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Multi-Agent RL / Games with Imperfect Information

Imperfect Information:  
Players can only observe partial information about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019],  
Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], …

Image source (right):  
No-Press Diplomacy from Scratch, Bakhtin et al. 2021.



Outline

• Formulation: Imperfect-Information Extensive-Form Games (IIEFGs)

• Game structure


- Bilinear structure, sequence-form policies 
- Formulation as online linear regret minimization 

• Online Mirror Descent

- IXOMD algorithm 
- Balanced OMD (our algorithm) 

• Counterfactual Regret Minimization

- MCCFR framework 
- Balanced CFR (our algorithm) 

• Implications in multi-player general-sum games




Imperfect-Information Extensive-Form Games (IIEFGs)

A commonly used formulation of games involving 
• Multi-agent 
• Sequential plays 
• Imperfect information

Image source: Superhuman AI for Multiplayer Poker,  
Brown & Sandholm 2019.

[Kuhn 1953]



Imperfect-Information Extensive-Form Games (IIEFGs)

A commonly used formulation of games involving 
• Multi-agent 
• Sequential plays 
• Imperfect information

Image source: Superhuman AI for Multiplayer Poker,  
Brown & Sandholm 2019.

[Kuhn 1953]

We formulate IIEFGs as Partially Observable Markov Games (POMGs)  
with tree structure + perfect recall [Kovarik et al. 2019, Kozuno et al. 2021]



Definition of IIEFGs

State, action, reward, transition

Information sets

xh = x(sh), yh = y(sh)

Two-player zero-sum IIEFG

• : max-player 

• : min-player
μ ∈ Πmax
ν ∈ Πmin

Policy
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Definition of IIEFGs

Perfect recall assumption

At infoset , history  is uniquexh (x1, a1, …, xh−1, ah−1)

Tree structure:

At state , history  is uniquesh (s1, a1, b1, …, sh−1, ah−1, bh−1)
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Learning goals in IIEFGs

Game value (expected cumulative reward): 

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh( ⋅ |xh), bh ∼ νh( ⋅ |yh)]
- -

-
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Goal: Approximate Nash Equilibrium 
 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
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Game value (expected cumulative reward): 
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H
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h=1
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Learning goals in IIEFGs

Game value (expected cumulative reward): 

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh( ⋅ |xh), bh ∼ νh( ⋅ |yh)]

Goal: Approximate Nash Equilibrium 
 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
Vμ,ν† ≤ ε

Goal’: No-regret (only control max player) 

 Reg(T ) := max
μ†

T

∑
t=1

Vμ†,νt − Vμt,νt = o(T )

Online-to-batch conversion (e.g. [Zinkevich et al. 2007]) 
Play 2 no-regret algs against each other => Average policies* are approximate Nash
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Bilinear structure, sequence-form policy

Reaching probability

p1:h(sh, ah, bh) =

[Romanovskii 1962, Koller et al. 1996, Von Stengel 1996, …]

Decompose game value

H − Vμ,ν = ∑H

h=1 ∑sh,ah,bh
p1:h(sh, ah, bh)(1 − rh(sh, ah, bh))
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Online linear regret minimization

Opponent , loss function 
{νt}T
t=1 {ℓt := ℓνt}T

t=1
H − Vμ,νt =

Regret

Reg(T ) = maxμ†∈Πmax

∑T
t=1 (Vμ†,νt − Vμt,νt)
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Existing algorithms



Existing algorithms

Full feedback / known game: 
• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …] 
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space 

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …] 
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, 

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]
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• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …] 
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space 

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …] 
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, 

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing): 
• Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021] 
• Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …] 
• Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021] 

• Learns an -Nash within  episodes (prior best; ignoring ) 
• : number of information sets; : number of actions 
• Lower bound is , still  factor away

ε Õ ((X2A + Y2B)/ε2) poly(H )
X, Y A, B

Ω((XA + YB)/ε2) max{X, Y}



Existing algorithms

Full feedback / known game: 
• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …] 
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space 

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …] 
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009, 

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing): 
• Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021] 
• Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …] 
• Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021] 

• Learns an -Nash within  episodes (current best; ignoring ) 
• : number of information sets; : number of actions 
• Lower bound is , still  factor away

ε Õ ((X2A + Y2B)/ε2) poly(H )
X, Y A, B

Ω((XA + YB)/ε2) max{X, Y}

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs  
from bandit feedback with near-optimal sample complexity? 



