
SoftMark: Software Watermarking via a Binary Function
Relocation

Honggoo Kang
Korea University
Seoul, South Korea

honggoonin@korea.ac.kr

Yonghwi Kwon
University of Virginia

Charlottesville, Virginia, USA
yongkwon@virginia.edu

Sangjin Lee
Korea University
Seoul, South Korea
sangjin@korea.ac.kr

Hyungjoon Koo∗
Sungkyunkwan University

Suwon, South Korea
kevin.koo@skku.edu

ABSTRACT

The ease of reproducibility of digital artifacts raises a growing con-
cern in copyright infringement; in particular, for a software product.
Software watermarking is one of the promising techniques to verify
the owner of licensed software by embedding a digital fingerprint.
Developing an ideal software watermark scheme is challenging be-
cause i) unlike digital media watermarking, software watermarking
must preserve the original code semantics after inserting software
watermark, and ii) it requires well-balanced properties of credibil-
ity, resiliency, capacity, imperceptibility, and efficiency. We present
SoftMark, a software watermarking system that leverages a func-
tion relocation where the order of functions implicitly encodes a
hidden identifier. By design, SoftMark does not introduce addi-
tional structures (i.e., codes, blocks, or subroutines), being robust
in unauthorized detection, while maintaining a negligible perfor-
mance overhead and reasonable capacity. With various strategies
against viable attacks (i.e., static binary re-instrumentation), we
tackle the limitations of previous reordering-based approaches. Our
empirical results demonstrate the practicality and effectiveness by
successful embedding and extraction of various watermark values.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Software Watermarking, Watermark, Function Reordering, Func-
tion Relocation, Binary Instrumentation

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488027

1 INTRODUCTION

Today, a vast usage of digital data makes our life convenient by
sharing them with others due to its trivial reproducibility by na-
ture. However, the ease of both data duplication and distribution
raises unfavorable consequences, that is, copyright infringement
when digital contents (e.g., pictures, movies, TV episodes, software)
are illegally copied, distributed, or publicly presented without the
owner’s permission. The number of disputes over copyrights on pi-
rated materials gradually increases; in particular, software piracy is
a significantly growing concern. According to the survey conducted
by BSA [10], 37% of the whole software around the globe have been
estimated as illegitimate or unlicensed with the commercial value
of $46.3 billion.

Digital watermarking is one of promising techniques for recog-
nizing the originality of digital works. It covertly inserts a unique
digital fingerprint into digital contents such as text, image, audio,
and video so that the ownership of the contents can be identified
by revealing the embedded fingerprint. In a similar vein, software
watermarking is a technique that aims to provide the digital finger-
print of a software product by inserting certain information that
represents its owner or distributor. Then, the identifier of every
software copy offers the traceability because it belongs to a unique
customer upon the purchase of software.

Software watermarking is effective against an adversary who
wants to run a copyrighted program free of charge, revealing nei-
ther the identity of the attacker nor the original owner of the pro-
gram. The adversary may attempt to reverse-engineer a watermark
embedding process as well as unauthorized detection. While it is
nearly impossible to achieve complete prevention against all viable
attacks, a desirable software watermarking scheme should be able to
provide a sufficient level of stealthiness and resilience that renders
such attacks extremely expensive, or severely discourages attackers.
To this end, as with previous work [14, 21, 23, 27, 42, 49, 67], we
identify key properties (requirements) of software watermarking
techniques: Credibility, Capacity, Imperceptibility, Resiliency, Spread,
and Efficiency (See §2 in detail).

For the last few decades, diverse software watermarking [23,
28, 70] approaches have been proposed, including reordering-
based [22, 30, 51, 53, 55], graph-based [14, 18, 32, 48, 49, 69],
obfuscated-based [4, 5, 11, 15, 33, 41, 66], and branch-based [26]
approaches. Depending on where/how the watermark is inserted
and verified, software watermarking techniques in the literature

1

https://doi.org/10.1145/3485832.3488027

can be classified into static [4, 22, 30, 32, 41, 48, 49, 51, 53, 55] or
dynamic [14, 18] approaches. A static watermarking technique
does not need to run a program whereas a dynamic watermark-
ing technique extracts a watermark at runtime. Unfortunately, we
observe that the existing approaches have difficulty in achieving
desirable balances between the properties, particularly resiliency
and imperceptibility.

In this paper, we propose SoftMark, a software watermarking
technique on top of a function relocation scheme. Since reliable re-
location of binary functions is extremely challenging, our technique
is highly resilient against varying attacks including unauthorized
detection, illegal corruption and collusion. Moreover, SoftMark is
implicitly encoded, leveraging the location of pre-selected functions
in a target program; each order of the functions maps into a secret
identifier.

Our watermarking scheme has addressed several drawbacks of
previous reordering based approaches [22, 42] by adopting fruit-
ful strategies that impose significant challenges to watermark-
ing corruption techniques via static binary instrumentation. First,
SoftMark does not introduce any codes, blocks, or subroutines to a
target program, which empirically demonstrates negligible runtime
and space overheads. Second, the presence of a watermark is diffi-
cult to reveal by a statistical analysis or inference unless multiple
instances are collusively collected. Third, SoftMark conveys a rela-
tively high capacity for watermark encoding, which is proportional
to the size of a program (i.e., A set of n functions can represent up to
⌊log2 n!⌋ bits). Fourth, the design of SoftMark shows a reasonable
resiliency even under semantic-preserving code transformation by
inserting multiple watermarks across a broad spectrum of functions.
It is noteworthy mentioning that we select a set of unique functions
with a variety of strategies that make reliable code transformation
challenging. To implement SoftMark, we employ CCR [35], a spe-
cial compiler toolchain that emits metadata for instrumenting a
variant with a watermark.

In summary, we make the following contributions:
• We propose SoftMark, an efficient watermarking system via a
function relocation based encoding, resolving most of the prior
limitations.
• We have designed and implemented a prototype of SoftMark
to meet the requirements of a practical software watermarking
technique against various viable attacks.
• We experimentally evaluate SoftMark with real world appli-
cations, demonstrating the effectiveness and practicality of our
approach.

The source code of SoftMark will be publicly available in the near
future to foster further watermarking research.

2 SOFTWAREWATERMARKING

In this section, we discuss the definition, requirements, existing
approaches and threat model of software watermarking.

2.1 Problem Definition

The objective of software watermarking is to provide a reliable iden-
tification service to be able to claim the ownership of a software
product. In a nutshell, software watermarking consists of two sepa-
rate processes: i) embedding a unique signature and ii) extracting

the signature for verification. Formally, the processes of software
watermarking are defined as follows:

Definition 1. Given an original program (P) and a watermark
(W), software watermarking consists of two functions; i) a water-
mark embedder function is Fembed (P ,W) = PW where PW is a
program with the embedded watermarkW , and ii) a watermark
extractor function, Fextract , extracts the watermarkW ′ from PW
with metadataMv , and verifies the extracted watermarkW ′ with

Fextract (PW ,Mv) =

{
W ′ ifW =W ′ (Valid),
−1 ifW ,W ′ (Invalid)

2.2 Requirements

As with previous work [14, 21, 23, 27, 42, 49, 67] on software wa-
termarking, we informally define six key properties (metrics) to
evaluate the effectiveness of the watermarking scheme. Note that
any watermarking system exhibits a trade-off between these metrics;
a high capacity (data rate) implies low stealth and resilience.
• Resiliency: A watermark must be robust against varying cor-
ruption attempts: waterwark invalidation, tampering, addition
or deletion. Moreover, even when a target software with the
watermark has been altered, an ideal watermark scheme should
maintain its validity or (at least) remain partially recoverable.
• Spread: An ideal watermark should be distributed all over a
program to protect as many parts as possible. A well-distributed
watermark offers probabilistically better resiliency.
• Credibility: A watermark should be reliably recoverable for the
proof of the authorship. A false positive case (i.e., extracting a
watermark from software without a watermark) or false negative
case (i.e., failing to extract a watermark from software with a
watermark) should be minimal.
• Capacity: A watermarking algorithm should be able to convey
a certain amount of information (i.e., data rate) within a target
program. It is desirable to quantitatively compute the maximum
length of the watermark that can be encoded inside the program.
• Efficiency: A watermarking scheme should have a negligible
impact on a target program in terms of performance and space
overhead.
• Imperceptibility: A watermark should be stealthy (like invisi-
ble or inaudible data from video/audio files) enough not to be
detected by an adversary. A program with the watermark must
be indistinguishable from another without the one.

2.3 Threat Model

It is a common belief that, a determined adversary with a suffi-
cient amount of resources will eventually be able to defeat any
watermarking systems. Hence, our objective is to develop a wa-
termarking technique that substantially thwarts every reasonable
effort with feasible resources in practice, rather than building an
unbreakable scheme. With this in mind, in this section, we describe
a threat model with several assumptions, followed by a group of
viable attacks.
Code Signing. A program can be digitally signed to prevent unau-
thorized changes [34]. Code signing involves with a cryptographic
signing process using a public/private key pair that uniquely be-
longs to a program owner where the public key has been certified

2

push rbp
mov rbp, rsp
...
call 0x4004e0
...
ret

F
u

n
ct

io
n

 1

0x400680
0x400681

...
0x400688

...
0x40069C

55
48 89 E5
...
E8 67 FD FF FF
...
C3

push rbp
...
jl 0x40081d
...
mov rax, qword ptr

[rax*8 + 0x402030]
call rax
...

F
u

n
ct

io
n

 2

0x400790
...

0x4007AA
...

0x40080B

0x400813
...

55
...
0F 8C 0A 00 00 00
...
48 8B 04 C5
30 20 40 00
FF D0
...

push rbp
...
mov rcx, qword ptr

[rax*8 + 0x402990]
jmp rcx
call 0x400700
jmp 0x4008fc
call 0x400730
jmp 0x4008fc
...

F
u

n
ct

io
n

 3

0x400870
...

