
Dual Execution for On the Fly Fine
Grained Execution Comparison

Dohyeong Kim1 Yonghwi Kwon1 William N. Sumner2 Xiangyu Zhang1 Dongyan Xu1

1Department of Computer Science, Purdue University, USA
2School of Computing Science, Simon Fraser University, Canada

1{kim1051,kwon58,xyzhang,dxu}@purdue.edu 2wsumner@sfu.ca

Abstract
Execution comparison has many applications in debugging,
malware analysis, software feature identification, and intru-
sion detection. Existing comparison techniques have various
limitations. Some can only compare at the system event level
and require executions to take the same input. Some require
storing instruction traces that are very space-consuming and
have difficulty dealing with non-determinism. In this paper,
we propose a novel dual execution technique that allows on-
the-fly comparison at the instruction level. Only differences
between the executions are recorded. It allows executions to
proceed in a coupled mode such that they share the same in-
put sequence with the same timing, reducing nondeterminism.
It also allows them to proceed in a decoupled mode such that
the user can interact with each one differently. Decoupled
executions can be recoupled to share the same future inputs
and facilitate further comparison. We have implemented a
prototype and applied it to identifying functional components
for reuse, comparative debugging with new GDB primitives,
and understanding real world regression failures. Our results
show that dual execution is a critical enabling technique for
execution comparison.

Categories and Subject Descriptors D.2 [Software Engi-
neering]

General Terms Algorithms

Keywords Execution Comparison, Dynamic Analysis

1. Introduction
Execution comparison techniques compare multiple execu-
tions from the same program or highly similar programs to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694394

identify state differences including control flow differences
and variable value differences. Execution comparison has
been used to debug sequential, concurrent, and regression
failures, by reasoning about the causality between execu-
tion differences and input differences [50], thread scheduling
differences [47], and syntactic differences among program
versions [8, 36, 41], respectively. It has also been used to
identify and extract functional features for legacy software
reuse [25]. For example, to identify the “send email” func-
tionality from an email client, two executions are compared.
In one execution, an email is composed and sent, whereas in
the other, the same email is composed but not sent. Execution
comparison is also used in malware behavior analysis [24].
Advanced malware often has logic to decide whether or not
to activate its payload depending on the environment such as
the platform, the running applications on the victim machine,
the current date and time, and the presence of debuggers or
virtual machines. To understand the activation logic and the
payload, malware is executed in different environments and
the resulting executions are compared. Software diversifica-
tion creates executables with different structures, e.g. differ-
ent stack layouts [38]. At runtime, multiple such versions
are executed simultaneously. The executions are compared
to detect intrusion because an exploit to one version often
crashes others.

Execution comparison can be classified into online and
offline techniques. In online comparison, the executions are
compared on-the-fly. The intrusion detection technique from
Salamat in 2009 is one such online approach [38]. However,
such comparison is at the system event level. In particular, the
executions of the multiple diversified versions are driven by
the same input event sequence and the output event sequences
are then compared. This technique assumes all executions
consume the same input, which does not hold for debug-
ging, where executions may have different paths and hence
consume different sequence of input events. Most execution
comparison techniques are offline [24, 25, 36, 47]. They first
collect traces and compare them offline. A prominent chal-
lenge is hence the space required to store such traces, which
can grow to a few GB within a few milliseconds of execution.

325

Since executions are performed independently, many execu-
tion differences are caused by nondeterminism such as input
events being received at different times. These differences are
not helpful in understanding functional differences. Note that
many existing logging and replay techniques [15, 20] cannot
both preclude nondeterminism and allow for functional dif-
ferences. Viennot et al. [45] can handle functional differences
but it requires explorations and it cannot be used in online
analysis. For UI applications, comparing their executions
also requires repeated manual effort.

In this paper, we propose a novel dual execution engine to
overcome the aforementioned limitations. It performs on-the-
fly instruction level comparison of two executions and only
stores traces for parts of executions that are different. There
are several challenges in on-the-fly execution comparison.
The executions may diverge because of (1) different inputs,
(2) different outcomes from interactions with the environment,
and (3) nondeterminism in the program. Our technique
allows the executions to differ and consume different inputs.
It suppresses the differences caused by interactions with
the environment and nondeterminism. In particular, it has
three execution modes. Initially, the two executions run in a
coupled mode, in which they are synchronized and one of
them, the slave, receives most of its system events from the
other, the master, instead of from the environment. When the
user indicates that different inputs should be provided, the
two executions get into the decoupled mode, in which they
execute independently. After introducing the differences, the
user indicates the two executions should be coupled again
such that they can share the same future inputs to avoid
unnecessary nondeterminism. Since the two executions may
be at different points when the coupling signal is received,
in the resynchronization mode, the engine blocks the faster
execution until the other one catches up. After that, the two
execute in the coupled mode again. Since the two executions
then have different states, even though they execute in the
coupled mode, their paths and system event sequences may
differ, so our engine detects and handles all these differences.

Our contributions are summarized as follows.

• We have proposed the novel dual execution technique that
allows on-the-fly fine-grained execution comparison. It
allows executions to take different inputs.
• We have addressed a set of underlying technical chal-

lenges such as how to synchronize two executions at the
instruction level; how to share system events such that
nondeterminism can be suppressed; how to prevent shar-
ing in some cases such that the slave can still have its
independent visible interface; how to resynchronize the
two executions after they are decoupled; how to handle
signals and threading.
• We have implemented a prototype and applied it to three

applications: functional component extraction, on-the-fly
comparative debugging with new GDB primitives, and

1 busy_cue () {
2 i f (s tatus_message_remain ing ()) . . .
3 }
4 s tatus_message_remain ing () {
5 r e t u r n d i s p l a y_t ime − t ime () + min_time > 0 ;
6 }

Figure 1. Nondeterminism in pine.

understanding regression failures. The results show that
the engine is a critical enabling technique. It also substan-
tially reduces the space and time overhead compared to
offline comparison.

2. Motivation
In this section, we use a real world example to explain why
dual execution is preferable in execution comparison and
illustrate some of the technical challenges in dual execution.

Suppose we want to identify the functional components
that change an email subject and log a sent email in pine, an
email client. In pine, a user can get to the email composition
interface through a sequence of menu operations, where
he/she can provide the email body, subject, and recipient.
He/she can also choose whether a copy of the email will
be saved in the sent_mail file after it is sent, through the
ctrl-r hot-key. During the whole process, pine periodically
pulls incoming emails from the server through a timer control.
While an email is being sent, pine shows busy messages on
the screen.

To identify the desired components, the user provides two
executions. In the first, he/she composes an email and sends
it, and a copy of the email is saved by default. The second
execution is almost identical, except that the user changes the
subject and reconfigures pine so that a copy is not saved.

We first use an offline technique similar to that of Kim et
al. [25], in which the two executions run independently, and
we collect instruction level traces for offline comparison. We
observe the following problems. First, we must repeat the
almost identical sequence of user interactions. We must be
very careful to not introduce any human error. For example,
in the second execution, when we try to type the same email,
suppose we mistype a character and use backspace to fix
it. Although the two emails are identical after the mistake
is fixed, the instruction level trace faithfully records the
interaction error, which will be identified as a difference
during comparison.

Second, even if we manage to avoid introducing human
error, there is substantial low level nondeterminism, e.g. from
timers, that leads to unnecessary execution differences. Fig. 1
shows a code snippet from pine that has nondeterministic be-
havior. busy_cue() is a function that shows a busy message on
the screen. Before showing a message it checks whether there
already is a message by calling status_message_remaining()
at line 2, which checks whether the current message is shown
on screen for at least a minimum amount of time (line 5). The
program behavior is thus dependent on execution timing that

326

1 p i c o () {
2 wh i l e (. . .) {
3 c = GetKey () ;
4 i f (c == empty | | time_to_check ())
5 check_new_mail () ;
6 ex e cu t e (c) ;
7 }
8 }
9 GetKey () {

10 i f (ReadyForKey (STDIN , t imeout))
11 r e t u r n r ead (STDIN) ;
12 e l s e
13 r e t u r n empty ;
14 }

Figure 2. Input handling loop in pine.

is nondeterministic. There are additional such timing related
behaviors in pine. We show in Section 5 that execution dif-
ferences caused by nondeterminism can be as large as half of
the overall differences.

