
A Qualitative and Quantitative Analysis
of Container Engines

Luciano Baresi, Giovanni Quattrocchi, Nicholas Rasi

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di MIlano, Milan, Italy

{ name. surname}@ polimi. it

Abstract

Containerization is a virtualization technique that allows one to create and run

executables consistently on any infrastructure. Compared to virtual machines,

containers are lighter since they do not bundle a (guest) operating system but

they share its kernel, and they only include the files, libraries, and dependencies

that are required to properly execute a process. In the past few years, multiple

container engines (i.e., tools for configuring, executing, and managing contain-

ers) have been developed ranging from some that are “general purpose”, and

mostly employed for Cloud executions, to others that are built for specific con-

texts, namely Internet of Things and High-Performance Computing. Given the

importance of this technology for many practitioners and researchers, this pa-

per analyses six state-of-the-art container engines and compares them through

a comprehensive study of their characteristics and performance. The results

are organized around 10 findings that aim to help the readers understand the

differences among the technologies and help them choose the best approach for

their needs.

Keywords: containerization, container engines, performance, cloud

computing, internet of things, high-performance computing

1. Introduction

Containerization [30] is a widely adopted virtualization technology that al-

lows one to create lightweight executables that can run consistently on any

Preprint submitted to Elsevier December 28, 2023



infrastructure. They exploit a shared operating system (OS) and package exe-

cutables along with their required dependencies (e.g., code, configuration files,

and libraries) in a standard format. They are lighter, faster to boot, and scale

better than virtual machines (VM) because they share a host OS kernel and

only virtualize userspaces [52, 6]. Originally conceived for cloud-native applica-

tions [38], they are now the de-facto compute unit in many contexts —for exam-

ple, Internet of Things (IoT) [11] and High-Performance Computing (HPC) [24]

solutions. Containers mainly exploit the features of the Linux kernel, but there

are also a few implementations for other operating systems [31].

A container engine supplies a set of tools to create and manage containers. It

provides means to create container images, that is, container blueprints that em-

bed all the necessary files needed at runtime: a container (or container instance)

is then a standard process that instantiates a container image. Multiple con-

tainers can be created from a single image. Images are usually defined through

dedicated languages (e.g., Dockerfile [17]) and built using image builders. The

container runtime allows one to start and manage containers from images, con-

figure the kernel, and initialize the process that the container wraps. Container

engines are usually connected to a public (or private) registry, where users can

upload or download container images, and can also provide orchestration tools

to schedule, connect, and oversee the execution of multiple containers running

on a cluster of physical or virtual machines. In the last few years, numerous

container engines have been presented and adopted by practitioners. Each ap-

proach is dedicated to an execution environment and provides different features,

security guarantees, and performance.

This paper aims to shed some light on these technologies and help the read-

ers understand the technical differences among the approaches and choose the

best technology for their needs. Given the diverse engines that exist today, we

selected three reference domains: cloud computing, IoT (Internet of Things)

solutions, and HPC (High Performance Computing) systems, to categorize the

different engines, understand the particular requirements, and emphasize the

specificity of studied engines. In the domain of cloud computing, agility and

2



operational efficiency are key; container technologies facilitate these by acceler-

ating release cycles and reducing operational complexities, particularly in the

context of highly modularized applications [39]. HPC systems are characterized

by specialized hardware, the need for complex library dependencies like MPI,

and stringent security protocols in multi-tenant settings; container technologies

serve to ease these complexities by simplifying dependency management, facil-

itating GPU utilization, and enhancing security [47]. In IoT environments, a

variety of hardware architectures and limited resources like memory and stor-

age make deployment challenging [3]. Containers offer a solution by enabling

easier management of devices, optimizing resource use, and addressing privacy

concerns [9].

For each domain, we retrieved the two most famous container engines, ac-

cording to GitHub. We then analyzed Docker [16], which played a key role to

made containers become popular, and Podman [41] as cloud-native solutions,

Charliecloud [12] and Singularity [54] as HPC-specific engines, and we only

found balenaEngine [5] as container engine for IoT systems. We decided to also

add Sarus [49], as third HPC-specific engine since it is a promising solution and

it is the only one that is fully developed in academia.

The proposed analysis is both qualitative, since we confront offered features,

and quantitative, since we compared their performance on a comprehensive set

of benchmarks. Obtained results are summarized in 10 findings that highlight

the characteristics, similarities, and differences of considered engines.

The rest of this paper is organized as follows. Section 2 describes the selection

process and the container engines we selected. Section 3 presents the feature-

wise comparison of the technologies. Section 4 shows our empirical evalation,

while Section 5 discusses the results. Section 6 illustrates some related works

and Section 7 concludes the manuscript.

2. Identified Engines

Containers are not only used in the cloud anymore; other computing con-

texts exploit them and appreciate their characteristics. Docker was the first

3



engine that gained traction among practitioners, and other solutions have been

developed over the last years to address particular requirements and provide

more appropriate engines. The characteristics of cloud-based engines, which

are often common to all solutions, along with the specific needs that come from

HPC and IoT applications, explain why we decided to identify three groups:

cloud-specific, or general-purpose solutions, and HPC- and IoT-centric engines.

We then explain how we selected the six engines by considering their popularity

on GitHub, and we sketch their main characteristics.

2.1. Contexts

Containers are used to wrap applications in lightweight, isolated, and self-

contained executables that are easily portable among different execution envi-

ronments. They allow developers to create software in a local machine without

worrying about compatibility issues that may arise when migrating to produc-

tion environments.

Containers have gained a lot of traction in cloud environments because they

increase the speed of release cycles (i.e., more agility) and reduce the number of

operations required (i.e., lower costs) [25]. Moreover, oftentimes modern cloud-

based applications are developed by following the microservices architecture [18]

where, the application is structured in a set of loosely-coupled, “small” services

that can be developed, tested, and deployed independently. In such a setup,

each service can be packaged as a lightweight container to isolate their execution

and management without adding any significant overhead. Containers can also

be used to package off-the-shelf monolithic applications to add portability and

isolation.

Novel use cases for containers have emerged recently. Bentaleb et al. [8] have

noticed that in addition to cloud computing, HPC (High-Performance Comput-

ing) and IoT (and, similarly, Edge and Fog infrastructures) could benefit from

the adoption of containers, but they pose some additional requirements.

HPC systems consist of nodes that are equipped with specialized hardware,

networking, and storage solutions designed for highly parallel computations.

4



These systems often have a large number of CPUs and GPUs, and the compu-

tation on these devices is typically managed by a workload manager. In this

context, managing configurations can be difficult due to the complexity of the

platform, the need to integrate with the workload manager, the requirement

for specialized libraries (e.g., MPI1), and the differences between development

environments (i.e., standard computers and the HPC center that hosts the ex-

ecution).

Containers can help simplify the management of dependencies and libraries,

and increase the portability of applications by abstracting away differences be-

tween execution environments. This enables the integration of HPC applications

into continuous integration pipelines [47], which have been shown to improve

software quality and speed up application evolution [19].

Furthermore, containers can help isolate resources among different processes

without introducing a significant overhead. This is particularly relevant in

highly distributed and concurrent setups like HPC infrastructures, where re-

source contention can significantly reduce overall system performance [56]. With

containers, each process is isolated and can be configured to use a set of resources

exclusively (which will prevent resource contention by design) or to share them

with other containers by defining the priority of each container in the event of

resource saturation. The combination of reliable dependency management and

deterministic resource allocation mechanisms provided by containers enables

more deterministic and reproducible executions, which can help both practi-

tioners and researchers design better HPC-based services and understand their

performance.

In addition to the challenges posed by the complexity of HPC systems and

the need to manage dependencies and configurations, HPC centers are also

multi-tenant and multi-user systems, which makes security a critical concern.

In order to protect against security threats such as malware and unauthorized

access, it is important for processes to be executed without privileged permission

1https://www.mpi-forum.org

5



(rootless executions). This helps to prevent processes from gaining access to

sensitive resources or from making unauthorized changes to the system.

IoT nodes are characterized by a wide variety of different configurations,

which can make it challenging to deploy and manage applications across this

heterogeneous environment. In addition, IoT devices often have limited re-

sources such as memory, storage, and processing power, which can make it

necessary to use lightweight and highly optimized solutions [3].

Containers can help address these challenges by increasing the portability

of applications across devices with different configurations, and by enabling the

optimization of resource usage. Containers can also help isolate concurrent

processes running on the same device and manage available resources, which

is important to prevent resource saturation and to carefully allocate resources

to each process. This is particularly important in IoT environments where

the number of devices may be large and dynamic, and where the demand for

resources may vary over time. By using containers, it is possible to easily

increase or decrease the number of instances of an application running on IoT

devices, providing a flexible and scalable solution [9].

