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ABSTRACT

There has been a persistent lack of publicly accessible

data in singing voice research, particularly concerning

the diversity of languages and performance styles. In

this paper, we introduce SingStyle111, a large studio-

quality singing dataset with multiple languages and differ-

ent singing styles, and present singing style transfer exam-

ples. The dataset features 111 songs performed by eight

professional singers, spanning 12.8 hours and covering En-

glish, Chinese, and Italian. SingStyle111 incorporates dif-

ferent singing styles, such as bel canto opera, Chinese folk

singing, pop, jazz, and children. Specifically, 80 songs

include at least two distinct singing styles performed by

the same singer. All recordings were conducted in profes-

sional studios, yielding clean, dry vocal tracks in mono for-

mat with a 44.1 kHz sample rate. We have segmented the

singing voices into phrases, providing lyrics, performance

MIDI, and scores with phoneme-level alignment. We also

extracted acoustic features such as Mel-Spectrogram, F0

contour, and loudness curves. This dataset applies to vari-

ous MIR tasks such as Singing Voice Synthesis, Singing

Voice Conversion, Singing Transcription, Score Follow-

ing, and Lyrics Detection. It is also designed for Singing

Style Transfer, including both performance and voice tim-

bre style. We make the dataset freely available for research

purposes. Examples and download information can be

found at https://shuqid.net/singstyle111.

1. INTRODUCTION

In recent years, deep learning technologies have signifi-

cantly advanced the field of Artificial Intelligence Genera-

tive Content (AIGC) [1], leading to breakthroughs in Com-

puter Vision for image synthesis and manipulation [2–5],

Natural Language Processing (NLP) for text generation

and summarization [6–8], and audio signal processing for

Text-to-Speech (TTS) generation [9–11]. In particular,

advanced generative models such as Variational Autoen-
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coders (VAEs) [12–14], Generative Adversarial Networks

(GANs) [15, 16], Transformer-based models [17, 18], and

Diffusion Models [19, 20] resulted in a series of excep-

tional TTS models that achieve not only realistic results

[9–11, 21] but also explore stylistic and emotional speech

synthesis [22, 23] in a more controllable way. However,

the development of singing tasks such as Singing Voice

Synthesis (SVS) [24–28] and Singing Voice Conversion

(SVC) [29] have yet to progress as fast as TTS. One pri-

mary reason is the lack of data on several key aspects:

• Lack of high-quality data. Tasks such as SVS and SVC

require monophonic, clean, and dry sound singing data

with studio quality. Unfortunately, due to the limi-

tations of Source Separation and Denoising technolo-

gies [30–33], as well as copyright issues, most available

cover songs online cannot meet these quality require-

ments. Datasets recorded with studio quality are pre-

dominantly composed of amateur performances, which

often exhibit off-key and cracking issues that could mis-

lead the generative models and diminish their quality.

• Lack of diversity. Most available singing datasets cover

only one language, resulting in a severely imbalanced

language distribution. For example, there is a fair

amount of Chinese singing data, while clean English

data is very scarce. In addition, most datasets only focus

on one pop singing style, and the distributions of differ-

ent singing styles and vocal ranges are too narrow.

• Lack of annotations. Many datasets lack proper phrase-

level segmentation, lyrics, and scores, and are not

aligned at the phoneme level, making it impossible

to conduct score-based SVS and more detailed perfor-

mance control.

• Lack of large-scale data. The current data volume of

high-quality singing is still insufficient for deep genera-

tive models.

Furthermore, current SVS results are primarily confined

to modeling the timbre of singing voices. While there

are several good vocoders [11, 21, 34] and acoustic mod-

els [10, 35] for SVS based on Ground-Truth control sig-

nals (e.g., inputting F0 control signals to the model), the

truly creative and artistic aspects of singing, such as ex-

pressive performance control, singing styles, vocal tech-

niques, and creative improvisation, have yet to be explored.

Again, data limitations play a significant role in this, as

most datasets consist of amateur performances or have not
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Dataset Language Style #Hour #Singer Quality Musicality Score
Align-

ment

Style

Transfer

Opencpop [41] Chinese Pop 5.25 1 Studio Ama.
Perform.

MIDI
✓ ✗

M4Singer [42] Chinese Pop 29.77 20 Studio
50% Ama.

50% Prof.

Perform.