Third, we observe that the trace for even one of these
executions is over 30GB even though the execution is already
very small. It is not surprising given the large number of
instructions executed within a second by a modern CPU.
Storing and processing such huge trace files is a heavy burden
even for modern systems. Note that the two traces are mostly
identical.

Next, we use our dual execution engine. Initially, the engine
spawns two executions of pine at the same time. Then,
we only interact with one of the executions, called the
master. All the interactions between the master and the
environment, including user interactions, are relayed to the
slave. This allows us to avoid repeating the same error-
prone user interactions. In addition, the two executions run
exactly the same way, without any differences caused by
nondeterminism. Since only differences are recorded, we also
avoid tracing in this phase.

After composing the email, we press a predefined hot-key.
Now we can control the master and the slave separately. We
provide different subjects to the two executions and set the
save_to_sent_mail option differently. After that, we couple
the two executions again by pressing another hot-key. Once
again we only interact with the master to confirm sending
the email and terminate the program. In this phase, since the
engine aligns the two executions at the instruction level and
executes them in locksteps, instruction level differences are
detected on the fly and recorded. The resulting trace file is
only less than 90MB.

We note several technical challenges. First, our system
relays system events in the master to the slave, but we
cannot relay every event. For example, if the slave did not
execute the write () system call but rather simulated it using
a relayed result during coupled execution, it could not show
any interface and thus we could not provide different inputs
when decoupled. The engine must identify the events that can
be relayed.

Second, when we indicate our intent to recouple the
executions after providing different inputs, the engine cannot

1 p i c o () ;
2 . . .
3 c a l l_ma i l e r () ;
4 . . .
5 i f (f c c)
6 wr i t e_ f c c (s e n tma i l) ;

Figure 3. Send-mail function from pine.

simply resume relaying events because the two executions
may be in different stages due to the different inputs. Fig. 2
shows a code segment in which pine receives user inputs.
Lines 2-7 use a loop to handle user inputs. At line 3, it
reads a key from the user. At lines 4-5, if a certain amount
of time has passed, the program checks whether there is a
new email. At line 6, the program processes the keystroke.
Therefore, depending on the time we spent providing the
different inputs, the two executions will be in the different
instances of the loop upon recoupling. They may even be in
different child functions of the pico() function. The engine
needs to resynchronize the two executions at the instruction
level.

Third, even though the engine manages to recouple the
two executions, they may execute differently due to the input
differences. Fig. 3 shows another code snippet from pine.
At line 1, the program executes pico() to allow the user to
compose the email. It also contains the confirmation menu.
Recoupling happens inside pico(). At line 3, the program
calls call_mailer (), which constructs the email packet and
sends it to the SMTP server. After that at line 5, the program
checks fcc, which corresponds to the save_to_sent_mail
option. If it is set, pine makes a copy of the sent mail (line
6). Since we set fcc differently in the two executions, one
execution will execute write_fcc(), but the other will not.
Note that write_fcc() relies on several events such as file
open and file write. Therefore in this case, the engine needs to
detect such differences and provide the events appropriately.

3. Design
Our discussion follows the order of the three execution modes:
the coupled mode in which the master and the slave share
system events; the decoupled mode in which they execute
independently; and the resynchronization mode in which the
faster execution is blocked until the slower one catches up,
when the user wants to recouple the two executions.

3.1 Coupled Execution Mode
The master and slave are in coupled mode when they start
and also after different inputs are provided and the executions
are resynchronized. Note that after differences are introduced,
the two executions may take different paths and have different
syscalls, even though they are resynchronized. Thus we focus
on detecting and handling such differences that may prevent
the executions from sharing events.

We first present the semantics of the master and slave
executions and then discuss the monitor that coordinates their
behavior.

327

Table 1. Semantic Rules for Master Execution.
Instruction Action Rule

regular instruction y=l instr(op, x1,...xn) execute the instruction; M-INSTR
send_trace_entry(〈INSTR, l, σ[y]1〉);

y=l syscall (sid , x1,...xn); send_trace_entry(〈SY SCALL, l, sid , σ[x1], ..., σ[xn]〉); M-SYSCALL
execute the system call;
send_syscall_outcome(σ[y]);

1. σ stands for the store that maps a variable to a value.

TraceEntry t ::= 〈INSTR, l, v〉
| 〈SY SCALL, l, sid ,P〉

Label l ::= {l1, l2, l3, ...}
V alue v ::= {true, false, 0, 1, 2, ...}
SysCallId sid ::= {1, 2, ...}
SysCallParameters P ::= v

Figure 4. Trace Syntax

3.1.1 Master Execution in the Coupled Mode.
In coupled mode, the master tracks each instruction execution
and sends a trace entry to the monitor. It performs all syscalls
faithfully and sends syscall parameters and outcomes to the
monitor, who decides if the syscall outcomes need to be
relayed to the slave. The semantics is shown in Table 1. We
model instructions into two kinds: system calls and others (or
regular instructions). A regular instruction, with opcode op,
takes n operands and produces the result in y. According to
rule M-INSTR, the instruction is first executed, then a trace
entry is sent to the monitor.
Trace Entry Syntax. As shown in Fig. 4, there are two kinds
of trace entries, identified by the types INSTR (denoting
regular instructions) and SY SCALL, respectively. A reg-
ular instruction entry consists of the label (or the program
counter) of the instruction and the left hand side value of the
instruction. A syscall entry consists of the label, the syscall
id, and the parameters. �

Upon a syscall invocation (rule M-SYSCALL), the master
first sends the corresponding trace entry containing the syscall
id and the parameters to the monitor. It then executes the
syscall and sends the outcome to the monitor.

3.1.2 Slave Execution in the Coupled Mode.
As shown in Fig. 2, the slave handles a regular instruction in
the same way as the master. For a syscall, the slave sends the
trace entry containing the parameters to the monitor, which
allows the monitor to decide if the slave should copy the
syscall outcome from the master or execute the syscall. After
that, the slave receives the decision from the monitor and
acts accordingly. recv_syscall_outcome() is a blocking call,
preventing the situation in which the slave execution is faster
than the master and manages to perform a syscall before the
master reaches the corresponding syscall.

3.1.3 Monitor in the Coupled Mode.
The monitor is the most complex component. It is responsible
for synchronizing the two executions, comparing their trace

Algorithm 1 Monitor Algorithm for the Coupled Mode
Input: a pair of executions em, es
Definition: Im/s denotes the execution index of the current

trace entry from master/slave;
MONITOR (em, es)

1: while em and es are not finished do
2: tm = recv_trace_entry(em)
3: Ipm = Im
4: Im = update_index(tm.l, Im)
5: ts = recv_trace_entry(es)
6: Ips = Is
7: Is = update_index(ts.l, Is)
8: if tm.type==SYSCALL then
9: ym = recv_syscall_outcome(em)

10: if policy (tm.sid)==COPY && tm.P==ts.P
then

11: send_2_slave(ym)
12: else
13: send_2_slave(EXEC)
14: if tm.l != ts.l then
15: /* Lines 16-21 run parallel with lines 22-27*/
16: while Im != dyn_ipdom(Ipm) do
17: record(tm, nil)
18: tm = recv_trace_entry(em)
19: Im = update_index(tm.l, Im)
20: if tm.type==SYSCALL then
21: ym = recv_syscall_outcome(em)
22: while Is != dyn_ipdom(Ips) do
23: record(nil , ts)
24: ts = recv_trace_entry(es)
25: Is = update_index(tm.l, Is)
26: if tm.type==SYSCALL then
27: send_2_slave(EXEC)
28: if tm.v != ts.v then
29: record(tm, ts)

entries on the fly, and instructing the slave how to handle its
syscalls.

