Near-Optimal Learning of Extensive-Form Games with Imperfect Information

Yu Bai Salesforce Research

Chi Jin (Princeton) Song Mei (UC Berkeley) Tiancheng Yu (MIT)

Multi-Agent RL / Games with Imperfect Information

Imperfect Information:

Players can only observe *partial information* about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019], Bridge Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], ...

Outline

- Formulation: Imperfect-Information Extensive-Form Games (IIEFGs)
- Game structure
	- Bilinear structure, sequence-form policies
	- Formulation as online linear regret minimization
- Online Mirror Descent
	- IXOMD algorithm
	- Balanced OMD (our algorithm)
- Counterfactual Regret Minimization
	- MCCFR framework
	- Balanced CFR (our algorithm)
- Implications in multi-player general-sum games

Imperfect-Information Extensive-Form Games (IIEFGs)

[Kuhn 1953]

A commonly used formulation of games involving

- Multi-agent
- Sequential plays
- Imperfect information

Imperfect-Information Extensive-Form Games (IIEFGs)

[Kuhn 1953]

A commonly used formulation of games involving

- Multi-agent
- Sequential plays
- Imperfect information

We formulate IIEFGs as *Partially Observable Markov Games* (POMGs) $\sum_{i=1}^{n}$ with *tree structure + perfect recall* [Kovarik et al. 2019, Kozuno et al. 2021]

Definition of IIEFGs

Two-player zero-sum IIEFG

- \bullet $\mu \in \Pi_{\text{max}}$: max-player
- \bullet $\nu \in \Pi_{\min}$: min-player

S
 $\begin{array}{lll}\n\mathbf{S} & & & \n\mathbf{m} &$ Fwo-player zero-s
 $\nu \in \Pi_{\text{max}}$: max-
 $\nu \in \Pi_{\text{min}}$: min-r

State, action, rew
 $\left(S_{\mu}, \frac{\partial_{\mu}}{\partial h}\right)$

nformation sets $r_{h} = r_{h}(s_{h_{2}} a_{u_{r}} b_{h})$
 $r_{h} = r_{h}(s_{h_{2}} a_{u_{r}} b_{h})$ $A = |A|$
 $B = |B|$ State, action, reward, transition $(S_{h}, a_{h}, b_{h}) \longrightarrow (v_{h}, S_{h+1})$ shtl $\sim p_{h}(.|s_{h}, a_{h}, b_{h})$ $\frac{B}{\sqrt{2}}=|B|$ $ph ($. $[s_{n} , a_{n} , b_{n})$ $\begin{array}{cc} \n\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial x} \n\end{array}$ Information sets $\frac{1}{x}$ \mathcal{E}_{h} $000 \cdot 7.$ $\frac{y(s_h)}{y(1)}$ $x_h = x(s_h)$, $y_h = y(s_h)$ X_{h} X_1' X_{L}^{q} $=$ # info sets for use-**Policy**

an backup bh - GIC. Isn))

Definition of IIEFGs

Tree structure:

Perfect recall assumption

At infoset x_h , history $(x_1, a_1, \ldots, x_{h-1}, a_{h-1})$ is unique a **4/2** game tree for max-player)
Xhtl

Game value (expected cumulative reward):

$$
V^{\mu,\nu} := \mathbb{E}\Big[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \mid a_h \sim \mu_h(\cdot \mid x_h), b_h \sim \nu_h(\cdot \mid y_h)\Big]
$$

Game value (expected cumulative reward): *H*

$$
V^{\mu,\nu} := \mathbb{E}\Big[\sum_{h=1}^H r_h(s_h, a_h, b_h) \mid a_h \sim \mu_h(\cdot \mid x_h), b_h \sim \nu_h(\cdot \mid y_h)\Big]
$$

Goal: Approximate Nash Equilibrium

$$
\text{NEGap}(\mu, \nu) := \max_{\mu^{\dagger}} V^{\mu^{\dagger}, \nu} - \min_{\nu^{\dagger}} V^{\mu, \nu^{\dagger}} \le \varepsilon
$$