MIDI
✓ ✗

Children

Song [43]

Korean

English
Children 4.86 1 Studio

Prof.

but plain

Perform.

MIDI
word ✗

Tohoku

Kiritan [44]
Japanese Pop 0.95 1 Studio Prof. Score ✓ ✗

PopCS [28] Chinese Pop 5.89 6
Not

Clean
Ama. ✗ ✗ ✗

Open-

Singer [35]
Chinese Pop 50 66 Studio Ama. ✗ ✗ ✗

VocalSet [45]

Annotated [46]

Five

Vowels
Opera 10.1 20 Studio Prof. Score ✓

technique

transfer

NHSS [47] English Pop 3.5 10 Studio Ama. ✗ ✓ ✗

NUS-48E [48] English
Pop

Children
1.41 12 Studio Ama. ✗ ✓ ✗

RWC [49]
Japanese

English
Pop 4 27

Not

Solo
Prof. Both ✗ ✗

TONAS [50] Spanish Flamenco 0.34 > 40
Not

Clean
Prof. ✗ ✗ ✗

Vocadito [51]
Seven

Languages

Pop

Children
0.23 29

Not

Clean
Ama. ✗ ✗ ✗

MIR-1K [52] Chinese Pop 2.22 19
Not

Solo
Ama. ✗ ✗ ✗

StyleSing111

(Ours)

English

Chinese

Italian

Opera

Pop

Folk

Jazz etc.

12.8 8 Studio Prof. Both ✓ ✓

Table 1. A comparison of existing singing datasets. Score means if there is score or performance MIDI file provided.

“Perform. MIDI” stands for “Performance MIDI”. “Both” means both performance MIDI files synchronized with the

singing audio and sheet music scores are provided. Alignment means whether or not there is duration annotation at the

phoneme level for lyrics. “Ama.” stands for “Amateur,” and “Prof.” stands for “Professional.”

yet begun to address the issue of artistic expression.

For example, Style Transfer [36, 37] is a popular tech-

nique in deep learning that combines the content of one im-

age or sound with the style of another. For audio process-

ing, some researchers [38,39] have recently transferred the

timbre from one audio source to another while preserving

the speech content (similar to SVC). However, the transfer

of expressive performance styles embedded below the tim-

bre level remains elusive, mainly because (1) disentangling

performance style is much more challenging than timbre

features [40] and (2) the scarcity of relevant datasets pro-

viding examples of performance styles.

To help address these issues, we introduce a new

singing corpus, SingStyle111. We summarize the main

contributions as follows:

(1) SingStyle111 is a large and high-quality singing

dataset. It contains 111 songs performed by eight pro-

fessional singers, spanning 12.8 hours of clean mono-

phonic vocal recordings in studio quality.

(2) It is a diverse dataset with creative singing. It covers En-

glish, Chinese, and Italian songs and incorporates var-

ious singing styles, such as bel canto opera, Chinese

folk, pop, jazz, and children. Some performances are

creative improvisations based on the original score.

(3) It demonstrates style transfer in both performance and

timbre levels. 80 songs contain at least two distinct

singing styles performed by the same singer.

(4) It includes proper annotations and extracted features.

We manually segmented voices into phrases, labeled

Performance MIDI files and music score notes and

aligned them with the phonemes of lyrics, extracted

acoustic features such as Mel-Spectrogram, F0 contour,

and loudness curves.

(5) It applies to different MIR tasks such as SVS, SVC,

Singing Transcription, Score Following, Expressive

Performance, Lyrics Detection, Singing Style Transfer.

(6) It is publicly available for research purposes for free.

The rest of this paper is organized as follows: after a

brief review of related works, we describe how we collect

and process the dataset (Section 3) and show the annota-

tions and analysis (Section 4). Finally, we discuss potential

applications in Section 5 followed by conclusions.
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2. RELATED WORK

Existing singing voice datasets still have many limitations

in fulfilling the requirements for singing research tasks

such as Singing Voice Synthesis (SVS) [24, 26–28] and

Singing Voice Conversion (SVC) [29]. Table 1 provides

an overview of the available public datasets. Datasets such

as MIR-1K [52], TONAS [50], and Vocadito [51] are re-

stricted by the absence of separated solo vocal tracks or

suffer from subpar recording environments with noise, re-

verberation, and other interferences. These issues hinder

their usability in SVS-related tasks. While NHSS [47] and

OpenSinger [35] contain clean and dry human vocals, they

lack essential musical scores or phoneme-level duration

alignment. Consequently, these datasets are unsuitable for

training end-to-end synthesis models that convert scores

to vocals. Moreover, datasets such as Opencpop [41] and

M4singer [42] offer good annotations and recording qual-

ity but primarily focus on Mandarin songs and a limited

range of pop styles. Additionally, the singing proficiency

of performers is inconsistent, with many being amateurs,

which affects the overall quality of the dataset.

