Recent Progresses on the Theory of Multi-Agent Reinforcement Learning and Games

Yu Bai Salesforce Research

Blog post: <u>https://yubai.org/blog/marl_theory.html</u>

Multi-Agent Reinforcement Learning

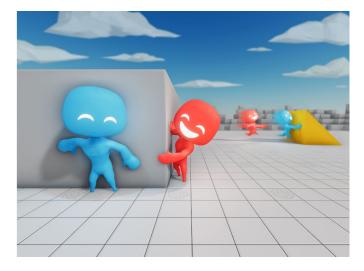
AlphaGo

Poker

AI Economist

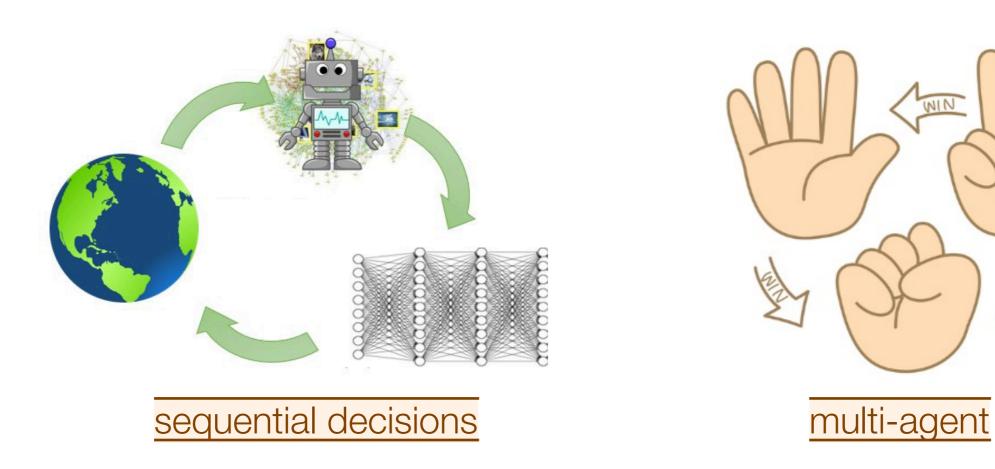
Starcraft

Diplomacy



Hide and Seek

Multi-Agent Reinforcement Learning



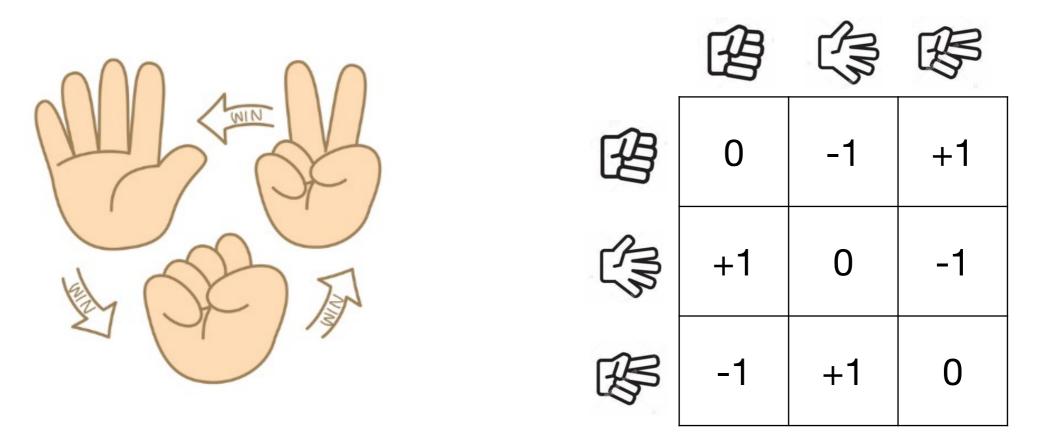
A relatively new field, with unique challenges and opportunities for both **theory**/empirical research.