Game value (expected cumulative reward): $V^{\mu,\nu} := \mathbb{E}$ *H* ∑ *h*=1 $r_h(s_h, a_h, b_h) | a_h \sim \mu_h(\cdot | x_h), b_h \sim \nu_h(\cdot | y_h)$

Goal: Approximate Nash Equilibrium

$$
\text{NEGap}(\mu, \nu) := \max_{\mu^{\dagger}} V^{\mu^{\dagger}, \nu} - \min_{\nu^{\dagger}} V^{\mu, \nu^{\dagger}} \le \varepsilon
$$

Goal': No-regret (only control max player)

$$
\text{Reg}(T) := \max_{\mu^{\dagger}} \sum_{t=1}^{T} V_{\cdot}^{\mu^{\dagger}, \nu^t} - V_{\cdot}^{\mu^t, \nu^t} = o(T)
$$

Game value (expected cumulative reward): $V^{\mu,\nu} := \mathbb{E}$ *H* ∑ *h*=1 $r_h(s_h, a_h, b_h) | a_h \sim \mu_h(\cdot | x_h), b_h \sim \nu_h(\cdot | y_h)$

Goal: Approximate Nash Equilibrium

$$
\text{NEGap}(\mu, \nu) := \max_{\mu^{\dagger}} V^{\mu^{\dagger}, \nu} - \min_{\nu^{\dagger}} V^{\mu, \nu^{\dagger}} \le \varepsilon
$$

Goal': No-regret (only control max player)

$$
\text{ref (only control max player)} \\
 \begin{aligned}\n \text{Reg}(T) &:= \max_{\mu^{\dagger}} \sum_{t=1}^{T} V^{\mu^{\dagger}, \nu^t} - V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{\mu^{\dagger}} \sum_{t=1}^{T} V^{\mu^t, \nu^t} - V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t} = o(T) \\
 \text{Reg}(T) &:= \max_{t=1}^{T} \sum_{t=1}^{T} V^{\mu^t, \nu^t}
$$

Online-to-batch conversion (e.g. [Zinkevich et al. 2007])

Play 2 no-regret algs against each other => Average policies* are approximate Nash $NEGap(\sqrt{7},\vec{V}^{\dagger}) \leq \frac{fls_{\mu}(T)+fls_{\nu}(T)}{T}$

Bilinear structure, sequence-form policy

[Romanovskii 1962, Koller et al. 1996, Von Stengel 1996, …]

Bilinear structure, sequence-form policy
\n[Romanowski 1962, Koller et al. 1996, Von Stengel 1996, ...]
\nReading probability
\n
$$
p_{1:h}^{k,p}(s_h, a_h, b_h) = p_0(s_h) \wedge (n_kx_h) \wedge (n_ky_h) \times \cdots \times p_k(x_{k-1}, a_{k-1}, b_{k-1})
$$
\n
$$
= \underbrace{\prod_{k=1}^{k_1} \wedge \bigwedge_{k=1}^{k_1} (a_{k'} \mid x_{k'})}_{\text{At } (a_{k'} \mid x_{k})} \times \underbrace{\prod_{k=1}^{k_1} \bigwedge_{k=1}^{k_1} (s_{k'} \mid s_{k-1}, a_{k-1}, b_{k-1})}_{\text{At } (a_{k'} \mid x_{k})} \cdot \bigwedge_{k=1}^{k_1} (s_{k'} \mid s_{k-1}, b_{k-1})}
$$
\n(80)

Online linear regret minimization

Online linear regret minimization
\n
$$
\text{Opponent } \{ \nu^t \}_{t=1}^T, \text{ loss function } \{ \ell^t := \ell^{\nu^t} \}_{t=1}^T
$$
\n
$$
\frac{H - V^{\mu, \nu^t}}{\sum_{k=1}^{\nu^t} \sum_{k=1}^{\nu^t} \sum_{k=1}^T \sum_{k=1}^
$$