Background: Execution Indexing. Our execution synchroniza-
tion is built on execution indexing (EI) [48]. For completeness
of the paper, we briefly introduce the EI technique. It com-
putes a unique identifier for an execution point called an
execution index, or index. Execution points across multiple
runs align when they have the same index. The index of an

328

Table 2. Semantic Rules for Slave Execution.
Instruction Action Rule

regular instruction y =l instr(op, x1,...xn) execute the instruction; S-INSTR
send_trace_entry(〈INSTR, l, σ[y]〉)

y=l syscall (sid , x1,...xn) send_trace_entry(〈SY SCALL, l, sid , σ[x1], ..., σ[xn]〉); S-SYSCALL
t=recv_syscall_outcome();
if (t == EXEC) execute the system call;
else σ[y] = t;

ExecIndex I ::= l

update_index : Label × ExecIndex → ExecIndex

update_index(l,nil) = l update_index(l, Ihead · ltail) =
{
Ihead · ltail · l if l control dep. on ltail
update_index(l, Ihead) otherwise

dyn_ipdom : ExecIndex → ExecIndex

dyn_ipdom(Ihead · ltail) = Ihead · l, with l the immediate postdom. of ltail

Figure 5. Execution indexing primitives. The syntax is presented in boxes.

Figure 6. Example for execution indexing and synchronization.

execution point is analogous to the calling context of the
point, but instead of describing the nesting of function calls,
the index describes the nesting of the control dependence
regions of the execution point. Note that multiple instances
of an instruction may share the same calling context (and
hence calling contexts cannot be used to distinguish the in-
stances), but they must have different control dependence
region nestings.

The syntax of execution indexing and the primitives to
compute indices are described in Fig. 5. Syntactically, an
index is a sequence of labels (or PCs). It is constructed by the
update_index() primitive, which takes the label of the current
execution point and the index of the previous point, produces
the new index. According to the rules, if the previous index is
nil , the resulting index is the label. If the previous index is not
nil , and if the current label l is control dependent on the tail
label ltail of the previous index, indicating l is nesting in the
region of ltail, l is appended to the previous index. Otherwise,

labels at the tail of the previous index are popped one by one
until l finds its control dependence region.

Consider Fig. 6. A code snippet is presented in (a) and two
executions are presented in (b) and (c). The two executions
differ due to some state differences introduced earlier. The
indices of the execution points are presented in the center
for easy comparison. Lets look at the master execution (b).
Initially, the index of the first instance of statement 1 I(11) =
[1] as its previous index is nil ; then update_index(2, I(11))=
update_index(2, [1])= update_index(2, nil)=[2], because 2
is not control dependent on 1; update_index(5, I(41))=
update_index(5, [4])=[4, 5] because 5 is control dependent on
4. Intuitively, it means 5 is nesting in the region of 4, denoted
by the box A©. Similarly, I(52) = [4, 5, 6, 4, 5], denoting 52
is nesting inside regions D©, C©, B©, and then A©. Note that
our system only maintains the index for the current execution
point, similar to maintaining the call stack.

The indices for the slave (c) are similarly computed. By
comparing the indices, only 11, 21, 41, 51, 72, 44, 92 in the

329

master have correspondence in the slave. We can see the
essence of EI is to align the control dependence regions. For
example, the alignment of 51 in both executions indicates
the B© regions align. But inside the region, different branch
outcomes are taken such that there are no further alignments.
�

Synchronizing Master and Slave Executions. The monitor
component continuously updates the current indices of the
master and the slave based on the trace entries received. The
indices allow the monitor to achieve lockstep synchronization
of the two executions. Initially, the two executions follow the
same path such that they are perfectly synchronized, indicated
by identical indices. When a predicate is encountered but its
branch outcomes are different in the two runs, the paths start
to diverge. As such, the monitor decouples the two executions,
allowing them to proceed independently to the immediate
postdominator of the predicate. Note that since the predicates
in the two runs share the same immediate postdominator, they
are perfectly synchronized again.

Details are in Algorithm 1, in which a while loop continu-
ously processes trace entries until the two executions finish.
In the loop, it first receives an entry from the master and
updates the current index for the master (lines 2-4). We use
tm.l to represents the label field of the trace entry. Lines 5-7
do the same thing for the slave. In normal cases, the two
entries from the two respective runs have the identical labels.
But if the previous label is a predicate with different branch
outcomes, the pair of entries will have different labels (line
14). In this case, the monitor processes trace entries from the
two executions in parallel (lines 16-21 and 22-27), until the
dynamic immediate postdominator (IPDOM) of the previous
predicate is encountered (line 16 and line 22). Note that the
trace entries are recorded (line 17 and line 23) because they
denote control flow differences. In contrast, in lines 28-29,
if the values are different, the two entries (with the same
label) are also recorded. Note that the monitor must leverage
indices to identify the dynamic IPDOM (lines 16 and 22).
It cannot simply looks for the next occurrence of the static
IPDOM, because in the presence of recursive functions, the
next occurrence of the static IPDOM may not mean the end
of the control dependence region. In Fig. 5, dyn_ipdom(I)
computes the dynamic IPDOM of I by replacing the tail la-
bel, a predicate label, with its static IPDOM label, demanding
the prefixing control dependence regions remain the same.

Example. Consider the example in Fig. 6. The first four
pairs of trace entries have identical labels. Only the entries
for 51 are recorded as the branch outcomes are different.
The monitor detects that the fifth pair have different labels,
i.e. 61 from the master and 71 from the slave. As such, it
computes dyn_ipdom(I[51])=dyn_ipdom([4, 5])=[4, 7]. Thus,
both executions proceed to index [4, 7], that is, 72 in (b) and
71 in (c). Note that if the static IPDOM 7 were used, due to
the recursive call of gee(), we would mistakenly consider 71
to be the end of region B©. �

Handling Syscalls. The monitor also needs to handle syscalls
because we want the two executions to share the sequence of
external inputs as much as possible to reduce nondetermin-
ism and hence the meaningless differences caused by such
nondeterminism. It also reduces error-prone manual efforts.
From the earlier discussion, we know both the master and the
slave send their syscall parameters to the monitor. In addi-
tion, the master also sends its syscall outcome. For a syscall
that occurs in both executions, the monitor compares their
parameters, e.g. the size of a file read. If they are identical,
the monitor relays the syscall outcome from the master to the
slave. In the case that they are different due to differences
introduced earlier, the monitor instructs the slave to execute
the syscall instead of copying from the master.

In Algorithm 1, when the monitor receives a pair of syscall
trace entries (line 8), it first retrieves the syscall outcome
from the master (line 9). Then it consults a policy table that
defines the actions for different kinds of syscalls. While the
details of the policy table are discussed in Section 4, all we
need to know now is that there are two possible actions for
each syscall ID. COPY indicates the slave should copy the
result from the master, and EXEC indicates the slave should
execute the syscall. At line 10, the algorithm checks whether
the action is COPY and if the parameters are identical. If so,
it relays the outcome from the master (line 11). Otherwise,
it instructs the slave to execute (line 13). When the two
executions take different branches, the monitor retrieves and
discards the syscall outcome from the master (lines 20-21),
and instructs the slave to always execute its syscall (lines
26-27).

1 /∗ d i f f e r e n t f i l e names a r e p r o v i d ed ∗/
2 f i l e n ame = read () ;
3 . . .
4 wh i l e (1) {
5 menu = se l ec tMenu () ;
6 i f (menu == MENU_QUIT)
7 qu i t () ;
8 e l s e i f (menu == MENU_WRITE_MESSAGE) {
9 message = read () ;

10 i f (e x i s t s (f i l e n ame))
11 rename (f i l e name , f i l e n ame + " . bak") ;
12 f d = open (f i l e n ame) ;
13 w r i t e (fd , message) ;
14 }
15 }

Figure 7. Example for syscall handling.

Example. Consider an example in Fig. 7. When the user
selects the menu item write message, the program reads a
message and writes it to a file with a name provided earlier.
If the file already exists, the program first makes a backup.
Suppose the user wants to compare two executions with two
different file names A and B, and there is already a file with
name B. Fig. 8 shows the master and the slave executions.
Note that since the file name is different at 21, the following
syscalls at 101, 111, 121, and 131 in the slave are executed
instead of copied, which correctly exercises the intended
different semantics. In contrast, the syscalls at 51 and 91 are
copied. �

330

Master Slave

21 filename = read() ; 21 filename = read() ; E

41 while (1) 41 while (1)
51 menu = selectMenu() 51 menu = selectMenu() C
61 if (menu == ...) 61 if (menu == ...)
81 else if (menu == ...) 81 else if (menu == ...)
91 message = read(); 91 message = read(); C

101 if (exists (filename)) 101 if (exists (filename)) E

- 111 rename(filename, ...) ; E

121 fd = open(filename) ; 121 fd = open(filename) ; E

131 write (fd , message) ; 131 write (fd , message) ; E

Figure 8. Executions of the example in Fig. 7. The last
column shows if the slave executes (E) the syscall or copies
(C) result. The boxed entries are affected by the differences
from 21.