In IoT environments, where devices often operate on constrained energy

sources such as batteries, energy and computational efficiency are paramount

for sustaining longer device uptime and reducing operational costs. To address

these challenges, container engines tailored for IoT should prioritize low com-

putational overhead and provide means for fine-grained resource allocation to

optimize the use of limited energy and processing capabilities.

Finally, the exchange of data between IoT nodes can often involve sensi-

tive or privacy-critical information, and it is important for container engines to

prioritize security in order to protect this data and prevent the compromise of

devices. To prevent data from being intercepted and accessed by unauthorized

parties, it is important to encrypt data as it is transmitted between IoT devices.

In addition, container engines should implement measures to ensure that data

is not tampered with or modified by unauthorized parties.

As described herein, cloud computing, HPC, and IoT systems pose different

6



challenges and there is no one-size-fits-all solution that can easily accommodate

all of them. As we will discussed in the rest of the paper, the state-of-the-art

offers container engines that are “general-purpose” and mainly used in cloud

setups and others that are specialized to a single context to better address its

main issues.

2.2. Selection process

To select the most important container engines in each context (Cloud, IoT,

and HPC), we used a semi-automated pipeline2: i) GitHub queries, ii) auto-

mated filtering, and iii) manual labelling.

We started retrieving a set of GitHub repositories that may provide a con-

tainer engine dedicated to a given context by issuing three dedicated queries

(container + <context>) to GitHub, where <context> was “”, to mean “stan-

dard” cloud solutions, and hpc and iot for the other two cases. The search was

restricted to either README files or repository descriptions, and we set the

number of GitHub stars of an acceptable repository to be equal to or greater

than 100. We sorted the results by stars and we analyzed the first 1000 results

for each query. At the end of the first step, we obtained 1000, 90, and 385

repositories for cloud-, HPC-, and IoT-focused repositories, respectively.

As additional refinement, we automatically filtered out some of the results

not related to container engines. In particular, we removed all the repositories

whose descriptions (lower-cased and without punctuation and symbols) did not

contain any of the following keywords: cloud, container, iot, internet of things,

hpc, and high performance computing. After this step, we remained with 104,

21, and 49 repositories, respectively.

As final step, we manually scanned the results to properly identify con-

tainer engines. We used four labels to characterize each repository: ENGINE (a

container engine), RUNTIME (a low-level container engine component) , TOOL (a

tool related to containers but not a container engine or runtime), and N/A (a

2The results of each step can be found at: https://github.com/deib-polimi/

container-engines-selection

7



non-relevant element).

Container engines and container runtimes serve distinct roles within the

ecosystem of containerization. We refer to “container engines” to identify com-

prehensive solutions that manage the complete lifecycle of a containerized ap-

plication. This includes the definition, building, and storage of images, version

management, registry interactions, and execution. Container engines may also

provide functionality for orchestration and networking. On the other hand, con-

tainer runtimes are specialized components responsible solely for the execution

phase. They handle tasks like spinning up, running, and tearing down container

instances. Container runtimes are utilized by container engines to perform these

specific functions but do not encompass the broader range of capabilities that

container engines offer. In summary, while container runtimes focus exclusively

on the runtime execution of containers, container engines provide a holistic solu-

tion that covers multiple aspects of container management, of which the runtime

is just one part.

Among the 104 repositories retrieved for cloud container engines, we tagged

4 with label ENGINE, 3 with label RUNTIME, and, 46 and 51 with labels TOOL

and N/A, respectively. The four identified container engines are Docker3 (62.7k

stars), Podman (13.2k stars), RKT (8.8k stars) and Pouch by Alibaba (4.4k

stars); while the three discovered container runtimes are containerd (10.6k dis-

covered), run-c (9.0k stars), and cri-o (3.9k stars). In the context of HPC, we

obtained 3 engines, no runtimes, 6 tools, and 12 repositories marked as N/A.

The three identified container engines are Charliecloud (238 stars), Singularity

3Each engine has its own repository. The core functionality of Docker is now included
in the Moby project: https://github.com/moby/moby. Podman is available from: https:

//github.com/containers/podman. RKT is available from: https://github.com/rkt/rkt,
but it was discontinued in 2020 as reported at https://github.com/rkt/rkt/issues/4024.
Pouch is available from: https://github.com/alibaba/pouch, containerd from: https:

//github.com/containerd/containerd, run-c from: https://github.com/opencontainers/

runc, cri-o from: https://github.com/cri-o/cri-o, Charliecloud from: https://github.

com/hpc/charliecloud, Singularity from: https://github.com/sylabs/singularity, App-
tainer from: https://github.com/apptainer/apptainer, balenaEngine from: https://

github.com/balena-os/balena-engine, and Sarus from: https://github.com/eth-cscs/

sarus.

8



Name FRY #R LOC ⋆

Docker 2013 123 2.331.244 62.7k
Podman 2017 96 971.647 13.2k

Charliecloud 2015 25 8.071 238
Singularity 2015 78 62.819 214

Sarus 2018 10 16.890 78
balenaEngine 2015 127 1.051.024 586

Table 1: Container engines.

by Sylabs (214 stars), and Apptainer (196 stars). The last two engines share

the same core functionality being originated from the same project (i.e., Singu-

larity has been recently renamed Apptainer). Finally, for IoT we discovered one

single engine, balenaEngine (586 stars), no runtime, 6 tools, and 42 repositories

marked as N/A.

We selected the two container engines (if available) with the highest amount

of stars from each group, and selected five engines: Docker, Podman, Char-

liecloud, Singularity, and balenaEngine. Because of its characteristics, we also

added Sarus4 (78 stars), an emerging solution completely developed in academia,

and optimized for HPC.

For each selected engine, Table 1 reports the year of the first release (FRY ),

the number of releases (#R) until now, the size of the project in lines of code

(LOC), and the amount of GitHub stars retrieved by our queries (⋆), to estimate

the adoption rate and its reputation.

3. Qualitative analysis

All six container engines are open source and their development is active.

Most of the implementations are written in Go, but Charliecloud and Sarus: the

former is written using a mix of shell scripts and C code, the latter is written in

C++. Even if we have identified three groups, each solution, with the exception

of balenaEngine that requires a dedicated OS, can be used in any context due

4https://github.com/eth-cscs/sarus

9



Feature Doc Pod Cha Sin Sar bal

Compatibility
OCI compliance ✓ ✓ ∼ ✓ ✓ ✓
Support for multiple host operating systems ✓ ✓ ✓ ✓ ✓ ×

Image management
Built-in image builder ✓ ✓ ✓ ✓ × ✓
Images from Dockerfiles/Containerfiles ✓ ✓ ✓ ✓ × ✓
Images from SDFs × × × ✓ × ×
Images from git repositories ✓ ✓ × × × ✓
Images from archives ✓ ✓ ✓ × × ✓
Public/private registries ✓ ✓ ✓ ✓ ✓ ✓
Support for Docker/OCI images ✓ ✓ ∼ ✓ ✓ ✓
Support for SIF × × × ✓ × ×

Optimizations
Layered images ✓ ✓ ✓ × ✓ ✓
Differential image updates × × × × × ✓
On the fly image extraction × × × × ×
Fine-grained cache management during image pull × × × × × ✓
Image compression × × × ✓ ✓ ×

Containers executions
Detached executions ✓ ✓ × ✓ × ✓
Dynamic Resource Management ✓ × × ✓ × ×
Built-in orchestration capabilities ✓ × × × × ✓
Support for workload managers × × ✓ ✓ ✓ ×
Support for GPUs ✓ × ∼ ✓ ✓ ✓
Explicit support for MPI libraries × × ∼ ✓ ✓ ×

Security
Signed container images ✓ ✓ × ✓ × ✓
Rootless executions ✓ ✓ ✓ ✓ × ×
Daemonless execution model × ✓ ✓ ✓ ✓ ×
VPN support × × × × × ✓

Table 2: Qualitative comparison: ✓available, ∼ partially available, and × not available.

10



to the natural portability of containers (at least on Linux-based systems).