Regret

$$
\operatorname{Reg}(T) = \max_{\mu^{\dagger} \in \Pi_{\max}} \sum_{t=1}^{T} \left(V^{\mu^{\dagger}, \nu^{t}} - V^{\mu^{t}, \nu^{t}} \right)
$$

$$
= \max_{\mu \in \mathcal{K}} \sum_{t=1}^{T} \left\langle \mu^{+}, \mu^{+} \right\rangle \mathcal{L}^{+} \left\langle \mu^{+}, \mu^{+} \right\rangle
$$

Full feedback / known game:

- Formulation as a linear program [von Stengel 1996, Koller et al. 1996, ...]
- First-order optimization / online mirror descent (OMD) over sequence-form strategy space [Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
- Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Full feedback / known game:

- Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]
- First-order optimization / online mirror descent (OMD) over sequence-form strategy space [Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
- Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing):

- Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
- Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …]
- Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]
	- Learns an ε -Nash within $\widetilde{O}((X^2A + Y^2B)/\varepsilon^2)$ episodes (prior best; *ignoring* $\mathrm{poly}(H))$
	- X, Y : number of information sets; A, B : number of actions
	- Lower bound is $\Omega((XA + YB)/\varepsilon^2)$, still $\max\{X, Y\}$ factor away

Full feedback / known game:

- Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]
- First-order optimization / online mirror descent (OMD) over sequence-form strategy space [Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
- Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing):

- Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
- Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …]
- Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]
	- Learns an ε -Nash within $\widetilde{O}((X^2A + Y^2B)/\varepsilon^2)$ episodes (current best; *ignoring* $\mathrm{poly}(H))$
	- X, Y : number of information sets; A, B : number of actions
	- Lower bound is $\Omega((XA + YB)/\varepsilon^2)$, still $\max\{X, Y\}$ factor away

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs from *bandit feedback* with *near-optimal sample complexity*?

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, …]

Recall the regret

$$
\text{Reg}(T) = \max_{\mu^{\dagger} \in \Pi_{\text{max}}} \sum_{t=1}^{T} \langle \mu^{t} - \mu^{\dagger}, \ell^{t} \rangle
$$

(ii) Loss vector

Full feedback: Set $\widetilde{\ell^t} := \ell^t$

Algorithm (OMD, sketch): For $t = 1, ..., T$: $\mu^{t+1} = \argmin \eta \langle \mu, \widetilde{\ell}^t \rangle + D(\mu || \mu^t)$ $\mu \in \Pi_{\max}$

(ii) Loss vector

Full feedback: Set $\widetilde{\ell}^t := \ell^t$ Bandit feedback: Importance weighted loss estimator (like EXP3)

1. Play one episode with μ^t (opponent plays ν^t), observe trajectory

 $(x_1^t, a_1^t, r_1^t, \ldots, x_H^t, a_H^t, r_H^t)$

Implicit-Exploration Online Mirror Descent (IXOMD)

[Kozuno et al. 2021]

Algorithm (IXOMD):

1. Play an episode with policy μ^t , construct loss estimator

\n- 1. Play an episode with policy
$$
\mu^t
$$
, construct loss estimator\n
$$
\widetilde{\ell}_{h}^{t}(x_h, a_h) := \frac{\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)}{\mu_{1:h}^{t}(x_h, a_h) + \gamma}
$$
\n
\n- 2. Update policy\n
$$
\mu^{t+1} = \operatorname*{argmin}_{\mu \in \Pi_{\text{max}}} \eta \langle \mu, \widetilde{\ell}^{t} \rangle + D(\mu || \mu^t),
$$
\n
$$
\text{(with efficient implementation)}_{\epsilon}
$$
\n
\n

Theorem [Kozuno, Menard, Munos, Valko, 2021]:

IXOMD achieves $\widetilde{\mathit{O}}(\sqrt{X^2AT})$ regret (against adversarial opponents), and learns ϵ -Nash within $\widetilde{O}((X^2A + Y^2B)/\varepsilon^2)$ episodes of self-play.

