.1 Phase (1): Iterative Instance Matching
The matching procedure in this phase is iterative. In each
round, we first extend sequence alignment to match the sym-
bolic expression sequences. Two expressions can be matched

x

y

i

i

j

j

Figure 7: Cycles in Matchings. Boxes Denote Control Deps.

if they are equivalent. Apex then traverses the matched ex-
pression pairs in the generated common sub-sequence to
match their dynamic control dependences (DCDs) by the well-
formedness constraints (not by the symbolic equivalence of
predicates). Due to Type II differences (e.g. control structure
differences), it is often difficult to match a predicate uniquely
to another predicate in the other version. We hence construct
matchings between predicate sequences. Such matchings may
be coarse-grained at the beginning (e.g. E-31-41 ↔ E-51).
They are gradually refined (e.g. the previous matching be-
comes E-31 ↔ E and 41 ↔ 51).
Well-formed Matching of Control Dependences. Next we
focus on explaining how Apex matches the DCDs and checks
well-formedness. The algorithm traverses the longest com-
mon sub-sequence C produced by sequence alignment, trying
to match the DCDs of each expression pair.

The traversal procedure is described by the two term
rewriting rules on the bottom of Fig. 8. The symbols and
functions used in the rules are defined on the top. The
configuration of evaluation consists of the common sub-
sequence C containing a sequence of label instance pairs, the
DCD mappings I used to facilitate well-formedness checks,
and the instance mappings V.

316

LabelInstS eq L,T := `i |t j InstMap := P(LabelInstS eq × LabelInstS eq) S eqAlignment C := 〈`i, t j〉

InstMap I : mappings between dynamic control dep. InstMap V :the resulting instance matchings LabelInstS eq DCD(`i) : dynamic control dep. of `i

wellformed(L,T, I) determines if L↔ T is a well-formed matching.

wellformed(L,T, I) =



f alse ∃Lx,Ty, Lx ↔ Ty ∈ I ∧ ((Lx ⊂ L ∧ T ⊂ Ty) ∨ (L ⊂ Lx ∧ Ty ⊂ T))
f alse ∃`i, t j¬ispred(`i) ∧ ¬ispred(t j) ∧ `i ↔ t j ∈ V ∧ DCD(`i)↔ DCD(t j) ∈ I∧

DCD(`i) ⊂ L ∧ T ⊂ DCD(t j) ∧ `i { last(L)
f alse ∃`i, t j¬ispred(`i) ∧ ¬ispred(t j) ∧ `i ↔ t j ∈ V ∧ DCD(`i)↔ DCD(t j) ∈ I∧

DCD(t j) ⊂ T ∧ L ⊂ DCD(`i) ∧ t j { last(T)
true otherwise

split(V, `i ↔ t j) splits all the statement instance matchings based on the single instance matching `i ↔ t j.

split(L↔ T ∪ V, `i ↔ t j) =


{L↔ T } ∪ split(V, `i ↔ t j) `i < L ∨ t j < T
{L1-`i ↔ T1-t j, L2 ↔ T2} ∪ split(V, `i ↔ t j) L ≡ L1-`i-L2 ∧ T ≡ T1-t j-T2
{L1-`i ↔ T1-t j, L2 ↔ t j} ∪ split(V, `i ↔ t j) L ≡ L1-`i-L2 ∧ T ≡ T1-t j
{L1-`i ↔ T1-t j, `i ↔ T2} ∪ split(V, `i ↔ t j) L ≡ L1-`i ∧ T ≡ T1-t j-T2

maxpref(L1, L,T1,T, I) determines if L1 and T1 are the maximum prefixes of L and T that are also shared by some previously matched pairs in I.

maxpref(L1, L,T1,T, I) =


true L1 ⊂ L ∧ T1 ⊂ T ∧ ∃L′,T ′, (L′ ↔ T ′ ∈ I ∧ L1 ⊂ L′ ∧ T1 ⊂ T ′) ∧

¬∃Lx,Ty, L′′,T ′′, (L1 ⊂ Lx ⊆ L ∧ T1 ⊂ Ty ⊆ T ∧ Lx ⊂ L′′ ∧ Tx ⊂ T ′′ ∧ L′′ ↔ T ′′ ∈ I)
f alse otherwise

V ⊗I L↔ T : the cross product of the current instance matching V with a new control dep. matching L↔ T , which may introduce new matchings.

V ⊗I L↔ T = V ∪ {L↔ T }, if ¬∃L1 , nil,T1 , nil, maxpref(L1, L,T1,T, I) [C-NEW]
V ⊗I L↔ T = V, if maxpref(L, L,T,T, I) [C-DUP]
V ⊗I L1-L2 ↔ T1-T2 = split(V, last(L1)↔ last(T1)) ∪ {L2 ↔ T2}, if maxpref(L1, L1-L2,T1,T1-T2, I) [C-SPLIT]
V ⊗I L1-L2 ↔ T = split(V, last(L1)↔ last(T)) ∪ {L2 ↔ last(T)}, if maxpref(L1, L1-L2,T,T, I) [C-TAILA]
V ⊗I L↔ T1-T2 = split(V, last(L)↔ last(T1)) ∪ {last(L)↔ T2}, if maxpref(L, L,T1,T1-T2, I) [C-TAILB]

¬wellformed(DCD(`i),DCD(t j), I)
〈`i, t j〉 · C, I,V −→ C, I,V

[UNMATCHED-EXPR]

wellformed(DCD(`i),DCD(t j), I) I′ = I ∪ DCD(`i)↔ DCD(t j) V′ = (V ⊗I DCD(`i)↔ DCD(t j)) ∪ `i ↔ t j

〈`i, t j〉 · C, I,V −→ C, I′,V′
[MATCHED-EXPR]

Figure 8: Instance Matching Rules. Symbol ‘-’ in L1-L2 means concatenation.

The traversal is driven by C. Rule [UNMATCHED-EXPR]
is to handle a pair of expressions in C that were matched
by sequence alignment but violate the well-formedness con-
straints. Function well f ormed() determines if matching two
label instance sequences L and T (denoting DCDs) causes
any well-formedness violations. According to its definition in
Fig. 8, it detects three kinds of violations. In the first case, if
there is already a mapping Lx ↔ Ty admitted to I in the past,
and Lx is a prefix of L and T a prefix of Ty (or vice versa),
there must be a cycle similar to Fig. 7 (a). The ⊂ operator
means prefix here. In Fig. 7 (a), there must be some matching
between a statement instance in L 	 Lx (i.e., in L but not Lx)
and some statement instance in T (e.g. if(C3)↔ if(D1)).
Similarly, there must be some matching between an instance
in Ty 	 T and some instance in Lx (e.g. if(C1)↔ if(D3)).
Also because L 	 Lx must be control dependent on Lx (all
these are valid control dependences) and Ty 	 T control de-
pendent on T . A cycle of dependence is formed, violating
[WF-X] (Section 3).

As illustrated in Fig. 7 (b), the second case describes that
there is an existing expression matching `i ↔ t j ∈ V (whose
DCD matching is hence in I which we will explain later), and
the dynamic control dependence of `i, DCD(`i), is a prefix of
L, and T is a prefix of DCD(t j). If L↔ T , the last entry of L
(i.e. if(C2)) must match with some entry in T (e.g. if(D2)).