3.2 Decoupled Execution Mode
When the user wants to decouple the two executions and
provide different inputs, he/she presses ctrl-c in the master
execution, which sends an interrupt to the master. Note that
the user does not interact with the slave execution (in most
cases). The master checks for the interrupt before executing
a system call. If it was received, the master informs the
monitor. When the slave is about to execute the corresponding
system call, the monitor notifies the slave to start executing
its syscalls. In other words, the two start to interact with the
environment directly. Both continue to send their trace entries
to the monitor to update their indices.

3.3 Resynchronizing Master and Slave Executions
After providing the different inputs, the user presses another
hot-key in both the master and the slave to indicate that he/she
wants to resynchronize the two executions such that they can
share the same input events again to reduce nondeterminism
and manual interactions. However, when the interrupts are
received, the two executions may be at different locations.
The monitor needs to determine which execution is faster
and block it until the slower one catches up. After the two
resynchronize, they resume in the coupled mode.

We leverage execution indices to determine which execu-
tion is ahead of the other. Intuitively, an index represents the
nesting of control dependence regions. Two indices sharing
some common prefix means that the current execution points
in the two runs are nesting in a common set of control de-
pendence regions, called aligned regions. By comparing the
relative positions of the two points inside the aligned regions,
we can decide which execution is ahead. Consider Fig. 6.
Point 71 in (c) is ahead of 51 in (b) because Im(51) = [4, 5]
and Is(71) = [4, 7]; they share a prefix [4] and 7 is ahead of
5 inside the region of 4. Similarly, 72 in (c) is ahead of 52 in
(b). In particular, their indices share the prefix [4]; 72 in (c) is
in the region denoted by index [4, 4], i.e. E© representing the
second iteration of the loop, whereas 52 in (b) is in the region
denoted by [4, 5], i.e. B© representing the if statement at line
5 in the first iteration of the loop). E© is ahead of B©.

1 wh i l e (1) {
2 i f (s e l e c t (STDIN , . . .) == SUCCESS)
3 /∗ p r o c e s s the u s e r i n pu t ∗/
4 s1 ;
5 . . .
6 }

Figure 10. Event handling loop example.
The ahead_of() primitive in Fig. 9 defines how to de-

cide index order. If the two indices share the same head
label, it recursively checks the order of their tails. If
the head labels l1 and l2 are different, and there is a
path from l2 to l1, the first index is ahead. In Fig. 6,
ahead_of(Is(72), Im(52)) = ahead_of([4, 4, 7], [4, 5, 6, 4, 5])

= ahead_of([4, 7], [5, 6, 4, 5]) = true.

There are cases where neither execution is ahead of the
other if they are in the different branches of a predicate. In
this case, the monitor will resynchronize the two executions
at the dynamic IPDOM of the predicate.

Dealing With Event Handling Loops. When the user sends a
resynchronization signal, the two executions are likely inside
some event handling loop, which receives and handles exter-
nal events. During the independent executions in decoupled
mode, the two runs may have received different events, e.g.
different numbers of key strokes, causing them to execute a
different number of iterations. Index based resynchronization
recognizes that the execution that iterated more is ahead1. As
such, it tries to execute the other that iterated less, but in fact
the other execution cannot make progress as it has received
all the needed external inputs and expects no more. When
the user signals resynchronization, he/she knows that the two
executions have received the different inputs, and they should
start to receive the same inputs again from then on. Hence,
the iteration number differences of the event loop are not
important. We introduce a normalization step to remove the
excessive entries (in the indices) corresponding to unneces-
sary iteration differences. The primitive is defined in Fig. 9. It
takes three indices, with the first two requiring normalization
and the third an auxiliary parameter whose initial value is
nil , and it produces two normalized indices. The auxiliary
parameter represents the current common prefix during com-
putation. According to the rules, it initially compares the two
head labels. If different, the differences are not caused by the
event loop, so it returns the two input indices as normalized
(rule N-INIT-NEQ). Rules N-INIT-EQ and N-EQ-HEADER
detect equivalent heads and move it to the tail of the common
prefix. In rule N-RM-FIRST, if the two heads are different but
the head of the first index is identical to the tail of the prefix,
indicating repetitive entries, i.e. loop iterations, the head is
removed. Rule N-RM-SECOND is symmetric. Rule N-END
states the termination condition, in which the difference is
not caused by repetition. The final normalized indices are the
common prefix concatenated with the two current indices.
Example. Fig. 10 shows a very simple event loop. Assume
it iterates two times and stops at line 5 in the master when

1 In indexing, an iteration nests within the region of the previous iteration
such that the one iterating more has a longer index.

331

ahead_of : ExecIndex× ExecIndex → Boolean

ahead_of(l1 · I1, l2 · I2) =


false if l1 6= l2 ∧ there is not a path from l2 to l1;
true if l1 6= l2 ∧ there is a path from l2 to l1;
ahead_of(I1, I2) otherwise i.e., l1 ≡ l2

normalize : ExecIndex× ExecIndex× ExecIndex→ ExecIndex× ExecIndex

normalize(l1 · I1, l2 · I2, nil) =

{
〈l1 · I1, l2 · I2〉 if l1 6= l2 [N-INIT-NEQ]
normalize(I1, I2, l1) if l1 ≡ l2 [N-INIT-EQ]

normalize(l1·I1, l2·I2, Ip·lp) =


〈Ip · lp · l1 · I1, Ip · lp · l2 · I2〉 if l1 6= l2 ∧ l2 6= lp ∧ l1 6= lp [N-END]
normalize(l1 · I1, I2, Ip · lp) if l1 6= l2 ∧ l2 ≡ lp [N-RM-SECOND]
normalize(I1, l2 · I2, Ip · lp) if l1 6= l2 ∧ l1 ≡ lp [N-RM-FIRST]
normalize(I1, I2, Ip · lp · l1) if l1 ≡ l2 [N-EQ-HEADER]

Figure 9. Resynchronization Primitives.

the user signals resynchronization, and it iterates four times
and stops at 3 in the slave, yielding the indices Im =
[1, 1, 2, 5] and Is = [1, 1, 1, 2, 4], respectively. Recall that
loop iterations produce consecutive entries in the indices
as an iteration directly nests in the region of the previous
iteration. We have the following:

normalize(Im, Is,nil)
= normalize([1, 2, 5], [1, 1, 2, 4], [1]) [N-INIT-EQ]
= normalize([2, 5], [1, 2, 4], [1, 1]) [N-EQ-HEADER]
= normalize([2, 5], [2, 4], [1, 1]) [N-RM-SECOND]
= normalize([5], [4], [1, 1, 2]) [N-EQ-HEADER]
= [1, 1, 2, 5], [1.1, 2, 4]) [N-NED]

The rules applied are presented on the right. Note that at the
second step, the heads of the indices are different, but the
second head is the same as the tail of the prefix, indicating
repetition. The head is thus removed. Observe that after
normalization, the two executions are within the same control
dependence region, and the master is ahead.

Overall Resynchronization Procedure. The procedure is in-
formally described as follows. Assume Im and Is are the
indices when a resynchronization signal is received. The mon-
itor first normalizes Im and Is. If one execution is ahead of
the other, it is blocked until the other one catches up. If nei-
ther is ahead, meaning they are in the two branches of some
predicate, the monitor allows both to execute independently
until the dynamic IPDOM of the predicate.

4. Handling Practical Challenges
Syscall Policy for Slave Execution in Coupled Mode. In
previous discussion, whether the slave should execute a
syscall mainly depended on whether the syscall corresponded
to one in the master and whether they had different parame-
ters. However, the decision also depends on the type of the
syscall. This is reflected by the policy table look up on line 10
of Algorithm 1. For example, we would like to execute user
interface (UI) related syscalls such that the slave has its own
UI.