Outline

- Formulations
 - Normal-Form Games (NFGs)
 - Markov Games (MGs)
- Two-Player Zero-Sum Markov Games
- Multi-Player General-Sum Markov Games
- Faster Convergence via Optimistic Algorithms
- Advanced Topics
 - Imperfect Information
 - Rationalizability

* Sketchy -> Please refer to slides / references (in presenter notes)

Normal-Form Games (NFGs)



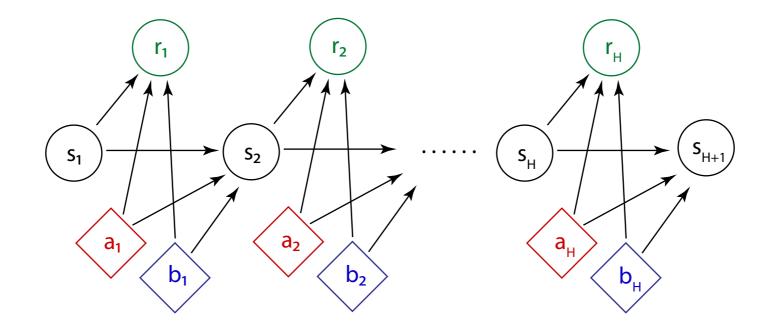
Multi-player Normal-Form Games (NFGs):

- Players {1,...,*m*}
- Each player *i* chooses their action $a_i \in \mathcal{A}_i$ simultaneously
- Each player *i* receives reward $r_i(a_1, ..., a_m) \in [0,1]$ (general-sum)

Markov Games (MGs)

[Shapley 1953]

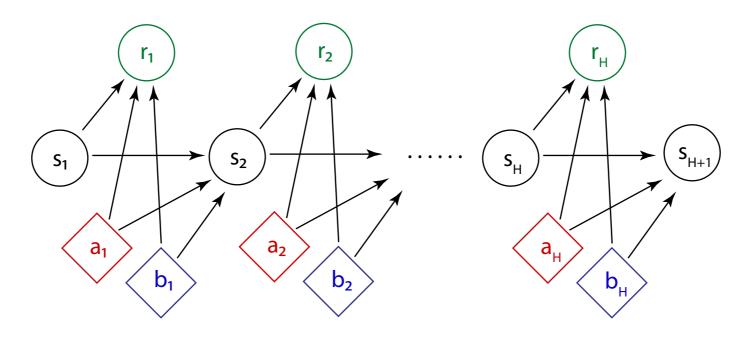
(also known as **Stochastic Games**)



Finite-horizon General-Sum Markov Games with *m* players:

- Horizon length *H*
- State space $|\mathcal{S}| = S$
- Action space $|\mathcal{A}_i| = A_i$ (for *i*-th player)
- Reward: $r_{i,h}(s_h, a_{1,h}, \dots, a_{m,h})$ (for *i*-th player)
- Transition: $(s_h, a_{1,h}, \dots, a_{m,h}) \rightarrow s_{h+1}$

Policies, Values, Equilibria



- (Markov product) policy: $a_{i,h} \sim \pi_{i,h}(\cdot | s_h)$
- Game value (for *i*-th player): $V_i^{\pi} = \mathbb{E}_{\pi} \left[\sum_{h=1}^{H} r_{i,h} \right]$

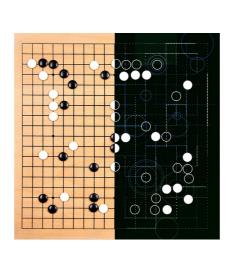
Nash Equilibrium (NE): A product policy $\pi = \{\pi_i\}_{i \in [m]}$ is an ε -NE if NEGap $(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^{\dagger}} V_i^{\pi_i^{\dagger}, \pi_{-i}} - V_i^{\pi} \right) \le \varepsilon$

i.e. each player plays the best response of all other player's policies.

What are natural learning goals in Markov Games? (Generalizing "near-optimal policy" in MDPs)

Two-Player Zero-Sum Markov Games

Two-Player Zero-Sum Markov Games



Two-Player Zero-Sum MGs: $m = 2, r_1 \equiv 1 - r_2$

NE can be learned efficiently with polynomial time and samples: [BT02, WHL17, JYM19, SMYY19, **B**J20, XCWY20, **B**JY20, ZKBY20, LY**B**J20, CZG21, JLY21, HLWZ21, LCWC22...]

