Yosys - A Free Verilog Synthesis Suite

Clifford Wolf, Johann Glaser®
fJohannes Kepler University, Austria
Institute for Integrated Circuits
clifford@clifford.at, johann.glaser @jku.at

Abstract

Most of todays digital design work is done using hard-
ware description languages such as Verilog HDL or
VHDL. HDL synthesis is used to translate that HDL code
to digital circuits. Yosys is the first free and open source
software for Verilog HDL synthesis which supports the
vast majority of synthesizable Verilog features. Yosys is
built as an extensible framework so it can be used easily
as basis for custom synthesis flows and as environment for
the implementation and research on new synthesis algo-
rithms. Yosys has special emphasis on support for coarse-
grain logic, making it ideal for algorithms such as logic
mapping to DSP cells in FPGAs or synthesis for custom
coarse-grain reconfigurable hardware.

Yosys has mature support for Verilog HDL and is able to
synthesize complex real-world Verilog designs. Example
design flows for fine-grain and coarse-grain architectures
are presented and discussed. The availability of Yosys un-
der a liberal open source license can greatly improve re-
producibility of scientific publications, when Yosys is used
as basis for reference implementations of new algorithms
instead of closed-source alternatives.

1 Introduction

In modern ASIC design the use of hardware description
languages like Verilog and VHDL as well as logic syn-
thesis tools is ubiquitous. The development of these tools
has a long history [7, 8] which enormously increased the
productivity of designers as well as the reliability of the
design process.

The synthesis process itself involves numerous complex
algorithms, e.g., for optimization of the logic networks.
This area of research has contributed essential techniques
and features to logic synthesis [11, 5, 10, 13, 4].

Additionally, in other areas of research the concepts of
logic synthesis as well as functional components of the
synthesis process are an important ingredient, too. For
example, the research on a methodology for the develop-
ment of coarse-grain heterogeneous application-domain
specific reconfigurable logic is heavily based on tight in-
tegration with the synthesis process [18, 9].

All these cases ask for a way to use widespread HDLs as
input data format. This offers a well-known development
process with good readability of the code and allows de-
sign reuse. Common simulation tools can be used for de-

sign verification and the research results can be formally
verified to the input data using commercial equivalence
checking tools.

Therefore in the next section we look for qualified syn-
thesis tools which offer flexible and open interfaces as re-
quired for the aforementioned research topics. This gives
a short overview of available commercial as well as open
source synthesis tools. This is followed by a technical in-
troduction to Yosys, which is further elaborated with three
exemplary use cases. The next section gives an evaluation
of the features and results of Yosys and the paper closes
with conclusions and an outlook for further work.

2 State of the Art

Todays ASIC and FPGA development is completely
dominated by commercial tools. These provide powerful
functionality and a high quality of results. All these tools
are closed source programs which do not provide inter-
faces for custom extensions. Further investigation showed
that even intermediate data files are stored in an encrypted
file format. Therefore these tools, although powerful and
proven, can not be used as basis for the development of
synthesis algorithms.

Besides commercial synthesis tools, several free and
open source Verilog synthesis tools exist [12, 3, 13, 15].
The open source development model provides an ideal
entry point for extensions, since all internals and inter-
faces are openly accessible. However, an evaluation [17]
showed that these tools are still in a very early state and
are by far not able to handle real-world Verilog synthesis
tasks.
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Figure 1. Simplified Yosys data- and control-flow



3 The Yosys Open Synthesis Suite

As shown in the previous section, no qualified tools with
open interfaces to integrate custom synthesis algorithms
are available. Therefore the new Verilog synthesis soft-
ware stack Yosys was developed [16]. This section pro-
vides a brief introduction to Yosys.

The main goal of Yosys is the synthesis of Verilog HDL
to logically equivalent netlists. Unlike commercial syn-
thesis tools for ASIC or FPGA design, it is (currently)
not intended to handle timing information, perform STA
(static timing analysis) or consider constraints in Yosys.
Some steps in the synthesis process utilize external tools,
e.g. combinational logic minimization and fine-grain tech-
nology mapping is handled by Berkeley ABC [5]. This
allows to provide the core feature of logic synthesis with
the maximum of openness and extensibility.