Online Mirror Descent (OMD)

Algorithm (OMD, sketch):

For :


 

t = 1,…, T
μt+1 = argmin

μ∈Πmax

Recall the regret

Reg(T ) = maxμ†∈Πmax

∑T
t=1 ⟨μt − μ†, ℓt⟩

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, …]

secret > +Him
-



Online Mirror Descent (OMD)

(i) Dilated KL distance


D(μ∥μ′ ) :=

Algorithm (OMD, sketch):

For :


 

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)

-

[ Hoda et . al
.

2010
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Kroer et al . V15 ] :
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Online Mirror Descent (OMD)

(ii) Loss vector


Full feedback: Set ℓ̃ t := ℓt

Algorithm (OMD, sketch):

For :


 

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)
-

-

-



Online Mirror Descent (OMD)

(ii) Loss vector


Full feedback: Set 

Bandit feedback: Importance weighted loss estimator (like EXP3) 

1. Play one episode with  (opponent plays ), observe trajectory 
                                     

2. Unbiased loss estimator 
 

ℓ̃ t := ℓt

μt νt

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

ℓ̃ t
h(xh, ah) =

Algorithm (OMD, sketch):

For :


 

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)
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Implicit-Exploration Online Mirror Descent (IXOMD)

Algorithm (IXOMD): 
1. Play an episode with policy , construct loss estimator 

                       . 

2. Update policy 
                          , 

(with efficient implementation) 

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γ

μt+1 = argmin
μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)

Theorem [Kozuno, Menard, Munos, Valko, 2021]: 
IXOMD achieves  regret (against adversarial opponents), and learns 
-Nash within  episodes of self-play.

Õ ( X2AT) ϵ
Õ ((X2A + Y2B)/ε2)

IX bonus

[Kozuno et al. 2021]
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Algorithm (Balanced OMD, max-player): 
1. Play an episode with policy , construct loss estimator 

                       . 

2. Update policy 
                          , 

(with efficient implementation) 

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD



Algorithm (Balanced OMD, max-player): 
1. Play an episode with policy , construct loss estimator 

                       . 

2. Update policy 
                          , 

(with efficient implementation) 

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Main new ingredient: Balanced dilated KL distance 

, 

= Dilated KL + reweighting by Balanced exploration policies  

 

(extension of [Farina et al. 2020c]).

Dbal(μ∥μ′ ) := ∑
h,xh,ah

μ1:h(xh, ah)
μ⋆,h

1:h (xh, ah)
log μh(ah |xh)

μ′ h(ah |xh)

{μ⋆,h}H
h=1

μ⋆,h
1:h (xh, ah) =

h

∏
h′ =1

|Ch(xh′ , ah′ ) |
|Ch(xh′ ) |

Number of descendants 
of  within h-th layer(xh′ , ah′ )

-

→ ⑤



Balanced exploration policies

Sequence-form (till step ): 


Conditional-form: 

h μ⋆,h
1:h (xh, ah) = ∏h

h′ =1
|Ch(xh′ , ah′ ) |

|Ch(xh′ ) |

μ⋆,h
h′ (ah′ |xh′ ) =

|Ch(xh′ , ah′ ) |
|Ch(xh′ ) |

, for 1 ≤ h′ ≤ h;

1/A, for h + 1 ≤ h′ ≤ H .