Another issue that has long been overlooked and misun-

derstood in singing voice datasets is the difference between

Performance MIDI and the actual sheet music score. In

Table 1, only Tohoku Kiritan [44], Vocalset [45, 46] and

RWC [49] have music scores, while other datasets claimed

to have scores that are indeed performance MIDI files. Per-

formance MIDI features expressive performance timings

rather than score timings with regular note durations in

beats. The melodic pitches in performance MIDI can also

differ from those in score melody. Utilizing performance

MIDI for singing voice synthesis and claiming it as score-

based is, in reality, a deceptive approach that takes advan-

tage of real singing data.

As for the Style Transfer task, Vocalset [45, 46] pro-

vides relevant examples, but its scope is limited to singing

technique transfer within the bel canto singing style. Fur-

thermore, the dataset predominantly consists of scale exer-

cises using only five vowels and includes only three short

songs, which restricts its applicability. Given the limi-

tations of existing datasets, there is a need for a large-

scale, high-quality, professional, multilingual, and diverse

singing dataset that caters to various styles and includes

style transfer examples. In this paper, we introduce a novel

dataset designed to address these requirements and facili-

tate research in SVS-related tasks and style transfer.

3. DATASET DESCRIPTION

3.1 Overview

SingStyle111 is a multilingual singing dataset with style

transfer demonstrations. Figure 1 illustrates the data col-

lection pipeline. Following the completion of the recording

process, we post-process all recordings and retain all high-

quality segments. Thus, our dataset offers two versions:

the first version consists of edited full-length songs, and

the second version comprises all usable, high-quality vocal

segments, incorporating redos from the recording process.

Figure 1. Data collection pipeline.

Figure 2. Distribution of songs according to languages and

the number of style demonstrations. For example, English

songs have 18 songs with only one style version, 25 songs

with two different styles, six songs with three styles, and

three songs with four styles.

We preserve these redos for two primary reasons. First,

during recording, singers often need to restart due to minor

errors, resulting in many redos that far exceed the quantity

required for a single song. The high-quality vocals in these

redo segments are perfect for segmented training in deep

learning and effectively augmenting the dataset. Second,

even when the same singer performs the same song using

the same style, each rendition exhibits subtle differences.

Capturing these variations provides valuable training data

for learning multi-modes in singing performance and dis-

entangling a singer’s style with music content. This paper

focuses on describing the second version of the dataset.

Upon obtaining the clean and dry vocal segments in au-

dio, we manually annotate them into phrases (music sen-

tences), provide lyrics and score alignment with audio at

the phoneme level. We then extract acoustic attributes such

as F0 contour, loudness curve, and Mel-spectrogram. Fi-

nally, we partition and package the data, incorporating rel-

evant attributes. Section 4 describes this process in detail.

In the following subsections, we delve into the dataset’s

repertoire and styles, singer profiles, recording environ-

ments, and post-production methods, accompanied by per-

tinent statistics.

3.2 Repertoire and Style

SingStyle111 comprises 111 songs, of which 80 have at

least two different versions performed in distinct styles by

the same singer, resulting in a total of 224 song versions.

The dataset encompasses three languages: English (372

minutes), Chinese Mandarin (307 minutes), and Italian (88

minutes). Figure 2 illustrates the number of song versions

for each language. During song selection, we sought to di-

versely represent various styles, singing techniques, tem-

pos, and eras.

Figure 3 presents the styles of the original songs and all
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Figure 3. Distribution of song styles. Chart(a) describes

the original style of the 111 songs, while chart(b) indicates

the 224 different style interpretations in the dataset.

style demonstrations. We consolidated several sub-genres

into seven broader styles to streamline the pie chart. For

instance, Country, Western folk, Chinese pop, and other

pop styles were combined into a single pop genre. Like-

wise, the Rock category contains Soft Rock, Hard Rock,

Alternative Rock, etc.