Planning Algorithm

Nash Value Iteration (Nash-VI):

- Initialize $V_{H+1}^{\star}(s) \equiv 0$ for all $s \in S$
- For h = H, ..., 1
 - For all (s, a_1, a_2) : $Q_h^{\star}(s, a_1, a_2) = r_h(s, a_1, a_2) + (\mathbb{P}_h V_{h+1}^{\star})(s, a_1, a_2)$
 - For all s:

$$(\pi_{1,h}^{\star}(\cdot \mid s), \pi_{2,h}^{\star}(\cdot \mid s)) = \operatorname{MatrixNash}(Q_{h}^{\star}(s, \cdot, \cdot))$$
$$V_{h}^{\star}(s) = \langle \pi_{1,h}^{\star}(\cdot \mid s) \times \pi_{2,h}^{\star}(\cdot \mid s), Q_{h}^{\star}(s, \cdot, \cdot) \rangle$$

Matrix Nash subroutine:

$$\operatorname{MatrixNash}(Q) = \operatorname{arg}\left(\max_{\pi_1 \in \Delta(\mathscr{A})} \min_{\pi_2 \in \Delta(\mathscr{B})} \langle \pi_1 \times \pi_2, Q \rangle\right)$$

Nash-VI computes an exact NE (of a *known* game) in $poly(H, S, A_1, A_2)$ time.

Learn NE in online setting (only observe trajectories from playing)?

Optimistic Nash-VI

[Liu, Yu, **Bai**, Jin 2020]

- Initialize $\overline{Q}_{H+1}(s) \leftarrow H, \underline{Q}_{H+1}(s) \leftarrow 0$ for all $s \in S$
- For episode $k = 1, \dots, K$:
- For h = H, ..., 1: • For all (s, a_1, a_2) : $\overline{Q}_h(s, a_1, a_2) = r_h(s, a_1, a_2) + (\hat{\mathbb{P}}_h \overline{V}_{h+1})(s, a_1, a_2) + \beta$ $\underline{Q}_h(s, a_1, a_2) = r_h(s, a_1, a_2) + (\hat{\mathbb{P}}_h \underline{V}_{h+1})(s, a_1, a_2) - \beta$ $\overline{Q}_h(s, a_1, a_2) = r_h(s, a_1, a_2) + (\hat{\mathbb{P}}_h \underline{V}_{h+1})(s, a_1, a_2) - \beta$
 - For all *s*: $\pi_{h}(\cdot, \cdot \mid s) = \operatorname{MatrixCCE}(\overline{Q}_{h}(s, \cdot, \cdot), \underline{Q}_{h}(s, \cdot, \cdot))$ $\overline{V}_{h}(s) = \langle \pi_{h}(\cdot, \cdot \mid s), \overline{Q}_{h}(s, \cdot, \cdot) \rangle$

 $\underline{V}_{h}(s) = \langle \pi_{h}(\cdot, \cdot \mid s), \underline{Q}_{h}(s, \cdot, \cdot) \rangle$

Optimistic bonus (Bernstein + model-based [DLWB18])

Coarse Correlated Equilibrium (CCE) subroutine [XCWY20]

• Play one episode using policy π , and update model estimate

Optimistic Nash-VI

[Liu, Yu, **Bai**, Jin 2020]

Theorem: Optimistic Nash-VI finds ε -NE within $K = \widetilde{O} \left(\frac{H^3 S A_1 A_2}{\varepsilon^2} \right)$

episodes of play.

- \checkmark Learns NE in online setting with poly time & samples
- ✓ Natural extension of single-agent UCBVI algorithm [Azar et al. 2017]
- × Compared with sample complexity lower bound $\Omega(H^3S \max\{A_1, A_2\}/\epsilon^2)$: A_1A_2 vs. $\max\{A_1, A_2\}$

I'll show you another algorithm that

- Resolves this in the two-player zero-sum setting
- Provides new results in the <u>multi-player general-sum</u> setting

Multi-Player General-Sum Markov Games

Multi-Player General-Sum MGs

"Curse of Multiagents": |Joint action space| = exp(# players)

Learning NE in General-Sum MGs

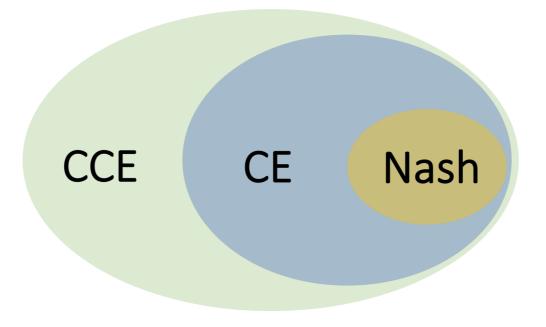
Theorem [LYBJ20]: For general-sum MGs, Multi-Nash-VI finds ε -NE within $K = \widetilde{O}(H^4S^2\prod_{i\in[m]}A_i/\varepsilon^2)$

episodes of play.