Balanced OMD

Algorithm (Balanced OMD, max-player):

1. Play an episode with policy μ^t , construct loss estimator

$$
\widetilde{e}_h^t(x_h, a_h) := \frac{\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)}{\mu_{1:h}^t(x_h, a_h) + \gamma \mu_{1:h}^{\star, h}(x_h, a_h)}.
$$

2. Update policy

$$
\mu^{t+1} = \operatorname*{argmin}_{\mu \in \Pi_{\text{max}}} \eta \langle \widetilde{e^t}, \mu \rangle + D^{\text{bal}}(\mu \| \mu^t),
$$

(with efficient implementation)

Balanced OMD

Algorithm (Balanced OMD, max-player): 1. Play an episode with policy μ^t , construct loss estimator $\widetilde{e}_h^t(x_h, a_h) := \frac{\mathbf{1}\{(x_h, a_h) = (x_h, a_h)\} \cdot (1 - r_h)}{\mathbf{1}\{(x_h, a_h) \mid \mathbf{1}\}(x_h, a_h)}.$ 2. Update policy $\mu^{t+1} = \argmin \eta \langle \widetilde{\ell}^t, \mu \rangle + D^{\text{bal}}(\mu || \mu^t),$ $\mathbf{1}\{(x_h^t, a_h^t) = (x_h, a_h)\} \cdot (1 - r_h^t)$ $\mu_{1:h}^t(x_h, a_h) + \gamma \mu_{1:h}^{\star, h}(x_h, a_h)$ $\mu \in \Pi_{\max}$ $\underline{D}^{\mathrm{bal}}($

(with efficient implementation)

Main new ingredient: **Balanced dilated KL distance**

$$
D^{\text{bal}}(\mu \| \mu') := \sum_{h,x_h,a_h} \frac{\mu_{1:h}(x_h, a_h)}{\mu_{1:h}^{\star, h}(x_h, a_h)} \log \frac{\mu_h(a_h | x_h)}{\mu'_h(a_h | x_h)},
$$

 $|C_h(x_h, a_{h'})|$

 $\left| \mathcal{C}_h(\overline{x_{h'}}) \right|$

= Dilated KL + reweighting by **Balanced exploration policies** $\{\mu^{\star, h}\}_{h=1}^H$ bighting by **Balanced exploration p**
 $\mu_{1:h}^{\star,h}(x_h, a_h) = \prod_{h'=1}^{h} \frac{|\mathcal{L}_h(x_{h'}, a_{h'})|}{\sqrt{\mathcal{C}_h(x_{h'})}}$

h

∏

 $h' = 1$

 $\mu_{1:h}^{\star,h}(x_h, a_h) =$

Number of descendants of $(x_{h'}, a_{h'})$ within h-th layer

(extension of [Farina et al. 2020c]).

Intuition: Visit "larger subtrees" more often, balanced by # descendants in layer h

"Balancing property": For any A6 Thex, $\sum_{x_{k},a_{k}}$ $X_{h}A$

Balanced OMD

-Nash within $\widetilde{O}((XA + YB)/\varepsilon^2)$ episodes of self-play.

Balanced OMD

Main technical highlight:

"Balancing effect" introduced by D^{bal} (adapts to geometry of policy space) ==> better stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]), by bounding a certain *log-partition function* via *2nd order Taylor expansion*

Counterfactual Regret Minimization

[Zinkevich et al. 2007]

Idea: Counterfactual Regret Decomposition (\approx performance difference lemma)

 $\rightarrow \langle \mu^t - \mu^{\dagger}, \ell^t \rangle$ = *H* ∑ *h*=1 $\left[\mu_{1:h-1}^{\dagger}\hat{\mu}_{h}^{h}\right]$ *H* ∑ *h*′ =*h* r_h $\left| - \mathbb{E}_{\mu_1^+} \right|$ $\left| \int_{1:h}^{t} \mu_{h+1:H}^{t} \right|$ *H* ∑ *h*′ =*h rh*] = *H* ∑ *h*=1 ∑ *xh*,*ah* Above, $L^t_h(x_h, a_h)$ is the *counterfactual loss function* (\approx Q function x "probabilities") $L_h^t(x_h, a_h) := \left[\ell_h^t(x_h, a_h) \right] + \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \mathcal{M}_{htl:k'}(x_h, a_{k'}) \cdot \ell_h^t(x_h, a_{k'})$ **terfactual Regret Min**