We categorize syscalls into 7 groups. Table 3 presents the
groups and their policies. There are two possible policies:
execute and copy. The former means that the slave executes
the syscall whereas the latter means that the slave copies the
result from the master and does not execute the syscall.

Table 3. Category of syscalls and the default policy.‘E’ and
‘C’ stand for execute and copy, respectively.
Category Description Policy

Memory Allocate/free memories (mmap(), munmap(), ...) E
Process Create/kill/block processes (fork (), clone(), ...) E1

Open Open a file descriptor (open(), create (), ...) E
Input Read data from a file/environment (read(), stat (), ...) C
Output Write data to a file (write (), ...) C,E2

GUI Special case of network syscalls with X-Windows server E,C1,3

Utility Nondeterministic library functions (time(), ...) C
1. there is ID translation during execution.
2. outputs to stdout and UI are executed, others copied.
3. requests and replies are executed and events are copied.

Process management syscalls follow the execute policy.
In addition, the slave and the master both manage a mapping
between process IDs. Syscalls creating new processes such
as fork () and clone() return different process IDs in the two
executions. To prevent propagating these different values to
other parts of the executions, we would like the corresponding
processes in the two runs to have the same IDs. In particular,
when clone() is called to create a thread, both runs assign
the same logical thread ID to the newly created thread and
map the real thread ID returned by the syscall to the logical
ID. Our wrapper around clone() then returns the logical ID.
Later, when the logical ID is used in other syscalls such as
exit (), our wrapper maps it to the original real ID.

Open syscalls also use an execute policy because the
descriptors they return may be used by other syscalls such as
mmap or when the user introduces differences between the
executions. It is possible that the master succeeds in opening
a file but the slave fails to open the same file, for instance,
when the master creates a file with the O_EXCL option first.
In this case, the slave opens a new temporary file. Since
I/O syscalls in the slave mostly copy their outcomes from
the master, opening a different file will not affect the slave
execution.

Most input/output syscalls follow the copy policy. One
exception is that we execute output syscalls emitting to
standard output or user interfaces to allow the slave to have
its interface. In addition, both the master and the slave record

332

Table 4. Applications in feature identification.
Program Feature Description

alpine-1 Send an e-mail
alpine-2 Create a directory in remote imap server
xv Convert two different bitmap images to jpeg images
smbc Create a directory in remote samba server
ncmpc Add a song to playlist

the buffer content of an output syscall and meta information
such as the definition point of the buffer, for further analysis,
e.g. slicing.

GUI applications in Linux communicate with the X server
through sockets. There are three types of messages: requests,
replies, and events. Requests are sent from a client to the
server to request a service such as creating a window and
querying properties. Upon a request, the server sends the
requested information with a reply. Events are sent by the
server without the corresponding requests, denoting user
interactions. Requests/replies are handled in a way similar to
process management syscalls, which use the execute policy
and ID translation, to provide the proper user interface. The
master and the slave must map their window IDs to the
same logical ID when the windows correspond to each other.
Events have the copy policy, meaning the slave copies events
from the master and ignores its own events.

The slave also copies signals from the master in coupled
mode, ignoring its own signals except segfaults. We support
threads by implementing a deterministic scheduler [31] that
allows one thread to execute at a time. This suppresses
nondeterminism caused by different thread schedules.

5. Evaluation
We implement a prototype on Pin [26]. It can work on stripped
binaries as it can generate dynamic control flow graphs (for
indexing). In our experiments, we first quantitatively evaluate
the space and time savings by our technique in comparison
with offline techniques. We then apply the prototype to three
comparative analysis tasks.

5.1 Examined Comparative Tasks
Feature identification. As seen in Sec. 2, feature identification
involves locating the portion of a program responsible for a
feature [2, 11, 17–19, 34, 35, 46], and this can be done by
comparing executions of a program over different inputs [25].
Table 4 presents the full set of examined feature identification
tasks, which have appeared in published work [25].

Comparative Debugging. To help developers, we integrate
our technique into gdb and provide a few new gdb primitives
that allow developers to modify variables and compare the
execution with changes to an execution without them. Details
on the changes to gdb are presented in a later case study.

Understanding regression. We also apply our technique
to executions of an old, working version of a program and a
new, failing version to understand regressions.

All the examined bugs are real world bugs from [7, 41].
Table 5 describes them with GNU Savannah bug IDs if any.

Table 5. Subjects in comparative debugging and regression
understanding. The regression bugs are tagged with ∗.
Program Bug # Description

grep-1 12128 Numeric parameters are incorrectly interpreted
grep-2 16567

-i option does not work with a regular expressiongrep-3 27919
grep-4 27919
grep-5 21199 -w option causes incorrect search results
make-1 25493 Incorrectly handle dependencies in rules
make-2 18622 User-defined rules conflict with default rules
tar-1 508199 Cannot restore files from backup
tar-2 598636 Cannot handle broken symbolic links
tar-3 637085 Cannot handle longer filenames
grep-6∗ Search incorrect if -i, -n options are used together
grep-7∗ 36567

-i does not work with multi-byte charactersgrep-8∗

find-1∗ 34976 Fail to save working directory
find-2∗ 29949 -execdir does not change working directory
make-3∗ 31155 Incorrect order in parsing patterns
make-4∗ 39310 Commandline options are applied multiple times
rm∗ -I, –interactive=once does not work same
seq∗ [seq 1 3 1] treated as [seq 1 3]
cp∗ –no-preserve=mode exits 1
cut∗ Incorrect error message
expr∗ Incorrect computation with negative value

5.2 Disk Usage and Performance
In this experiment, we examine the impact of dual execution
on the running time and disk usage, when compared with
offline techniques. We first collect traces of the two execu-
tions for all the subjects (in the three tasks). We then perform
offline comparison. The results are used as the base line. We
then use our prototype to generate difference traces on the fly
and compare the results. We used an Intel Core i7 machine
running Arch Linux 3.15.5 with 16GB RAM.

Table 6 presents the trace size comparison. The Traces
column shows the size of full traces. The Diffs (W/O Dual
Exec.) column shows the size after offline trace comparison.
The Diffs (W/ Dual Exec.) column shows the size of differ-
ence traces generated online. The % Full column shows the
size of the difference traces as a percentage of the full traces.
Note that we do not use any trace compression technique.
However, our technique is orthogonal to those techniques and
users can combine the techniques to achieve smaller traces.
Also many trace compression techniques targets specific trace
abstractions but our technique can be used on a fine-grained
trace including data and control dependencies.

Observe that using dual execution always produces much
smaller (difference) traces than the full traces (5.41% on
average). This is because the full traces include every instruc-
tion of both executions, while dual execution only records
differences. For tasks comparing executions, there is often
substantial similarity between the executions. There is also
a lot of similarity across executions from initialization and
configuration behavior that is irrelevant to the analysis tasks.

Dual execution also consistently produces smaller differ-
ences than the differences by offline comparison. This occurs
because many applications have nondeterministic behaviors

333

Table 6. Trace size comparison.
Program W/O Dual Exec. W/ Dual Exec.

Traces Diffs Diffs % Full
seq 62MB 15MB 15MB 24.19
make-3 1.8GB 409MB 358MB 19.42
make-4 4.6GB 887MB 886MB 18.81
grep-7 4.0GB 978MB 653MB 15.94
find-1 4.2GB 562MB 541MB 12.58
find-2 4.0GB 462MB 447MB 10.91
grep-8 4.0GB 432MB 424MB 10.35
grep-5 12.5GB 2.7GB 1.0GB 8.00
cut 79MB 6.0MB 6.0MB 7.59
grep-4 13GB 438MB 428MB 3.22
rm 3.8GB 117MB 117MB 3.00
xv 14GB 559MB 380MB 2.65
cp 68MB 1.4MB 1.3MB 1.91
tar-1 377MB 17MB 6.8MB 1.80
ncmpc 6GB 120MB 93MB 1.51
tar-2 457MB 6MB 4.0MB 0.88
smbc 55GB 627MB 432MB 0.77
make-1 15.7GB 1.5GB 105.2MB 0.65
expr 58MB 306KB 305KB 0.51
make-2 7.3GB 104.9MB 32.2MB 0.43
alpine-2 57GB 320MB 205MB 0.35
grep-3 14GB 41.2MB 40.7MB 0.28
grep-6 4.0GB 9.1MB 7.7MB 0.19
tar-3 11.4GB 35MB 6.4MB 0.055
grep-1 10.6GB 8.6MB 832KB 0.0074
alpine-1 60GB 344MB 170MB 0.0003
grep-2 14.8GB 3.4KB 1KB 0.000006

Geometric Mean 5.41

that the user cannot control, which introduce additional differ-
ences. For example, alpine reads and uses the system time
quite often, causing a lot of non-deterministic differences.
Dual execution eliminates such differences by sharing system
events as much as possible.