Throughout the data collection process, we instructed

singers to exhibit significant differences in style transfer.

Sometimes they made appropriate adaptations or improvi-

sations to the original song for better style transfer while

preserving the original lyrics, melody, and structure. For

example, it is easier for singers to transfer vocal timbres

when the key changes. Also, tempo changes and rhythmic

variations can dramatically help alter styles, such as trans-

ferring a fast and happy song into a slow and melancholic

one. Converting singing techniques or adding ornamen-

tations are also prevalent in our style transfer examples.

For instance, the dataset includes many demonstrations in-

terchanged among pop, bel canto, and Chinese traditional

folk singing; or singing the same song in the distinct pop

styles of Adele Adkins and Teresa Teng. In addition, some

styles include deliberate emotional changes, for example,

contrasting a "plain and lyrical style" with an "exaggerated

and highly emotional style."

3.3 Singers

We paid eight professional singers (Table 2) to sing the

songs. They have diverse vocal ranges, singing styles, and

vocal techniques. They are aged 20 to 63, and all have re-

ceived formal musical training for more than six years. Six

of them are graduates or current students in the voice ma-

jor at music conservatories. “Male1” is a native American

English speaker, and all the others are Chinese. “Female1”

has lived in the US for more than five years and received

formal English singing training at a music academy. We

also removed the English song phrases that have strong for-

eign accents. All singers have signed agreements to release

the dataset for research purposes.

3.4 Recording

We recorded the songs in a professional recording studio

with little reverberation or noise. We use a Shure Model

Singer Language Style #Hour Range

Female1 en, cn
P. C. O. R.

F. M. J.
3.73 F#3-A5

Female2 it, en, cn O. F. M. 1.24 E4-C6

Female3 cn, en
P. C. O. R.

F. M. J.
1.58 F#3-F5

Female4 cn, en P. 1.63 D3-C5

Male1 en P. R. M. 0.59 D2-G4

Male2 cn, en P. M. J. 1.35 A2-C5

Male3 it, cn O. M. 1.16 C4-G5

Male4 cn P. O. F. 1.51 D#3-A4

Table 2. Singer Information. Here the vocal range is the

used range in the dataset. en: English, cn: Chinese, it:

Italian, P: Pop, C: Children, R: Rock, O: Opera, F: Chinese

Traditional Folk, M: Musical, J: Jazz.

SM81-LC microphone, an Apollo X8 Thunderbolt 3 audio

interface, Heritage Audio 73jr as the pre-amplifier, and Pro

Tools Studio as DAW software. All singings are pure vocal

only and recorded at 44,100 Hz sampling rate with 24 bits

per sample in wav format.

In most recording sessions, singers wear headphones

to listen to the accompaniment. However, in some style

transfer demonstrations, accompaniments and headphones

may not always be used. Despite this, singers must ensure

they maintain the correct key and consistently stay within

it throughout the performance.

3.5 Production

We employed several essential post-production techniques

to refine and clean the recorded data. First, we edited

the raw recordings to retain only high-quality clips, filter-

ing out noisy sections, mistakes, and mispronunciations.

A small portion of singer Male3’s singing clips were fur-

ther edited with pitch-tuning. To achieve a consistent vol-

ume balance, we applied different gain levels in each clip.

Moreover, we incorporated a compressor for all recording

clips to prevent extreme dynamic fluctuations. Lastly, we

maximized the output volume using a limiter, setting the

output ceiling at -0.6 dB. After production, we obtained

clean and dry vocal tracks with similar output volumes.

4. ANNOTATION AND ANALYSIS

This section presents the annotation process, including

both manual annotation and automatic analysis. We first

segment the audio clips into music phrases, for which

we then manually identify corresponding lyrics and music

scores. By combining automatic algorithms and manual

efforts, we align lyrics phonemes and score notes to their

corresponding audio. Next, we utilize algorithms to extract

acoustic attributes such as F0 contour, loudness curve, and

Mel-spectrogram. Finally, we highlight the key attributes

and explain dataset partitioning and packaging.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

768



Figure 4. An example of phoneme-level annotation using Audacity. The lyrics word, IPA phoneme, and pitch label tracks

are aligned with the corresponding audio. “AP” here stands for “aspirate”.