Docker [16] was the first popular engine, and it is still probably the most

famous one. It provides a complete production platform for developing, dis-

tributing, securing, and orchestrating container-based solutions. It is easy to

use, well established among developers, and its general-purpose nature fits al-

most any software project. Docker exploits containerd [14] for managing and

running containers, which in turn uses run-c [36] as, low-level container runtime

for container creation. Podman [20] is younger compared to Docker. It is based

on library libpod, from the same developers, that is used for managing the entire

container lifecycle. By default, it uses the run-c container runtime for instanti-

ating containers but other OCI-compliant runtimes can be also employed (e.g.,

katacontainers5 or crun6) .

Charliecloud [43] focuses on the management of containers on HPC frame-

works by simplifying the packaging and transmission of HPC applications, and

is the lightest solution among the analyzed ones (i.e., only a few thousands of

LOC). Singularity [22] is a container engine optimized for the computation of

HPC workloads. It can also be used in cloud deployments and supports Docker

images and registries. From version 3.1.0, Singularity is fully OCI compliant,

and supports both OCI specifications: image-spec and runtime-spec. Sarus [7]

is the most recent project, with the lowest number of releases, and has been

designed to run containers in the HPC context. It leverages run-c as container

runtime, and provides an extensible runtime to support current and future cus-

tom hardware while achieving native performance.

balenaEngine [5] is based on the Moby Project [44], a framework provided by

Docker to assemble specialized container systems, and offers a complete platform

for deploying IoT applications using containers.

Table 2 summarises our analysis and organizes discovered features around

five main dimensions: i) compatibility, the degree of compliance to standards and

5https://katacontainers.io
6https://github.com/containers/crun

11



the availability on different operating systems, ii) image management, the ways

container engines generate, use, and share container images, iii) optimizations,

the techniques employed to reduce resource usage, iv) container executions, the

features available at runtime, such as resource management and the support to

specific libraries and tools, and v) security, the way container engines guarantee

secure image builds and executions. Note that each technology is abbreviated

with the first three letters of their name (e.g., Doc for Docker).

3.1. Compatibility

The Open Container Initiative (OCI) is an initiative, led by the Linux

Foundation, that focuses on establishing universally accepted standards for

containers [1]. It currently comprises two main specifications: the Runtime

Specification (runtime-spec) [35] and the Image Specification (image-spec) [34].

These specifications provide a standard framework that ensures that any OCI-

compliant container runtime can unbundle and execute the contents of an OCI-

compliant image in an isolated environment.

We inspected the available documentation of the analyzed container engines

and all container engines fully support the OCI standard, with the only ex-

ception of Charliecloud that only provides it as an experimental feature7: the

support is only partial and available with a set of additional commands. OCI

assumes that containers be always-on services with a complex lifecycle, while

Charliecloud focuses on scientific applications that are usually executed once

and are terminated as soon as the required calculations are completed. Simi-

larly Singularity provides both OCI-compliant commands (e.g., singularity oci

exec) and additional ones (e.g., singularity exec).

In terms of compatibility, balenaEngine is the only solution that only works

on top of a dedicated operating system, namely balenaOS [4], that is customized

and optimized for the execution of balenaEngine and containers. This Linux-

based operating system, which is compatible with a wide range of computer

7https://hpc.github.io/charliecloud/command-usage.html\#ch-run-oci

12



architectures including armv5, armv6, armv7, aarch64, i386, and x86 64, is

also responsible for running a containerized daemon (device supervisor) that

automatically updates running containers if an update is available.

All other engines can run on full-fledged, standard operating systems.

Finding #1 All analyzed container engines support OCI and standard

host operating systems with a few exceptions. Docker, Podman, Sarus,

and balenaEngine are fully OCI compliant. Singularity is also compatible

with OCI but with a dedicated set of commands, and Charliecloud offers

it as an experimental feature. balenaEngine can only run on top of its

dedicated oerating system.

3.2. Image management

The process of defining container images is often scripted for automation

and reproducibility. There are three types of scripts used for this purpose:

Dockerfiles, Containerfiles, and Singularity Definition Files (SDFs). Docker-

files, originally proposed in the Docker ecosystem, are the most widely used

scripts for defining container images. They contain a set of instructions that

automate the process of creating a container image, and specify everything from

the base operating system to the application executable and its dependencies.

Containerfiles have the same syntax and semantics as Dockerfiles but are used to

signify vendor-neutrality or the intention to operate in a broader ecosystem be-

yond Docker. Singularity Definition Files (SDFs) offer a different syntax and are

unique to Singularity. They enable specific optimizations for high-performance

computing environments. An SDF is composed of two parts, the header, which

defines the configuration of the execution environment (e.g., kernel features,

Linux distribution), and sections, which execute commands during the build

process. SDF allows users to incorporate HPC-specific configurations, such as

tailored MPI configurations, GPU environment setups, custom filesystem map-

pings, and specialized run scripts. While Dockerfiles/Containerfiles can perform

13



some of these tasks, they may require additional scripting or manual interven-

tions after image creation.

Docker can build images from a Git repository, from a compressed archive,

or a Dockerfile. Docker allows one to publish images onto private or public

registries that act as shared repositories, where images can be versioned through

tags. This way, different versions of the same image (e.g., latest, old or beta

version) can be associated with the same project. Docker also provides a public,

official registry, called Docker Hub [15], that offers a rich set of base images that

can be used as a starting point for building new containerized applications.

Docker Registry allows us to create private registries.

Podman images can be built from a Dockerfile or Containerfile. At its core,

Podman uses Buildah [10] to build container images. Since it replicates all the

commands we can find in a Dockerfile, Podman allows the user to build images

with or without Dockerfiles while not requiring any root privileges. Podman

supports both OCI images, and allows one to pull images from a local directory

that stores all the image files, a Docker registry, or an OCI archive, that is, an

image that complies with OCI.

For image creation, Charliecloud uses external builders —including Docker

and Buildah—, or an internal one, called ch-image. The image can be built

with or without privileges, depending on the used builder. The created image is

wrapped with a Charliecloud interface and converted into a compressed archive

that can be easily moved on the HPC cluster. The archive is then unpacked

and executed without root privileges.

Singularity allows one to build images using SDF or Dockerfiles and to pull

them from external resources such as the Singularity official public registry,

called Singularity Cloud Library [55] (SIC), and Docker Hub. The container

image can be produced in two different formats: a writable sandbox for inter-

active development, or in the Singularity Image Format (SIF), a compressed

read-only format that can be easily moved, shared, and distributed.

Sarus does not provide means to build images and rely on external tools. It

supports already-built images that are OCI compliant, and that can be down-

14



loaded from public and private registries.

balenaEngine uses Docker behind-the-scene for both image building and us-

age providing analogous capabilities.

Finding #2. All analyzed engines but Sarus provide means to build im-

ages from Dockerfiles/Containerfiles. Singularity can also use a proprietary

format for both image definition and building that allows for a simplified

configuration of HPC systems.. Non-HPC engines support images created

from git repositories and archives, while all the engines allow users to share

and download images using private or public registries. Charliecloud sup-

ports images loaded from archives.

3.3. Optimizations

All engines provide key optimizations. All but Singularity exploit layered

images, an approach pioneered by Docker. A layered image consists of several

read-only layers of data, each of them corresponding to a a single instruction

(e.g., a command in a Containerfile). The layers are stacked and contain only the

changes from the previous one. Layered images are particularly useful because

they allow reusing any layer as starting point for a different image. Being read-

only, the layers shared across different images are only stored once on the disk,

and if needed, in memory.

When a new container instance is created from an image, a writable layer,

called the container layer, is also created on top of the image layers. This

layer hosts all changes made to the running container, for example, it stores

newly written files, modifications to existing files, and deleted files to allow for

customizing the container. Changes made to the container layer do not affect

image layers. This way, different images can share common files and components

without the need of storing them multiple times.

balenaEngine optimizes the usage of memory, network and I/O bandwidth,

15



thereby contributing to energy efficiency, which is particularly crucial for resource-

contrained IoT devices.

When an image is updated, the devices are notified and only the differences

are downloaded, and in case of faults (e.g., out of batteries) container images

cannot be corrupted. When working with container images to be generated from

archives, balenaEngine builds the image while uncompressing the files without

the need for occupying the disk with temporary files. Moreover, during the im-

age pulling process, balenaEngine iterates over each file of every layer and writes

it to disk while optimizing for minimal page cache usage. Each file is immedi-

ately synced to disk, and the kernel is informed to release its associated cache

pages. This approach serves to prevent page cache thrashing and ensures that

existing containers continue to run undisturbed even in low-memory situations.

Although this method may slightly slow down the image pulling process, it offers

a trade-off that is particularly advantageous for IoT use cases by maintaining

system performance and application stability.