Table 7 presents the time comparison. The Native column
shows the original native execution time, i.e. sum of the
master and the slave. Tracing and Comp present the time
taken for whole execution tracing and offline comparison.
Total1 is their sum. Total2 presents the time for dual execution.
The last two columns shows the comparison. Running times
of interactive programs are not comparable against Native,
denoted by ‘*’. Entries in the table are sorted by Tot2/Tot1.
A lower number means that dual execution improved the
running time.

Observe that the time spent on dual execution is almost
always lower than the time for full execution tracing and
offline comparison, 0.49% on average. The benefits are
more obvious for larger programs and longer runs. These
improvements are mostly due to the smaller traces that are
actually recorded when using dual execution. The slowdown
of our system is 2022× relative to native on average. It is
more suitable for inhouse testing and debugging.

5.3 Case Studies
5.3.1 Feature Identification
In this case study, we use our prototype to identify 5 func-
tional features from 4 real world applications. We use our

Table 7. Execution time comparison.
Program Native W/O Dual Execution W/ Dual Execution

Tracing Comp Total1 Total2 Tot2/Tot1 Tot2/Nat
expr .002s 3s 0.5s 4s 6s 1.50 3000
seq .002s 4s 0.5s 5s 7s 1.40 3500
cut .002s 4s 0.7s 5s 7s 1.40 3500
grep-6 .01s 10s 29s 39s 49s 1.26 4900
cp .01s 4s 0.5s 5s 6s 1.20 600
make-3 .01s 19s 21s 40s 36s 0.90 3600
grep-7 .01s 11s 42s 53s 42s 0.79 4200
find-2 .03s 11s 39s 50s 38s 0.76 1267
find-1 .02s 12s 46s 58s 44s 0.76 2200
ncmpc 14s 1m 12s 1m 3s 2m 15s 1m 42s 0.76 *
tar-1 .03s 18s 1s 19s 12s 0.63 400
tar-2 .01s 20s 2s 22s 12s 0.55 1200
grep-5 .05s 1m 16s 1m 45s 3m 1s 1m 32s 0.51 1840
make-4 .01s 42s 38s 80s 40s 0.50 4000
grep-8 .01s 12s 45s 57s 28s 0.49 2800
rm 2s 11s 32s 43s 19s 0.44 *
tar-3 .02s 1m 0s 1m 58s 2m 58s 1m 15s 0.42 3750
xv 16s 2m 20s 3m 42s 6m 2s 2m 31s 0.42 *
grep-3 .03s 1m 10s 1m 9s 2m 19s 45s 0.32 1500
grep-2 .02s 1m 16s 1m 11s 2m 27s 47s 0.32 2350
grep-4 .02s 1m 6s 59s 2m 5s 38s 0.30 1900
make-2 .03s 52s 39s 1m 31s 27s 0.30 900
smbc 40s 5m 32s 7m 2s 12m 34s 3m 10s 0.25 *
grep-1 .02s 1m 0s 1m 15s 2m 15s 26s 0.19 1300
alpine-2 16s 5m 20s 6m 31s 9m 51s 1m 47s 0.18 *
alpine-1 12s 6m 42s 8m 59s 15m 41s 2m 14s 0.14 *
make-1 .01s 1m 28s 1m 59s 3m 27s 20s 0.10 2000

Geometric Mean 0.49 2022

prototype to trace and compare executions and use an offline
technique similar to [25] to identify functions from the trace.
For each case, we compare two executions that exercise the
feature with different inputs by using our prototype, and we
identify the relevant differences, which are supposed to cor-
respond to the features. For example, in alpine-1 case, we
compare two executions sending two different mails. The
differences between the executions should be the feature
responsible for sending different emails if there is no nonde-
terminism that is not relevant to the input differences. Our
prototype suppresses those nondeterminism. Once we get the
changes, we consider the highest function(s) on the call graph
that can cover all the differences to be the functional com-
ponent for the feature. The differences generated by our tool
allow us to precisely locate the correct functions. For example,
all the differences in xv can be covered by two functions with
the names of LoadBMP() and SaveJPEG(), which clearly indi-
cate they are the intended functions. For alpine, we have lo-
cated call_mailer () for email sending and add_new_folder()
for directory creation. For smbc, RcreateDir(). For ncmpc,
mpd_async_send_command_v().

All these applications contain event handling loops that
behave differently between two executions because different
user input timings or packet arrival timings perturb the loop
behavior, causing undesirable execution differences.

For the xv case, from the results in Table 6, 559MB-
380MB=179MB trace differences are due to such non-
determinism, which largely originates from an event han-

334

1 _XReply () {
2 wh i l e (1) {
3 r e p l y = po l l_ f o r_ r e p l y () ;
4 i f (r e p l y−>sequence == expec t ed) break ;
5 . . .
6 }
7 po l l_ f o r_ r e p l y () {
8 wh i l e (p o l l () == −1) . . . ;
9 }

Figure 11. Simplified event handling loop in libX11

dling loop for reply messages from the X server, as shown
in Fig. 11. In the de-coupled mode, the different sequences
of X messages make the loop at line 2 iterate different times.
As a result, full traces cannot be properly aligned, leading
to lots of undesirable differences during offline comparison.
In contrast, the normalization step in the re-synchronization
mode in our technique suppresses such differences.

5.3.2 Comparative Debugging Using GDB.

Table 8. New gdb commands supported by dual execution.
Command Interface

dslice dslice [instruction address] [instance]
dset dset [variable] [value1] [value2]
dprint dprint [variable]

We integrated our prototype with gdb and provided new
debugging commands as shown in Table 8. dslice generates
a dual slice [47] of the given instruction and instance. The
slice contains execution differences causally related to the
difference at the given slicing criterion. dset sets a variable
in two executions to different values; dprint shows two
values of a variable side by side. Basic commands such as
setting a breakpoint and continuing the execution are applied
to both executions by default. We then used the enhanced
gdb to debug the 10 non-regression failures. Each required
fewer than 15 manual steps to capture the causality of the
failure. We also tried to use the vanilla gdb to achieve the
same results for three cases, grep-5, tar-2, and tar-3, but
failed due to the prohibitively tedious manual interactions
involved.

Next, we present our experience with the grep-5 bug.
The “-w” option in grep selects lines containing whole word
matches. The buggy program prints out only a substring
of a matched line. We launched the buggy program in our
enhanced gdb. Two processes were automatically created
and run in coupled mode. We set a breakpoint at prtext (),
which printed the incorrect output. Few places in the im-
mediate source code were affected by the “-w” option; the
match_word variable was one of them. It had value 1 in the
buggy run. We wanted to perturb its value and observe the ef-
fect, and more important, the causality. We used dset to set it
to 0 and 1 in the two respective runs. At the breakpoint, we ob-
served output differences: the execution with match_word set
to 0 produced the whole line. We then used dslice to slice
from this output difference. Fig. 12 presents the resulting dual
slice. The results from the correct run are on the left side and

EGexecute(…): /* correct execution */

 … /* len = 7 */ ...

322C if ((... && !match_words) || (…)) {

323D len = end - beg; // len = 12

 ...

371C goto success_in_len;

 …
409 success_in_len:

410D *match_size = len;

EGexecute(…): /* buggy execution */

 /* len = 7 */

 ...

369C if (!start_ptr) {

 ...

371C goto success_in_len;

 …
409 success_in_len:

410D *match_size = len;

do_execute(…):

 ...

984C return execute(…, match_size, ...);

 ...

grepbuf(…):

 ...