4.1 Phrase-level Segmentation

We further divide the audio segments into smaller musical

phrases for two reasons. First, this additional segmentation

accelerates model training. Second, from a music perspec-

tive, phrases serve as one of the basic music structure units,

with emotional expressions and performance controls be-

ing highly related to phrase-level structure. Inappropriate

segmentation might compromise musical expression due

to insufficient phrase structure information. Given the low

accuracy of automatic algorithms for phrase segmentation,

we manually label them. The result shows that most seg-

mented phrases have lengths between 3 and 12 seconds

with one to three breaths. We obtain 6588 phrases in to-

tal. No silence is included at the beginning or end of the

phrases, except for breath events.

4.2 Lyrics and Score Alignment at Phoneme Level

In this subsection, we describe the lyrics and score annota-

tion process.

Lyrics annotation We first manually find lyrics for

each song online and then segment and align the lyrics

with each phrase. We manually correct the lyrics to match

the actual singing in the data. Secondly, we employ al-

gorithms to translate the lyrics into phonemes. For En-

glish 1 and Italian 2 , we utilize tools to translate them into

International Phonetic Alphabet (IPA) phonemes [53]. For

Mandarin, we use Pinyin 3 for phoneme-level alignment

and provide a mapping of Pinyin to IPA phonemes for later

phoneme-set processing for model training. We did not di-

rectly convert Chinese to IPA due to annotation complex-

ity. Thirdly, we obtain an approximate phoneme alignment

with audio using the Montreal Forced Aligner [54] and out-

put it into TextGrid files. Finally, we (1) use Praat soft-

ware [55], or (2) convert the TextGrid into txt files and in-

put them to Audacity [56] for further manual adjustment of

phoneme text and boundaries, as well as breath and silence

event annotation (Figure 4).

Performance MIDI and Score annotation We anno-

tated the performance MIDI file and music score for each

1 https://github.com/mphilli/English-to-IPA
2 https://espeak.sourceforge.net/
3 https://github.com/mozillazg/python-pinyin

singing phrase in the dataset as follows:

(1) We manually input performance MIDI files that strictly

align to singing audio using MIDI piano, including mul-

tiple rounds of correction.

(2) We automatically align MIDI notes with phonemes

based on their corresponding time stamps in the audio.

(3) We search online for music score MIDI files; if no reli-

able sources are found, we quantize and derive the score

from annotated performance MIDI file.

(4) For online score files, we develop an algorithm that

automatically matches each singing phrase’s perfor-

mance MIDI data to the corresponding phrase in the

score MIDI file. Manual matching is required for non-

original-style style transfer versions.

(5) We use the Dynamic Time Warping algorithm to match

the performance MIDI data with the score MIDI file

within each phrase. We manually verify the mapping

results for non-original-style style transfer versions.

All these above steps allow us to annotate the lyrics,

performance MIDI, and music score at the phoneme level

for our singing voice dataset, ensuring accurate and com-

prehensive representations of the musical content.

4.3 Acoustic Feature Extraction

F0, or fundamental frequency, is the lowest frequency of a

periodic waveform. F0 contour is critical in singing syn-

thesis as it determines the pitch variations of singing per-

formance and largely influences singing quality. It can cap-

ture pitch modulations in various singing techniques, such

as vibrato, ornaments, and glissando. Many current SVS

systems still require the input of ground-truth F0 as a con-

dition to guide the synthesis process. To ensure accurate F0

extraction, we employ a combination of two widely-used

models, pYIN [57] and PENN [58]. First, we use pYIN

algorithm to identify unvoiced parts, including breaths, si-

lence, and consonants. Then, the PENN algorithm is ap-

plied to extract F0 for the voiced parts.

Loudness represents the energy of a sound. It is crucial

in singing performance since it largely reflects the dynamic

and emotional changes that contribute to the expressive-

ness of the singing voice. To extract loudness, we first cal-

culate the root-mean-square (RMS) amplitude values from

audio and then convert them to decibels. We further ap-
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ply a moving average window of frame size 30 to obtain a

smoother loudness curve.

Finally, we use the Short-Time Fourier Transform

(STFT) with a window size of 1024, FFT size of 1024,

and hop size of 256 to extract the mel-spectrogram, which

shares the same settings with loudness extraction.