h et al. 2007]

unterfactual Regret Decomposition
 μ^{\dagger} , ℓ^t)
 μ^{\dagger} , ℓ^t)
 $\left[\sum_{h'=h}^H r_h\right] - \underbrace{\mathbb{E}_{\mu^{\dagger}_{1:h}\mu^t_{h+1:H}}}_{\mathcal{N}_{1:h+1}^{\dagger}}$ $\mu_{l:h+1}^{+}$ (Kh-1, a_{h-f}). $C^{\mu^+_{\lambda}(a_{\mu}|\chi_{\lambda})}$ - $\mathcal{N}_1^{\mu}(a_{\mu}|\chi_{\lambda})$. L_{L} (Xh, Gh) $=$ $\sum_{h=1}^{1}$ $\sum_{\kappa_{h}}$ $\frac{1}{h}$ $i\left(x_{h-1}, a_{h-1}\right)$. $\langle \mathcal{M}_{h}^{t}(\cdot | x_{h}) - \mathcal{M}_{h}^{t}(\cdot | x_{h}), \mathcal{L}_{h}^{t}(x_{h},\cdot) \rangle_{a_{h}}$ $\begin{aligned}\n\mathcal{L} & \sum_{k \geq 1} \sum_{k \mu_k} \mathcal{N}_{ik+1}^{T}(\mathbf{x}_{k-1}, \mathbf{a}_{k-1}) & \mathcal{N}_{\mu}^{+}(\mathbf{a}_{k}) - \mathcal{M}_{\mu}^{+}(\mathbf{a}_{k}) & \mathcal{M}_{\mu}^{+}(\mathbf{x}_{k-1}) & \mathcal{N}_{\mu}^{+}(\mathbf{x}_{k-1}) & \mathcal{N}_{\mu}^{+}(\mathbf{x}_{k-1}) & \mathcal{N}_{\mu}^{+}(\mathbf{x}_{k-1}) & \mathcal{N}_{\mu}^{+}$

Counterfactual Regret Minimization

[Zinkevich et al. 2007]

Counterfactual regret decomposition:

Monte-Carlo Counterfactual Regret Minimization (MCCFR)

[Lanctot et al. 2009]

Monte-Carlo Counterfactual Regret Minimization (MCCFR)

[Lanctot et al. 2009]

Many design choices:

- **•** Sampling policy $\widetilde{\mu}^t$
- Loss estimator
- \bullet Regret minimization algorithm $R_{_{X_h}}$ (e.g. Hedge, Regret Matching, ...)
- Bandit feedback / general stochastic feedback (>1 episodes per iteration)

MCCFR framework

[Lanctot et al. 2009]

Algorithm (MCCFR framework, bandit feedback case):

For $t = 1, ..., T$:

1. Play one episode with some sampling policy $\widetilde{\mu}^t$, observe trajectory

 $(x_1^t, a_1^t, r_1^t, \ldots, x_H^t, a_H^t, r_H^t)$

2. Construct unbiased counterfactual loss estimator

 $\widetilde{L}_h^t(x_h, a_h) : \mathbb{E}[\widetilde{L}_h^t(x_h, a_h)] = L_h^t(x_h, a_h).$

3. Update policy at each information set

 $\mu^{t+1}(\cdot | x_h) = R_{x_h}$. Update $(\lbrace \widetilde{L}_h^t(x_h, a) \rbrace_{a \in \mathcal{A}})$.

- An initial regret concentration analysis is given in [Farina et al. 2020c]
- Later instantiated by [Farina & Sandholm 2021] => $\widetilde{O}(\text{poly}(X, Y, A, B)/\epsilon^4)$ rate for learning NE from bandit feedback.