However, the matching becomes illegal if some predicate in
L 	 DCD(`i) (e.g. if(x)) is dependent on `i (i.e. x=...),
because a cycle `i-if(x)-if(C2)-if(D2)... -t j-`i is formed.
The third case is symmetric.

Rule [MATCHED-EXPR] handles the case that the match-
ing of the DCDs of an expression pair is well-formed. The
control dependence mapping set I is updated by adding the
control dependences of the matched expressions. The instance
mapping set V is also updated so that some previous matched
statement sets can be broken down to smaller (matched) sub-
sets. Note that smaller matched sets mean finer granularity in
matching. This is done by a cross-product operation between
the control dependence mapping (of the symbolic expres-
sions) and the current instance mapping set. The expression
matching is also added to the result set.

The cross-product operation V ⊗I L ↔ T may introduce
new mappings and split an existing mapping into multiple
mappings. If L and T do not share any common prefixes
with any existing control dependence mapping, L ↔ T
is added to V (Rule [C-NEW]). If they do share common
prefixes with some existing mappings, which suggests that
the existing mappings are too coarse grained, the existing
mappings are hence refined. The mapping with the maxi-
mum common prefixes is identified through the maxpre f ()
primitive. Assume the maximum common prefixes are L1

317

and T1, the existing mappings are split if they include the
mapping last(L1) ↔ last(T1) through the split() prim-
itive ([C-SPLIT]). For example, assume a new mapping
E-31-61 ↔ E shares common prefix with an existing map-
ping E-31-41 ↔ E-51. The existing mapping is split by the
last entries of the common prefixes 31 ↔ E, resulting in
two smaller mappings E-31 ↔ E and 41 ↔ 51. The suffices
of L and T are also added to V as a new mapping. Rules
[C-TAILA] and [C-TAILB] handle the corner cases that the
maximum common prefix is one of L and T , in which the
non-empty suffix is matched with the last entry of the prefix.
This is the only legal mapping without introducing cycles.
� Example. Table. 1 shows how the algorithm works on the
traces in Fig. 3. The sequence alignment generates the initial
C that identifies the longest sequence of equivalent symbolic
expression pairs, as shown in the first row. Each row of the
table represents one step of the algorithm that processes and
removes a pair from C. Columns 3 and 4 show the DCD
mappings and instance mappings, after the rules specified in
the last column are applied. At step one, matching the DCDs
of 51 and 41 is well-formed. As such, the DCDs are added
to both I and V, and 51 ↔ 41 is added to V. At step two,
matching the DCDs of 52 and 42 is also well-formed. Since
DCD(52) = E-31-41-81-42 and DCD(42) = E-51, the cross
product of their matching with V identifies that an existing
mapping E-31-41 ↔ E has the maximum common prefix
with the new mapping. Hence the suffix mapping 81-42 ↔ 51
is added. Step three is similar. At step four, the DCD matching
of 141 and 81 is well-formed. The cross product of their
DCD matching E-31-131 ↔ E-51-52-73 with V not only
induces the addition of 131 ↔ 51-52-73 to V, but also splits
E-31-41 ↔ E to E-31 ↔ E and 41 ↔ E by the split()
primitive. �

To handle implementation differences such as statement re-
ordering (e.g. Fig. 2), Apex applies the aforementioned proce-
dure iteratively until no more matchings can be found. In par-
ticular, after each round, the trace entries corresponding to the
matched symbolic expressions that pass the well-formedness
checks (i.e., those admitted by Rule [MATCHED-EXPR])
are removed from the traces. Note that the predicate instances
representing control dependences are never removed even
they are matched. This is to support well-formedness checks
for the matchings in the following rounds. The same match-
ing algorithm is then applied to the remaining traces. For
example in Fig. 2 (a), all the entries corresponding to S1
are removed after the first round but the loop predicate in-
stances are retained, which allows us to perform well-formed
matching of S2 entries in the next round. As a result, the loop
predicate on the left is correctly matched with the two loop
predicates on the right.

Finally, the results in V denote the matchings between
statement instances in the two versions. They correspond to
the common bug-free behavior.

4.2 Phase (2): Residue Alignment
There are statement instances that cannot be matched, which
are likely bug related. They may belong to statements unique
to an implementation, or statements with some but not all their
instances matched. For the latter case, it is highly desirable to
align the unmatched instances of those statements such that
it becomes clear why they do not match while they should
have. This is very important for bug explanation. Apex further
aligns these unmatched instances. It does so by generating
a statement level mapping M between the two versions,
from the matching results in the previous phase. Particularly,
relation M : P(P(Labela) × P(Labelb)) indicates a set of
statements in program a matches with a set of statements in
b. It is generated by the following equation.

〈L,T 〉 ∈ V ∪ I =⇒ 〈set(L), set(T)〉 ∈ M

Function set() turns a sequence of label instances to a set of
labels (e.g. set(E-31-41) = {E, 3, 4}).

For the example in Fig. 1,M = {〈{3, 4, 8}, {5}〉, 〈{5}, {4}〉,
〈{14}, {8}〉...}. It essentially denotes a common sub-program
of the two as shown in Fig. 1.

Then Apex traverses the residue traces that contain the
remaining unmatched symbolic expressions and all the predi-
cate instances, and aligns trace entries based on the common
sub-programM and well-formedness.

The alignment algorithm takes as input the two residue
traces Ta and Tb. Each trace entry is a triple consisting of the
label instance, the symbolic expression se and the concrete
value v. It traverses the buggy trace and looks for alignment
for each instance. Basically, two instances are aligned if
such alignment is compatible with the statement mappings
M and aligning their dynamic control dependences is well-
formed. Note that they are aligned but not matched. They
have different (symbolic) values. The green nodes in Fig. 4
are such examples.

The rules are presented in Fig. 9. In Rule [UNALIGN-
PRED], a predicate instance `i is discarded if there is no align-
ment. Note that since `i and t j are predicates, they are con-
catenated to the dynamic control dependences (e.g. DCD(`i))
for the well-formedness check. If multiple well-formed align-
ments exist, the first one is selected and I and V are updated
accordingly (Rule [ALIGN-PRED]). The alignment of as-
signment instances is similar (Rules [UNALIGN-ASSIGN]
and [ALIGN-ASSIGN]).
� Example. Table 2 presents an example. The first two
columns show the residue traces for the fibonacci executions.
In the buggy run, since the value in 85 is incorrect, 91 is
incorrectly executed and the loop is terminated. Outside the
loop, the false branch of 132 is taken and the outer loop is also
terminated. In the correct run, the predicate at 56 takes the
false branch and one more round of fibonacci computation is
performed until the true branch of 57 is taken and the loop is
terminated. The next two columns show the dynamic control
dependences of the first trace entries.