Sarus does not provide any built-in mechanism for image creation and pub-

lication but optimizes existing images (e.g., Docker or OCI ones) by reducing

their size through SquashFS [26], an optimization that is also employed by Sin-

gularity.

Finding #3. Layered images are a widespread technique to save disk

space by allowing images to share common parts. To improve energy and

computational efficiency, balenaEngine provides some key optimizations

to reduce network transfers (i.e., differential image updates), disk usage

(i.e., on-the-fly image extraction), and memory (i.e., fine-grained cache

management during image pull). Sarus and Singularity compress images

with SquashFS to reduce disk usage.

16



3.4. Containers executions

When it comes to container executions, one of the main features is the sup-

port for “detached” executions, that is, the ability to run long-lasting interactive

processes (e.g., a database management system or a web server). While applica-

tions executed in the cloud or IoT infrastructures may benefit from this feature,

HPC applications are usually non-interactive and terminate as soon as the cal-

culations are completed. For this reason, Charliecloud and Sarus do not support

detached executions by design.

While all container engines provide the means to allocate resources (e.g.,

cores) to a container at startup time, only Docker and Singularity allow for dy-

namic resource management, that is, the reconfiguration of allocated resources

at runtime.

balenaEngine provides some important orchestration capabilities to deploy

and update containers on a fleet of registered IoT devices, while Docker provides

two dedicated tools: Docker Compose and Docker Swarm.

Docker Compose allows us to configure and run multi-container applica-

tions. Users write docker-compose files to define all container images used by

the application, and the instances we need of each image. Typical use cases

are “traditional” three-tier applications or microservices where a single system

is composed of multiple separated components (i.e., multiple executables). By

default, Docker Compose also sets up a network for the application, and each

container is reachable by the others. Docker Swarm lets users manage contain-

ers deployed across multiple machines. It uses the standard Docker API and

networking for merging a pool of Docker hosts into a virtual, single host. It also

provides means to scale applications or single containers that can be replicated

onto the cluster. Instead, Podman relies on external tools such as Kubernetes.

HPC engines do not provide ad-hoc orchestration capabilities.

GPU computations are supported by all the engines, but Podman, assuming

that the host operating system has the proper driver installed. Charliecloud

17



provides this feature but requires non-trivial effort8 (e.g., recompilation) to

configure some important GPU-related libraries (e.g., NVIDIA ones). Singu-

larity exploits GPU frameworks such as NVIDIA CUDA9 and AMD ROCm10.

In Sarus GPU devices are supported through a dedicated library, namely, the

NVIDIA Container Runtime [33] (that is OCI-compatible).

While one can install MPI libraries in any container engine, HPC-dedicated

container engines offer explicit support for configuration and execution of MPI-

based applications. All such HPC-focused engines include support for MPI

libraries, which are essential for complex distributed computations, as well as

workload managers for overseeing distributed tasks. Singularity supports both

OpenMPI11 and MPICH12, and offers two distinct execution models: hybrid

and bind. The hybrid model allows for the utilization of both the host’s and

the container’s MPI implementations, if available. The bind model relies ex-

clusively on the host’s MPI. Charliecloud focuses on OpenMPI, and Sarus is

geared towards MPICH; both provide a dedicated set of commands and con-

figuration files. In terms of HPC workload managers, Singularity is compatible

with Torque [13], Slurm [50], and SGE [51], while both Charliecloud and Sarus

integrate well with Slurm.

Finding #4. Detached executions are not supported by Charliecloud and

Sarus because of their focus on scientific applications. Docker and Singular-

ity provide means to dynamically allocate resources, while only Docker and

balenaEngines have built-in orchestration capabilities. GPU computations

are supported by all the engines except Podman. HPC-engines provide

ad-hoc support for workload managers and MPI-based computations.

8https://hpc.github.io/charliecloud/command-usage.html\#notes
9https://developer.nvidia.com/cuda-toolkit

10https://rocmdocs.amd.com/en/latest/
11https://www.open-mpi.org
12https://www.mpich.org

18



3.5. Security

Docker is a client-server application. The server is the Docker daemon (dock-

erd) that processes the requests sent by clients through a command-line interface

(CLI) or a RESTful API and manages Docker images and instances. The dae-

mon is executed with root privileges, and thus only trusted users should be

allowed to control the daemon. A rootless mode was available as an experi-

mental feature starting from version 19.03 and it has been fully supported since

version 20.10. The rootless mode executes the Docker daemon and containers

inside an isolated user namespace (a feature that Docker itself uses also to iso-

late containers with one another). Thus, both the daemon and the containers

run without root privileges.

By default, Docker starts containers with a restricted set of Linux kernel

capabilities [29][23] to allow us to implement a fine-grained access control sys-

tem. The best practice is to remove all the capabilities except those explicitly

required by the application.

Unlike Docker, Podman is daemonless and so it has no background service

and the container runtime is executed only when requested. This way, Podman

offers less attack surface, because it is not always in execution. It does not re-

quire root privileges by leveraging user namespaces. Both Docker and Podman

require an initial configuration by a system administrator to enable rootless ex-

ecution. Podman and Docker allows to sign images to only trust selected image

providers and mitigate man-in-the-middle attacks. Docker uses a proprietary

signing system, while Podman uses GNU Privacy Guard (GPG) before pushing

the image to a remote registry. In this configuration, all the nodes running the

container engine must be properly configured to retrieve the signatures from a

remote server.

Similarly to Podman, Charliecloud only needs Linux user namespaces to run

containers without the need of any privileged operations. It is daemonless and

requires only minimal configuration changes on the computing center. It is not

designed to be an isolation layer, so containers have full access to host resources.

Charliecloud commands only require privileged access when used in conjunction

19



with external builders, such as Docker. This approach still avoids most security

risks while maintaining access to the performance and functionality already

offered [43] since image building is usually executed on the user machine, while

only the non-privileged execution is run on in the HPC center preserving its

security.

Singularity is daemonless and requires containers to have the same permis-

sions as the users that started them, while the access to files within the con-

tainer runtime is managed by the standard POSIX permissions. Containers are

started with flag PR NO NEW PRIV S13 that prevents applications to gain

additional privileges. On multi-user, shared systems, such as HPC centers, Sin-

gularity provides an optional FakeRoot14 to allow an unprivileged user to run a

container as root. This way, the user has almost the same administrative rights

as root but only within the container. In addition, Singularity provides several

strategies to ensure safety in these types of environments. Singularity containers

can be signed and verified using PGP keys and thus provide a trusted method to

share containers. Singularity supports the encryption/decryption of containers

at runtime to create a secure and confidential container environment.

Sarus is also daemonless. Root permissions are required to install and work

with Sarus. For this reason, Sarus checks a list of conditions to ensure that

critical files and directories opened during privileged execution meet them.

balenaEngine provides multiple security layers. Updates are sent to devices

in a reliable and verifiable way to protect devices against attacks. An API key

is created for each device, balenaOS then controls who can access it, the actions

that are permitted, and the available communication channels. balenaEngine

uses OpenVPN to control the state of its devices. The VPN disallows device-

to-device traffic and prohibits outbound traffic to the Internet. balenaEngine

maintains a repository of secure base images. Any resource added to these base

13PR NO NEW PRIV S is a flag of the Linux kernel that can be set for a process to
restrict its ability to gain additional privileges. Once this flag is set for a process, neither the
process nor any of its children can elevate their privileges.

14https://wiki.debian.org/FakeRoot

20



images is verified by a GPG key or a checksum.

Note that these security measures may be intrinsically linked to the isola-

tion capabilities of the underlying operating system. Features such as Linux

user namespaces, as utilized by Podman and Docker’s rootless mode, or Char-

liecloud’s minimalistic design, serve to enhance security by effectively isolating

the container environment from the host system. For example, both Docker

and Podman use Linux user namespaces to map the UIDs (user ids) and GIDs

(groud ids) of a container to different UIDs and GIDs on the host. A user

might be an “admin” inside a container but map to a non-privileged user on

the host system. This way, even if there is a security vulnerability within the

container, the impact is limited because the container does not have real “root”

access to the host system. Similarly, the daemonless architectures in Podman,

Charliecloud, and Singularity offer an extra layer of protection by reducing the

attack surface, as there is no persistently running service that could serve as a

target for unauthorized accesses.

Finding #5. All container engines except for Charliecloud and Sarus

support container image signing to increase reliability. Rootless executions

are supported by Podman, Charliecloud, Singularity, and only recently by

Docker. Docker and balenaEngine share the same daemon-based architec-

ture, while the others are daemonless. balenaEngine is the only engine to

provide VPN support.