Solution Theorem [Rubinstein 2016]: $exp(\Omega(m))$ samples is unavoidable for learning NE even in multi-player general-sum NFGs.

Question: What equilibria can be learned with poly(m) samples?

Other Equilibria in Game Theory



Coarse Correlated Equilibrium (CCE): No player gains by deviating from the correlated policy.

Correlated Equilibrium (CE):

No player gains by deviating from the correlated policy, even if the player observes her own sampled action .

Coarse Correlated Equilibria (CCE) in NFGs

Coarse Correlated Equilibrium (CCE): A correlated policy π is an ε -CCE if $CCEGap(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^{\dagger}} V_i^{\pi_i^{\dagger}, \pi_{-i}} - V_i^{\pi} \right) \le \varepsilon$

No-regret to CCE: For NFGs, run no-regret algorithm for each player for T rounds, then $\hat{\pi} := \text{Unif}(\{\pi^t\}_{t=1}^T)$ satisfies $CCEGap(\hat{\pi}) = \max_{i \in [m]} \text{Reg}_i(T)/T,$

Corollary: Each player runs an adversarial bandit algorithm (e.g. EXP3), $CCEGap(\hat{\pi}) = \max_{i \in [m]} \operatorname{Reg}_{i}(T)/T \leq \widetilde{O}\left(\sqrt{\max_{i \in [m]} A_{i}/T}\right)$

Avoids curse of multiagent: Sample complexity depends on $\max_{i \in [m]} A_i$ only.

CCE in Markov Games

Coarse Correlated Equilibrium (CCE): A correlated policy π is an ε -CCE if $CCEGap(\pi) := \max_{i \in [m]} \left(\max_{\pi_i^{\dagger}} V_i^{\pi_i^{\dagger}, \pi_{-i}} - V_i^{\pi} \right) \le \varepsilon$

Challenges for extending to Markov Games:

- 1. How to ensure **efficient exploration** (visit all relevant states)?
- 2. No-regret in MGs is intractable [Liu, Wang, Jin 2022]
 - -what's the right goal / algorithm design?
- 3. (Side quest) **Decentralized algorithm**?

Were addressed in two-player zero-sum MGs:

Nash V-Learning algorithm [Bai, Jin, Yu 2020]

Nash V-Learning (max-player) for zero-sum MGs

1. Maintain <u>optimistic</u> V values with incremental update (\approx Q-Learning) $\overline{V}_h(s_h) \leftarrow (1 - \alpha_t)\overline{V}_h(s_h) + \alpha_t(r_h + \overline{V}_{h+1}(s_{h+1}) + \text{bonus}(t))$ when s_h is visited for *t*-th time.

2. Update policy by adversarial bandit subroutine at (h, s_h) : $\mu_h(\cdot | s_h) \leftarrow Adv_Bandit_Update(a_h, \frac{H - r_h - \overline{V}_{h+1}(s_{h+1})}{H})$ (e.g. weighted anytime FTRL). Achieves "per-state" regrets

- 3. Play an episode with policy μ , observe transitions, rewards
- 4. After *K* episodes, output *certified policy* $\hat{\mu}$

Nash V-Learning (max-player) for zero-sum MGs

- 1. Maintain <u>optimistic</u> V values with incremental update (\approx Q-Learning) $\overline{V}_h(s_h) \leftarrow (1 - \alpha_t)\overline{V}_h(s_h) + \alpha_t(r_h + \overline{V}_{h+1}(s_{h+1}) + \text{bonus}(t))$ when s_h is visited for *t*-th time.
- 2. Update policy by <u>adversarial bandit subroutine</u> at (h, s_h) : $\mu_h(\cdot | s_h) \leftarrow \text{Adv}_\text{Bandit}_\text{Update}(a_h, \frac{H - r_h - \overline{V}_{h+1}(s_{h+1})}{H})$

(e.g. weighted anytime FTRL).