Algorithm (Balanced CFR, max-player): 1. Play **H** episodes with policy $\mu_{1:h}^{\star,h} \mu_{h+1:H}^t$, observe trajectory 2. Construct counterfactual loss estimator $\widetilde{L}_h^t(x_h, a_h) := \frac{\mathbf{1}(\mathcal{A}_h, a_h) - (\mathcal{A}_h, a_h)}{\mathcal{A}_h^t(x_h, a_h)} \cdot \sum_{h'} (1 - r_{h'}^{t,h)}).$ 3. Update policy at each information set via Hedge $\mu_h^{t+1}(a | x_h) \propto_a \mu_h^t(a | x_h) \cdot \exp(-\eta \mu_{1:h}^{\star, h}(x_h, a) \widetilde{L}_h^t(x_h, a)).$ (can also use Regret Matching [Zinkevich et al. 2007].) $(x_1^{t,(h)}, a_1^{t,(h)}, r_1^{t,(h)}, \ldots, x_H^{t,(h)}, a_H^{t,(h)}, r_H^{t,(h)})$ $\mathbf{1}\{(x_h^{t,(h)}, a_h^{t,(h)}) = (x_h, a_h)\}\$ $\frac{\mu \star h(x_h, a_h)}{\mu_{1:h}^{\star h}(x_h, a_h)}$. *H* ∑ *h*′ =*h* $(1 - r_{h'}^{t,(h)})$ Mixture of $\mu^{\star,h}$ and μ^t

Our Balanced CFR Algorithm = MCCFR framework

+ balanced exploration policy $\{\mu^{\star, h}\}$

+ sampling by **mixing importance weighting** (using $\mu^{\star,h}$) and Monte Carlo (using μ^t)

+ "adaptive" learning rate $\mu_{1:h}^{\star,h}(x_h, a_h)$ at each infoset

Theorem [Bai, Jin, Mei, Yu, 2022]:

Balanced CFR learns ε -Nash within $\widetilde{O}((XA + YB)/\varepsilon^2)$ episodes of self-play.

 $\{\mu^t\}_{t=1}^T$ also achieves $\text{Reg}(T) \leq \widetilde{O}(\sqrt{XAT})$, but \neq actual played policies.

Main technical highlight:

Sharp counterfactual regret decomposition involving coefficient $\mu_{1:h-1}^{\dagger}(x_{h-1},a_{h-1})$ 1:*h*−1 log *A* $\mu_{1:h}^{\star,h}(x_h, a) \cdot \widetilde{L}_h^t(x_h, a)^2$ "balanced" with Hedge's regret bound $+2\sum$ $\mu_{1:h}^{\star,h}(x_h,a)$ *a*,*t* ' $\frac{\Delta A \cdot xA}{2}$ + 27

Comparison against existing results

Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Normal-Form Coarse Correlated Equilibrium

$$
\text{CCEGap}(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^{\dagger}} V^{\pi_i^{\dagger}, \pi_{-i}} - V^{\pi} \right) \le \varepsilon
$$

No gains in deviating from correlated policy π

Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

$$
\text{CCEGap}(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^{\dagger}} V^{\pi_i^{\dagger}, \pi_{-i}} - V^{\pi} \right) \le \varepsilon
$$
\nNo gains in deviating from correlated policy π

Corollary: Run Balanced OMD or Balanced CFR on all players $==$ > ε -NFCCE of multi-player general-sum IIEFGs within $\widetilde{O}((\max X_iA_i)/\varepsilon^2)$ episodes of play. *i*

Proof follows directly by known connection between NFCCE and no-regret learning in multi-player general-sum IIEFGs [Celli et al. 2019].

Summary

First line of near-optimal algorithms for learning IIEFGs from bandit feedback

Crucial use of balanced exploration policies

- distance functions in OMD
- sampling policies in CFR

Summary

First line of near-optimal algorithms for learning IIEFGs from bandit feedback

Crucial use of balanced exploration policies

- distance functions in OMD
- sampling policies in CFR

Future directions

- Further understandings of OMD/CFR type algorithms
- Sample-efficient learning of other equilibria (e.g. correlated equilibria)
- Relationship between Markov Games and Extensive-Form Games
- Empirical investigations

Thank you!

https://arxiv.org/abs/2202.01752