Intuition: Visit “larger subtrees” more often, balanced by # descendants in layer h

“Balancing property”:

④ ox"
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Algorithm (Balanced OMD, max-player): 
1. Play an episode with policy , construct loss estimator 

                       . 

2. Update policy 
                          , 

(with efficient implementation) 

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Theorem [Bai, Jin, Mei, Yu, 2022]: 
IXOMD achieves  regret (against adversarial opponents), and learns 
-Nash within  episodes of self-play.

Õ ( XAT) ε
Õ ((XA + YB)/ε2)

ha

=



Algorithm (Balanced OMD, max-player): 
1. Play an episode with policy , construct loss estimator 

                       . 

2. Update policy 
                          , 

(with efficient implementation) 

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Main technical highlight: 
“Balancing effect” introduced by  (adapts to geometry of policy space) 
==> better stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]) ,  

by bounding a certain log-partition function via 2nd order Taylor expansion 

Dbal



Counterfactual Regret Minimization
[Zinkevich et al. 2007]

Idea: Counterfactual Regret Decomposition (  performance difference lemma)
≈
⟨μt − μ†, ℓt⟩

=
H

∑
h=1

$μ†
1:h−1μt

h:H [
H

∑
h′ =h

rh] − $μ†
1:hμt

h+1:H [
H

∑
h′ =h

rh]
=

H

∑
h=1

∑
xh,ah

Above,  is the counterfactual loss function (  Q function x “probabilities”) Lt
h(xh, ah) ≈

Lt
h(xh, ah) :=

→
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Counterfactual Regret Minimization
[Zinkevich et al. 2007]

Counterfactual regret decomposition:


Reg(T ) = max
μ†∈Πmax

T

∑
t=1

⟨μt − μ†, ℓt⟩

≤
H

∑
h=1

max
μ†

1:h−1
∑
xh,ah

μ†
1:h−1(xh−1, ah−1)

≤1

max
μ†(⋅|xh)

T

∑
t=1

⟨μt( ⋅ |xh) − μ†( ⋅ |xh), Lt
h(xh, ⋅ )⟩

:=Rimm,T
h (xh)

≤
H

∑
h=1

∑
xh,ah

Rimm,T
h (xh) .

Algorithm (CFR, sketch):

For , all : 

 

t = 1,…, T (h, xh, ah)
μt+1( ⋅ |xh) = Rxh

. Update({L̃t
h(xh, a)}a∈1)

Regret minimization subroutine 
on simplex (e.g. Hedge)

Loss estimator for 
counterfactual losses 

÷:¥⇒#ÉG



Monte-Carlo Counterfactual Regret Minimization (MCCFR)
[Lanctot et al. 2009]

Algorithm (MCCFR framework, bandit feedback case): 
For : 

1. Play one episode with some sampling policy , observe trajectory 
                               

2. Construct unbiased counterfactual loss estimator 
                           . 

3. Update policy at each information set 
                       .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1( ⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)

Not necessarily μt

e.g. from
{ ℓ̃ t

h(xh, ah)}



Monte-Carlo Counterfactual Regret Minimization (MCCFR)
[Lanctot et al. 2009]

Algorithm (MCCFR framework, bandit feedback case): 
For : 

1. Play one episode with some sampling policy , observe trajectory 
                               

2. Construct unbiased counterfactual loss estimator 
                           . 

3. Update policy at each information set 
                       .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1( ⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)

Many design choices: 
• Sampling policy  
• Loss estimator 
• Regret minimization algorithm  (e.g. Hedge, Regret Matching, …) 
• Bandit feedback / general stochastic feedback (>1 episodes per iteration)

μ̃ t

Rxh

Not necessarily μt

e.g. from
{ ℓ̃ t

h(xh, ah)}



MCCFR framework
[Lanctot et al. 2009]

• An initial regret concentration analysis is given in [Farina et al. 2020c]  
• Later instantiated by [Farina & Sandholm 2021] =>  rate for 

learning NE from bandit feedback.
Õ (poly(X, Y, A, B)/ϵ4)

Algorithm (MCCFR framework, bandit feedback case): 
For : 

1. Play one episode with some sampling policy , observe trajectory 
                               

2. Construct unbiased counterfactual loss estimator 
                           . 

3. Update policy at each information set 
                       .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1( ⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)



Balanced CFR

Algorithm (Balanced CFR, max-player): 
1. Play H episodes with policy , observe trajectory 

                               
2. Construct counterfactual loss estimator 

               . 