4. Quantitative Evaluation

To evaluate the performance of the six container engines we carried out an

extensive empirical evaluation. We conducted a series of tests organized into

five distinct categories. The first four categories aim to explore key performance

metrics, namely startup and shutdown time, memory footprint, image size, and

overhead. The fifth category is specialized on HPC performance metrics in

utilizing MPI-based applications.

21



4.1. Experiment Setup

To run the tests we used the engines with their default configurations and

exploited two different execution environments as detailed in the following.

Experiments on key performance metrics. To run the first four types

of tests we used a single-user bare-metal server equipped with an AMD CPU

Ryzen 5 2600 @ 3.40GHz (6 Cores / 12 Threads), with 32GB RAM DDR4

@ 3200MHz, and Ubuntu 19.10. We exploited this configuration to avoid the

performance variability introduced by hardware shared among multiple, con-

current jobs, and the overhead introduced by a virtualization system. The

tests on startup/shutdown times, memory footprint, and image size used con-

tainers created from three popular images that include a ready-to-use Linux

distribution: Ubuntu 18.04, CentOS 8, and Alpine 3. We selected these im-

ages because they do not contain any application-level dependency that could

introduce noise and bias in understanding the impact of the execution times

of each engine. These images are Linux distributions that share the host ma-

chine’s kernel; they are not different OSs as if they were bundled in VMs. They

only include distribution-specific utilities and libraries, without the overhead of

a separate kernel or fully-fledged OS.

For the tests related to overhead we containerized15 the Phoronix Test Suite

(as explained in Section 4.5) and we used Ubuntu 18.04 as base image since it is

the most popular Linux distribution, and a widely used solution for containers.

Experiments on HPC performance. To run HPC-dedicated tests, we de-

ployed a cluster of high-performance virtual machines on Microsoft Azure. We

used machines of type HB60rs equipped with 60 cores and 240GB of RAM.

These machines also feature a network interface for RDMA (Remote Direct

Memory Access) connectivity that allows processes to communicate over an In-

finiBand network (100 Gb/sec Mellanox EDR with single root input/output

virtualization). For the experiments, we used up to 8 instances of HR60rs VMs.

15The source code of the containerized test suites can be found at: https://github.com/

deib-polimi/containers-test-suites

22



We initially used Azure Cyclecloud, a tool provided by Microsoft, for the

configuration of HPC clusters. Since the tool was quite unstable and slow, we

created a set of Ansible playbooks 16 to automate the management operations.

We set up the cluster with the Slurm workload manager and a distributed file

system (NFS17). We used the Azure CentOS VM image since it was designed for

HPC applications and embeds all the necessary drivers to work with InfiniBand

and MPI. We used OpenMPI 4, configured in hybrid mode so that both the

library installed in the host node and the one in the container can be used

(see Section 3). We built the container images with Docker to use the same

solution across the different engines. We created a Dockerfile18, starting from

the one provided by Azure19 that includes support for InfiniBand and OpenMPI.

In addition, we updated the drivers to match the one installed on the host VM

and we included the benchmarks we wanted to execute. We used two well-known

test suites for MPI: the OSU Micro-Benchmarks20 by the Ohio State University,

and mpiBench21 by the Lawrence Livermore National Laboratory. While we

successfully configured both Singularity and Charliecloud, we could not make

Sarus properly execute the benchmarks by using the envisaged OpenMPI tools.

However, the team behind Sarus executed some of the benchmarks we used on

its own, and the results are publicly available [48].

4.2. Startup and shutdown times

Since a new container instance should become available quickly, to fulfill user

requests properly, and it should also die quickly, to avoid wasting resources,

we measured startup and shutdown times. We measured them by means of

the Linux command netcat, which allows one to send data packets between a

16https://github.com/deib-polimi/containers-SlurmCluster
17http://nfs.sourceforge.net
18https://github.com/deib-polimi/containers-DockerHPC
19https://github.com/Azure/batch-shipyard/tree/master/recipes/

mpiBench-Infiniband-OpenMPI
20http://mvapich.cse.ohio-state.edu/benchmarks/
21https://github.com/LLNL/mpiBench

23



Ubuntu CentOS Alpine
Start Stop Start Stop Start Stop

Doc
µ 871 (± 4) .08 (± .00) 888 (± 4) .08 (± .00) 875 (± 4) .08 (± .00)

σ 29 .01 34 .01 31 .01

Pod
µ 744 (± 24) .08 (± .00) 1412 (± 46) .07 (± .00) 559 (± 4) .08 (± .00)

σ 178 .03 337 .02 33 .02

Sin
µ 1755 (± 11) 23 (± .80) 1836 (± 21) 23 (± .80) 1740 (± 10) 23 (± .80)

σ 81 5 156 5 74 5

SinS
µ 125 (± 1) 23 (± .83) 141 (± 1) 23 (± .80) 108 (± 1) 23 (± .77)

σ 8 5 10 5 7 5

Cha
µ 5 (± .09) .08 (± .00) 6 (± .09) .08 (± .00) 5 (± .11) .08 (± .00)

σ .68 .01 .68 .01 .81 .01

Sar
µ 126 (± 1) 23 (± .74) 154 (± 1) 23 (± .71) 109 (± 1) 23 (± .76)

σ 9 5 11 5 7 5

bal
µ 1007 (± 4) .08 (± .00) 1012 (± 4) .08 (± .00) 1009 (± 4) .08 (± .00)

σ 30 .01 29 .01 29 .01

Table 3: Startup and shutdown times mean as µ (± 95% confidence interval) and standard
deviation (σ) in ms with single containers.

(netcat) server and a client. We installed the netcat server on the host machine

and configured each container to send a packet to the host and then terminate.

The startup time was measured as the difference between the time the data

packet is received by the server and the instant we started the container. The

shutdown time is computed as the difference between the instant the container

terminated and the one the data packet was received. We also tested how

the startup/shutdown times were affected when multiple containers are running

concurrently on the same machine.

Table 3 shows the average (µ) startup and shutdown times along with the

95% confidence interval for the mean (in parenthesis) and the standard devia-

tion (σ) of each experiment executed with the three container images. Given

that the sample size is 100 for each experiment, we computed the confidence

interval using a Z-distribution that is suited for large datasets. To evaluate

the performance differences between engines, we examined the overlap between

their respective confidence intervals. If the intervals are disjoint, the engine with

the lower mean is deemed to outperform the other. On the other hand, overlap-

24



0 20 40 60 80 100
run

0.00

1.00

2.00

tim
e 

[s
]

(a) CentOS - Startup

0 20 40 60 80 100
run

0.00

0.02

0.04

tim
e 

[s
]

(b) Ubuntu - Shutdown

Figure 1: Example startup and shutdown times in milliseconds.

ping intervals indicate that the performance of the two engines is statistically

indistinguishable, and therefore, comparable.

Note that SinS abbreviates Singularity with SIF images. To assess the

startup and shutdown times of single containers, we repeated the measurements

100 times, waiting 1 second before each execution and termination.

Most of the container engines exhibit a constant behaviour: startup and

shutdown times remained stable during the experiment. Podman and Singu-

larity (using Docker images) show the highest variance in startup times with

multiple spikes during the experiments, especially when using the Ubuntu and

CentOS images. For example, Figure 1a shows the startup times of the different

engines running CentOS images over the 100 repetitions.

The fastest engine in starting containers is Charliecloud, followed by Singu-

larity with SIF images and Sarus. Docker, Podman, and balenaEngine obtained

higher and quite similar startup times, while Singularity (using Docker images)

is the slowest implementation. This trend is quite consistent across the three

images we used. Note that even if the difference between the fastest and the

slowest is some 1.7 s, the fastest is some 290 times faster than the slowest and 20

25



Ubuntu CentOS Alpine
Start Stop Start Stop Start Stop

Doc
µ 621 (± 8) 402 (± 6) 624 (± 10) 395 (± 6) 610 (± 8) 10434 (± 6)

σ 45 33 53 31 45 31

Pod
µ 1645 (± 206) 648 (± 104) 4988 (± 371) 1115 (± 127) 474 (± 41) 10329 (± 6)

σ 1055 533 1894 651 213 35

Sin
µ 2102 (± 90) 78 (± 2) 1912 (± 14) 82 (± 2) 1919 (± 14) 78 (± 2)

σ 463 10 74 11 73 10

SinS
µ 304 (± 1) 78 (± 1) 306 (± 2) 82 (± 2) 302 (± 1) 77 (± 1)

σ 7 9 11 11 9 9

bal
µ 748 (± 11) 456 (± 9) 753 (± 13) 455 (± 8) 747 (± 15) 10501 (± 7)

σ 60 45 70 41 76 37

Table 4: Startup and shutdown times mean as µ (± 95% confidence interval) and standard
deviation (σ) in ms with multiple containers

times faster than the second fastest engines. Charliecloud uses a flattened and

unpacked image that is ready for execution when the start command is issued

and this may be the reason why it is the fastest engine. Singularity SIF and

Sarus leverage SquashFS and this may help reduce the startup time compared

to the others.