- 3. Play an episode with policy μ , observe transitions, rewards
- 4. After K episodes, output certified policy $\hat{\mu}$

Theorem [Bai, Jin, Yu 2020]: Nash V-Learning finds ε -NE within $K = \widetilde{O} \left(H^5 S \max\{A_1, A_2\} / \varepsilon^2 \right)$

episodes of play in zero-sum MGs.

CCE-V-Learning (*i*-th player) for general-sum MGs

1. Maintain <u>optimistic</u> V values with incremental update $\overline{V}_{i,h}(s_h) \leftarrow (1 - \alpha_t)\overline{V}_{i,h}(s_h) + \alpha_t(r_{i,h} + \overline{V}_{i,h+1}(s_{h+1}) + \text{bonus}(t))$ when s_h is visited for *t*-th time.

2. Update policy by adversarial bandit subroutine at (h, s_h) :

 $\pi_{i,h}(\cdot \mid s_h) \leftarrow \text{Adv}_\text{Bandit}_\text{Update}(a_{i,h}, \frac{H - r_{i,h} - \overline{V}_{i,h+1}(s_{h+1})}{H})$

(e.g. weighted anytime FTRL).

- 3. Play an episode with policy π_i , observe transitions, rewards
- 4. After K episodes, output certified correlated policy $\hat{\pi}$

Theorem [Song, Mei, **Bai** 2021]: CCE-V-Learning finds ε -CCE within $K = \widetilde{O} \left(H^5 S(\max_{i \in [m]} A_i) / \varepsilon^2 \right)$

episodes of play in general-sum MGs.

CCE-V-Learning (*i*-th player) for general-sum MGs

Theorem [Song, Mei, **Bai** 2021]: CCE-V-Learning finds ε -CCE within $K = \widetilde{O} \left(H^5 S(\max_{i \in [m]} A_i) / \varepsilon^2 \right)$ episodes of play in general-sum MGs.

- ✓ Avoids curse-of-multiagent: $poly(H, S, max_{i \in [m]} A_i, 1/\epsilon^2)$ samples
- ✓ Learns in online/exploration setting
- \checkmark Decentralized algorithm
- X Output policy is non-Markov (history-dependent)

Solution Markov CCE can be learned by VI / "stage-wise" algorithms: $\widetilde{O}(\prod_{i \in [m]} A_i / \varepsilon^2)$ sample complexity [Liu, Yu, **Bai**, Jin 2020] $\widetilde{O}(\max_{i \in [m]} A_i / \varepsilon^3)$ by recent work of [Daskalakis, Golowich, Zhang 2022]

Extension to CE

Algorithm (CE-V-Learning, *i*-th player):

2'. Update policy by adversarial bandit subroutine at (h, s_h) : $\pi_{i,h}(\cdot | s_h) \leftarrow \text{Adv}_\text{Bandit}_\text{Update}(a_{i,h}, \frac{H - r_{i,h} - \overline{V}_{i,h+1}(s_{h+1})}{H})$ that minimizes weighted swap regret (e.g. mixed-expert FTRL [Ito 2020])

Theorem [Song, Mei, **Bai** 2021]: CE-V-Learning finds ε -CE within $K = \widetilde{O} \left(H^6 S(\max_{i \in [m]} A_i^2) / \varepsilon^2 \right)$ episodes of play in general-sum MGs.

Literature note

- When Can We Learn General-Sum Markov Games with A Large Number of Players Sample-Efficiently? Ziang Song, Song Mei, Yu Bai. arXiv:2110.04184.
 → Contains CE/CCE results.
- 2. V-Learning—A Simple, Efficient, Decentralized Algorithm for Multiagent RL. Chi Jin, Qinghua Liu, Yuanhao Wang, Tiancheng Yu. arXiv:2110.14555. \rightarrow Contains CE/CCE results, with *H*-better rate for CE (different swap-regret alg.)
- 3. Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games. Weichao Mao, Tamer Başar. arXiv:2110.05682.
 - \rightarrow Contains CCE results.