0x400893

0x40089B
0x40089D
0x4008A2
0x4008A7
0x4008AC

...

55
...
48 8B 0C C5
90 29 40 00
FF E1
E8 5E FE FF FF
E9 55 00 00 00
E8 84 FE FF FF
E9 4B 00 00 00
...

D
a
ta

0x402030
0x402040
0x402990

70 08 40 00 00 00 00 00 90 07 40 00 00 00 00 00
F7 08 40 00 00 00 00 00 B1 08 40 00 00 00 00 00
9D 08 40 00 00 00 00 00 A7 08 40 00 00 00 00 00

push rbp
mov rbp, rsp
...
call 0x4004e0
...
ret

F
u

n
ct

io
n

 1

0x400790
0x400791

...
0x400798

...
0x40079C

55
48 89 E5
...
E8 37 FD FF FF
...
C3

push rbp
...
jl 0x40091d
...
mov rax, qword ptr

[rax*8 + 0x400210]
call rax
...

F
u

n
ct

io
n

 2

0x4008BF
...

0x4008D9
...

0x40095A

0x400962
...

55
...
0F 9C 0A 00 00 00
...
48 8B 04 C5
10 02 40 00
FF D0
...

D
a
ta

0x400210
0x400220
0x400998

CF 06 40 00 00 00 00 00 BF 08 40 00 00 00 00 00
F7 08 40 00 00 00 00 00 B1 08 40 00 00 00 00 00
FC 06 40 00 00 00 00 00 06 07 40 00 00 00 00 00

push rbp
...
mov rcx, qword ptr

[rax*8 + 0x400998]
jmp rcx
call 0x400750
jmp 0x40067f
call 0x4007c0
jmp 0x40067f
...

F
u

n
ct

io
n

 3

0x4006CF
...

0x4006F2

0x4006FA
0x4006FC
0x400701
0x400706
0x40070B

...

55
...
48 8B 0C C5
98 09 40 00
FF E1
E8 3E FE FF FF
E9 35 00 00 00
E8 54 FE FF FF
E9 1B 00 00 00
...

(a) Original Program (b) Program with Watermark

Function

Reordering

(c) Challenges

Addresses in

Data Section
B

PC-relative

Instruction

Address
A

Recognizing

Function

Boundaries
C

A

A

B

B

A

C

C

C

Figure 1: Motivational example. Each column represents instruction addresses, machine codes in bytes and disassembled in-

structions of the original program (left) and the one with a watermark (right).

from the trusted third party. By signing code, an adversary’s ability
to damage a watermark is severely limited, because code modi-
fication is disallowed1. However, code signing does not provide
traceability of the binary, which SoftMark aims to provide. Code
signing is a common practice: most benign software products are
signing codes, and even malware campaigns take advantage of
it [37]. Hence, it is reasonable to assume that a software copyright
owner intends to leverage both code signing and watermarking to
better protection, however, we assume that a target program may
or may not be digitally signed.
Attack Scenario. We assume an adversary who may i) perform
code manipulation or transformation when code signing has not
been applied, ii) have the knowledge of the way how a watermark
can be embedded, iii) collusively possessmultiple program instances
where each of which contains a different watermark, and iv) have a
watermark extractor without the details of a program. We assume
that the attacker does not have access to both the master binary
(i.e., metadata containing function locations) and bookkeeper (or
ledger) that contains useful information pertaining to a watermark
(e.g., key functions used for the watermark, as described in §4.3.3),
because an adversary can create a new unauthorized watermark
with those information. Note that protecting the master binary and
the bookkeeper from leakage (e.g., insider threat [8, 9]) is out of
scope.
Attack Types. A robust software watermarking scheme should
be able to thwart different types of attacks under our threat model.
We classify such threats into three major groups as follows.

• Unauthorized Detection represents a risk that an attacker rec-
ognizes the presence of a watermark within a program. Hiding
the presence of the watermark is of utmost importance, while

1A stolen certificate to sign a binary program after modifications (e.g., Stuxnet [64]),
is orthogonal to our approach, hence out of the scope.

developing a perfect detection-proof watermark is extremely dif-
ficult due to unexpected side channels. This attack corresponds
to the property of imperceptibility.
• Illegal Corruption encompasses exhaustive attacks that aim to
destroy a legitimatewatermark by i) insertion (i.e., additive attack
that attempts to implant another valid watermark), ii) deletion
(i.e., subtractive attack that attempts to completely eliminate
a valid watermark), iii) alteration (i.e., tampering attack that
attempts to counterfeit part or full of a valid watermark), or
iv) distortion (i.e., ambiguity attack that attempts to puzzle a
detector by applying semantic-preserving code transformations
on a target program). These attacks correspond to the properties
of credibility, resiliency and spread.
• Collusive Attack aims to identify the location of a watermark
by comparing multiple instances wherein different watermark-
ing fingerprints have been embedded. A successful collusive
attack leads to the location of or specific pattern (rule) of a wa-
termark, without using a legitimate watermark extractor.

3 DEMONSTRATIVE EXAMPLE

Since SoftMark inserts a watermark via the order of functions (§4),
a major threat arises from attacks leveraging sematic-preserving
code transformation. This section demonstrates watermark embed-
ding and extraction of SoftMark with an example, focusing on
the difficulty of the transformation even with full accuracy.
Target Program. The original program in Figure 1 (a) has three
functions that contain various code constructs including direct
call/jump (e.g., 0x400688 and 0x4007AA) and indirect call/jump
(e.g., 0x400813 and 0x40089B) instructions. SoftMark would se-
lect a set of functions from all function candidates for reordering.
Watermark with a Function Order. Given the three functions
in the example, six (= 3!) possible orders can represent up to two

3

bits as in Table 1. In principle, an individual watermark has a one-
to-one mapping with a particular order of selected functions; e.g.,
112 can be encoded at the order of F3–F1–F2 in Figure 1 (b).

Table 1: Function Order and Watermark Mapping.

Function Order F1–F3–F2 F2–F1–F3 F2–F3–F1 F3–F1–F2
Watermark Value 002 012 102 112

Watermark Embedding. In our scheme, inserting a watermark
essentially means generating a variant of the original program with
relocated functions where the order of functions representing the
watermark. Such code transformation inherently involves with a
vast number of updating instructions such as immediate operands.
Going back to the example, direct call/jump instructions (e.g., E8 or
E9 in x86) can be trivially updated by recalculating the immediate
operands (A). However, indirect call/jump instructions require
reference updates in a jump table that resides in the data region (B),
which is non-trivial. A runtime error would occur if any exercising
code pointer update were failed. Moreover, successful function
relocation requires a clear function boundary (C) because it may
break the original semantics otherwise.

To exemplify, the values at 0x400998 in (b) in the data section
point to the call instructions at 0x4006FC and 0x400706 that
have been relocated from 0x40089D and 0x4008A7. If any of those
addresses has not been updated properly, the program would cause
a runtime error. Similarly, the function pointers at 0x400210 in
(b) that point to the function 2 and 3 must be appropriately up-
dated according to the functions’ new addresses. This imposes a
non-trivial challenge to those who attempt to compromise our wa-
termark by relocating functions. Moreover, another challenge is
to identify an accurate boundary between code pointers and raw
data. In this example, the values in purple at 0x402040 in (a) and
0x400220 in (b) are scalar data (i.e., not code pointers) between
two jump tables, which are indistinguishable from surrounding
code pointers. To launch a successful attack, an adversary should
be able to differentiate the boundary of code and data, which is
undecidable. SoftMark takes advantage of a special compilation
toolchain [35] that produces metadata for reliable static binary in-
strumentation (e.g., function boundary and jump table), and record
unique information for a watermark when generating a mutation
corresponding to the watermark. Note that the metadata produced
by [35] is critical and kept secret from adversaries (Details in §7).
Watermark Extraction. It is straightforward to extract an em-
bedded watermark. We can identify the order of functions with the
recorded information, followed by decoding a watermark according
to Table 1. Ensuring the integrity of a target binary, we discuss the
case when the binary has been compromised in §4.4.

4 SOFTMARK DESIGN

This section describes the design of SoftMark that satisfies the
requirements (§2.2) against various attacks (§2.3) when embedding
and extracting a watermark.

4.1 Overview

Figure 2 depicts aworkflow of SoftMark. First, we employ a special
compiler toolchain [35] to compile a given program from the source

code. During the compilation, the toolchain generates metadata
(e.g., locations of functions) for reliable static binary instrumenta-
tion, required for our watermarking embedding. We call the pair
of the binary and metadata master binary. Second, we analyze the
binary and choose n reorderable function candidates that can repre-
sent k bits of data with different orders of the n functions. Then, we
generate a variant of the target program with a unique fingerprint
via reordering of n functions. We also record the fingerprint and
its associated identifier in a ledger (accessible merely by a product
owner). Third, we extract the watermark from a binary by identify-
ing the function order. Finally, a user associated with the extracted
watermark is identified by looking it up the ledger.