Shutdown times are small, negligible, and jagged for all engines: for example,

Figure 1b shows the shutdown times of the different engines running Ubuntu

images over the 100 repetitions. Except for Singularity (with both Docker and

SIF images) and Sarus, which had shutdown times of around 23ms, all other

engines achieved shutdown times under 1ms.

We can observe that, for most engines, the startup and shutdown times do

not change when using different images.

We also measured the startup and shutdown times when multiple containers

are executed concurrently on the same machine. We started with a container

and created a new one as soon as the previous one was up and running, incre-

mentally up to 100 concurrent instances. We do not report Charliecloud and

Sarus because they do not provide the means to run containers in detached

mode (i.e., in parallel in the background).

Table 4 shows the average startup and shutdown times along with the

26



0 20 40 60 80 100
running containers

0.0

2.0

4.0

6.0

tim
e 

[s
]

(a) CentOS - Startup

0 20 40 60 80 100
terminated containers

0.0

1.0

2.0

tim
e 

[s
]

(b) CentOS - Shutdown

Figure 2: Example concurrent startup and shutdown times in milliseconds.

mean 95% confidence intervals and standard deviations. The times obtained

by Docker, Singularity (with and without SIF), and balenaEngine are almost

constant while the number of running containers increases. On the other hand,

Podman shows a noticeable delay during the experiment with the Ubuntu and

CentOS images. For example, Figure 2a shows the execution of the experiment

with CentOS images and we can observe that the startup time increases at

around the execution of the 12th container and again at around the launch of

the 22nd. Podman also shows some spikes when running the Alpine image.

Podman exhibits a strong variability during the shutdown phase, especially

with Ubuntu and CentOS images (Figure 2b refers to the experiment with Cen-

tOS images). Other implementations present a constant behavior and Singu-

larity (using both Docker and SIF images) is significantly the fastest engine in

stopping containers. Shutdown times obtained by the other technologies are

particularly high (around 10 seconds) when using a small image such as Alpine

while they are small when using Ubuntu or CentOS. The variance is negligible

for all the engines but Podman.

27



Finding #6. HPC-optimized container engines (Charliecloud, Singularity,

and Sarus) are the fastest in terms of startup times. Charliecloud obtained

results that are at least two orders of magnitude better than the other

implementations. Singularity is fast but only when used with SIF images.

Concurrent images do not affect the startup times except for Podman that

showed a significant variance. Shutdown times are usually negligible and

almost constant but concurrent executions may slow down the operation.

4.3. Memory footprint

We measured the memory footprint to access the memory consumed by an

engine to instantiate and execute images. The containerized executable should

consume the same amount of memory as the non-containerized version. The

memory should only be freed when the container is stopped and deleted to make

room for other containers. We obtained it by means of the Linux command free

-m, which provides information about the total amount of physical and swap

memory, and with an engine-specific command if available. We also measured

the evolution of memory allocation during container creation using command

nmon, which supplies a benchmark tool to collect performance data regarding

memory and other resources22.

Figure 3a shows the evolution of the allocated memory during the creation of

100 container instances from image Ubuntu. As in the previous experiment, one

instance was added as soon the creation of the previous one was concluded, up to

100 containers. When 100 instances were created, we started terminating them

one after the other with the same rationale used for their creation. Given that

Charliecloud and Sarus do not allow one to run containers in the background,

we did not consider them for this experiment.

In the creation phase, the memory grows linearly. We observed some spikes

with Docker and balenaEngine, while Singularity and Podman are more stable.

During the termination phase, Singularity (without SIF) appeared to deallocate

22https://www.ibm.com/docs/en/aix/7.2?topic=n-nmon-command.

28



(a) Evolution (Ubuntu image). Squares and circles highlight the end of container creation and
termination, respectively.

0

500

1000

1500

m
em

or
y 

[M
B]

ubuntu

0

500

1000

1500
centos

Doc Pod SinS SinS Bal0

500

1000

1500
alpine

(b) Comparison

Figure 3: Memory allocation during container creation.

the memory quite fastly with an almost vertical descent; the other engines,

instead, do it more gradually. In this experiment, Docker is the fastest to

complete the creation phase and the overall process. Figure 3b shows the delta

of the memory allocated (from the beginning of the experiment to the creation

of the 100th container) by the different engines for the three images. Results

appear to depend on the considered image. Singularity allocates more memory

than the others with Ubuntu and Alpine, while Podman with CentOS. We did

not notice any noticeable memory leakage during the experiments.

Table 5 shows the average memory footprints we measured —using command

29



Ubuntu CentOS Alpine

Doc 24 (± 0.0) 24 (± 0.0) 30 (± 0.0)

Pod 23 (± 0.5) 15 (± 1.0) 28 (± 0.0)

Sin 21 (± 0.0) 27 (± 0.0) 28 (± 0.5)

SinS 21 (± 0.0) 27 (± 0.0) 27 (± 0.0)

bal 27 (± 0.0) 27 (± 0.0) 29 (± 0.0)

Table 5: Memory footprints in megabytes (mean and 95% confidence interval).

free— during the above experiment. The values are reported in megabytes along

with the respective 95% confidence interval. A few interesting trends can be

observed from the table. For instance, compared to other container engines,

Docker’s memory usage appears to be on the higher side for Alpine but stays

comparable for Ubuntu and CentOS. When running CentOS, Podman shows a

significantly lower memory footprint compared to all the other engines (15±1.0).

Singularity with or without SIF obtained comparable performance across the

three images and the best of all values in Ubuntu. Balena exhibits overall the

highest memory usage, but still remains similar to the others.

Finding #7. In terms of memory footprint, Docker and balenaEngine

exhibit occasional spikes during container creation, while Singularity and

Podman maintain more stable profiles. During container termination, Sin-

gularity deallocates memory most efficiently. Podman shows the lowest

memory usage when running CentOS, and Singularity performs best with

Ubuntu. Overall, no significant memory leaks were observed across the

tested engines.

4.4. Image sizes

We focused on the image size of containerized applications since it should

be proportional to the packaged application along with its dependencies. The

ability to reuse data (e.g., libraries) contained in other images and image com-

pression techniques can help save disk space. We measured it in three ways:

30



Ubuntu CentOS Alpine
Registry Disk Registry Disk Registry Disk

Doc 25 MBa 64 MBc

64 MBi 70 MBa 237 MBc

234 MBi 3 MB
6 MBc

6 MBi

Pod 25 MBa 67 MBd

64 MBi 70 MBa 245 MBd

234 MBi 3 MBa 6 MBd

6 MBi

Sin 53 MBb 109 MBg

53 MBh 80 MBb 293 MBg

81 MBh 3 MBb 6 MBg

3 MBh

Cha 25 MBa 70 MBg

25 MBi 70 MBa 252 MBg

69 MBi 3 MBa 6 MBg

3 MBi

Sar 25 MBa 25 MBe 70 MBa 67 MBe 3 MBa 3 MBe

bal 25 MBa 64 MBf

64 MBi 70 MBa 237 MBf

234 MBi 3 MB
6 MBf

6 MBi

Table 6: Image sizes. Data retrieved from [a] DockerHub, [b] Singularity Library, [c] docker
images, [d] podman images, [e] sarus images, [f] balena images, [g] folder size, [h] SIF size,

and [i] tar file size.

i) through the data reported in the registry that the engines use, ii) with the

Linux command du, which allows a user to gain disk usage information, to ob-

tain the size of the image on the disk, and iii) with an engine-specific command

if available. For Singularity, we run the tests both with Docker images and SIF

images.

Table 6 shows the sizes of used images retrieved from a public registry (com-

pressed size, calculated by summing up the size of each image layer) and from

the disk (compressed and uncompressed sizes). Note that all the engines, except

Singularity that leverages Singularity Hub, use Docker Hub as default public

registry. We observed that the size on disk can often exceed the one reported

on the registry. Registry data may not consider all the layers of the image and

report the compressed size.