3. Update policy at each information set via Hedge 
                . 

(can also use Regret Matching [Zinkevich et al. 2007].)

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Mixture of  and μ⋆,h μt



Balanced CFR

Algorithm (Balanced CFR, max-player): 
1. Play H episodes with policy , observe trajectory 

                               
2. Construct counterfactual loss estimator 

               . 

3. Update policy at each information set via Hedge 
                . 

(can also use Regret Matching [Zinkevich et al. 2007].)

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Mixture of  and μ⋆,h μt

Our Balanced CFR Algorithm = MCCFR framework 
+ balanced exploration policy  
+ sampling by mixing importance weighting (using ) and Monte Carlo (using )  
+ “adaptive” learning rate  at each infoset

{μ⋆,h}
μ⋆,h μt

μ⋆,h
1:h (xh, ah)



Balanced CFR

Algorithm (Balanced CFR, max-player): 
1. Play H episodes with policy , observe trajectory 

                               
2. Construct counterfactual loss estimator 

               . 

3. Update policy at each information set via Hedge 
                .

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Theorem [Bai, Jin, Mei, Yu, 2022]:  
Balanced CFR learns -Nash within  episodes of self-play. 

  also achieves , but  actual played policies.
ε Õ ((XA + YB)/ε2)

{μt}T
t=1 Reg(T ) ≤ Õ ( XAT) ≠



Balanced CFR

Algorithm (Balanced CFR, max-player): 
1. Play H episodes with policy , observe trajectory 

                               
2. Construct counterfactual loss estimator 

               . 

3. Update policy at each information set via Hedge 
                .

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H )

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h ) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′ )

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp( − ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Main technical highlight: 
Sharp counterfactual regret decomposition involving coefficient  

“balanced” with Hedge’s regret bound 

μ†
1:h−1(xh−1, ah−1)

log A
μ⋆,h

1:h (xh, a)
+ ∑

a,t
μ⋆,h

1:h (xh, a) ⋅ L̃t
h(xh, a)2

⑦ /
g-

'



Comparison against existing results



Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Normal-Form Coarse Correlated Equilibrium 
 CCEGap(π) := max

i∈[m] ( max
π†

i

Vπ†
i ,π−i − Vπ) ≤ ε

No gains in deviating 
from correlated policy π



Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Corollary: Run Balanced OMD or Balanced CFR on all players ==> -NFCCE of 
multi-player general-sum IIEFGs within  episodes of play.

ε
Õ ((max

i
XiAi)/ε2)

Proof follows directly by known connection between NFCCE and no-regret learning 
in multi-player general-sum IIEFGs [Celli et al. 2019].

Normal-Form Coarse Correlated Equilibrium 
 CCEGap(π) := max

i∈[m] ( max
π†

i

Vπ†
i ,π−i − Vπ) ≤ ε

No gains in deviating 
from correlated policy π



Summary
First line of near-optimal algorithms for learning IIEFGs from bandit feedback 

Crucial use of balanced exploration policies 
• distance functions in OMD 
• sampling policies in CFR
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Future directions 
• Further understandings of OMD/CFR type algorithms 
• Sample-efficient learning of other equilibria (e.g. correlated equilibria) 
• Relationship between Markov Games and Extensive-Form Games 
• Empirical investigations

Thank you!
https://arxiv.org/abs/2202.01752