4.2 Benefits of Our Approach

The benefit of a static approach, including SoftMark, is twofold:
i) inexpensive; it can be easily adopted in large-scale applications
at a low cost, ii) robust; a dynamic approach relatively suffers from
watermark corruption as reversing techniques advance.
Advantages over Existing Techniques. We aim to mitigate pre-
vious drawbacks to meet the requirements of software watermark-
ing (§2.2). Our function-reordering-based watermark approach of-
fers the following three advantages. First, reordering functions is a
semantic preserving transformation; that is, watermark insertion
does not affect the original program’s semantic because SoftMark
does not introduce any additional code, blocks or subroutines to a
target program. While the relocated functions may change cache
behaviors at runtime, our assessment demonstrates that its impact
on the performance overhead is negligible (§6.5.2). Second, intro-
ducing no supplementary structure gives a relatively lower chance
for attackers to recognize the presence of a watermark with a statis-
tical analysis or inference. One conceivable scenario is a collusive
attack that acquires multiple instances with different watermarks,
which may unveil the presence of a watermark (i.e., by identify-
ing the locations of the same functions between the instances).
Nonetheless, our watermark stays resilient against any attempt
of watermark extraction (§4.4) because the mapping information
between a watermark and an order is still concealed in a private
ledger. Third, the number of reorderable functions can reach up to
an increasingly large number of encodings (i.e., n! with n functions);
e.g., 10 different functions can produce millions of permutations,
offering a high data-rate encoding as the size of an application (and
typically the number of functions) increases.
Existing Reordering-based Approaches. Reordering-based
techniques are the closest existing approaches to SoftMark. How-
ever, unlike SoftMark, they suffer from three major limitations.
First, they are perceptive; Myles et al. [42]’s approach could be
easily detectable because its implementation relies on inserting a
large number of GOTO statements to maintain the original con-
trol flow. Second, they are forgeable; rearranging a structure can
be accomplished with a trivial effort [52, 53, 55]. Third, they are
fragile; watermarks were not resilient to arbitrary modifications at
the instruction level [28].

4.3 Watermark Embedding

In this section, we develop various techniques used in SoftMark
to enhance the effectiveness of watermark embedding.

4

Source
code

Watermark Embedding

Target Function
Selection

Function
Reorderding

Marked Variants

Metadata

Watermark Extraction

Function
Identification

Order
Recognition

User Verification

Binary

Compilation Master Binary

Figure 2: Overview of SoftMark’s Workflow. A software product owner prepares a master binary with metadata, and analyze

it beforehand. A watermark is embedded with function reordering from pre-selected functions. Watermarking extraction

verifies the watermark once identification of functions and their orders is complete.

0 200 400 600 800 1000
of Funcs

0

2000

4000

6000

8000

Re
pr

es
en

ta
bl

e
bi

ts

Figure 3: The number of representable bits is proportional

to the number of functions.

Table 2: Number of functions and the size of representable

bits accordingly. In our experiment, we insert a 256 bits long

watermark that requires at least 58 functions for reordering,

which can be adjustable according to a policy.

Functions Representable bits Bits Required functions Applicable examples

10 21 64 21 26 (433.milc, etc.)
20 61 128 35 26 (433.milc, etc.)
30 107 192 47 26 (433.milc, etc.)
50 214 256 58 26 (433.milc, etc.)
100 524 512 99 24 (482.sphinx3, etc.)
300 2041 1024 171 21 (456.hmmer , etc.)
500 3767 2048 301 19 (puttygen, etc.)
1000 8529 4096 537 17 (400.perlbench, etc.)

4.3.1 Encoding Size. SoftMark’s watermark is encoded as the
location information of functions in the target program. In other
words, a particular order of a set of functions determines a certain
watermark value. For example, consider a simple executable with
three user-defined functions2. The number of possible orders among
the three functions is 3! = 6, and it can represent up to 2 bits of a
watermark (22 < 3! < 23) ; e.g., 002, 012, 102, and 112. As the number
of permutation of n distinct objects allows for n! different ways of
function reordering in total, the number of possible watermarking
bits can be asymptotically computed according to the Stirling’s
formula [63] (approximation for factorials) as in Equation 1.

log2 (n!) ≈ log2 (
√
2πn(ne)

n) where n > 0 (1)

Table 2 summarizes the number of functions and the size of
required bits that represents a watermark accordingly, which can
be determined by a watermarking policy. Figure 3 illustrates the

2We rule out linker-inserted functions during compilation because different linkers
may introduce different number (and kind) of additional subroutines such as CRT.

linear relationship between the number of representable bits and
the number of functions.

4.3.2 Embedding Strategies. Awatermark embedding processmust
support a deterministic extraction process without ambiguity. Be-
sides, it should offer both credibility and robustness against water-
mark corruption attempts. We develop strategies for deterministic,
credible, and robust watermark embedding and extraction.
Unique Function Candidates. A program may contain multiple
functions that have indistinguishable (i.e., identical) binary code.
We do not use such functions in our watermark embedding because
our extractor cannot distinguish the locations of the functions (as
well as the order between them). As an example, consider that a
program consists of four functions F1, F2, F3, and F4 where the last
two are indistinguishable, then a watermark with an order of “F3,
F1, F4, F2” could be interpreted as “F4, F1, F3, F2”. Such multiple
interpretations raise a false positive case, violating the property of
credibility. It is noteworthy mentioning that the selected functions
in Table 2 should be all unique. Toward uniqueness of candidate
functions, we define a unique function as the one that comprises a
unique combination of basic blocks where each block has a unique
sequence of instruction mnemonics3.
Exclusion of Small Functions. We empirically discover that
approximately 76% of non-unique functions, on average, consists of
a single basic block or even a single instruction in the programs for
our evaluation (Figure 4). Note that, in such small functions, it is not
rare that two functions have an identical sequence of instructions.
Thus, we intentionally rule out those small functions from the
candidate for a watermark. The column “Small” in Table 4 shows
the number of small functions.
Desirable Function Set. Once we have the list of candidates to
choose from, we carefully pick functions that make static binary
instrumentation challenging. When we select a candidate, we pre-
fer a function that has a trampoline containing code pointers (i.e.,
indirect jumps or calls) because displacing such a function raises
the bar. Specifically, an attacker needs to update a data region that
embodies both code pointers and scalar data values for success-
ful binary instrumentation. The column “iCFT (indirect Control
Flow Transfer)” in Table 4 shows the number of desirable functions
containing indirect branches.
Basic Block Reordering. We apply a basic block transposition
within a function against collusive attacks. Note that this does not

3We do not consider operands (e.g., immediates) because they should be updated to
obey the original flow while displacing a function.

5

40
0.

pe
rlb

en
ch

40
3.

gc
c

43
3.

m
ilc

44
5.

go
bm

k
45

6.
hm

m
er

45
8.

sje
ng

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

ad
dr

2l
in

e ar
bf

dt
es

t1
cx

xf
ilt

nm
-n

ew
ob

jco
py

ob
jd

um
p

ra
nl

ib
siz

e
st

rin
gs

st
rip

-n
ew

ct
ag

s
lig

ht
tp

d
vs

ftp
d

ps
cp

ps
ftp

pu
tty

ge
n

cg
te

st

0.00

0.25

0.50

0.75

1.00

Figure 4: Ratio of small functions (i.e., containing a single

basic block) of all non-unique functions. It ranges from 60%

to 95% with an average of 76% (dotted line).

affect the identification of unique function candidates because the
order of basic blocks is not the factor of function uniqueness.
Multiple Watermarks. By design, we allow a software owner
to be able to insert a watermark multiple times so that one could
recover at least one of them when an active adversary attempts
to tamper with the watermark by partial function relocation. We
leave it as a hyperparameter, k , and empirically set it up as k = 3.
Non-candidate Functions. We randomly scatter all other func-
tions that are not part of the functions for a watermark, increasing
resiliency against collusive attacks. The order of scattered functions
is deterministic for each watermark.

4.3.3 Ledger (Bookkeeper). Along with watermark embedding, an
owner must maintain a private ledger (i.e., bookkeeper) that holds
the list of functions and their locations (§2.3), the property of each
function (e.g., index, indirect call invocation), and the pattern of
basic blocks for further watermark extraction. In particular, a basic
block can be recognized with two means: i) regular expression
of byte values for a quick search and ii) the sequence of opcode
mnemonics and sizes after disassembly for deep investigation (§5).
Note that the ledger should remain undisclosed so that adversaries
cannot acquire it.

4.4 Watermark Extraction

Extracting a watermark is a reversing process of the embedding
process. We assume two possible scenarios in watermark extraction:
a case that a target binary stays intact, and another case that the
binary has been corrupted (or altered). Although it suffices to say
that the extraction is a success or failure, our goal is either to
precisely obtain a genuine watermark (for the former case), or to
partially recover it as a best-effort service (for the latter case).

4.4.1 Function Identification. As we deal with a stripped binary, it
is required to recognize function boundaries. First, we confirm basic
block patterns from the list of selected functions for a watermark,
followed by seeking all blocks with those patterns. Then, a certain
function can be identified if a set of basic blocks is present in the
function.

4.4.2 Extraction from Unmodified Binary. As with a secret ledger,
a watermark extraction is straightforward and precise without

vagueness because we solely use unique functions for watermark
embedding.

4.4.3 Extraction from Modified Binary. If a target binary has been
corrupted, the information in a ledger for themaster binary does not
match, raising a failure of both watermark detection and extraction.
In such a case, SoftMark attempts to extract a watermark from
unmodified code parts because the authenticity of a corrupted
function and its location cannot be trusted. As SoftMark can
insert multiple watermarks across a wide range of original code, a
partial extraction of those may sufficiently reveal the fingerprint.

5 IMPLEMENTATION

This section briefly describes SoftMark implementation. Our pro-
totype currently supports ELF executables for the x86-64 platform
on Linux. We leverage the CCR [35] toolchain based on a modified
LLVM (v3.9.0) and gold linker (v.2.27) to relocate functions and
basic blocks. We developed our binary metadata analysis tool in
Python, which takes a master binary that contains metadata for wa-
termarking as an input. We use the pyelftools [7] for parsing an
ELF format and the capstone [24] library as a disassembly engine.
Basic Block Pattern Search. We implemented two different tech-
niques for seeking basic blocks as part of a function identification
phase in Figure 2. By default, SoftMark discovers blocks in a ledger
with a pattern using regular expressions under the assumption that
a given binary has not been compromised, which allows for a quick
search without a hassle. However, in case that the given binary
has been modified (e.g., code transformation), it requires a deep
search with a full disassembly process by matching instruction
opcode and size (for recognizing the boundaries of blocks and func-
tions). There is a coincidental case to take into account with the
deep search where a consecutive functions have overlapping blocks.
For example, if two functions of F1 and F2 share blocks like F1 =
(B1, B2, B1) and F2 = (B2, B1, B3), it would be problematic when
SoftMark mistakenly recognizes F1 that comes from two blocks,
say, (B1) from F1 and (B2, B1) from F2. Although we empirically
observe that this rarely happens, we intentionally avoid such cases
by re-embedding a watermark. Table 4 illustrates the comparison of
embedding and extraction time between the regular-expression and
disassembly-oriented implementation, whose difference is as orders
of magnitude as large. Thus, it is recommended to try a deep search
with full disassembly when only needed for further investigation.