3.1 Yosys Data Flow

Yosys is a very modular program. Its data flow is illus-
trated in Fig. 1. Frontends, such as the Verilog frontend,
read HDL source and transform it to RTLIL!, the inter-
nal format used by Yosys. Passes, such as various tech-
nology mappers, operate on this RTLIL data. Each pass
either transforms the RTLIL data (perform optimizations,
etc.) or analyzes it (e.g. evaluate a logic net with a given
input). As all passes operate on the same data structure,
i.e. RTLIL, they can be combined in any arbitrary order.
Backends, such as the Verilog backend, are finally used to
write the resulting netlist to an output file.

3.2 Yosys Scripts and Extensions

Yosys is controlled using synthesis scripts. Each com-
mand in a synthesis script executes a frontend, pass, or

IThe “Register Transfer Intermediate Language”, basically a netlist
format with a set of built-in cell types.

backend. Custom synthesis flows are created by writing
new synthesis scripts. Additionally, new functionality can
be added by developing new frontends, backends, and es-
pecially passes. This extensibility is one of the key advan-
tages of Yosys. The Yosys manual contains documenta-
tion on the C++ APIs for developing such extensions, as
well as example code.

An exemplary Yosys script with descriptive comments is
shown in Fig. 2. The opt pass is particularly frequently
used in this script. It performs some simple optimizations
and is used to clean up the internal representation of the
design between other passes.

4 Flow Examples

This section covers three exemplary Yosys flows. The
first example is a straight-forward ASIC synthesis flow in
which the logic is mapped to a very simple CMOS cell
library. The second example is an FPGA flow in which the
logic is mapped to LUTs. The third example is a coarse-
grain flow in which the logic is mapped to coarse-grain
cells.

4.1 ASIC Cell-Based Synthesis

For the synthesis targeting an ASIC process, a cell li-
brary with standard cells is given and the synthesis tool
shall ultimately map all logic to the cells specified in this
library. In this example the cell library from Fig. 3 is used.

# read design using verilog frontend
read_verilog mydesign.v

# analyze design hierarchy
hierarchy -check -top mytop

# map always-blocks to RTL netlists
proc; opt

# optimize FSM state encodings
fsm; opt

# map design to the built-in
# logic-level cell library
techmap; opt

# write verilog netlist
write_verilog synth.v

library(demo) {
cell(NOT) {
area: 3;
pin(A) { direction:
pin(Y) { direction:

input; }

output; function: "A’"; }
}
cell(NAND) {

area: 4;

pin(A) { direction:
pin(B) { direction:
pin(Y) { direction:

}
cell(NOR) {
area: 4;

pin(A) { direction:
pin(B) { direction:
pin(Y) { direction:

}
cell(DFF) {
area: 18;

input; }
input; }
output;

input; }
input; }
output;

function:

function:

"(AB)" T

"(A+B)’'";

ff(IQ, IQN) { clocked_on: C; next_state: D; }
pin(C) { direction: input; clock: true; }

pin(D) { direction:

input; }

pin(Q) { direction: output; function: "IQ"; }

}

}

Figure 2. Example Yosys Synthesis Script

Figure 3. ASIC Cell Library (in Liberty format) which
provides a NOT, NAND, NOR, and a D-flip-flop gate




The synthesis script (Fig. 4) is similar to the generic
script from Fig. 2. The only difference (besides format-
ting) is that two additional passes have been added to the
end of the script. The dfflibmap pass extracts all flip-flop
cells from the cell library and replaces flip-flops in the de-
sign with the ones from the library, adding additional logic
as necessary. Finally, the abc pass in -~1liberty mode uses
the external tool Berkeley ABC [5] to efficiently map the
remaining combinational logic to cells from the cell li-
brary.

4.2 FPGA LUT-Based Synthesis

When synthesizing for FPGAs, the logic portion of the
design must be mapped to LUT (lookup-table) cells. Af-
ter the techmap pass (see the synthesis script in Fig. 5)
the logic portion of the design is represented using the
Yosys’ internal cell library that consists of AND, OR,
XOR, NOT, and MUX gates. In the previous example, the
abc -liberty pass was used to map this netlist to gates
in the target cell library. Here the abc -lut N pass is
used to map the logic to N-input LUT cells, again using

Berkeley ABC.
In this example, the design should be synthesized to
LUTIL, ..., LUT4, and FDRE cells, as used by the 7-

Series Xilinx FPGAs?. The abc -lut N pass resulted
in internal Yosys LUT cells $1ut and positive-edge flip-
flops $_DFF_P_. The techmap -map pass is used to replace
these with the appropriate Xilinx cells. This pass reads a
Verilog file that contains implementations for internal cell
types and replaces these internal cells with the given im-
plementation. Figure 6 shows the Verilog file used for this
cell mapping.