318

C I V rules applied
1 {〈51, 41〉, 〈52, 42〉, 〈53, 43〉, 〈141, 81〉} E-31-41 ↔ E E-31-41 ↔ E, 51 ↔ 41 [M-EXPR,C-NEW]
2 {〈52, 42〉, 〈53, 43〉, 〈141, 81〉} E-31-41 ↔ E, E-31-41-81-42 ↔ E-51 E-31-41 ↔ E, 81-42 ↔ 51, 51 ↔ 41, 52 ↔ 42 [M-EXPR,C-SPLIT]
3 {〈53, 43〉, 〈141, 81〉} E-31-41 ↔ E, E-31-41-81-42 ↔ E-51, E-31-41 ↔ E, 81-42 ↔ 51, 82-43 ↔ 52, [M-EXPR,C-SPLIT]

E-31-41-81-42-82-43 ↔ E-51-52 51 ↔ 41, 52 ↔ 42, 53 ↔ 43 [M-EXPR,C-SPLIT]
4 {〈141, 81〉} E-31-41 ↔ E, E-31-41-81-42 ↔ E-51, E-31 ↔ E, 41 ↔ E, 81-42 ↔ 51, 82-43 ↔ 52, [M-EXPR,C-SPLIT]

E-31-41-81-42-82-43 ↔ E-51-52, 51 ↔ 41, 52 ↔ 42, 53 ↔ 43, 131 ↔ 51-52-73, 141 ↔ 81
E-31-131 ↔ E-51-52-73

Table 1: Applying the Algorithm in Fig. 8 to Traces in Fig. 3.

ispred(`i) ¬∃〈t j, se1, v1〉 ∈ Tb, 〈set(DCD(`i)-`i), set(DCD(t j)-t j)〉 ∈ M ∧ wellformed(DCD(`i)-`i,DCD(t j)-t j, I)
〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,Tb, I,V

[UNALIGN-PRED]

ispred(`i) Tb = T′b · 〈t j, se1, v1〉 · T′′b 〈set(DCD(`i)-`i), set(DCD(t j)-t j)〉 ∈ M wellformed(DCD(`i)-`i,DCD(t j)-t j, I)
¬∃〈t′k , se2, v2〉 ∈ T′b, 〈set(DCD(`i)-`i), set(DCD(t′k)-t′k)〉 ∈ M ∧ wellformed(DCD(`i)-`i,DCD(t′k)-t′k , I)

I′ = I ∪ DCD(`i)-`i ↔ DCD(t j)-t j V
′ = V ⊗I DCD(`i)-`i ↔ DCD(t j)-t j

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,T
′′
b , I
′,V′

[ALIGN-PRED]

¬ispred(`i) ¬∃〈t j, se1, v1〉 ∈ Tb, 〈`, t〉 ∈ M ∧ wellformed(DCD(`i),DCD(t j), I)
〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,Tb, I,V

[UNALIGN-ASSIGN]

¬ispred(`i) Tb = T′b · 〈t j, se1, v1〉 · T′′b 〈`, t〉 ∈ M wellformed(DCD(`i),DCD(t j), I)
¬∃〈t′k , se2, v2〉 ∈ T′b, 〈`, t

′〉 ∈ M ∧ wellformed(DCD(`i),DCD(t′k), I)
I′ = I ∪ DCD(`i)↔ DCD(t j) V′ = (V ⊗I DCD(`i)↔ DCD(t j)) ∪ `i ↔ t j

〈`i, se, v〉 · Ta,Tb, I,V −→ Ta,T
′′
b , I
′,V′

[ALIGN-ASSIGN]

Figure 9: Residue Alignment.

Ta Tb DCDa DCDb I V rules applied
85 · 91 · 132 · 33 · 161 56 · 76 · 82 · 47 · 57 · 111 L T I0 ∪ {L-85 ↔ T -56} V0 ∪ {85 ↔ 56} [A-P]
91 · 132 · 33 · 161 76 · 82 · 47 · 57 · 111 L-85 T -56 I0 ∪ {L-85 ↔ T -56} V0 ∪ {85 ↔ 56} [U-A]
132 · 33 · 161 76 · 82 · 47 · 57 · 111 E-31-32 T -56 I0 ∪ {L-85 ↔ T -56, V0 ∪ {85 ↔ 56, 132 ↔ 54-55-56-76} [A-P]

E-31-32-132 ↔ T -56-76}

33 · 161 82 · 47 · 57 · 111 E-31-32 T -56-76 I0 ∪ {L-85 ↔ T -56, V0 ∪ {85 ↔ 56, 132 ↔ 54-55-56-76} [U-A]
E-31-32-132 ↔ T -56-76}

...

Table 2: Applying the Algorithm in Fig. 9 to the Residue Traces in the Fibonacci Executions. Let L = E-31-32-44-83-45-84-46, T = E-51-52-53-54-55,
I0 = {...E-31-131 ↔ E-51-52-73, ..., L↔ T },V0 = {E-31 ↔ E, 32 ↔ 51-52-53, ..., 84-46 ↔ 55, 55 ↔ 45}. [A-P] stands for [ALIGN-PRED].

In the first step, the alignment 85 ↔ 56 is added to
V as the statement mapping 〈{E, 3, 4, 8}, {E, 5}〉 ∈ M and
the alignment of control dependences is well-formed. It
corresponds to the first green node in Fig. 4. Next, no
alignment is found for 91 (i.e. red node in Fig. 4). In the third
step, 132 and 76 are aligned (despite their different branch
outcomes), corresponding to the second green node. �

4.3 Phase (3): Comparative Dependence Graph
Construction, Slicing, and Feedback Generation

Apex generates the DCDG from the matching and alignment
results. Fig. 4 represents an example graph. It further com-
putes a comparative slice from the graph. The slicing criterion
consists of the instances that emit the different outputs. The
slice captures the internal differences that caused the output
differences. It is computed by graph traversal, which starts
from the criterion, going backward along dependence edges.
If a plain node (for matched instances) is reached, no traversal
is beyond the node. Our tool follows a set of rules to generate
the bug report from a slice. For example, a pair of aligned but
unmatched assignment instances `i ↔ t j, is translated to “the
value at `i should have been v(t j) instead of v(`i)”. The report

for the fibonacci bug can be found at the end of Section 2.
Details are elided.

5. Implementation and Evaluation
The tracing component of Apex that collects symbolic and
concrete traces is implemented using LLVM. The SMT solver
used is Z3 [24]. The rest is implemented in Python. The exper-
iments were conducted on an Intel Core i7 machine running
Arch Linux 3.17.1 with 16GB RAM. All the benchmarks,
the failure inducing inputs, and the bug reports by Apex are
available on the project site [4].

5.1 Experiment with Real Student Submissions
We have acquired 4 programming assignments from a recent
programming course at the authors’ institute: convert turns
a number with one radix into another radix; rpncalc evalu-
ates a postfix expression using a stack; balanced checks if
the input string has a valid nesting of parentheses and brack-
ets; countwords counts the frequency of words. The number
of buggy versions ranges from 33-65 for each submission.
The total number of buggy submissions is 205.

319

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60

lin
e
s

o
f

co
d

e

submissions

convert
rpncalc

balanced
countwords

(a) LOC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60

#
 o

f
d

if
fe

re
n

t
lin

e
s

/
Lo

C

submissions

convert
rpncalc

balanced
countwords

(b) Version Diff.