1022C while (do_execute(&match_size, …)) {

 ...

1031D endp = b + match_size;

1032 prtext (…, endp, ...);

correct buggy

Figure 12. Slicing results for grep

those from the buggy run are on the right. do_execution() and
grepbuf() are common to both executions, though they have
different dependencies in EGexecution(). The subscript C and
D on line numbers represent control and data dependencies
respectively. The bug manifests when prtext () prints differ-
ent results at line 1032 in grepbuf() because of the differences
in the variable endp. The slice result shows that the two exe-
cutions have different match_size values, 12 versus 7. It also
shows that the control dependencies include do_execute(),
execute(), and EGexecution(). Observe that in the correct run,
len is defined at line 324, which eventually allows printing
the whole line, whereas there is no such definition in the
buggy run. Therefore, the root cause is that such a definition
is missing when the option is set, which is confirmed by the
bug report.

Next, we show our experience in doing the same compar-
ative debugging with the vanilla gdb. We started two execu-
tions of the buggy program and attached them to two separate
gdb instances. Then we set the match_word variable to 0
and 1 again. But the challenges lie in monitoring the propa-
gation of the value differences. We first tried to single-step
the two executions. But the definition point of match_word
and the output point are separated by a substantial amount of
computation in EGexecute(). Even worse, there were control
flow differences due to our perturbations such that we had
to somehow manually align the two executions. The process
quickly became unmanageable. Another attempted option
was to identify related variables and set break-points and
watch-points. However, we could not solely use watch-points
as many related variables were stack variables. However, us-
ing break points was also problematic. In particular, when we
set a break point at the access to match_size in do_execute(),
we found that the access occurs more than 200 times and only
the 150th instance shows a difference across the two runs.
The process is prohibitively tedious and error-prone. In con-

335

Table 9. Dual slicing regressions.
Program # of Instr. in differences # of Instr. in slice Time
grep-6 44K 35K 0.1s
grep-7 15K 7.7K 16s
grep-8 213K 76K 6s
find-1 42K 2.0K 6s
find-2 172K 120K 5s
make-3 888K 127K 4s
make-4 753K 108K 3s
rm 3.4K 214 1.5s
seq 902 516 0.2s
cp 2179 332 0.05s
cut 952 541 0.05s
expr 787 62 0.03s

trast, our new commands and the underlying dual execution
engine make interactive comparative-debugging feasible.

We also point out that the enhanced gdb is more flexible
than a stand-alone slicing tool as it allows interactively
perturbing program state at any point.

5.3.3 Understanding Regressions
In this case study, we applied an existing dual slicing [47]
tool on the difference traces generated by the dual execution
engine to understand regressions. As mentioned earlier, dual
slicing computes the execution differences related to the
difference at the slicing criterion. In the experiment, we use a
text differencing tool to generate syntactic mappings between
statements in the two program versions and propagate such
mappings down to the instruction level to facilitate our engine.
The slicing criteria are output differences. In the case of
crashing bugs, they are the pointer dereferences. The results
are shown in Table 9. The second column shows the total
instructions in the difference traces, which are already a very
small portion of the full traces (Table 6). The third column
shows the slice size. Observe that the slices are much smaller
than the differences for most cases. We also confirm that all
of them include the root causes. We suspect the slice sizes
can be further reduced if we use a better syntactic mapping
algorithm. But that is beyond our scope.

6. Related Work
Execution comparison. Execution comparison is used in
debugging [1, 3, 37, 50], concurrency failure understand-
ing [47], vulnerability detection [24], and binary reuse [25].
Comparative causality [41] produces bug explanations by re-
placing program states on the fly. Sieve [36] compares traces
from program versions to identify the root causes of regres-
sions. Hoffman et al. proposed a semantic-aware trace analy-
sis [22] for understanding executions, particularly identifying
the cause of regressions. In comparison to these works, the
dual execution engine avoids generating full traces. Instead,
it performs online comparison and only records differences.
Execution Replication and Replay. Execution replication
has been widely studied [4–6, 10, 13, 42]. The premise is
similar to n-version programming [12], which runs different
implementations of the same service specification in parallel.

Then, voting is used to produce a common result tolerating
occasional faults. Vandiver et al. [43] proposed a technique
that handles Byzantine faults in database transaction process-
ing using replicated systems. Chun et al. [14] run diversified
replicas on multi-core processors to handle Byzantine faults.
There are also many security applications [9, 16, 27, 38] of
n-variant execution. McDermott et al. [28] proposed a de-
fense technique based on logical replication. They re-execute
commands on each replicated system and detect differences
among the replicas. TightLip [49] runs a replicated process
in parallel to an original process and analyzes the replica to
prevent information leakage. There is also a large body of
works in execution replay [23, 30, 32, 33, 39, 44] that aim to
faithfully reproduce an execution. Compared to these works,
our technique allows differences in executions and handles
the complex consequences of these differences.

Viennot et al. [45] proposed a technique that replays events
from one version of a program with another version of the
program. It hence also allows sharing syscalls across different
executions. However, it requires exploration steps to find the
best replay. In contrast, our technique exploits fine-grained
traces and can align executions on-the-fly.
Execution Alignment. Alignment techniques identify corre-
sponding points [21, 21, 29, 48] and memory locations [40]
across different executions. Xin et al. proposed Execution
Indexing (EI) [48] to precisely locate corresponding points
across executions. Our technique is built on EI. We have over-
come many new challenges such as lockstep synchronization,
resynchronization, and syscall dispatching for our purpose.

7. Conclusion
We develop a dual execution engine that allows two execu-
tions to proceed simultaneously in coupled mode, in which
they share system inputs, or in decoupled mode, in which
different inputs can be provided. On the fly comparison identi-
fies instruction level differences between executions for later
analysis. Our experiments on three comparative analyses
demonstrate the engine is highly effective.

Acknowledgments
This research has been supported in part by DARPA under
contract 12011593 and under cooperative agreement HR0011-
12-2-0006, and by NSF under awards 0845870, 0917007,
1320326 and 1409668. Any opinions, findings, and conclu-
sions in this paper are those of the authors only and do not
necessarily reflect the views of DARPA and NSF.

References
[1] David Abramson, Ian Foster, John Michalakes, and Rok Sosič.

Relative debugging: A new methodology for debugging scien-
tific applications. Commun. ACM, 39(11):69–77, November
1996.

[2] G. Antoniol and Y.-G. Gueheneuc. Feature identification: a
novel approach and a case study. In Proceedings of the IEEE

336

International Conference on Software Maintenance (ICSM),
2005.

[3] Ansuman Banerjee, Abhik Roychoudhury, Johannes A. Harlie,
and Zhenkai Liang. Golden implementation driven software
debugging. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering, FSE ’10, pages 177–186, New York, NY, USA, 2010.
ACM.

[4] Emery D. Berger and Benjamin G. Zorn. Diehard: Probabilistic
memory safety for unsafe languages. In Proceedings of the
2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’06, pages 158–168, New
York, NY, USA, 2006. ACM.

[5] Kenneth P. Birman. Replication and fault-tolerance in the isis
system. SIGOPS Oper. Syst. Rev., 19(5):79–86, December
1985.

[6] Dave Black, C. Low, and Santosh K. Shrivastava. The voltan
application programming environment for fail-silent processes.
Distributed Systems Engineering, 5(2):66–77, 1998.

[7] Marcel Böhme and Abhik Roychoudhury. Corebench: studying
complexity of regression errors. In ISSTA, pages 105–115,
2014.

[8] David Brumley, Juan Caballero, Zhenkai Liang, James New-
some, and Dawn Song. Towards automatic discovery of de-
viations in binary implementations with applications to error
detection and fingerprint generation. In Proceedings of 16th
USENIX Security Symposium on USENIX Security Symposium,
SS’07, pages 15:1–15:16, Berkeley, CA, USA, 2007. USENIX
Association.

[9] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Di-
versified process replicæ for defeating memory error exploits.
Performance, Computing, and Communications Conference,
2002. 21st IEEE International, 0:434–441, 2007.

[10] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. Base:
Using abstraction to improve fault tolerance. ACM Trans.
Comput. Syst., 21(3):236–269, August 2003.