6 EVALUATION

We evaluate SoftMark on a 64-bit Ubuntu 18.04 system equipped
with Intel(R) CoreâĎć i7-6700 3.40 GHz and 8GB RAM.
Corpus. We collect 26 binaries for SoftMark evaluation from var-
ious dataset including eight programs from SPEC CPU2006 [17], 11
samples of Binutils v2.27 from GNU Project [25], and seven utilities
of our choice (e.g., putty/pscp/psftp v0.75 [58], vsftpd v2.3.4 [60],
ctags v5.9.0 [19], and lighttpd v1.4.32 [38]). We have excluded ap-
plications that do not contain sufficient function candidates (i.e., at
least 58 functions or above for embdding a 256-bit identifier in our
experiment) such as bzip2, mcf, and specrand.

6

Table 3: Precision, recall and F1 scores of function boundary

detection with IDA Pro [29]. Identifying clear boundaries

from stripped binaries using a state-of-the-art reversing tool

is insufficient for binary instrumentation.

stripped binary

Program Precision Recall F1 Score

400.perlbench 0.828 0.611 0.703
403.gcc 0.804 0.576 0.671
433.milc 0.859 0.653 0.742
445.gobmk 0.830 0.245 0.379
456.hmmer 0.880 0.505 0.642
458.sjeng 0.777 0.626 0.693
464.h264ref 0.856 0.693 0.755
482.sphinx3 0.843 0.594 0.697

addr2line 0.827 0.401 0.540
ar 0.832 0.414 0.553
bfdtest1 0.816 0.396 0.533
cxxfilt 0.836 0.406 0.547
nm-new 0.843 0.421 0.562
objcopy 0.826 0.464 0.594
objdump 0.818 0.475 0.601
ranlib 0.798 0.400 0.533
size 0.840 0.406 0.547
strings 0.803 0.393 0.527
strip-new 0.831 0.470 0.600
ctags 0.845 0.576 0.685
lighttpd 0.799 0.735 0.766
vsftpd 0.854 0.791 0.821
pscp 0.802 0.621 0.700
psftp 0.791 0.622 0.697
puttygen 0.780 0.515 0.620
cgtest 0.789 0.524 0.630

6.1 Resiliency

As SoftMark operates on watermark embedding and extraction
solely at a binary level, we consider possible corruption attacks
focusing on machine code.
Distortion to ComplicateWatermark Extractor. As described
in §2.3, our SoftMark scheme may be susceptible to a distortion at-
tack with semantic-preserving code transformation [36, 45] because
such an attack impedes the proof of original program’s authenticity
during a watermark extraction process. Note that while those tech-
niques do not change the location of a function, they may challenge
a watermarking extraction process by breaking the integrity of code.
Our disassembly-oriented basic block search is robust to operands
distortion (e.g., register reordering and assignment) but opcode dis-
traction (e.g., instruction substitution and reordering) may lower a
survival rate (See §7 in detail). Note that the aforementioned attacks
can be simply prevented with code signing.
Function Relocation. As SoftMark relies on function reorder-
ing, it is susceptible to attacks that can relocate functions. Table 3
shows precision, recall, and F1 score of the function boundary de-
tection technique implemented in the state-of-the-art disassembler,
IDA Pro v7.2 [29]. The precision, recall, and F1 scores are 0.823,
0.521, and 0.629, on average, respectively. The results show that
SoftMark successfully imposes significant challenges to adver-
saries in practice. We take ground truths from unstripped binaries
with debugging information.
Other Obfuscation Techniques. We review varying obfuscation
techniques offered by Sandmark [13] and others [13, 16, 31, 56, 62]

70

80

90

100

110

40
0.

pe
rlb

en
ch

40
3.

gc
c

43
3.

m
ilc

44
5.

go
bm

k
45

6.
hm

m
er

45
8.

sje
ng

46
4.

h2
64

re
f

48
2.

sp
hi

nx
3

ad
dr

2l
in

e ar
bf

dt
es

t1
cx

xf
ilt

nm
-n

ew
ob

jco
py

ob
jd

um
p

ra
nl

ib
siz

e
st

rin
gs

st
rip

-n
ew

ct
ag

s
lig

ht
tp

d
vs

ftp
d

ps
cp

ps
ftp

pu
tty

ge
n

cg
te

st

Program

0

10

20

30

40

Em
be

dd
in

g
tim

e

Figure 5: Boxplot of embedding a watermark ten times. The

results show that embedding time is quite consistent (i.e.,
low variance) for all programs.

to see whether they can be used to corrupt (i.e., attack) SoftMark.
Since most approaches in Sandmark leverage obfuscation or opti-
mization at a source code or Java Bytecode level to generate a valid
watermark, which are not applicable to our context (i.e., binary
level), we assess techniques that can be applied at a machine code
level as following:
• Code Insertion: This attack aims to insert additional instruc-
tions (e.g., code displacement [36]) , basic blocks, or functions.
It will inevitably change the size of a target binary, rendering
an attempt of distortion detectable. This partially thwarts our
scheme by hindering function identification properly.
• Constant Modification: An attacker may corrupt constant val-
ues in a data region. However, it does not affect a SoftMark’s
watermark, as our watermark scheme merely relies on the order
of functions.
• Basic Block Reordering: An attacker may reorder basic blocks
(as there are basic block reordering watermarking techniques)
in a function. SoftMark is resilient to this type of attack since
we recognize a target function with unique basic blocks that are
agnostic to their orderings.
• Branch Instruction Modification: Modifying branch instruc-
tions may also complicate our scheme because it can alter an
instruction opcode as well as a control flow change.

6.2 Spread

We evaluate how pre-selected functions are spread throughout a
binary in SoftMark. Well spread functions enable a watermark to
be robust against random modification of a binary; in other words,
a successful attack requires a wider range of compromising code
under our scheme (e.g., altering instructions or reordering func-
tions). Table 5 shows the probability of a successful attack by the
size of a watermark. Simply put, a watermark would be corrupted
(i.e., failed to be extracted) when an adversary randomly chooses
and alters a set of functions via distortion or reordering. Note that
433.milc and 458.sjeng do not have the results for 512 bits due to
the lack of function candidates to represent those bits. Figure 6

7

Table 4: Experimental Evaluation Dataset and Results. Pre Anal., Em., Ex., iCFT and O/H represent pre-analysis, embedding,

extraction, indirect control flow transfer and a performance overhead, respectively.

Program
Name

Layout Functions Candidates Time with a regular expression (sec) Time with a disassembly (sec)
O/H

Func BBLs Small Unique
Not

Unique iCFT
iCFT Size
Ratio (%)

Pre-
Anal. Em.

Ex.
W1

Ex.
W2

Ex.
W3 Avg.

Pre-
Anal. Em.

Ex.
W1

Ex
W2

Ex.
W3 Avg.

400.perlbench 1,660 46,682 622 895 143 153 23% 60 15 2.1 1.6 1.8 1.8 27,426 16 3,372 309 1,432 1,704 -1.9%
403.gcc 4,329 118,085 1,924 2,206 199 515 30% 346 101 6.5 5.8 4.2 5.5 200,270 101 2,471 2,445 2,125 2,347 0.1%
433.milc 235 2,586 141 88 6 7 2% 2.2 0.8 0.3 - - 0.3 12 0.8 6.8 - - 6.8 -7.2%
445.gobmk 2,478 25,021 1,374 857 247 36 2% 51 34 0.7 1.0 0.8 0.8 6,282 34 352 139 133 208 -1.7%
456.hmmer 470 10,154 221 237 12 30 14% 5.9 1.7 0.6 0.5 0.9 0.7 437 1.7 38 57 46 47 1.1%
458.sjeng 132 4,475 51 78 3 16 26% 2.3 0.9 0.6 - - 0.6 25 0.9 20 - - 20 0.6%
464.h264ref 518 13,986 227 259 32 36 9% 13 3.5 1.2 1.2 1.1 1.2 1,358 3.5 94 75 64 78 0.2%
482.sphinx3 318 5,350 152 155 11 7 4% 3.4 1.5 0.3 0.4 - 0.3 102 1.5 15 16 - 15 0.5%

addr2line 1,459 35,718 651 704 104 297 39% 39 11 0.7 0.9 2.2 1.3 13,534 11 804 630 846 760 -
ar 1,522 36,589 676 739 107 305 39% 40 11 1.2 0.9 0.6 0.9 14,982 12 797 812 782 797 -
bfdtest1 1,429 35,293 641 686 102 294 39% 39 10 0.8 0.6 1.9 1.1 11,459 11 645 662 646 651 -
cxxfilt 1,458 35,674 649 705 104 297 39% 39 12 0.7 0.9 2.1 1.2 13,045 12 735 653 865 751 -
nm-new 1,483 36,099 654 721 108 304 39% 40 11 1.1 0.6 1.1 0.9 12,760 12 699 639 640 659 -
objcopy 1,694 43,505 720 867 107 329 39% 58 14 3.6 4.0 1.1 2.9 28,679 15 822 1,044 987 951 -
objdump 1,888 49,149 780 988 120 369 24% 87 23 4.3 0.9 4.5 3.2 37,856 23 901 1,521 1,243 1,222 -
ranlib 1,522 36,589 676 739 107 305 39% 40 11 1.2 0.9 0.6 0.9 12,949 12 365 494 457 439 -
size 1,464 35,734 652 708 104 298 39% 40 11 0.9 0.5 1.7 1.0 11,450 11 632 664 631 642 -
strings 1,460 35,760 651 705 104 297 39% 39 11 0.8 0.6 2.2 1.2 13,972 11 701 656 669 675 -
strip-new 1,694 43,505 780 867 47 329 39% 64 15 3.6 4.1 1.1 2.9 25,440 15 1,124 1,131 1,096 1,117 -
ctags 2,886 42,717 1,325 1,150 411 225 16% 19 19 0.9 1.0 0.7 0.9 26,012 20 539 455 322 439 -
lighttpd 291 4,244 132 136 23 28 22% 1.4 1.2 0.5 0.1 - 0.3 89 1.2 12 20 - 16 -
vsftpd 510 3,474 335 143 32 9 3% 1.3 1.1 0.2 0.1 - 0.2 69 1.1 4.1 5.3 - 4.7 -
pscp 1,636 14,585 900 664 72 228 24% 15 4.2 0.5 0.3 0.4 0.4 2,304 4.3 116 138 149 134 -
psftp 1,653 14,716 906 671 76 219 22% 15 4.3 0.5 0.3 0.4 0.4 2,319 4.3 117 142 153 137 -
puttygen 881 7,167 512 328 41 50 13% 2.4 2.6 0.5 0.3 0.2 0.3 555 2.8 41 50 29 40 -
cgtest 891 7,336 514 335 42 50 12% 6.4 1.8 0.6 0.2 0.3 0.4 310 1.9 35 46 32 38 -