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

#
 o

f
n

o
d

e
s

submissions

convert
rpncalc

balanced
countwords

(c) DCDG Size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60

#
 o

f
n

o
d

e
s

submissions

convert
rpncalc

balanced
countwords

(d) Slice Size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60

#
 o

f
n

o
d

e
s

submissions

convert
rpncalc

balanced
countwords

(e) Bug Report Size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

F-
sc

o
re

submissions

convert
rpncalc

balanced
countwords

(f) F-score

Figure 10: Student Submission Results. On each figure, the submissions are sorted by the Y-axis values.

For each buggy version, we have the failure inducing input
and the patched version (submitted later by the students).
For each assignments, we have the instructor’s solution. We
applied Apex to each failing run. The results are presented in
Fig. 10. The execution time ranges from 1 to 20 seconds with
most finishing in a few seconds.

From Fig. 10a, the submission LOC ranges from 60-
210. Fig. 10b measures the syntactic differences between
the submissions and the instructor’s version (i.e. edit distance
over LOC sum). Observe that they are substantially different.
From Fig. 10c, the computed DCDG has 10-1300 nodes.
Some have a small DCDG because of the simplicity of
the test case (e.g., testing input validation). From Fig. 10d,
the comparative slices have 2-160 nodes. The large slices
usually correspond to cases in which the buggy program
has substantially different states from the correct program.
However, as shown in Fig. 10e, the bug reports are very
small. According to our experience with students, succinct
bug reports without too much low level details are important
for usability. We have a number of methods to reduce bug
report size, including coalescing the repetitive instances (from
loops), and avoiding presenting detailed causality in large
unmatched code regions, which often occur when the correct
program terminates quickly due to invalid inputs but the
buggy program goes on as normal, or vice versa. We cross-
checked the root causes reported by Apex with the patched
versions and found that Apex identifies the correct root causes
for 195 out of 205 cases. Here, when we say Apex identifies
a root cause, we mean that the root cause is reported as the
first entry in the causal explanation just like the example in
Section 2.

Fig. 10f shows the F-score [41] of execution matching,
including both assignment and predicate matchings. F-score
is a weighted average of precision and recall that reflects
the percentage of matching. Here, precision/recall means the
percentage of the statement instances in the failing/passing
run that have matches in the other party, and F-score F =

2 · precision·recallprecision+recall . Observe that Apex is able to match a lot
of instances for many cases. Some have almost everything
matched. These bugs are usually due to typos in outputs.

46%
Invalid

number
handling

13%
atoi()

misuse

13%
8%

6%

Lowercase
letters not
handled

(a) Convert

24%

pow()

misuse

20%

13%

Missing

exit()

13%

9%

7%

Missing

error

handling

Incorrect

error

handling

(b) Rpncalc

20%

Typos in

output

18%

Incorrect

parsing 18%

Debug

message
7%

7%

7%

7%

7%

7%

(c) Balanced

35%

Debug

message

15% 15%

 Diff.

output

format

12%

8%

Handling

non-ascii

code

(d) Countwords

Figure 11: Student Bug Classifications.

Student Bugs. To better demonstrate the effectiveness of
Apex in identifying root causes and matching executions,

320

we further generate a grading report for each assignment
by classifying the bugs based on the root causes. However,
the root causes in the bug reports by Apex only contain ar-
tifacts from the buggy programs, which are very different
from each other. It is hence difficult to classify based on
bug reports directly. Fortunately, Apex has the matchings
to the correct version, which is stable across all bugs. We
hence classify bugs based on the projection of the root cause
in the correct version. Intuitively, with Apex we are able
to classify by the part that is not correctly implemented by
the student. The results are shown in Fig. 11. We have the
following observations. (1) Most bugs fall into a few main
categories. For example in rpncalc, 24% of bugs are due
to the incorrect parameter order of the pow() function. The
reason is that parameters are stored in the stack order so that
they need to be flipped before calling pow(). In convert,
almost half of the students forgot to check if an input charac-
ter is legal for the radix. Such information is very useful for
the instructor as they indicate where to improve. (2) Typos
in final outputs are very common (e.g. printf("String
not balanced.\n") versus printf("String is not
balanced.\n") in balanced). For these cases, a simple
automatic grading policy that counts the number of passing
runs by comparing outputs would give 0 credit. In contrast,
Apex would allow partial credit by execution matching (e.g.,
the F-score). In these cases, the students will get almost full
credit. (3) Apex missed the root cause for 10 out of 205
cases. We further inspected these cases. Most of them are
because the buggy run is so wrong that there are very few
matched symbolic expressions to begin with. For example in
rpncalc, the instructor and most students used predicates
whereas two students used table look-up to drive execution
like in a compiler frontend. However, the table indexing is
wrong. As such, almost the entire sequence of (symbolic)
values are wrong. (4) Although from the reports many bugs
have simple root causes, it does not mean they are easier for
Apex as identifying them requires matching the substantially
different program structures. There are also subtle bugs. But
their number is relatively small.

5.2 Experiment with stackoverflow.com Programs
To better evaluate applicability, we have collected 15 pairs
(buggy vs. correct) of implementations from stackoverflo-
w.com. They were mainly posted in 2014. The benchmarks
and their urls are presented in the first two columns of Ta-
ble 3. The benchmarks are named after the algorithms they
implement. Each row represents two programs. The sizes of
each pair are presented in the third column. The programs
are by different programmers. The fourth column presents
the size of the symbolic trace, i.e. the number of symbolic
expressions for assignments, excluding all simple copies and
the assignments that are not data dependent on inputs. The
time column shows the time taken to match all symbolic
expression pairs. This is to prepare for the iterative instance
matching algorithm. The last column shows the number of

benchmark url LOC # sym expr time # matches
knapsack-1 [9] 56 / 78 69 / 210 4.65s 401
matrix-mult [11] 53 / 53 421 / 421 9.56s 1534
fibonacci-sum [14] 35 / 29 22 / 28 0.79s 22
kadane [8] 43 / 29 22 / 26 0.25s 34
euclid [5] 23 / 22 17 / 10 0.66s 5
dijkstra [2] 57 / 64 79 / 76 1.85s 219
mergesort [12] 47 / 70 135 / 231 8.66s 150
span-tree [13] 71 / 75 153 / 135 7.60s 1499
floyd [7] 46 / 47 154 / 173 8.51s 1892
dijkstra-2 [3] 61 / 64 121 / 76 2.00s 303
euler [15] 44 / 27 110 / 81 21.74s 167
gt_product [16] 27 / 27 315 / 330 164.05s 866
binarysearch [1] 25 / 27 32 / 37 1.60s 27
euclid-2 [6] 31 / 21 8 / 10 0.52s 5
knapsack-2 [10] 33 / 42 60 / 109 1.29s 41

Table 3: Benchmarks and Symbolic Expression Matching.

equivalent pairs. Observe that the number of pairs may be
much larger than the number of expressions in the individ-
ual versions because one expression may be symbolically
equivalent to many. Also observe that the time taken is not
substantial as Apex uses concrete value comparison to prune
the candidate pairs. That is, we only compare symbolic equiv-
alence when two expressions have the same concrete value.