[11] Kunrong Chen and Vaclav Rajlich. Ripples: Tool for change
in legacy software. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM), 2001.

[12] Liming Chen and A Avizienis. N-version programminc: A
fault-tolerance approach to rellablllty of software operatlon. In
Fault-Tolerant Computing, 1995, Highlights from Twenty-Five
Years., Twenty-Fifth International Symposium on, pages 113–,
Jun 1995.

[13] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Voiron.
Active replication in delta-4. In Fault-Tolerant Computing,
1992. FTCS-22. Digest of Papers., Twenty-Second Interna-
tional Symposium on, pages 28–37, July 1992.

[14] Byung-Gon Chun, Petros Maniatis, and Scott Shenker. Diverse
replication for single-machine byzantine-fault tolerance. In
USENIX 2008 Annual Technical Conference on Annual Techni-
cal Conference, ATC’08, pages 287–292, Berkeley, CA, USA,
2008. USENIX Association.

[15] Asaf Cidon, Kanthi Nagaraj, Sachin Katti, and Pramod
Viswanath. Flashback: Decoupled lightweight wireless control.
In Proceedings of the ACM SIGCOMM 2012 Conference on

Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM ’12, pages 223–234,
New York, NY, USA, 2012. ACM.

[16] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowan-
hill, Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong,
and Jason Hiser. N-variant systems: A secretless framework for
security through diversity. In Proceedings of the 15th Confer-
ence on USENIX Security Symposium - Volume 15, USENIX-
SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[17] Dennis Edwards, Sharon Simmons, and Norman Wilde. An
approach to feature location in distributed systems. Journal of
Systems and Software, 2006.

[18] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Lo-
cating features in source code. IEEE Transactions on Software
Engineering, 2003.

[19] A.D. Eisenberg and K. De Volder. Dynamic feature traces:
finding features in unfamiliar code. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM),
2005.

[20] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: Guaranteed job latency
in data parallel clusters. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12,
pages 99–112, New York, NY, USA, 2012. ACM.

[21] Liang Guo, Abhik Roychoudhury, and Tao Wang. Accurately
choosing execution runs for software fault localization. In
Proceedings of the 15th International Conference on Compiler
Construction, CC’06, pages 80–95, Berlin, Heidelberg, 2006.
Springer-Verlag.

[22] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan.
Semantics-aware trace analysis. In Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’09, pages 453–464, New York, NY,
USA, 2009. ACM.

[23] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes
for lightweight memory race recording. In Proceedings of the
35th Annual International Symposium on Computer Architec-
ture, ISCA ’08, pages 265–276, Washington, DC, USA, 2008.
IEEE Computer Society.

[24] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen
McCamant, Pongsin Poosankam, Daniel Reynaud, and Dawn
Song. Differential slicing: Identifying causal execution differ-
ences for security applications. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages 347–
362, Washington, DC, USA, 2011. IEEE Computer Society.

[25] Dohyeong Kim, William N. Sumner, Xiangyu Zhang, Dongyan
Xu, and Hira Agrawal. Reuse-oriented reverse engineering of
functional components from x86 binaries. In Proceedings of
the 36th International Conference on Software Engineering,
ICSE 2014, pages 1128–1139, New York, NY, USA, 2014.
ACM.

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming

337

Language Design and Implementation, PLDI ’05, pages 190–
200, New York, NY, USA, 2005. ACM.

[27] Vitaliy B. Lvin, Gene Novark, Emery D. Berger, and Ben-
jamin G. Zorn. Archipelago: Trading address space for relia-
bility and security. In Proceedings of the 13th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIII, pages 115–124,
New York, NY, USA, 2008. ACM.

[28] J. McDermott, R. Gelinas, and S. Ornstein. Doc, wyatt, and
virgil: prototyping storage jamming defenses. In Computer
Security Applications Conference, 1997. Proceedings., 13th
Annual, pages 265–273, Dec 1997.

[29] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi,
Martin Schulz, and Todd Gamblin. Accurate application
progress analysis for large-scale parallel debugging. In PLDI,
page 23, 2014.

[30] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep
Torrellas. Capo: A software-hardware interface for practical
deterministic multiprocessor replay. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XIV, pages 73–84, New York, NY, USA, 2009. ACM.

[31] Madanlal Musuvathi, Shaz Qadeer, and Thomas Ball. Chess:
A systematic testing tool for concurrent software. Technical
Report MSR-TR-2007-149, Microsoft Research, November
2007.

[32] Satish Narayanasamy, Cristiano Pereira, and Brad Calder.
Recording shared memory dependencies using strata. SIG-
PLAN Not., 41(11):229–240, October 2006.

[33] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin,
Rini Kaushik, Kyu H. Lee, and Shan Lu. Pres: Probabilistic
replay with execution sketching on multiprocessors. In Pro-
ceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 177–192, New York, NY,
USA, 2009. ACM.

[34] Maksym Petrenko and VáClav Rajlich. Concept location
using program dependencies and information retrieval (depir).
Information and Software Technology, 2013.

[35] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol,
and V. Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information
retrieval. IEEE Transactions on Software Engineering, 2007.

[36] Murali Krishna Ramanathan, Ananth Grama, and Suresh Ja-
gannathan. Sieve: A tool for automatically detecting variations
across program versions. 2011 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011),
0:241–252, 2006.

[37] Manos Renieris and Steven P. Reiss. Fault localization with
nearest neighbor queries. In ASE, pages 30–39, 2003.

[38] Babak Salamat. Multi-variant Execution: Run-time Defense
Against Malicious Code Injection Attacks. PhD thesis, Irvine,
CA, USA, 2009. AAI3359500.

[39] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan.
Penelope: Weaving threads to expose atomicity violations. In
Proceedings of the Eighteenth ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE ’10,
pages 37–46, New York, NY, USA, 2010. ACM.

[40] William N. Sumner and Xiangyu Zhang. Memory indexing:
Canonicalizing addresses across executions. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’10, pages 217–226,
New York, NY, USA, 2010. ACM.

[41] William N. Sumner and Xiangyu Zhang. Comparative causal-
ity: Explaining the differences between executions. In Pro-
ceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 272–281, Piscataway, NJ, USA,
2013. IEEE Press.

[42] A Tulley and S.K. Shrivastava. Preventing state divergence
in replicated distributed programs. In Reliable Distributed
Systems, 1990. Proceedings., Ninth Symposium on, pages 104–
113, Oct 1990.

[43] Ben Vandiver, Hari Balakrishnan, Barbara Liskov, and Samuel
Madden. Tolerating Byzantine Faults in Transaction Processing
Systems Using Commit Barrier Scheduling. In ACM SOSP,
Stevenson, WA, October 2007.

[44] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester,
Jessica Ouyang, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Doubleplay: Parallelizing sequential logging
and replay. ACM Trans. Comput. Syst., 30(1):3:1–3:24, Febru-
ary 2012.

[45] Nicolas Viennot, Siddharth Nair, and Jason Nieh. Transparent
mutable replay for multicore debugging and patch validation.
In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 127–138, New York,
NY, USA, 2013. ACM.

[46] Jinshui Wang, Xin Peng, Zhenchang Xing, and Wenyun Zhao.
Improving feature location practice with multi-faceted inter-
active exploration. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE), 2013.

[47] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner,
and Suresh Jagannathan. Analyzing concurrency bugs using
dual slicing. In Proceedings of the 19th International Sym-
posium on Software Testing and Analysis, ISSTA ’10, pages
253–264, New York, NY, USA, 2010. ACM.

[48] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient
program execution indexing. In Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’08, pages 238–248, New York, NY,
USA, 2008. ACM.

[49] Aydan R. Yumerefendi, Benjamin Mickle, and Landon P. Cox.
Tightlip: Keeping applications from spilling the beans. In
Proceedings of the 4th USENIX Conference on Networked
Systems Design & Implementation, NSDI’07, pages 12–
12, Berkeley, CA, USA, 2007. USENIX Association.

[50] Andreas Zeller. Yesterday, my program worked. today, it does
not. why? In Proceedings of the 7th European Software Engi-
neering Conference Held Jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-7, pages 253–267, London, UK, UK, 1999.
Springer-Verlag.

338