All 3 papers are based on the V-Learning algorithm proposed in

Near-Optimal Reinforcement Learning with Self-Play. Yu Bai, Chi Jin, Tiancheng Yu. NeurIPS 2020. (NE for two-player zero-sum Markov Games) Faster Convergence via Optimistic Algorithms

Learning NFGs under full-information feedback

Hedge (FTRL) Algorithm:

For t = 1, ..., T:

• Receive utility vector based on opponents' strategies:

 $u_i^t(a) = r_i(a, \pi_{-i}^t)$

• Update strategy by exponential weights:

 $\pi_i^{t+1}(a) \propto_a \pi_i^t(a) \cdot \exp(\eta u_i^t(a))$

Hedge achieves $O(\sqrt{T})$ regret against **any** seq. of opponents (e.g. [CBL06])

Corollary: Let all players play Hedge against each other,

- Learns CCE in NFGs with $O(T^{-1/2})$ convergence rate
- Learns NE in two-player zero-sum NFGs with $O(T^{-1/2})$ convergence rate

Issues with Hedge approach

Hedge regret bound works for any adversarial opponent

Analysis does not use that opponents are also playing Hedge

Solution Can we get faster convergence to NE/CCE if we use the fact that everyone is playing the same no-regret algorithm?

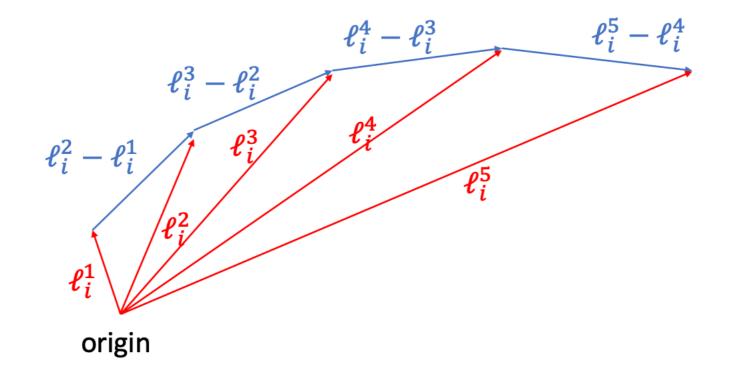
Optimistic Hedge / OFTRL

Optimistic Hedge (OFTRL) Algorithm:

• Update strategy by exponential weights over lookahead adjusted utility vector $\pi_i^{t+1}(a) \propto_a \pi_i^t(a) \cdot \exp(\eta(2u_i^t(a) - u_i^{t-1}(a)))$

Intuition: When u_i^t changes slowly in t,

$$2u_i^t - u_i^{t-1} = u_i^t + (u_i^t - u_i^{t-1}) \approx u_i^t + (u_i^{t+1} - u_i^t) = u_i^{t+1}$$



Regret Bounds of Optimistic Algorithms in Games

Table 1: Overview of prior work on fast rates for learning in games. m denotes the number of players, and n denotes the number of actions per player (assumed to be the same for all players). For Optimistic Hedge, the adversarial regret bounds in the right-hand column are obtained via a choice of adaptive step-sizes. The $\tilde{O}(\cdot)$ notation hides factors that are polynomial in $\log T$.

Algorithm	Setting	Regret in games	Adversarial regret
Hedge (& many other algs.)	multi-player, general-sum	$O(\sqrt{T \log n})$ [CBL06]	$O(\sqrt{T \log n})$ [CBL06]
Excessive Gap Technique	2-player, 0-sum	$O(\log n(\log T + \log^{3/2} n))$ [DDK11]	$O(\sqrt{T\log n})$ [DDK11]
DS-OptMD, OptDA	2-player, 0-sum	$\log^{O(1)}(n)$ [HAM21]	$\sqrt{T \log^{O(1)}(n)}$ [HAM21]
Optimistic Hedge	multi-player, general-sum	$O(\log n \cdot \sqrt{m} \cdot T^{1/4}) \ [ext{RS13b}, ext{SALS15}]$	$ ilde{O}(\sqrt{T\log n})$ [RS13b, SALS15]
Optimistic Hedge	2-player, general-sum	$O(\log^{5/6} n \cdot T^{1/6})$ [CP20]	$\tilde{O}(\sqrt{T\log n})$
Optimistic Hedge	multi-player, general-sum	$O(\log n \cdot m \cdot \log^4 T)$ (Theorem 3.1)	$ ilde{O}(\sqrt{T\log n})$ (Corollary D.1)

Breakthrough paper:

• Near-Optimal No-Regret Learning in General Games.

Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. In NeurIPS 2021 (Oral presentation). [conf]

Near-optimal no-regret learning in general games

<u>C Daskalakis, M Fishelson</u>... - Advances in Neural ..., 2021 - proceedings.neurips.cc Abstract We show that Optimistic Hedge--a common variant of multiplicative-weightsupdates with recency bias--attains \${\rm poly}(\log T) \$ regret in multi-player general-sum games. In particular, when every player of the game uses Optimistic Hedge to iteratively update her action in response to the history of play so far, then after \$ T \$ rounds of interaction, each player experiences total regret that is \${\rm poly}(\log T) \$. Our bound improves, exponentially, the \$ O (T^{1/2}) \$ regret attainable by standard no-regret learners ...

☆ Save 50 Cite Cited by 29 Related articles All 4 versions ≫

Faster Convergence to NE/CCE in NFGs

[Daskalakis, Fishelson, Golowich 2021]

OFTRL achieves $O(\log^4 T) = \widetilde{O}(1)$ regret when played by everyone in a game.

Corollary: Let all players play OFTRL against each other,

- Learn CCE with $\widetilde{O}(T^{-1})$ convergence rate
- Learn NE in two-player zero-sum games with $O(T^{-1})$ convergence rate*

* Also well-established e.g. [RS13b] by a more direct analysis for zero-sum case

Question: Extend to Markov Games?

Faster Convergence to NE/CCE in Markov Games

[Zhang*, Liu*, Wang, Xiong, Li, **Bai** NeurIPS 2022]

Theorem: We obtain faster convergence results for MGs:

- $\widetilde{O}(T^{\{-5/6,-1\}})$ for learning NE in two-player zero-sum MGs
- $\widetilde{O}(T^{-3/4})$ for learning CCE in multi-player general-sum MGs

Algorithm is natural: OFTRL + smooth value updates

 ${\cal O}(T^{-1})$ Convergence of Optimistic-Follow-the-Regularized-Leader in Two-Player Zero-Sum Markov Games

Yuepeng Yang* Cong Ma*

September 27, 2022

Abstract

We prove that optimistic-follow-the-regularized-leader (OFTRL), together with smooth value updates, finds an $O(T^{-1})$ -approximate Nash equilibrium in T iterations for two-player zero-sum Markov games with full information. This improves the $\bar{O}(T^{-5/6})$ convergence rate recently shown in the paper [ZLW⁺22]. The refined analysis hinges on two essential ingredients. First, the sum of the regrets of the two players, though not necessarily non-negative as in normal-form games, is approximately nonnegative in Markov games. This property allows us to bound the second-order path lengths of the learning dynamics. Second, we prove a tighter algebraic inequality regarding the weights deployed by OFTRL that shaves an extra log T factor. This crucial improvement enables the inductive analysis that leads to the final $O(T^{-1})$ rate.

Faster Last-iterate Convergence of Policy Optimization in Zero-Sum Markov Games

Shicong Cen^{1*} Yuejie Chi^{1†} Simon S. Du^{2,3‡} Lin Xiao^{3§}

¹Carnegie Mellon University ²University of Washington ³Meta AI Research

October 5, 2022

Regret Minimization and Convergence to Equilibria in General-sum Markov Games

Liad Erez^{1,*} Tal Lancewicki^{1,*} Uri Sherman^{1,*} Tomer Koren^{1,2}

Yishay Mansour^{1,2}

August 9, 2022

Advanced Topics

Imperfect Information

Imperfect Information / Partial Observability:

Players can only observe *partial information* about the true underlying game

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019], Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], ...

Formulation: Imperfect-Information Extensive-Form Games (EFGs)

Learning EFGs from bandit feedback

Algorithm	Equilibrium	Sample Complexity
Farina et al. [2021]	CCE	$\widetilde{O}(X^4A^3/\varepsilon^2)$
Kozuno et al. [2021]	CCE	$\widetilde{O}(X^2A/\varepsilon^2)$
Bai , Jin, Mei, Yu [2022]	CCE	$\widetilde{O}(XA/\varepsilon^2)$
Song, Mei, Bai [2022]	K-EFCE*	$\widetilde{O}(XA^{K+1}/\varepsilon^2)$
Bai, Jin, Mei, Song, Yu [2022]	EFCE	$\widetilde{O}(XA/\varepsilon^2)$

X: number of information sets; A: number of actions

* Newly defined equilibrium, {K-EFCE}C{1-EFCE}C{EFCE}

Building on two main EFG algorithms (full-information setting):

- Online Mirror Descent [Hoda et al. 2010, Kroer et al. 2015]
- Counterfactual Regret Minimization [Zinkevich et al. 2007, Celli et al. 2020]

Heavily rely on tree structure of EFGs, which do not hold in general POMGs.