Table 4 shows the instance matching results. The size
column shows the number of LLVM IR statement instances in
the execution traces. We have excluded all the copy operations
and short-cut the corresponding dependences for brevity. The
“Matched" column shows the number of instances that are
matched, and the percentage (e.g. for the knapsack case,
80/221 = 36% whereas 80/417 = 19%). The A&U column
shows those aligned but not matched. The U&U column
shows those neither aligned nor matched. The next two
columns show the graph and the slice sizes (in nodes). The
last column shows the root causes reported by Apex. Symbol
‘-’ means that Apex misses the real root cause. Observe that
Apex can align and match roughly half of the instances. It can
also align part of the unmatched instances. Those instances
are usually closely related to bugs. Depending on the semantic
differences, the unaligned and unmatched parts may still be
large. For example, 81% of the instances in the correct version
of knapsack cannot be matched or aligned. This is because
the correct execution is much longer. Also observe that most
of comparative slices are small, much smaller than the graph
sizes. More importantly, in most cases, the root of the slice
precisely identifies the real root cause as mentioned in the
online bug report. Recall that the root of a slice is the A&U
or U&U instances whose parents are matched. Benchmark
matmult has an exceptionally large slice. That is because
the buggy execution has largely corrupted state. An array
index computation is wrong such that most values are wrong
from the beginning. All such faulty values are part of the
slice. Interestingly, Apex can still match and align most of
the control structures and part of the computation and it also
precisely pinpoints the root cause. Since these unmatched
instances belong to a few statements (in loops), the bug report
is still very small.

321

benchmark size time # Matched # A&U # U&U(%) G.size S.size root cause
(%/%) (%/%) buggy correct

knapsack 221 / 417 0.51s 80(36/19) 0(0/0) 141(64) 337(81) 558 51 s.h. if (weight<w2 && w1>=weight) ...
matmult 514 / 514 0.62s 247(48/48) 33(6/6) 179(35) 179(35) 638 312 s.n. FIRST[c*M+k] s.h. FIRST[c*N+k] at line 25
fibonacci-sum 38 / 42 0.34s 21(55/50) 2(5/4) 15(40) 19(46) 59 19 if (i1+i0>n) s.h. false s.n. true at line 26
kadane 40 / 49 0.34s 26(65/53) 4(10/8) 10(25) 19(39) 59 5 s.h. if (0<=cumulativeSum) inside line 15.
euclid 21 / 15 0.32s 6(29/40) 1(5/7) 9(43) 5(33) 21 8 s.n. b*(a/b) s.h. a%b at line 7.
dijkstra 195 / 150 0.40s 68(35/45) 0(0/0) 125(64) 77(51) 270 18 s.n. visited[vert]=1 at line 43.
mergesort 178 / 294 0.53s 118(66/40) 17(10/6) 21(12) 117(40) 273 31 s.n. arr[mid]=arr[start] s.h. new_array[i] =

arr[high] at line 31.
span-tree 389 / 324 0.51s 210(54/65) 2(1/1) 177(46) 112(35) 501 6 -
floyd 286 / 351 0.51s 210(73/60) 2(1/1) 177(62) 112(32) 501 16 s.h. if (path[i][k] != INT_MAX...) at line 30
dijkstra-2 192 / 150 0.42s 39(20/26) 0(0/0) 82(43) 67(45) 188 22 s.n. for (...;i<nr_airport;i++) s.h. while

(cur_vertex != END) at line 24.
euler1 133 / 91 0.38s 71(53/78) 0(0/0) 50(38) 11(12) 132 61 s.h. return 0 at line 43.
gt_product 546 / 473 0.80s 318(58/67) 5(1/1) 117(21) 29(6) 469 88 s.n. product = product * ((int) NUM[j] - 48) at line

16.
binarysearch 46 / 54 0.36s 21(46/39) 2(4/4) 13(28) 18(33) 54 6 s.n. retval=0 at line 22.
euclid-2 11 / 15 0.33s 2(18/13) 0(0/0) 4(36) 5(33) 11 2 s.h. q = (r[0] % r[1]) at line 15
knapsack-2 87 / 174 0.44s 11(13/6) 1(1/1) 53(61) 80(46) 145 45 -

Table 4: Instance Matching. “s.h.” stands for “should have”, “s.n.” for “should not”

Mergesort is an interesting case. The buggy code com-
pares values l from the lower half and h from the higher half
of an array and directly swaps the values if h is smaller than l.
It uses one loop while the correct code uses four loops. Apex
was able to match the control structures and recognize that the
buggy code needs an additional array instead of direct swap-
ping. In particular, Apex identifies an unmatched additional
array assignment within a matched branch in the correct run.
In dijkstra, the two implementations are substantially dif-
ferent. They use different values to denote if a node has been
visited. Moreover, a loop in the correct version corresponds
to two separate loops in the buggy version. Apex was able to
match the control structures and correctly explain the bug. In
dijkstra-2, a nesting loop in one version corresponds to a
few consecutive loops in the other. Details can be found at
[4].

Apex misses the root cause for two cases: span-tree that
computes the minimal spanning tree and knapsack-2. The
reason is that the buggy programs used algorithms different
from that used by the correct version. Apex currently does
not support matching across algorithms (e.g., bubble sort
vs. merge sort). If different algorithms are allowed, we plan
to follow the same strategy as in [26], which is to let the
instructor provide a set of possible algorithms beforehand.
We can also use Apex to match passing runs. Algorithmic
differences will yield poor matchings in passing runs. We will
leave it to future work.

5.3 User Study
We have evaluated Apex with 34 undergraduate students who
take the C programming course at the authors’ institute. We
have partitioned the students into 2 groups, one using Apex
and the other not. We requested them to implement convert
in Sec. 5.1 in a two-hour lab. Our research questions are: 1.
Can Apex help the overall productivity of the students? 2.
Can Apex help understand bugs?

(a) w/ Apex (b) wo/ Apex

Figure 12: Time taken by students to finish the task

(a) w/ Apex (b) wo/ Apex
Avg 4417.6s 5742.4s
SD 1670.7 1606

Figure 13: Average and standard deviation of time took by
each group in seconds

We have implemented a script that records the students’
activities, including each compilation, each test run, each
revision, and each invocation of our tool. The completion
time is what a student took to pass all the test cases (11 in
total). Fig. 12 shows the results of the two groups. In group
(a) (with Apex), only 12% of the students could not finish
the task in time. On the other hand, in group (b), 47% of the
students could not finish. This supports that Apex can help
the students’ productivity in programming assignments with
99% certainty (following the A/B significance test). In group
(a), 44% finished within an hour while only 18% in group (b).
We have also inspected the suggestions Apex generated. Most
of them have only 2-3 lines, which imply that Apex did not
disclose too much about the correct version. Fig. 13 presents
the average and standard deviation of time took by each group
considering timeouts as 2 hours. On average students in group
(a) took about 67 minutes and students in group (b) took 74
minutes. On average group (a) can complete the task about

322

23% faster than group (b). We also performed the t-test with
our data. The p-value is 0.0316 and with 95% confidence our
system can help students’ productivity.