0 1000 2000 3000 4000
of Funcs

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
of

 S
uc

ce
ss

fu
l A

tta
ck 64 bits

128 bits
256 bits
512 bits

Figure 6: Probability curve for successful attacks, which in-

dicates that the higher number of functions or the lower ca-

pacity of a watermark, the lower probability of the attacks.

depicts a probability curve by the number of functions and the
representable bits. In a nutshell, the higher data rate increases the
attack probability whereas the larger number of functions decreases
it. Based on our experiment, we recommend to use at least 1,500
functions with a 256-bit watermark for reasonable robustness.

6.3 Credibility

A watermark is embedded based on a one-to-one mapping relation-
ship of function order information. Hence, SoftMark can precisely
identify the watermark as long as all functions are unique and suc-
cessfully extracted. Note that we exclude functions that may cause a

Table 5: Attack probabilities by the size of a watermark. The

number of selected functions for a watermark in 400.perl-
bench is 58 out of 1, 660, that is, the probability of choosing

the exact set of those functions is 58/1, 660 = 0.0349.

Name

Attack probability

64 bits 128 bits 256 bits 512 bits

400.perlbench 0.0127 0.0211 0.0349 0.0596
403.gcc 0.0049 0.0081 0.0134 0.0229
433.milc 0.0894 0.1489 0.2468 -
445.gobmk 0.0085 0.0141 0.0234 0.0400
456.hmmer 0.0447 0.0745 0.1234 0.2106
458.sjeng 0.1591 0.2652 0.4394 -
464.h264ref 0.0405 0.0676 0.1120 0.1911
482.sphinx3 0.0660 0.1101 0.1824 0.3113

addr2line 0.0144 0.0240 0.0398 0.0679
ar 0.0138 0.0230 0.0381 0.0650
bfdtest1 0.0147 0.0245 0.0406 0.0693
cxxfilt 0.0144 0.0240 0.0398 0.0679
nm-new 0.0142 0.0236 0.0391 0.0668
objcopy 0.0124 0.0207 0.0342 0.0584
objdump 0.0111 0.0185 0.0307 0.0524
ranlib 0.0138 0.0230 0.0381 0.0650
size 0.0143 0.0239 0.0396 0.0676
strings 0.0144 0.0240 0.0397 0.0678
strip-new 0.0124 0.0207 0.0342 0.0584
ctags 0.0073 0.0121 0.0201 0.0343
lighttpd 0.0722 0.1203 0.1993 0.3402
vsftpd 0.0412 0.0686 0.1137 0.1941
pscp 0.0128 0.0214 0.0355 0.0605
psftp 0.0127 0.0212 0.0351 0.0599
puttygen 0.0238 0.0397 0.0658 0.1124
cgtest 0.0236 0.0393 0.0651 0.1111

false positive case as described in §4.3.2. Recognizing the functions
can be complete with a basic block pattern search described in §5.

8

6.4 Capacity

We compare our approach with the one from Davidson et al. [22]
that is based on basic block reordering in terms of capacity. As
shown in Table 6, the data rate of SoftMark is significantly higher
than that of the Davidson’s approach (up to 15 times for 482.sphinx3).
This is because our approach depends on the number of possible
function candidates, in contrast, Davidson’s approach predomi-
nately relies on the maximum number of basic blocks within a
function. The downside of the latter approach arises from which
the largest number of basic blocks has nothing to do with the size
of a program, which may not be sufficient to represent a watermark.
For example, 403.gcc has 2.5 timesmore functions than 400.perbench,
however, the maximum representable bits is rather 20% smaller. We
discuss the capacities of other watermarking techniques that cannot
be directly compared with SoftMark in §7.

Table 6: Comparison of capacity (i.e., maximum number of

representable bits) between SoftMark and Davidson’s ap-

proach [22] that relies on the largest block size in a function.

Program
SoftMark Davidson-Myhrvold

Name Size (KB) Functions Bits Basic Blocks Bits

400.perlbench 1,423 895 7,491 683 5,451

403.gcc 3,728 2,206 21,326 534 4,073

433.milc 148 88 446 20 61

445.gobmk 3,923 857 7,119 135 765

456.hmmer 339 237 1,532 46 191

458.sjeng 156 78 382 74 357

464.h264ref 685 259 1,708 160 945

482.sphinx3 210 155 909 20 61

addr2line 1,180 704 5,649 142 815

ar 1,213 739 5,982 142 815

bfdtest1 1,165 686 5,479 142 815

cxxfilt 1,179 705 5,659 142 815

nm-new 1,195 721 5,810 142 815

objcopy 1,410 867 7,217 181 1,101

objdump 2,474 988 8,409 186 1,139

ranlib 1,213 739 5,982 142 815

size 1,180 708 5,687 142 815

strings 1,180 705 5,659 142 815

strip-new 1,410 867 7,217 181 1,101

ctags 1,495 1,150 10,039 178 1,078

lighttpd 195 136 772 85 426

vsftpd 118 143 822 87 439

pscp 713 664 5,273 99 518

psftp 722 671 5,338 99 518

puttygen 391 328 2,273 144 829

cgtest 405 335 2,332 141 808

6.5 Efficiency

6.5.1 Size Overhead. The size of a watermark-inserted binary stays
identical because SoftMark does not introduce additional struc-
tures such as codes, blocks or subroutines to a target program (§4.3).
We confirmed that each binary with a watermark for evaluation
does not increase a code size.

6.5.2 Performance Overhead. The rightmost column in Table 4
shows the performance overheads of SPEC CPU2006 binaries af-
ter embedding a watermark with SoftMark. For each binary, we
measured the overall CPU user time for the completion of all in-
ternal tests by taking the average time across five runs, using both
the original and its corresponding variant with a watermark. The

Table 7: Differences in embedding time according to water-

mark values and size changes (related to Figure 7, 8). Embed-

ding time only shows a difference of less than 1 second on

the alteration of a watermark value or size.

Embedding Value (256 bits) Embedding Bits

Name Value #1 Value #2 Value #3 64 128 256

456.hmmer 1.8 1.8 1.8 1.7 2.6 1.8
nm-new 10.0 10.4 10.2 10.3 10.2 10.4
objdump 21.5 21.8 21.5 22.5 22.3 21.7
puttygen 2.1 2.1 2.1 2.1 2.2 2.1

largest overhead is reported with 456.hmmer , 1.1%, which is neg-
ligible. Interestingly, the performance of 400.perlbench, 433.milc,
445.gobmk, and 458.sjeng demonstrates slightly better than their
original (master) binaries. We attribute those speedups in better
caching behavior from a code region due to different code localities
after function relocations, which aligns with the results from [35].

6.5.3 Efficiency of Embedding and Extraction. We evaluate the ef-
ficiency of our watermarking embedding and extraction process.
Recall that we operate two different modes for a watermarking
extraction depending on the assumption of a binary status: i) un-
modified (identical) and ii) modified (compromised). Both cases
refer a bookkeeper to identify the location of every function, but
SoftMark carries out a block search differently; the former em-
ploys a regular expression for performance where the latter em-
ploys a disassembly for deep binary inspection to recognize code
alteration.
Unmodified Binaries. A default watermarking extraction with a
regular expression in Table 4 shows pre-analysis, embedding and
extraction of three different watermarks. A pre-analysis step exam-
ines the property of a function such as its uniqueness and indirect
branches within. 403.gcc takes the longest time; that is, 346, 97, and
5, 5 seconds for pre-analysis, embedding, and extraction, respec-
tively. Except for three programs (403.gcc, 445.gobmk, objdump), an
embedding process takes less than 20 seconds, which is reasonable
in practice. An extraction process takes up to 5.5 seconds where
most of cases can be done within a few seconds.
Modified Binaries. Watermarking extraction with a disassembly
in Table 4 shows that it takes longer time than handling a unmodi-
fied binary. This is mainly due to a substantial analysis to investigate
potential attacks such as code transformation. A pre-analysis time
varies, ranging from 12 seconds for 433.milc to 55.6 hours (220, 270
seconds) for 403.gcc, depending on the size of a program. However,
it is a one-time processing per each binary. The duration of em-
bedding time is quite close to that of a unmodified binary case. An
extraction process also takes longer than embedding, ranging from
5 seconds (vsftpd) to 39 miniutes (gcc).
Different Values. We test three watermark values (Value #1-#3)
by running inserting and extracting them 10 times. Note that each
value can be generated by a software vendor as a secret identifier.
Figure 7 and Table 7 depict the results of four representative pro-
grams’ results by the number of functions including 456.hmmer
(237 functions; small), puttygen (328 functions; small), nm-new (721

9

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

hmmer

0

20

40

Ti
m

e
(s

) Value #1
Value #2
Value #3

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

puttygen

0

20

40

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

nm-new

0

200

400

600

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

objdump

0

500

1000

1500

Figure 7: Duration of embedding and extraction in seconds depending on inserting three different watermark values across

four binaries. We empirically confirmed that the computational resources are agnostic to the watermark values.