Note that the Xilinx FDRE cell actually has synchronous

2The Xilinx 7-Series CLB contains 6-input LUTs that can optionally
be grouped to 7- or 8-input LUTs, dedicated carry logic, and contains
dedicated memory resources (in M-slices). For simplicity we only use
LUTL, ..., LUT4, and FDRE cells in this example.

# read design
read_verilog counter.v

# high-level synthesis
hierarchy -check -top counter
proc; opt; fsm; opt; techmap; opt

# mapping registers to ASIC cells
dfflibmap -liberty asic_cells.lib

# mapping logic to ASIC cells using Berkeley ABC
abc -liberty asic_cells.lib; opt

# write netlist
write_verilog asic_synth.v

Figure 4. ASIC Synthesis Script

# read design
read_verilog counter.v

# high-level synthesis
hierarchy -check -top counter
proc; opt; fsm; opt; techmap; opt

# mapping logic to LUTs using Berkeley ABC
abc -lut 4; opt

# map internal cells to FPGA cells
techmap -map fpga_cells.v; opt

# write netlist
write_verilog fpga_synth.v

module \$_DFF_P_ (D, C, Q);
input D, C;
output Q;

FDRE fpga_dff (
.D(D), .Q(Q, .C(O),
.CE(1’b1), .R(1’b0O)
);
endmodule

module \$lut (I, 0);
parameter WIDTH = O;
parameter LUT = O;

input [WIDTH-1:0] I;
output O;

generate
if (WIDTH == 1) begin:lutl
LUT1 #(.INIT(LUT)) fpga_lut (.0(0),
.I0(I[01));
end else
if (WIDTH == 2) begin:lut2
LUT2 #(.INIT(LUT)) fpga_lut (.0(0),
LI0CI[0]), .ILCI[11));
end else
if (WIDTH == 3) begin:1lut3
LUT3 #(.INIT(LUT)) fpga_lut (.0(0),
LI0(I[0]), .I1(I[11), .I2(I[21));
end else
if (WIDTH == 4) begin:1lut4
LUT4 #(.INIT(LUT)) fpga_lut (.0(0),
.I0(I[0]), .I1(I[1]), .I2(I[2]),
LI3(I[31));
end else begin:error
wire TECHMAP_FAIL;
end
endgenerate
endmodule

Figure 5. FPGA Synthesis Script

Figure 6. Models for Yosys’ internal FPGA cells (in
Verilog) which are used to map to Xilinx Virtex 7 series
FPGA cells.




reset and clock-enable pins. They would be a perfect
match for the example design in Fig. 7. However, in this
simple example flow, these pins stay unused. The next ex-
ample will demonstrate how the extract pass can be used
to improve synthesis results in such situations.

4.3 Coarse-Grain Synthesis

The main use-case of coarse-grain synthesis is mapping
designs to reconfigurable logic which provides coarse-
grain cells that operate on bit-vectors instead of single-bit

module counter (clk, rst, en, count);
input clk, rst, en;
output reg [3:0] count;

always @(posedge clk)
if (rst)
count <= 4’d0;
else if (en)
count <= count + 4’dl;
endmodule

Figure 7. Simple Example Verilog Design

# read design
read_verilog counter.v

# high-level synthesis
hierarchy -check -top counter; proc; opt

# mapping coarse-grain cells
extract -map coarse_cells.v; opt

# write netlist
write_verilog coarse_synth.v

Figure 8. Coarse-Grain Synthesis Script

(+ extract_order = 1 *)
module MACRO_INC(in, out);
input [3:0] in;
output [3:0] out;
assign out = 4’dl + in;
endmodule

(+ extract_order = 2 *)
module MACRO_DFF(clk, rst, en, d, q);

input clk, rst, en;

input [3:0] d;

output reg [3:0] q;

always @(posedge clk)

q<=7rst ?4’d0 : en?d: q;

endmodule

Figure 9. Coarse-Grain Cell descriptions (in Verilog)
which are used to replace subcircuits of the full design.

signals. This can be (optional) accelerator cells such as
DSP cells in modern FPGAs, or the cells of a complete
heterogeneous coarse-grain architecture.