A. Suggestions are easy to understand.
B. Suggestions are useful to locate error.
C. Suggestions are useful to understand errors.
D. Suggestions are useful to understand correct algorithm.
E. Suggestions are useful to fix errors.
F. Suggestions are useful for overall productivity.

Figure 14: Questions

Question Agree Disagree Neutral
A 56% 6% 38%
B 61% 11% 28%
C 72% 6% 22%
B+C 78% 11% 11%
D 56% 22% 22%
E 83% 0% 17%
D+E 94% 0% 6%
F 78% 0% 22%

Figure 15: Students’ response to the questions

In order to evaluate the quality of our suggestions, we
surveyed the participants in group (a). We asked them 6
questions as in Fig. 14. We classify the questions into 4
groups. First, question A asks if the suggestions in pseudo
code can be easily apprehended. Second, questions B and C
ask if the student can understand their problems more easily
with our system. Third, questions D and E ask whether Apex
can provide hints on how to fix the problems. Last, question
F asks the overall effectiveness of our tool. Fig. 15 shows
the responses. We have the following observations. First,
while 6% of the students complained about difficulties in
understanding the suggestion pseudo code, the presentation of
the suggestions could be improved. More details are disclosed
in Section 5.3.1.

Second, 78% of the students agreed that our tool is useful
in either locating or understanding errors. Oral communica-
tion with the students discloses that they seem to have very
diverse understanding about where the root causes are. Third,
94% of the students agreed that they can get hints on fixing
the problems. It was very much appreciated by the students
that Apex can present correction suggestions in the context
of their code (e.g., using their variables). Last, 78% of the
students agreed that our tool can help the overall productivity.
This is consistent with the results in Fig. 12.

5.3.1 Limitations
One student had a very interesting comment that although she
got her bug fixed by copying a constant value in the correction
suggestion, she did not understand why she should use the
constant. We inspected her case. The buggy code is shown
in Fig. 16. This code is for converting an integer digit into
an alphanumeric digit: converting 10 into A, 11 into B, and

1 / / Conver t an i n t e g e r d i g i t i n t o a c h a r a c t e r d i g i t .
2 i f (’A’ <= d i g i t && d i g i t <= ’Z ’)
3 / / SUGGESTIONS
4 ??? d i g i t = d i g i t + ’A’ ; / / (BUGGY)
5 / / I n s t e a d ,
6 +++ d i g i t = d i g i t + 55 / / (CORRECT)
7
8 / / The c o n s t a n t 55 means ’A ’ − 10

Figure 16: Student Buggy Code and the Suggestion.

so on. The operation at line 4 should be “digit + ‘A’ -
10”. Apex precisely reported the root cause and suggested the
proper correction. However, the suggestion is simply a line of
pseudo code “digit + 55”. This is because Apex internally
operates on the IR level so that letters are all represented as
constant values which lack semantic meanings and operations
on constants are unfolded.

We plan to address the problem by adding annotations
or textual debugging hints to the instructor’s version. In the
former example, line 3 could be commented with a debugging
hint such as “It is likely that the constant you use to transform
a value to a letter is wrong”. Instead of showing the pseudo
code, the instructor can configure the tool to emit the textual
hint. Together with the (faulty) variable values emitted by
Apex, the student should be able to quickly understand the
bug. Note that in order to provide high quality textual hints,
internally Apex should capture the precise bug causality and
identify the corresponding correct code.

5.4 Comparison with PMaxSat
We have also implemented a version of Apex directly based on
the PMaxSat formulation. We used Z3 as the PMaxSat solver.
We compare the performance and the quality of execution
alignment of the two versions. We set the timeout of PMaxSat
to 5 minutes and ran it for the stackoverflow cases and the
convert cases. The results are shown in Table 5. In most of
the cases, PMaxSat is much slower than Apex. In 3 out of the
15 stackoverflow cases, PMaxSat could not find the solution
in 5 minutes. On average our system can find the alignment
in less than 2 seconds, whereas PMaxSat requires more than
90 seconds. The results for the convert cases (the last row)
are similar. Note that the high overhead of PMaxSat may not
be acceptable for the students, especially during labs.

In terms of execution alignment, the two versions generate
similar results. On average the precision of the approximate
version of Apex is more than 79% and the recall is more
than 74%, compared to the PMaxSat version. This indicates
that most alignments discovered by the approximate version
are identical to those by PMaxSat. The most common cases
of alignment differences are constant operations that do not
depend on the inputs such as initializing variables with 0
and increasing loop variables by 1. In our observation, these
operations have very little effect on the generated suggestions.

We compared the performance with WPM3-2015-in [20],
a state-of-art incomplete partial maxsat solver. The incom-

323

plete solvers can find the solution incrementally and hence
they can produce intermediate results as soon as possible. We
measured the time took by the WPM3 solver until it finds a
solution that can satisfy the same number of the clauses as
the solution found by Apex. Table 6 presents the comparison
result. Though the incomplete solver can reach the similar
solution faster than Z3 which is a complete solver, Apex is
more than 10 times faster on average.

Program Run time (s) Precison Recall F-score
Apex PMaxSat

binarysearch 1.00 14.19 0.91 0.99 0.95
dijkstra 1.58 30.46 0.77 0.77 0.77
dijkstra-2 1.18 6.64 0.70 0.74 0.72
euclid 0.30 .16 0.80 0.80 0.80
euclid-2 0.25 .14 0.71 0.83 0.77
euler1 0.93 1.34 0.97 0.94 0.95
fibonacci-sum 1.06 1.44 0.96 0.88 0.92
floyd 5.04 > 300 - - -
gt_product 1.72 > 300 - - -
kadane 1.33 4.25 0.60 0.64 0.62
knapsack 1.52 14.28 0.69 0.80 0.74
knapsack-2 1.32 162.58 0.67 0.72 0.69
matmult 0.93 53.75 0.88 1.00 0.93
mergesort 1.48 7.42 0.77 0.91 0.84
span-tree 1.37 > 300 - - -
average 1.40 90.21 0.79 0.84 0.81
Convert (average) 2.30 46.02 0.88 0.74 0.79

Table 5: Comparison between Apex and PMaxSat

Program Run time (s)
Apex WPM3

binarysearch 1.00 2.54
dijkstra 1.58 5.50
dijkstra-2 1.18 1.77
euclid 0.30 0.14
euclid-2 0.25 0.11
euler1 0.93 0.57
fibonacci-sum 1.06 0.74
floyd 5.04 71.68
gt_product 1.72 103.62
kadane 1.33 2.31
knapsack 1.52 2.09
knapsack-2 1.32 2.26
matmult 0.93 2.62
mergesort 1.48 2.78
span-tree 1.37 19.1
average 1.40 14.52

Convert (average) 2.30 20.63
Rpncalc (average) 1.53 52.86
Balanced (average) 0.88 24.15

Table 6: Comparison between Apex and incomplete solver

5.5 Experiment with IntroClass Benchmarks
We have also evaluated Apex with the IntroClass Bench-
marks [35]. The benchmark is designed for evaluation of
automated software repair techniques. Out of the 6 projects,
we have selected 5 projects with 710 buggy implementations:
checksum computes the checksum of input string; digits
prints each digit of the input number; grade computes a let-
ter grade for the input score; median finds a median number
among the 3 input numbers; syllables counts the frequen-
cies of vowels in the input string. We did not select smallest
because it is too small (usually a few lines).