5. POTENTIAL APPLICATIONS

This dataset is intended to promote research into a number

of different MIR tasks. We consider a variety of interesting

relevant problems in this section.

5.1 Singing Style Transfer

Style transfer has to do with music interpretation. Here,

“style” refers to performance details that are not con-

strained by symbolic representations such as traditional no-

tation. If notation gives a song its “identity,” styles are

performance characteristics that are shared across perfor-

mances of different songs. Styles are often associated with

genre, e.g., a song can be interpreted in rock, pop, or jazz

styles. Styles can be more or less specific than genre, e.g.,

the style of Louis Armstrong (more specific) or symphonic

(less specific). Style transfer is a process of identifying the

style of one or more performances and applying it to a new

song to create a stylistic performance. SingStyle111 con-

tains many performances where a single singer performs

in multiple styles, offering the potential to abstract styles

from other information (singer identity, melodies) which is

held constant. In the multi-style recordings, singers were

asked to exaggerate differences, which should help to learn

features that characterize different styles.

5.2 Singing Voice Synthesis

A large motivation for SingStyle111 is the difficulty of

finding high-quality musical examples of singing. In par-

ticular, the presence of accompaniment and reverberation

complicate the process of learning to create the sound of

singing voices. Furthermore, lower recording and singing

quality are a barrier to learning high-fidelity sounds of pro-

fessional singing. In addition, SingStyle111 also provides

necessary phoneme-level annotations for score-based SVS.

5.3 Singing Voice Conversion

In SVC, we hope to substitute the sound of one voice with

the sound of another while maintaining the same melody

and style. To promote progress in this area, SingStyle111

has performances of the same song by multiple singers,

including male and female voices. Since we have perfor-

mances of the same song in the same style, SVC can be

cast as a sequence-to-sequence problem analogous to many

other machine learning tasks such as language translation.

5.4 Expressive Performance

Expressive performance is the general problem of creating

a musical performance given a symbolic description such

as a melody in common music notation. Notation omits

many details, including loudness, vibrato, pitch variations,

changes in vocal timbre, the details of pronouncing lyrics

within pitch and rhythmic constraints, and breathiness. Of-

ten, connections and transitions from one note to the next

are as important as how notes are performed. To learn ex-

pressive performance, it helps to have symbolic notation,

which can be considered as input constraints, context, or

conditioning. In addition, it helps if the notated events

are aligned with corresponding time points in the audio.

SingStyle111 includes symbolic representations (perfor-

mance MIDI files and music scores) aligned with audio.

The data is especially designed to support machine learn-

ing using sequence-to-sequence models from notation to

control signals such as pitch contours, loudness, spectro-

grams, or directly to audio.

5.5 Automatic Singing Transcription

Singing transcription can be regarded as the inverse of ex-

pressive performance control: Rather than converting no-

tation to sound, we wish to convert sound into music no-

tation. With transcriptions for all of the singing examples,

SingStyle111 provides a wealth of transcription examples

for training and evaluating transcription models.

5.6 Score Alignment and Following

Score following [59] is the problem of aligning an au-

dio performance to symbolic notation. Vocal score fol-

lowing is particularly difficult because, unlike most other

instruments, voices do not have keys, valves, or frets, so

singing cannot be easily reduced to a sequence of distinct

discrete states corresponding to musical notes [60]. Real-

time score following is the first step in the task of com-

puter accompaniment, in which a computer synchronizes

a pre-composed accompaniment to a live performance by

a soloist. Score following has also been used for auto-

matic page turning, delivering synchronized comments via

mobile phones to symphony orchestra audiences, and as

a data collection method for learning music segmentation

and other tasks. SingStyle111 contains accurate align-

ments for learning and evaluation of automatic alignment

and real-time score following.

5.7 Lyrics Detection

The common task of understanding lyrics is one that even

humans struggle with. SingStyle111 includes the lyrics

used by the singers, and lyrics are aligned to the audio

down to the phoneme level, facilitating learning and eval-

uation of various lyrics transcription and alignment tasks.

6. CONCLUSION

In conclusion, we introduce SingStyle111, a large-scale,

high-quality, multilingual singing voice dataset that caters

to various styles and includes style transfer examples. We

provided detailed annotations of lyrics and scores at the

phoneme level, together with extracted acoustic features.

We will make the dataset freely available for research pur-

poses to facilitate relevant MIR tasks.
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