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

hmmer

0

20

40

Ti
m

e
(s

) 64 bits
128 bits
256 bits

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

puttygen

0

20

40

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

nm-new

0

200

400

600

Emdedding
Extract#1

Extract#2
Extract#3 Avg.

objdump

0

500

1000

1500

Figure 8: Duration of embedding and extraction in seconds depending on the size of a watermark (i.e., 64, 128, and 256 bits)

across four binaries.We confirmed that it takes longer time that is closely proportional to the size of thewatermark on average.

functions; medium), and objdump (988 functions; large). Empiri-
cally, we confirmed that a watermark value does not have large
variations for embedding and extraction (Table 7).
Different Sizes. As shown in Table 7, embedding time is consistent
on the different sizes of watermarking. However, we observe that
the extraction of a watermark with a high-data rate takes longer
time than that with a low rate. Interestingly, there are a few cases
where extracting a 64-bit watermark is slower than 128-bit. It turns
out that the functions in a 64-bit watermark contains more basic
blocks. This is because our extraction performance depends on
the complexity of a function for function identification. In general,
embedding a larger watermark requires more functions, increasing
the chance of dealing with a complicated function.

6.6 Imperceptibility

As discussed in §4, SoftMark does not add any explicit structure
to a binary, which remains little information behind. Hence, inspect-
ing a single mutation would not reveal any sign of a watermark.
However, the parties in collusion who are aware of the principle
of our watermark scheme (i.e., reordering-based) may learn the
presence of a watermark by collecting multiple instances. Although
SoftMark is equipped with several techniques to complicate func-
tion recognition (e.g., by basic block reordering within a function
when generating a variant), a collusive attack can eventually thwart
imperceptibility.

7 DISCUSSION AND LIMITATION

This section discusses future research and limitations of our work.
Binary Packing. Every watermark scheme on a binary code
would be affected by binary packing because it involves with a
widely destructive process for a code region. When a program with
a watermark is packed, it is required to unpack/dump the program
on memory at runtime, followed by performing watermark verifi-
cation on top of the dumped code. If unpacking were failed (e.g., a
customize packer), SoftMark cannot reveal a watermark.

Semantic-preserving Code Transformation. ORP [45] pro-
poses four in-place code randomization techniques without main-
taining the size of a program: 1 instruction substitution where
an adversary replaces an instruction with another that is semanti-
cally equivalent, 2 instruction reordering within a basic block by
pre-computing possible orderings of given instructions, 3 regis-
ter reordering with the pair registers on the stack for a function
prologue (e.g., push) and epilogue (e.g., pop), and 4 register reas-
signment by reallocating swappable registers with pre-computing
live regions in a function. As stated in §6, our scheme (even with
multiple watermarks) cannot fully thwart such semantic-preserving
code transformation attacks by altering opcodes (1 and 2), which
we leave part of our future work. An instruction displacement tech-
nique [36] demonstrates another possible code transformation but
it alters a program control flow with a jmp and its size, which can
be easily perceptible. Egalito [40] allows arbitrary modification at
a binary level with a layout-agnostic intermediate representation,
however, it only supports a position-independent executable (PIE)
for rewriting a binary. Besides, SoftMark can still judge a given
program that a watermark has been corrupted when it may have
failed the watermark extraction.
Collision with a Function Relocation. Note that even for an
attacker who can reorder functions, the probability of finding a
successful collision (i.e., legitimate entry) is extremely low without
a ledger. The estimated time for an accidental collision with a brute-
forcing attack can be computed as the following equation:

of all possible cases × binary instrumentation time
of valid watermarks (collision) × 1

2 (2)

Note that we divide in half due to a 50% chance with a linear search.
Assuming a computation power with Intel i7-6700 3.40 GHz and
8GB RAM for binary rewriting and a million watermarks (i.e., valid
copies) available, it would take 2.30×1099 years for 458.sjeng. It is
noteworthy mentioning that both SoftMark and code-signing can
effectively thwart any attempt pertaining to code transformation.

10

Constraints on Function Relocation with CCR. To avoid in-
troducing new instructions for binary instrumentation, CCR inher-
ently restricts the positions for relocating functions when the size
of a reference (e.g., operand for a relative jump or call) is not large
enough (e.g., one or two bytes). We obey the same constaint with
CCR, however, the rate of such limited relocations is small (around
1%), which rarely affects the capacity of SoftMark. For example,
403.gcc in our dataset has 51 out of 4,329 functions (1.12%) were
constrained by this limitation.
Capacity of Other Existing Techniques. Along with §6.4, we
discuss the capacity of other software watermarking techniques
that cannot be directly compared to SoftMark. Sha et al. [52]
leverages an equation’s operand coefficient to encode a watermark
in Java programs, whose data rate is comparable to SoftMark
because it uses a permutation of the coefficient. A branched-based
technique [26, 43] relies on the number of branch instructions for
embedding a watermark. Although it could hold a higher data
rate even for a small program that contains many branches, the
possible encoding capacity overall may be fluctuating. Meanwhile,
an obfuscation-based approach [68] defines a hard-coded limit of
1,000 different instruction groups (i.e., 1,000 bits), which is difficult
to be expanded. Several other works [18, 20, 21, 57] demonstrate
a scheme that allows one to embed a unlimited watermark in size
by adding additional data or method into a binary. However, such
approaches are highly susceptible to be perceptible and thus easily
eliminated. A graph-based approach [12, 14, 46, 59, 65, 69] generates
a topological structure at runtime when a certain input is given.
While they have unlimited capacity since they explicitly add code
segment for the watermark, they are trivially detectable due to the
added code and data.

8 RELATEDWORK

A variety of software watermarking schemes have been proposed
for the last two decades [23, 28, 70]. Software watermark technique
can be classified as either static [4, 22, 30, 41, 51, 53, 55] or dy-
namic [14, 18] according to the way of extraction, that is, a static
watermarking does not need to run a programwhereas dynamic wa-
termarking does because a watermark can be extracted at runtime
(i.e., the execution state of the program). Note that static water-
marking is more common because it is relatively handy. In this
section, we outline a major approaches for software watermarking
techniques and CCR [35], a compiler-rewriter model for our static
binary instrumentation.
Reordering-basedApproach. Diversifying code is one of promis-
ing techniques for securing and protecting software since early
days. The idea of early patents [30, 51] places an identifier into a
pre-determined (and random) location of code or data. Similarly,
Davidson et al. [22] introduces a means of inserting a signature by
relocating a group of pre-selected basic blocks. Shirali-Shahreza et
al. [55] suggest an equation reordering technique that swaps the
safe operands of mathematical equation in source code, and later
FDOS [53] introduces a scheme of function dependency-oriented
sequencing on top of reordering equations. Although the basic idea
of “reordering” aligns with our SoftMark, the above approaches
are susceptible for i) revealing (resiliency) as it merely relies on lo-
calized piece of code; ii) being removed as a watermark is not widely

spread (i.e., poor part protection), and iii) insufficient data rate as
it depends on the largest component (e.g., number of functions or
operands) that limits encoding bits, and iv) reliable binary instru-
mentation when inserting a watermark at a binary level lacks [22].
Graph-based Approach. Another line of static watermarking
is based on a graph theory [14, 32, 48, 49]. Qu et al. [48] apply a
graph coloring (GC) problem to a register allocation of variables,
which inserts a watermark by adding edges in a given graph of
G (V ,E). Later, Jiang et al. [32] presents a software watermarking
scheme based on public-key cryptograph with GC. However, graph
coloring has no efficient algorithm (known NP complete problem).
Collberg et al. [14] proposed a dynamic watermarking technique
(dubbed CT) that is stored in the execution state of a program (e.g.,
through a graph structure on the heap).
Obfuscation-basedApproach. Balachandran et al. [4] suggest an
obfuscation algorithm that interlaces blocks across functions with
anti-disassembly techniques for concealing them.Monden et al. [41]
demonstrates the insertion of watermark into dummy methods and
opaque predicates in Java programs. Myles et al. [42] carefully an-
alyze the effectiveness between the Davidson’s reordering-based
approach [22] and Monden’s obfuscation-based approach [41] with
actual implementations using the Sandmark tool [13]. Lu et al. [39]
propose an obfuscation-based steganography technique by leverag-
ing ROP gadgets to embed certain information that can be extracted
at runtime by running the ROP gadgets. While steganography has
a slightly different purpose from watermarking, we believe it can
also be used to implement a watermark.
Other Approaches. A spread-spectrum watermarking
scheme [20, 57] has been suggested from the signal detec-
tion model in multimedia watermarking, extracting a vector from
the properties of a running program (e.g., call graph depth). Preda
et al. [21] presents a formal framework for modeling a software
watermarking technique at a semantic level by viewing attackers
as abstract interpreters. Cousot et al. [18] introduces a dynamic
watermark scheme that leverages abstract interpretation to insert
a watermark into values that are assigned to local variables at
runtime. Nagra et al. [44] suggest a precise taxonomy in the area
of software watermarking.
Compiler-assisted Code Randomization. Relocating functions
from a stripped binary is, in general, non-trivial because of impre-
cise disassembly [2], binary function recognition [1, 3, 6, 47, 54, 61],
and varying optimizations at compilation. To this end, we adopt
a compiler-rewriter cooperation approach [35] that allows for ro-
bust and fast code transformation. Simply put, it stores a minimal
set of supplementary information (including a layout, basic block,
and fixup or reference that must be adjusted after function dis-
placement) into a master binary as metadata, enabling us to carry
out static binary instrumentation without recompilation [35, 50]
on demand. The master executable is maintained along with wa-
termarking information by a program owner where those who
purchase the software possess a mutant (i.e., reordered version)
with a watermark alone.