The results are shown in Fig. 17. From Fig. 17a, the
program sizes are mostly 40-60 LOC. Fig. 17b suggests that
the programs are very different from the solution version
syntactically. Fig. 17c shows that the DCDGs have 10-150
nodes and some projects such as median and grade have
mostly less than 20 nodes. This is because these programs
have no loop and their executions are very short. Fig. 17e
presents that our suggestions are very small.

Regarding the bugs and the quality of suggestions, we
have the following observations. (1) For 57 out of 710
cases, Apex missed the root cause. This happens mostly in
median. The programs in this project have neither loops nor
arithmatic operations. They have at most 6 comparisons. In
buggy executions, there are usually insufficient evidence for
Apex to achieve good alignment. (2) Most bugs are due to
missing/incorrect conditions, missing computation, or typos
in output messages. For example, in checksum, 76% of the
submissions failed because of missing a modulo operation.
Detailed breakdown for all projects can be found at [4]. Note
that such information is very useful for the instructors.

6. Related Work
In [43], program synthesis was used to automatically correct
a buggy program according to the correct version. The tech-
nique requires the instructor to provide a set of correction
rules. In [26], a technique was proposed to detect algorithms
used in functionally correct student submissions by compar-
ing the value sequences. Then it provides feedback prepared
by the instructor for each type of algorithm. It is complemen-
tary to ours as we could use it to detect cases in which the
students are using a different algorithm. Equivalence check-
ing [33, 34] determines if two programs are equivalent. If not,
it generates counter-examples. In [32], equivalence check-
ing is extended to look for a single value replacement that
can partially fix the faulty state. The value replacement is re-
ported as the root cause. In [22], a technique was proposed to
identify the weakest precondition that triggers the behavioral
differences between two program versions. These techniques
do not align/match the intermediate states, which is critical
to understanding failure causality.

There have been works on debugging using the passing
and failing executions of the same program, by mutating
states [23, 44, 46] or slicing two executions [45]. In contrast,
Apex assumes different programs. There are also works
on comparing traces from program versions to understand
regression bugs [28, 40]. They perform sequence alignment in
traces without using symbolic analysis. There are satisfiability
based techniques that also strive to explain failures within
a single program [25, 29, 30, 39], and even fix the bugs
through templates [31]. They do not leverage the correct
version. Fault localization [21, 36, 42] leverages a large
number of passing and failing runs to identify root causes.
In our experience, many buggy student submissions fail on
all inputs. Besides, they usually do not explain causality or

324

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

lin
e
s

o
f

co
d

e

submissions

checksum
digits
grade

median
syllables

(a) LOC

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200

#
 o

f
d

if
fe

re
n

t
lin

e
s

/
Lo

C

submissions

checksum
digits
grade

median
syllables

(b) Version Diff.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200

#
 o

f
n

o
d

e
s

submissions

checksum
digits
grade

median
syllables

(c) DCDG Size

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

#
 o

f
n

o
d

e
s

submissions

checksum
digits
grade

median
syllables

(d) Slice Size

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200

#
 o

f
n

o
d

e
s

submissions

checksum
digits
grade

median
syllables

(e) Bug Report Size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

F-
sc

o
re

submissions

checksum
digits
grade

median
syllables

(f) F-score

Figure 17: IntroClass Benchmark Results. On each figure, the submissions are sorted by the Y-axis values.

provide fix suggestions. LAURA [19] statically matches the
buggy and correct implementations and reports mismatches.
TALUS [37] recognizes the algorithm from the students’
submissions and projects the correct implementation to the
submissions to generate feedback.

7. Conclusion
We present Apex, a system that explains programming assign-
ment bugs. It leverages both symbolic and dynamic analysis
to match and align statement instances from the executions of
the buggy code and the correct code. A comparative slice is
computed from the unmatched parts of the two runs, starting
from the different outputs. The algorithm is an approximate
solution to the underlying PMAX-SAT problem. The experi-
ments show that Apex can accurately identify the root causes
and explain causality for 94.5% of the 205 student bugs and
15 bugs collected from Internet. The evaluation on a stan-
dard benchmark set with over 700 student bugs shows similar
results. A user study in the classroom shows that Apex has
substantially improved student productivity.

Acknowledgments
We thank the anonymous reviewers for their constructive com-
ments. This research was supported, in part, by DARPA under
contract FA8650-15-C-7562, NSF under awards 1409668 ,
1320444, and 1320306, ONR under contract N000141410468,
and Cisco Systems under an unrestricted gift. Any opinions,
findings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.

References
[1] What is wrong with my binary search implementation? http:
//stackoverflow.com/questions/21709124.

[2] Dijkstra’s algorithm not working. http://stackoverflow.
com/questions/14135999, .

[3] Logical error in my implementation of dijkstra’s algorithm.
http://stackoverflow.com/questions/10432682, .

[4] Apex benchmarks. http://apexpub.altervista.org/.

[5] Euclid algorithm incorrect results. http://stackoverflow.
com/questions/16567505, .

[6] Inverse function works properly, but if works after while loops
it produces wrong answers. http://stackoverflow.com/
questions/22921661, .

[7] Bug in my floyd-warshall c++ implementation. http://st
ackoverflow.com/questions/3027216.

[8] Is this an incorrect implementation of kadane’s algorithm?
http://stackoverflow.com/questions/22927720.

[9] Knapsack algorithm for two bags. http://stackoverflow.
com/questions/20255319, .

[10] Is there something wrong with my knapsack. http://stac
koverflow.com/questions/21360767, .

[11] Incorrect result in matrix multiplication in c. http://stacko
verflow.com/questions/15512963.

[12] Merge sort implementation. http://stackoverflow.com/
questions/18141065.

[13] Prims alghoritm. http://stackoverflow.com/question
s/24145687.

[14] What is wrong with this algorithm? http://stackoverflo
w.com/questions/18794190, .

[15] Project euler problem 4. http://stackoverflow.com/qu
estions/7000168, .

325

http://stackoverflow.com/questions/21709124
http://stackoverflow.com/questions/21709124
http://stackoverflow.com/questions/14135999
http://stackoverflow.com/questions/14135999
http://stackoverflow.com/questions/10432682
http://apexpub.altervista.org/
http://stackoverflow.com/questions/16567505
http://stackoverflow.com/questions/16567505
http://stackoverflow.com/questions/22921661
http://stackoverflow.com/questions/22921661
http://stackoverflow.com/questions/3027216
http://stackoverflow.com/questions/3027216
http://stackoverflow.com/questions/22927720
http://stackoverflow.com/questions/20255319
http://stackoverflow.com/questions/20255319
http://stackoverflow.com/questions/21360767
http://stackoverflow.com/questions/21360767
http://stackoverflow.com/questions/15512963
http://stackoverflow.com/questions/15512963
http://stackoverflow.com/questions/18141065
http://stackoverflow.com/questions/18141065
http://stackoverflow.com/questions/24145687
http://stackoverflow.com/questions/24145687
http://stackoverflow.com/questions/18794190
http://stackoverflow.com/questions/18794190
http://stackoverflow.com/questions/7000168
http://stackoverflow.com/questions/7000168

[16] Project euler 8, i don’t understand where i’m going wrong.
http://stackoverflow.com/questions/23824570, .