While the logic gates targeted in ASIC synthesis (and
used as intermediate representation when packing logic to
LUTs for FPGA synthesis) are of equal or smaller granu-
larity than the operators available in Verilog, coarse grain
cells often implement functions of larger granularity than
the operators available in Verilog. An essential require-
ment for that is that the RTL netlist which keeps multi-
bit operators is directly available for technology mapping,
contrary to common synthesis tools, which create a bit-
level netlist very early before any custom actions can be
performed.

For example, a coarse-grain cell library might contain a
combined multiply-add cell that implements the function
y = ab + cd. In this case, three cells in the RTL netlist
(two multipliers, one adder) must be mapped to only one
cell in the cell library.

The techmap pass used in the previous examples does
the opposite of coarse-grain mapping: It replaces single
cells in the input netlist (e.g., a 4-bit adder) by netlists of
multiple cells (e.g. logic gates building a chain of half-
and full-adders).

On the other hand, the extract pass is designed for
coarse-grain mapping: A set of coarse-grain cells is given
by their netlists. Within the netlist of the current design,
isomorphic occurrences of these sub-netlists are identified
and replaced by the respective coarse-grain cells. The al-
gorithm for this is based on the Ullmann Algorithm for
Subgraph Isomorphisms [14].

For the example coarse-grain synthesis flow, the design
from Fig. 7 is used. It is processed using the script given
in Fig. 8. The extract pass uses a small cell library
(Fig. 9) with coarse-grain cells for incrementing a 4 bit
vector by one (MACRO_INC) and a 4 bit wide D-type flip-
flop with synchronous reset and enable (MACRO_DFF). Fig-
ure 10 shows the resulting RTL netlist with the matches —
as found by the extract pass — marked with frames.

4.3.1 Designing Reconfigurable Coarse-Grain Archi-
tectures

The design of reconfigurable coarse grain architectures is
split in two phases: In the pre-silicon phase, the actual
architecture is designed and optimized for the applica-
tion domain. This consists of the design and selection of
coarse-grain cells and the design of the reconfigurable in-
terconnect. The post-silicon phase is analogous to FPGA
development: a given logic design is mapped to the recon-
figurable coarse-grain architecture.

One of the most challenging tasks in the pre-silicon
phase is the identification of design partitions which are
suitable for coarse-grain cells. In the case that the appli-
cation domain is specified by a set of example designs,
frequent subgraph mining can be used to identify com-
mon patterns in the RTL representation of the example
designs. The extract pass has limited support for fre-
quent subgraph mining and can therefore be also used in
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Figure 10. RTL Netlist with Coarse-Grain Cell Matches. Generated with GraphViz and the Yosys show command.

the analysis of the application domain in the beginning of
the design process.

A more detailed description of how to use Yosys for de-
signing a heterogeneous coarse-grain reconfigurable ar-
chitectures is given in [9].

4.3.2 Challenges in Coarse-Grain Synthesis

The most challenging problem in coarse-grain synthesis is
that there usually are many ways of expressing the func-
tion that can be implemented by a coarse-grain cell in
HDL code. For example, there are simple symmetries
that can be handled by the extract pass automatically,
such as commutative operators. Note that the expression
“count + 4’d1” in Fig. 7 corresponds to the expression
“4’d1 + in” in Fig. 9. The constant and the signal have
swapped places. The extract pass is equipped with a set
of rules, which specify for example that the add-operator
is commutative and thus still matches the circuits.

Another common challenge in coarse-grain synthesis are
cells of different bit-width. For example, a 16-bit ALU
cell is also able to perform 12-bit arithmetic. Therefore
it should also be mapped to smaller arithmetic operators.
The backend for the extract pass does support variable
bit widths for the matches, but at the moment of writing
this feature is not exposed through the extract command.