9 CONCLUSION

In this paper, we propose a function reordering-based software wa-
termarking technique, SoftMark. It embeds a watermark, mapping

11

every order of certain functions into a hidden identifier. SoftMark
does not introduce any additional code or data, making it more
stealthier than existing approaches while achieving other proper-
ties including resiliency, capacity and efficiency for a robust water-
mark scheme. Our analysis results show that SoftMark is resilient
to varying attacks while maintaining a negligible performance
overhead and reasonable capacity. Our empirical evaluation on 26
binaries (from eight SPEC CPU2006 programs and 18 real-world
programs) demonstrates that SoftMark is highly practical and
effective in embedding and extracting a watermark.

ACKNOWLEDGMENTS

We thank the anonymous referees and our shepherd Sang Kil Cha
for their constructive feedback. This work was supported by In-
stitute for Information & communication Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No. 2019-0-
01343, Regional strategic industry convergence security core tal-
ent training business), NSF under awards 1916499, 1908021, and
1850392. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsor.

REFERENCES

[1] Jim Alves-Foss and Jia Sone. 2019. Function Boundary Detection in Stripped
Binaries. In 35th Annual Computer Security Applications Conference (ACSAC ’19).

[2] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and Herbert
Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale X86/X64 Binaries.
In 25th USENIX Security Symposium (USENIX ’16).

[3] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
Function Detection in Binaries. In 2017 IEEE European Symposium on Security
and Privacy (EuroS&P ’17). IEEE, 177–189.

[4] Vivek Balachandran, Ng Wee Keong, and Sabu Emmanuel. 2014. Function Level
Control Flow Obfuscation for Software Security. Proceedings - 2014 8th Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, CISIS
2014, 133–140. https://doi.org/10.1109/CISIS.2014.20

[5] Sebastian Banescu, Alexander Pretschner, Dominic Battré, Stéfano Cazzulani,
Robert Shield, and Greg Thompson. 2015. Software-based Protection against
Changeware. CODASPY 2015 - Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, 231–242. https://doi.org/10.1145/2699026.
2699099

[6] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to Recognize Functions in Binary Code. In 23rd
USENIX Security Symposium (USENIX ’14). 845–860.

[7] Eli Bendersky. 2021. pyelftools. https://github.com/eliben/pyelftools.
[8] Matt Bishop and Carrie Gates. 2008. Defining the Insider Threat. In Proceedings of

the 4th Annual Workshop on Cyber Security and Information Intelligence Research:
Developing Strategies to Meet the Cyber Security and Information Intelligence
Challenges Ahead (Oak Ridge, Tennessee, USA) (CSIIRW ’08). Association for
Computing Machinery, New York, NY, USA, Article 15, 3 pages. https://doi.org/
10.1145/1413140.1413158

[9] Jorge Blasco, Julio Cesar Hernandez-Castro, Juan E Tapiador, and Arturo Rib-
agorda. 2012. Bypassing Information Leakage Protection with Trusted Applica-
tions. Computers & Security 31, 4 (2012), 557–568.

[10] Business Software Alliance. 2018. Software Management: Security Imperative,
Business Opportunity. Global Software Survey (2018), 24.

[11] Zhe Chen, Zhi Wang, and Chunfu Jia. 2018. Semantic-integrated Software Water-
marking with Tamper-proofing. Multimedia Tools and Applications 77, 9 (2018),
11159–11178. https://doi.org/10.1007/s11042-017-5373-7

[12] Christian Collberg, Stephen Kobourov, Edward Carter, and Clark Thomborson.
2003. Error-correcting Graphs for Software Watermarking. In Proceedings of the
29th workshop on graph theoretic concepts in computer science. Springer, 156–167.

[13] C. Collberg, G.R. Myles, and A. Huntwork. 2003. Sandmark-A Tool for Software
Protection Research. IEEE Security & Privacy 1, 4, 40–49. https://doi.org/10.1109/
MSECP.2003.1219058

[14] Christian Collberg and Clark Thomborson. 1999. SoftwareWatermarking: Models
and Dynamic Embeddings. In Proceedings of the 26th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages - POPL ’99. ACM Press, New
York, New York, USA, 311–324. https://doi.org/10.1145/292540.292569

[15] C.S. Collberg and Clark Thomborson. 2002. Watermarking, Tamper-proofing,
and Obfuscation - Tools for Software Protection. IEEE Transactions on Software

Engineering 28, 8 (Aug 2002), 735–746. https://doi.org/10.1109/TSE.2002.1027797
[16] C Collberg, C Thomborson, and D Low. 1997. A Taxonomy of Obfuscating Trans-

formations. Technical Report 148. 36 pages. https://researchspace.auckland.ac.
nz/handle/2292/3491

[17] Standard Performance Evaluation Corporation. 2021. SPEC CPUÂő 2006. https:
//www.spec.org/cpu2006/.

[18] Patrick Cousot and Radhia Cousot. 2004. An abstract interpretation-based frame-
work for software watermarking. In ACM SIGPLAN Notices. 173–185.

[19] Universal ctags organization. 2021. Universial Ctags. https://ctags.io/.
[20] D. Curran, N.J. Hurley, and M. O Cinneide. 2003. Securing Java through software

watermarking. In Proceedings of the 2nd international conference on Principles and
practice of programming in Java (PPPJ ’03). 145–148.

[21] Mila Dalla Preda andMichele Pasqua. 2017. SoftwareWatermarking: A Semantics-
based Approach. Electronic Notes in Theoretical Computer Science 331 (2017), 71–85.
https://doi.org/10.1016/j.entcs.2017.02.005

[22] Robert I. Davidson and Nathan Myhrvold. 1996. Method and System for Gener-
ating and Auditing a Signature for a Computer Program. http://www.google.
com/patents/US5559884

[23] Ayan Dey, Sukriti Bhattacharya, and Nabendu Chaki. 2019. Software Water-
marking: Progress and Challenges. INAE Letters 4, 1 (2019), 65–75. https:
//doi.org/10.1007/s41403-018-0058-8

[24] Capstone-The Ultimate Disassembly Framework. 2021. Capstone-Engine. https:
//www.capstone-engine.org/.

[25] GNU. 2021. GNU Binutils. https://www.gnu.org/software/binutils/.
[26] Gaurav Gupta and Josef Pieprzyk. 2007. Software watermarking Resilient to

Debugging Attacks. Journal of Multimedia 2, 2 (2007), 10–16. https://doi.org/10.
4304/jmm.2.2.10-16

[27] Gael Hachez. 2003. A Comparative Study of Software Protection Tools Suited for
E-Commerce with Contributions to Software Watermarking and Smart Cards. Ph. D.
Dissertation. Universite Catholique de Louvain.

[28] James Hamilton and Sebastian Danicic. 2011. A Survey of Static Software Wa-
termarking. In 2011 World Congress on Internet Security (WorldCIS-2011). IEEE,
100–107.

[29] Hex-Rays. 2021. IDA Pro Disassembler. https://www.hex-rays.com/idapro/.
[30] Keith Holmes. 1994. Computer Software Protection. http://www.google.com/

patents/US5287407
[31] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari Matti Mäkelä, Jo-

hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2018. Diversification
and Obfuscation Techniques for Software Security: A Systematic Literature
Review. Information and Software Technology 104, May 2017 (2018), 72–93.
https://doi.org/10.1016/j.infsof.2018.07.007

[32] Zetao Jiang, Rubing Zhong, and Bina Zheng. 2009. A Software Watermarking
Method Based on Public-Key Cryptography and Graph Coloring. In 2009 Third
International Conference on Genetic and Evolutionary Computing. 433–437.

[33] Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken’ichi Matsumoto.
2006. A Software Protection Method based on Instruction Camouflage. Electronics
and Communications in Japan, Part III: Fundamental Electronic Science (English
translation of Denshi Tsushin Gakkai Ronbunshi) 89, 1 (2006), 47–59. https:
//doi.org/10.1002/ecjc.20141

[34] Doowon Kim, Bum Jun Kwon, and Tudor DumitraÅ§. 2017. Certified Malware:
Measuring Breaches of Trust in the Windows Code-Signing PKI. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
ACM, New York, NY, USA, 1435–1448. https://doi.org/10.1145/3133956.3133958

[35] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and Michalis
Polychronakis. 2018. Compiler-Assisted Code Randomization. Proceedings - IEEE
Symposium on Security and Privacy 2018-May, 461–477. https://doi.org/10.1109/
SP.2018.00029

[36] Hyungjoon Koo and Michalis Polychronakis. 2016. Juggling the gadgets: Binary-
level Code Randomization using Instruction Displacement. In Proceedings of the
11th ACM Asia Conference on Computer and Communications Security (ASIACCS).
23–34.

[37] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan Caballero. 2015. Certified
PUP: Abuse in Authenticode Code Signing. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. ACM, New York,
NY, USA, 465–478. https://doi.org/10.1145/2810103.2813665

[38] Lighttpd. 2021. Lightweight HTTP daemon for security, speed, compliance, and
flexibility. https://www.lighttpd.net/.

[39] Kangjie Lu, Siyang Xiong, and Debin Gao. 2014. RopSteg: Program Steganography
with Return Oriented Programming. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy (San Antonio, Texas, USA) (CODASPY
’14). Association for Computing Machinery, New York, NY, USA, 265âĂŞ272.
https://doi.org/10.1145/2557547.2557572

[40] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2020. Egalito:
Layout-Agnostic Binary Recompilation. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems. 133–147.