[17] Stackoverflow. http://www.stackoverflow.com.

[18] Analysis: The exploding demand for computer sci-
ence education, and why america needs to keep up.
http://www.geekwire.com/2014/analysis-examini
ng-computer-science-education-explosion/, 2014.

[19] A. Adam and J.-P. Laurent. Laura, a system to debug student
programs. Artificial Intelligence, 15(1):75–122, 1980.

[20] C. Ansótegui, F. Didier, and J. Gabàs. Exploiting the structure
of unsatisfiable cores in maxsat. In Proceedings of the 24th
International Conference on Artificial Intelligence, IJCAI ’15,
pages 283–289. AAAI Press, 2015. ISBN 978-1-57735-738-4.

[21] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test
generation for effective fault localization. In Proceedings of
the 19th International Symposium on Software Testing and
Analysis, ISSTA ’10, pages 49–60, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-823-0.

[22] A. Banerjee, A. Roychoudhury, J. A. Harlie, and Z. Liang.
Golden implementation driven software debugging. In Pro-
ceedings of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE ’10, pages 177–
186, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
791-2.

[23] H. Cleve and A. Zeller. Locating causes of program failures. In
Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 342–351, New York, NY, USA,
2005. ACM. ISBN 1-58113-963-2.

[24] L. De Moura and N. Bjørner. Z3: An efficient smt solver.
In Proceedings of the Theory and Practice of Software, 14th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 3-540-78799-2, 978-3-540-78799-0.

[25] A. Groce, S. Chaki, D. Kroening, and O. Strichman. Error
explanation with distance metrics. International Journal on
Software Tools for Technology Transfer, 8(3):229–247, June
2006. ISSN 1433-2779.

[26] S. Gulwani, I. Radiček, and F. Zuleger. Feedback genera-
tion for performance problems in introductory programming
assignments. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
FSE ’14, pages 41–51, New York, NY, USA, 2014. ACM.

[27] D. S. Hirschberg. Algorithms for the longest common subse-
quence problem. Journal of ACM, 24(4):664–675, Oct. 1977.
ISSN 0004-5411.

[28] K. J. Hoffman, P. Eugster, and S. Jagannathan. Semantics-
aware trace analysis. In Proceedings of the 30th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation, PLDI ’09, pages 453–464, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-392-1.

[29] M. Jose and R. Majumdar. Cause clue clauses: Error local-
ization using maximum satisfiability. In Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pages 437–446, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0663-8.

[30] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso. Minthint:
Automated synthesis of repair hints. In Proceedings of the
36th International Conference on Software Engineering, ICSE
’14, pages 266–276, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2756-5.

[31] R. Könighofer and R. Bloem. Automated error localization
and correction for imperative programs. In Proceedings of
the International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’11, pages 91–100, Austin, TX, 2011.
FMCAD Inc. ISBN 978-0-9835678-1-3.

[32] S. Lahiri, R. Sinha, and C. Hawblitzel. Automatic rootcausing
for program equivalence failures in binaries. In Proceedings
of the 27th International Conference on Computer Aided
Verification, CAV’15, pages 362–379, Berlin, Heidelberg, 2015.
Springer-Verlag. ISBN 978-3-319-21689-8.

[33] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo.
Symdiff: A language-agnostic semantic diff tool for imperative
programs. In Proceedings of the 24th International Conference
on Computer Aided Verification, CAV’12, pages 712–717,
Berlin, Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-
31423-0.

[34] A. Lakhotia, M. D. Preda, and R. Giacobazzi. Fast location of
similar code fragments using semantic ’juice’. In Proceedings
of the 2nd ACM SIGPLAN Program Protection and Reverse
Engineering Workshop, PPREW ’13, pages 5:1–5:6, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-1857-0.

[35] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer. The manybugs and introclass bench-
marks for automated repair of c programs. IEEE Transactions
on Software Engineering (TSE), 41(12):1236–1256, December
2015. ISSN 0098-5589.

[36] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In PLDI’03, 2003.

[37] W. R. Murray. Automatic program debugging for intelligent
tutoring systems. Computational Intelligence, 3(1):1–16, 1987.

[38] G. C. Necula. Translation validation for an optimizing compiler.
In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, PLDI
’00, pages 83–94, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2.

[39] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: Program repair via semantic analysis. In Proceedings
of the 2013 International Conference on Software Engineering,
ICSE ’13, pages 772–781, Piscataway, NJ, USA, 2013. IEEE
Press. ISBN 978-1-4673-3076-3.

[40] M. K. Ramanathan, A. Grama, and S. Jagannathan. Sieve:
A tool for automatically detecting variations across program
versions. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, ASE ’06,
pages 241–252, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2579-2.

[41] C. J. V. Rijsbergen. Information Retrieval. Butterworth-
Heinemann, Newton, MA, USA, 2nd edition, 1979. ISBN
0408709294.

[42] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve. Using likely
invariants for automated software fault localization. In Pro-

326

http://stackoverflow.com/questions/23824570
http://www.stackoverflow.com
http://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/
http://www.geekwire.com/2014/analysis-examining-computer-science-education-explosion/

ceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 139–152, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1870-9.

[43] R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feed-
back generation for introductory programming assignments.
In Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’13, pages 15–26, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2014-6.

[44] W. N. Sumner and X. Zhang. Comparative causality: Explain-
ing the differences between executions. In Proceedings of the
2013 International Conference on Software Engineering, ICSE

’13, pages 272–281, Piscataway, NJ, USA, 2013. IEEE Press.
ISBN 978-1-4673-3076-3.

[45] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan.
Analyzing concurrency bugs using dual slicing. In Proceedings
of the 19th International Symposium on Software Testing and
Analysis, ISSTA ’10, pages 253–264, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-823-0.

[46] A. Zeller. Isolating cause-effect chains from computer pro-
grams. In Proceedings of the 10th ACM SIGSOFT Symposium
on Foundations of Software Engineering, SIGSOFT ’02/FSE-
10, pages 1–10, New York, NY, USA, 2002. ACM. ISBN
1-58113-514-9.

327

	Introduction
	Motivation
	Problem Formalization
	Design
	Phase (1): Iterative Instance Matching
	Phase (2): Residue Alignment
	Phase (3): Comparative Dependence Graph Construction, Slicing, and Feedback Generation

	Implementation and Evaluation
	Experiment with Real Student Submissions
	Experiment with stackoverflow.com Programs
	User Study
	Limitations

	Comparison with PMaxSat
	Experiment with IntroClass Benchmarks

	Related Work
	Conclusion