Docker, Podman, and balenaEngine allow one to save the image as an

archive, and the image size does not change (significantly) when exported. Sin-

gularity exploits SIF and SquashFS to compress images, which results in an

important reduction of the image size on disk. Charliecloud and Sarus require

the smallest images. Charliecloud provides means to store images as compressed

31



archives (i.e., tar files) while Sarus uses SquashFS to optimize image sizes.

Finding #8. Docker, Podman, and balenaEngine do not provide any

significant optimization to save disk space. SIF helps Singularity reduce

significantly the size on disk (around three times smaller than Docker ones

in the best case). Charliecloud and Sarus are the best engines in terms of

image size (around 50% smaller images than Singularity in the best case).

4.5. Overhead

Container engines introduce a computational overhead to run images. Ide-

ally, the engine should provide performance comparable to the one obtained

on bare-metal machines. We conducted our measurements by utilizing the

Phoronix Test Suite (PTS) [53]. This suite facilitates the running of open-source

benchmarks from OpenBenchmarking.org [37] and allows one to assemble these

benchmarks into customized test suites. We defined two types of test suites:

a resource-level suite and an app-level suite. The resource-level suite conducts

low-level assessments focusing on CPU, memory, disk, and network usage. It

encompasses the following benchmarks23: OSBench, PyBench, Threaded I/O

Tester, RAMspeed SMP, 7-Zip Compression, OpenSSL, and Sockperf. Con-

versely, the app-level suite carries out application-level evaluations, incorporat-

ing benchmarks for Apache HTTP Server, nginx Server, BlogBench, SQLite,

Redis, and Apache Cassandra.

Tables 7 and 8 show the overheads measured with the two test suites:

resource- and application-level, respectively. Each value in the tables refers to

the percentage difference between container-based and bare-metal executions:

a negative value means that containers perform worse than bare metal. Each

test was repeated 5 times and we present the average values.

The resource-level test suite shows i) the amount of files created (F ), pro-

cesses (P ), threads (T ), and programs (P ) started, and memory allocated (MA)

23Detailed information about each benchmark can be accessed at: https://

openbenchmarking.org/tests

32



OSBench Py 7-Zip SSL RamSpeed I/O sockperf
F P T P MA Add Avg Copy RE WR TP PPL LL

Doc -41% -7% -4% -4% 0% -29% -2% 0% 0% 0% 0% -7% 0% 25% 5% -7%
Pod -4% -5% -7% 0% -5% -29% -3% 0% 1% 1% 0% -9% 0% 22% 8% 7%
Sin 1% -5% 3% -5% 0% 0% 1% 0% 0% 0% 0% -2% 1% 6% 1% 5%
SinS 2% -1% 5% -3% 3% 0% 0% 0% 0% 0% 0% -4% -3% 4% 2% 2%
Cha 4% 9% 15% 5% 1% 0% -1% 0% 0% 0% 1% -17% -3% 2% 0% 3%
Sar 4% -1% 4% 0% 1% 0% 1% 0% 0% 0% 0% -2% -4% 2% -5% 7%
bal -12% -6% -2% -1% 0% -29% -2% 0% 0% 0% 0% -10% -4% 23% 3% -5%

Table 7: resource-level test suite.

through OSBench; ii) the time taken to complete the execution of the Python

programs in PyBench (Py); iii) the time needed to archive/unarchive the files

contained in 7-Zip; iv) the speed (sign/s) in generating cryptographic signa-

tures with OpenSSL (SSL); v) the performance of memory operations add and

copy, and the average (Avg) with RamSpeed; vi) the bytes read (RE) and writ-

ten (WR) on disk during Threaded I/O Tester; and vii) the throughput (TP ),

ping-pong latency (PPL), and load latency (LL) measured with sockperf.

A first surprising result is the presence of positive percentage values, which

indicate a performance improvement in the containerized environment compared

to bare-metal configurations. This may initially seem counterintuitive, given the

general notion that virtualization layers introduce overhead. However, our study

is not the first to report such unexpected outcomes. Previous studies [32] have

demonstrated that under specific scenarios, various virtualization techniques can

outperform bare-metal performance. For example, Giallorenzo et al. [21] report

improvements of up to 2.5% in RAM speed and a 2x boost in I/O workloads.

These gains may be attributed to optimized configurations or to a more efficient

usage of system resources in containerized environments. While the underlying

reasons for these performance enhancements warrant a more in-depth, system-

level analysis, our findings do signal the potential for optimized performance in

containerized setups.

As for the values obtained with OSBench, most container engines perform

similar to bare-metal, except for file generation with Docker (−41%), and thread

management with Charliecloud (+15%). Singularity, Charliecloud, and Sarus

33



Apache nginx BlogBench SQLite Redis Cassandra
Read Write 1T 32T Get Set

Doc 15% -16% -14% -6% -1% 0% 0% 0% -2%
Pod 19% 22% -1% -1% 0% 0% 5% 0% 1%
Sin 0% 0% -1% 0% 0% -1% 3% 4% 0%
SinS 0% 0% 0% 0% 0% 1% 3% -1% 7%

Table 8: app-level test suite.

obtained results equal to bare-metal ones with PyBench, while the other en-

gines performed significantly worse (−29%). We measured no overheads with

7-Zip, OpenSSL, and RamSpeed for all the engines. The reading performance

obtained with test I/O appears to be worse than bare-metal for Charliecloud

(−17%), balenaEngine (−10%), Podman (−9%) and Docker (−7%). The ma-

jority of Sockperf results obtained with containers are better than bare metal

with a significant gain in throughput with Docker, Podman, and balenaEngine.

Most of the reported data are very close to the ones of bare metal indicating

that containers add a negligible overhead to computations. Being these tests

executed on the cloud, both small positive and negative variations may be in-

troduced by disturbances (e.g., resource contention) at the underlying hardware

infrastructure.

The results with the app-level test suite refer to Apache Web server, nginx,

BlogBench, which measures the performance in reading and writing blog posts,

SQLite, configured with both 1 and 32 threads, Redis, and Cassandra. Note

that these applications are mostly used in cloud-based deployments since they

rely on always-on processes, which are not well suited for HPC enviroments, and

they are heavily stateful and do not fit the typical “ephemeral” and stateless IoT

computations. For these reasons, we do not report data for Charliecloud, Sarus

and balenaEngine. We report the results for Singularity since it is sometimes

used as a general purpose container engine (e.g., for running web applications24).

Table 8 shows that container engines demonstrated performance similar to

24https://sylabs.io/2018/09/nodejs-on-singularity/

34



or better than bare-metal with all applications, except for Docker with nginx

(−16%) and with BlogBench-Read (−14%). These tests confirm the results re-

ported for resource-level experiments: in general containers do not introduce a

significant overhead to computation even when tested with well-known middle-

ware software. Singularity and Podman provide performance that are very close

to bare-metal, while we observed small performance degradation with Docker.

Finding #9. Overall, the performance metrics observed for container en-

gines closely align with those measured in bare-metal environments, and

even exceed them in certain instances. Docker reported a significant over-

head in a few experiments (OSBench file generation, nginx, and blog post

read), while all the non-HPC engines showed around 30% worse perfor-

mance compared to bare-metal in Python-related tests. We observed that

HPC-engines provide a smaller overhead compared to other engines, with

performance that are almost identical to bare-metal. The maximum dif-

ference in performance compared to bare-matel is 5% for Sarus and Singu-

larity, 17% for Charliecloud, 29% for Podman and balenaEngine, and 41%

for Docker.

4.6. HPC Evaluation

The last set of experiments is dedicated to evaluating the performance of

HPC-specific container engines. In particular, the goal of the tests is to analyze

the overhead introduced during the execution of computationally intensive and

highly parallel applications.

We run three types of experiments: latency, all-to-all, and scatter/gather.

The first two are part of the OSU benchmark, while the third is included in

mpiBench. Test latency measures the min, max, and average latency of a ping-

pong communication between two processes. The messages are sent repeatedly

with different payload sizes to measure one-way latency. Test all-to-all measures

the min, max, and average latency of the MPI Alltoall operation in which

each node sends (receives) a message to (from) all the other nodes, among all

35



involved processes. Finally, test scatter/gather measures the latency of sending

messages (between 0 and 64kB) through the MPI primitives scatter and gather.

To automate the execution of these benchmarks with Slurm, we developed a set

of scripts25. The container images were fetched from local disks to avoid any

performance degradation due to network overhead.

4.6.1. Results

In the following, we describe the results of the experiments we carried out.