Even with this features, it is still possible to describe
functionality in a design that is equivialent to a coarse-
grain cell, but is not described by means of a circuit that
is isomorphic to any of the cell descriptions passed to the
extract command for that cell type. Therefore, design-
ing for a coarse-grain synthesis flow usually involves it-
eratively adding additional cell descriptions for cases that
have not been covered before.

In complex architectures it might be more suitable to use
a synthesis script that uses multiple runs of the extract
pass, that first map to intermediate cell types before map-
ping those to the final cell library, or combinations of al-
ternating runs of extract and techmap.

Another challenge is choosing the right substitutions
when different conflicting possibilities exist. This is a
complex problem?. Yosys simply applies the substitu-

3For general graphs this is an NP-hard problem that can only be
solved with heuristics for larger inputs, but in the special case of trees it

tions as they are found, without considering if and how
this would effect other possible substitutions. Therefore
it is recommended to run extract for the most beneficial
substitutions first. The order in which the possible substi-
tutions are evaluated can be set using the extract_order
attribute in the cell library file (see Fig. 9).

These challenges are, of course, less pressing when the
coarse-grain cells are optional accelerator cells (such as
DSP cells in modern FPGAs), than when the entire target
architecture is coarse-grain and therefore all logic in the
design must be mapped to the coarse-grain cell types.

5 Evaluation

The correctness of Yosys’ Verilog implementation has
been tested and verified using the following three meth-
ods:

1. A simple test suite with more than 200 small Verilog
modules was simulated with testbenches to verify the
correctness of the synthesis results.

2. A collection of more than 6000 auto-generated Ver-
ilog modules that systematically test a wide range
of Verilog features for combinational logic was syn-
thesized with Yosys as well as with three different
commercial synthesis tools. The Yosys netlists were
successfully checked for logical equivalence with
the netlists generated by the commercial tools using
Yosys’s built-in SAT solver [6]. This test has also re-
vealed some bugs in the commercial tools used as
reference. Majority voting was used to determine
the correct behavior if the commercial tools produced
non-equivalent results.

3. A small collection of real-world designs ranging
from 300 logic gates to 40.000 logic gates, includ-
ing the OpenRISC 1200 CPU [2] and the OpenMSP
430 CPU [1]. The correctness of the synthesis results
for this designs has been verified using a commer-
cial formal verification tool for logical equivalence
checking.

can be solved efficiently using dynamic programming [11, page 509ff].



Especially the last test shows that Yosys is feature-
complete enough to handle many real-world Verilog de-
signs [16]. However, there are some features in Verilog-
2005 that have not been implemented in Yosys so far,
for example multi-dimensional arrays and initialization of
ROM using the $readmemb and $readmemh system tasks.

6 Conclusions and Future Work

The research on synthesis algorithms as well as other
digital logic design issues can greatly benefit from HDLs
like Verilog or VHDL as input data format. This requires
an RTL synthesis tool with open and flexible interfaces to
connect the implementations of the actual research topic.

This paper introduces Yosys, which is the first free and
open-source logic synthesis tool that supports most of the
synthesizeable subset of Verilog-2005. It is capable of
synthesizing Verilog to a logically equivalent netlist which
can be further used for common fine-grain logic optimiza-
tion. Contrary to commercial synthesis tools, Yosys also
provides functionality for coarse-grain synthesis tasks as
well as flexible and open interfaces, which establishes its
vast extensibility. In addition to synthesis-related features,
Yosys also provides some features for digital circuit anal-
ysis, such as a built-in SAT solver.

Future work includes more synthesis passes, driven by
the requirements of applications that use Yosys as well as
additional interfaces to external tools, similar to the in-
terface to ABC. Future work also includes more features
on the analysis-side, such as a more powerful SAT-based
formal equivalence checker and commands for reverse-
engineering circuits. It is also planned to create a refer-
ence FPGA flow that is capable of using dedicated DSP
and memory resources on modern FPGA architectures.
Finally, a couple of additional small utility commands
for modifying and analyzing designs within Yosys are
planned for the near future.

Yosys is meant to be used as framework for testing new
algorithms in the context of a full-featured synthesis flow.
The Yosys source code is well-structured and the individ-
ual commands are well separated within this structure. We
hope that others will also find this framework useful and
contribute interesting new commands to it.

Yosys is free software under the terms of the ISC license
and is available at http://www.clifford.at/yosys/ and
https://github.com/cliffordwolf/yosys.
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