12

https://doi.org/10.1109/CISIS.2014.20
https://doi.org/10.1145/2699026.2699099
https://doi.org/10.1145/2699026.2699099
https://github.com/eliben/pyelftools
https://doi.org/10.1145/1413140.1413158
https://doi.org/10.1145/1413140.1413158
https://doi.org/10.1007/s11042-017-5373-7
https://doi.org/10.1109/MSECP.2003.1219058
https://doi.org/10.1109/MSECP.2003.1219058
https://doi.org/10.1145/292540.292569
https://doi.org/10.1109/TSE.2002.1027797
https://researchspace.auckland.ac.nz/handle/2292/3491
https://researchspace.auckland.ac.nz/handle/2292/3491
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://ctags.io/
https://doi.org/10.1016/j.entcs.2017.02.005
http://www.google.com/patents/US5559884
http://www.google.com/patents/US5559884
https://doi.org/10.1007/s41403-018-0058-8
https://doi.org/10.1007/s41403-018-0058-8
https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://www.gnu.org/software/binutils/
https://doi.org/10.4304/jmm.2.2.10-16
https://doi.org/10.4304/jmm.2.2.10-16
https://www.hex-rays.com/idapro/
http://www.google.com/patents/US5287407
http://www.google.com/patents/US5287407
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1002/ecjc.20141
https://doi.org/10.1002/ecjc.20141
https://doi.org/10.1145/3133956.3133958
https://doi.org/10.1109/SP.2018.00029
https://doi.org/10.1109/SP.2018.00029
https://doi.org/10.1145/2810103.2813665
https://www.lighttpd.net/
https://doi.org/10.1145/2557547.2557572

[41] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii. 2000. A Practical
Method for Watermarking Java Programs. In Proceedings 24th Annual Interna-
tional Computer Software and Applications Conference. (COMPSAC 2000). 191–197.
https://doi.org/10.1109/CMPSAC.2000.884716

[42] Ginger Myles, Christian Collberg, Zachary Heidepriem, and Armand Navabi.
2005. The Evaluation of Two Software Watermarking Algorithms. Software -
Practice and Experience 35, 10 (2005), 923–938. https://doi.org/10.1002/spe.657

[43] Ginger Myles and Hongxia Jin. 2005. Self-validating Branch-based Software
Watermarking. In International Workshop on Information Hiding. Springer, 342–
356.

[44] Jasvir Nagra, Clark Thomborson, and Christian Collberg. 2002. A Functional
Taxonomy for Software Watermarking. Aust. Comput. Sci. Commun. 24, 1 (2002),
177–186.

[45] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In Proceedings of the 33rd IEEE Symposium on Security & Privacy
(S&P). 601–615.

[46] Chaofan Peng and Qinglei Zhou. 2013. An IPPCT Dynamic Watermarking
Scheme Based on Chinese Remainder Theorem. In 2013 International Conference
on Computational and Information Sciences. IEEE, 167–170.

[47] Rui Qiao and R Sekar. 2017. Function Interface Analysis: A Principled Approach
for Function Recognition in COTS Binaries. In 47th International Conference on
Dependable Systems and Networks (DSN ’17).

[48] Gang Qu and Miodrag Potkonjak. 1998. Analysis of Watermarking Techniques
for Graph Coloring. In 1998 IEEE/ACM International Conference on Computer
Aided Design. IEEE, 190–193.

[49] Gang Qu and Miodrag Potkonjak. 2000. Hiding Signatures in Graph Coloring
Solutions. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 1768 (2000), 348–367.
https://doi.org/10.1007/10719724_24

[50] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-wise Compilation and Loading. In 27th USENIX Security Symposium
(USENIX ’18). 869–886.

[51] Peter R. Samson. 1994. Apparatus and Method for Serializing and Validating
Copies of Computer Software. http://www.google.com/patents/US5287408A

[52] Zonglu Sha, Hua Jiang, and Aicheng Xuan. 2009. Software Watermarking Algo-
rithm by Coefficients of Equation. 3rd International Conference on Genetic and
Evolutionary Computing, WGEC 2009, 410–413. https://doi.org/10.1109/WGEC.
2009.18

[53] B. K. Sharma, R. P. Agarwal, and Raghuraj Singh. 2012. An Efficient Software
Watermark by Equation Reordering and FDOS. Advances in Intelligent and Soft
Computing 131 AISC, VOL. 2 (2012), 735–745. https://doi.org/10.1007/978-81-
322-0491-6_67

[54] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks. In 24th USENIX Security Symposium
(USENIX ’15). 611–626.

[55] Mohammad Shirali-Shahreza and Sajad Shirali-Shahreza. 2008. Software Wa-
termarking by Equation Reordering. 2008 3rd International Conference on Infor-
mation and Communication Technologies: From Theory to Applications, ICTTA.
https://doi.org/10.1109/ICTTA.2008.4530357

[56] Dannie M. Stanley, Dongyan Xu, and Eugene H. Spafford. 2013. Improved Kernel
Security through Memory Layout Randomization. 2013 IEEE 32nd International
Performance Computing and Communications Conference, IPCCC 2013). https:
//doi.org/10.1109/PCCC.2013.6742768

[57] Julien P Stern, Gaël Hachez, François Koeune, and Jean-Jacques Quisquater.
2000. Robust Object Watermarking: Application to Code. In Information Hiding.
Springer Berlin Heidelberg, 368–378.

[58] Simon Tatham. 2021. SSH client. https://www.putty.org.
[59] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. 2001. A Graph

Theoretic Approach to Software Watermarking. In International Workshop on
Information Hiding. Springer, 157–168.

[60] Vsftpd. 2021. A GPL licensed FTP server for UNIX systems. https://security.
appspot.com/vsftpd.html.

[61] Shuai Wang, Pei Wang, and Dinghao Wu. [n. d.]. Semantics-Aware Machine
Learning for Function Recognition in Binary Code. In 33rd IEEE International
Conference on Software Maintenance and Evolution (ICSME ’17).

[62] Shuai Wang, Pei Wang, and Dinghao Wu. 2017. Composite Software Diversifica-
tion. Proceedings - 2017 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2017, 284–294. https://doi.org/10.1109/ICSME.2017.61

[63] Wikipedia. 2009. Stirling’s approximation. https://en.wikipedia.org/wiki/Stirling’
s_approximation.

[64] Wikipedia. 2021. Stuxnet. https://en.wikipedia.org/wiki/Stuxnet.
[65] Siqing Xue, Chunjiao He, and Jun Song. 2015. An Improved PPCT Based Dynamic

Graph Software Watermarking Scheme. In 2015 Fifth International Conference
on Instrumentation and Measurement, Computer, Communication and Control
(IMCCC). IEEE, 825–829.

[66] Xinlei Yao, Jianmin Pang, Yichi Zhang, Yong Yu, and Jianping Lu. 2012. A Method
and Implementation of Control Flow Obfuscation using SEH. Proceedings - 2012
4th International Conference on Multimedia and Security, MINES 2012, 336–339.
https://doi.org/10.1109/MINES.2012.25

[67] Ying Zeng, Fenlin Liu, Xiangyang Luo, and Chunfang Yang. 2010. Robust Software
Watermarking Scheme based on Obfuscated Interpretation. Proceedings - 2010
2nd International Conference on Multimedia Information Networking and Security,
MINES 2010, 671–675. https://doi.org/10.1109/MINES.2010.146

[68] Ying Zeng, Fenlin Liu, Xiangyang Luo, and Chunfang Yang. 2011. Software
Watermarking through Obfuscated Interpretation: Implementation and Analysis.
Journal of Multimedia 6, 4 (2011), 329–340. https://doi.org/10.4304/jmm.6.4.329-
340

[69] Jianqi Zhu, Yanheng Liu, and Kexin Yin. 2009. A Novel Dynamic Graph Software
Watermark Scheme. Proceedings of the 1st International Workshop on Education
Technology and Computer Science, ETCS 2009 3, 775–780. https://doi.org/10.1109/
ETCS.2009.709

[70] William Zhu, Clark Thomborson, and Fei-Yue Wang. 2005. A Survey of Software
Watermarking. 454–458. https://doi.org/10.1007/11427995_42

13

https://doi.org/10.1109/CMPSAC.2000.884716
https://doi.org/10.1002/spe.657
https://doi.org/10.1007/10719724_24
http://www.google.com/patents/US5287408A
https://doi.org/10.1109/WGEC.2009.18
https://doi.org/10.1109/WGEC.2009.18
https://doi.org/10.1007/978-81-322-0491-6_67
https://doi.org/10.1007/978-81-322-0491-6_67
https://doi.org/10.1109/ICTTA.2008.4530357
https://doi.org/10.1109/PCCC.2013.6742768
https://doi.org/10.1109/PCCC.2013.6742768
https://www.putty.org
https://security.appspot.com/vsftpd.html
https://security.appspot.com/vsftpd.html
https://doi.org/10.1109/ICSME.2017.61
https://en.wikipedia.org/wiki/Stirling's_approximation
https://en.wikipedia.org/wiki/Stirling's_approximation
https://en.wikipedia.org/wiki/Stuxnet
https://doi.org/10.1109/MINES.2012.25
https://doi.org/10.1109/MINES.2010.146
https://doi.org/10.4304/jmm.6.4.329-340
https://doi.org/10.4304/jmm.6.4.329-340
https://doi.org/10.1109/ETCS.2009.709
https://doi.org/10.1109/ETCS.2009.709
https://doi.org/10.1007/11427995_42

	Abstract
	1 Introduction
	2 Software Watermarking
	2.1 Problem Definition
	2.2 Requirements
	2.3 Threat Model

	3 Demonstrative Example
	4 SoftMark Design
	4.1 Overview
	4.2 Benefits of Our Approach
	4.3 Watermark Embedding
	4.4 Watermark Extraction

	5 Implementation
	6 Evaluation
	6.1 Resiliency
	6.2 Spread
	6.3 Credibility
	6.4 Capacity
	6.5 Efficiency
	6.6 Imperceptibility

	7 Discussion and Limitation
	8 Related work
	9 Conclusion
	Acknowledgments
	References