Dominance and Rationalizability

CCE (and approximate CE) can be supported entirely on dominated actions [Viossat & Zapechelnyuk 2013]

	b_1	<i>b</i> ₂	<i>b</i> ₃	b_4
<i>a</i> ₁	1, 1	1, 1	1, 0	5,1
<i>a</i> ₂	1, 1	1, 1	5,0	1, 0
<i>a</i> ₃	0, 1	0, 5	4, 4	0,0
<i>a</i> ₄	0, 5	0, 1	0, 0	4,4

Learning Rationalizable Equilibria

[Wang, Kong, **Bai**, Jin 2022]

Def: An action is rationalizable if it survives Iterative Dominance Elimination . [Bernheim 1984; Pearce 1984]

We design the first algorithms for efficiently learning ε -CE/CCE supported on Δ -rationalizable actions in multi-player NFGs from bandit feedback. (Related: Wu et al. [2021] find any rationalizable strategy, not nece. CE/CCE)

	Sample Complexity	
Find all rationalizable	$\Omega(A^{N-1})$	
Find one rationalizab	$\widetilde{O}\left(rac{LNA}{\Delta^2} ight)$	
Learn rationalizable equilibria	ϵ -CCE (Theorem 7)	$\widetilde{O}\left(rac{LNA}{\Delta^2}+rac{NA}{\epsilon^2} ight)$
	ϵ -CE (Theorem 12)	$\widetilde{O}\left(\frac{LNA}{\Delta^2} + \frac{NA^2}{\min\{\epsilon^2, \Delta^2\}}\right)$

Table 1: Summary of main results. Here N is the number of players, A is the number of actions per player, L < NA is the minimum elimination length and Δ is the error we allow for rationalizability.

Conclusion

My Excitement About MARL/Games:

- 1. Single-agent RL results can be (non-trivially) extended to MARL/games
 - e.g. Learning NE/CE/CCE in Markov Games
- 2. Games pose interesting questions to {online learning, bandits, RL...}
 - e.g. Faster no-regret learning when everyone runs a no-regret algorithm
- 3. Games admit unique questions that are potentially rich for ML theory:
 - e.g. Rationalizability

Open Questions

Function approximation

- "Reduce" to centralized single-agent problem
- Decentralized / independent function approximation?
- Imperfect information / partial observability
 - EFGs
 - General Partially Observable Markov Games

Solution concepts beyond NE/CE/CCE

- General Φ -equilibria
- Stackelberg Equilibria
- Economics connections (e.g. rationalizability, contract theory)

• Other types of games

- Markov potential games
- Congestion games

Thank you!

Backup Slides

Certified Policies

Algorithm 2 Certified correlated policy $\hat{\pi}$ for general-sum MGs

- 1: Sample $\underline{k} \leftarrow \text{Uniform}([K])$.
- 2: for step $h = 1, \ldots, H$ do
- 3: Observe s_h , and set $\underline{t} \leftarrow N_h^k(s_h)$ (the value of $N_h(s_h)$ at the beginning of the k'th episode).
- 4: Sample $l \in [t]$ with $\mathbb{P}(l = j) = \alpha_t^j$ (c.f. Eq. (3)).
- 5: Update $\overline{k \leftarrow k_h^l}(s_h)$ (the episode at the end of which the state s_h is observed exactly l times).
- 6: Jointly take action $(a_{h,1}, a_{h,2}, \ldots, a_{h,m}) \sim \prod_{i=1}^{m} \underline{\mu}_{h,i}^{k}(\cdot|s_{h})$, where $\mu_{h,i}^{k}(\cdot|s_{h})$ is the policy $\mu_{h,i}(\cdot|s_{h})$ at the beginning of the k'th episode.