Figure 4 shows some relevant charts that picture different tests run by varying

either the cluster or the massage size.

Test latency was designed to investigate the effect of message size on opera-

tion time during the execution of MPI applications with no containers (nocont),

Singularity, and Charliecloud. This test was run in two configurations: 2 nodes

with 1 core each, and a single node with 2 cores. The message sizes ranged from

1 byte to 4MB, and the operation time was measured in µs.

The results for the two configurations were similar, and the results for the

first configuration are shown in Figure 4a. The chart clearly shows that the

three lines (nocont, Singularity, and Charliecloud) are almost overlapped, indi-

cating that the overhead introduced by the container engines in this test was

negligible. This suggests that the container engines had a minimal impact on

the performance of the MPI applications in ping-pong communications, even if

the message size increased.

Test all-to-all was run with 30 cores per node (leaving half of the computa-

tional capacity to process incoming messages), three cluster configurations (2, 4

and 7 nodes), and a variable message size (from 0 to 4MB). All the charts show

the average latency in µs. Charliecloud and Singularity perform very similarly

in all the experiments. When using 7 nodes, the latency is up to 2 times greater

than with containers with a message size between 0 and 512 bytes. For larger

sizes, the overhead introduced is almost negligible. Similar results are obtained

25https://github.com/deib-polimi/containers-MPIBenchmarksBatch

36



1 10 100 1000 10K 100K 1M

2
3
4
56
78
910

2
3
4
56
78
9100

2
3
4
5

charliecloud
nocont
singularity

latency operation, 2 nodes, 1 cores

msg size [bytes]

tim
e 

[u
s]

(a) Test latency - 2 nodes - 1 core

1 10 100 1000 10K 100K 1M

5
100

2

5
1000

2

5
10k

2

5
100k

2

5
1M

2 charliecloud
nocont
singularity

alltoall operation, 7 nodes, 30 cores

msg size [bytes]

tim
e 

[u
s]

(b) Test all-to-all - 7 nodes

1 2 3 4 5 6 7

2

3
4
5
6
7
8
9

100

2

3
4
5

charliecloud
nocont
singularity

alltoall operation, 30 cores, 64 size

nodes

tim
e 

[u
s]

(c) Test all-to-all - 64 bytes

1 2 3 4 5 6 7
91000

2

3
4
5
6
78
910k

2

3
4
5
6
78
9100k charliecloud

nocont
singularity

alltoall operation, 30 cores, 65536 size

nodes

tim
e 

[u
s]

(d) Test all-to-all - 65 kB

1 10 100 1000 10K 100K
2
3
4
5
67
89

100

2
3
4
5
67
89

1000

2
3
4
5
6

charliecloud
nocont
singularity

Scatter operation, 7 nodes, 60 cores

msg size [bytes]

tim
e 

[u
s]

(e) Test scatter - 7 nodes

1 10 100 1000 10K 100K
2

5

100

2

5

1000

2

5

10k
charliecloud
nocont
singularity

Gather operation, 7 nodes, 60 cores

msg size [bytes]

tim
e 

[u
s]

(f) Test gather - 7 nodes

2 3 4 5 6 7

40

60

80

100
120
140
160
180
200
220

charliecloud
nocont
singularity

Gather operation, 60 cores, 64 bytes

nodes

tim
e 

[u
s]

(g) Test gather - 64 bytes

2 3 4 5 6 7

2000

2500

3000

3500
4000
4500
5000
5500
6000
6500
7000
7500

charliecloud
nocont
singularity

Gather operation, 60 cores, 65536 bytes

nodes

tim
e 

[u
s]

(h) Test gather - 65 kB

Figure 4: MPI experiments.

37



with 2 and 4 nodes with a non-negligible overhead when operating with small

message sizes. Although the difference is significant in relative terms, the abso-

lute operation times when dealing with small messages are very small (less than

1ms).

To better visualize the results, we also run test all-to-all with a fixed message

size (either 8, 16 bytes or 65kB) and a variable number of nodes. The overhead

does not appear to be strongly correlated with the number of nodes in the

system. In the experiment with 8 byte messages the latency introduced by

container engines ranges from 1.2 to 2 times the one with no containers (nocont);

similar values were obtained with 64 bytes (Fig. 4c). With 65kb messages,

Figure 4d, the overhead is negligible with more than two nodes.

These experiments suggest that container engines introduce non-negligible

overheads (but yet very small in absolute terms) with small messages, while

it becomes negligible when the size increases (and if more than one node is

employed).

Tests scatter/gather were run with 60 cores per node, three cluster configu-

rations (2, 4 and 7 nodes), and a variable message size (from 0KB to 100KB).

All the charts show the average latency in µs. Figures 4e and 4f show two

runs with 7 nodes for tests scatter and gather, respectively. Similar results were

obtained with 2 and 4 nodes.

The obtained results confirm the ones of test all-to-all. Charliecloud and

Singularity appear to have similar performance and they only introduce over-

head with small messages. For example, the two engines added a latency that

ranges between 1.3 to 5 times the execution with no container when the mes-

sage size is between 0 and 256 bytes and we execute scatter operations; the

overhead becomes negligible with bigger messages. The results obtained with

gather operations are similar but with an overall smaller maximum overhead.

This behavior is even clearer when fixing message sizes (either 8, 64 bytes

or 65kB) and varying the number of nodes. Figures 4g and 4h show test gather

with a message size of 64 bytes and 65kB, respectively. As with test all-to-

all, the overhead is almost constant and relatively significant with the first two

38



configurations, while with messages of 65kB, the overhead becomes negligible.

Finding #10. Container engines dedicated to HPC obtained almost iden-

tical performance compared to executions without containers in tests that

involved simple MPI communications. When tested with more complex op-

erations, the overhead is still negligible unless the messages exchanged are

small. In this case, the overhead is significant relatively to the executions

times which are, in turn, very small (less than 1ms) in absolute terms.

5. Discussion

The purpose of the second part of our study (Section 4) was to investigate the

performance of the six container engines. Through our empirical evaluation, we

were able to compare the results obtained by these engines across a wide-range

of tests and examine how context-specific solutions may or may not outperform

general purpose ones in certain metrics

In most of the tests, we discovered that HPC-specific solutions outperformed

all the other ones. For example, Charliecloud, Singularity with SIF images,

and Sarus obtained the fastest startup times. On the contrary, Podman, bale-

naEngine and Docker showed noticeable delays. Singularity was by far the

fastest in stopping multiple running containers. Shutdown times were generally

negligible and constant, except for Podman, which showed a significant variance.

We also delved into the memory usage of the engines, recognizing its critical

significance in both HPC and IoT domains. In HPC contexts, where multiple

concurrent processes often run, it is essential that the memory footprint of the

container engine be minimized to avert resource contention. Similarly, in IoT

contexts, where resources are inherently limited, efficient memory usage is crit-

ical to allow applications to fully harness available resources. Our experiments

highlighted that Singularity stands out for its quick memory deallocation, mak-

ing it favorable for HPC scenarios requiring optimal resource utilization. Pod-

man, with its lower memory footprint, is well-suited for resource-constrained

39



environments like IoT and also offers an advantage in the cloud. Docker, de-

spite its somewhat higher memory usage, offers stable performance, aligning

well with cloud infrastructures where resources are typically more plentiful. Al-

though memory is constrained in IoT environments, balenaEngine appeared to

lack optimization in this aspect and exhibited per- formance on a par with

Docker.

The size of container images can be a an important factor to consider, par-

ticularly in IoT where storage may be limited. Our experiments revealed that

Charliecloud and Sarus obtained the smallest image sizes among the six con-

tainer engines. Docker, Podman, and balenaEngine did not offer significant

optimization for saving disk space. Singularity uses SIF to compress images,

resulting in a significant reduction in disk occupation in some cases.

One key factor we considered was the overhead introduced by each con-

tainer engine. In HPC, where high performance is required, it is essential for

the engine to have a minimal overhead. In IoT, where resources are often con-

strained, it is also important for the container engine to have low overhead

to allow applications fully utilizing the available resources. Our experiments

revealed, once again, that HPC solutions outperformed all the other engines.

In particular, Sarus and Singularity obtained the lowest overhead among the

six container engines with performance that are extremely closed to bare-metal

ones (maximum 5% of overhead). Charliecloud also outperformed non-HPC

engines. balenaEngine obtained similar performances to Podman, while Docker

resulted in the highest overhead (up to 41%). We also found that the overhead

introduced by container engines in HPC-specific tests based on MPI is in gen-

eral very small and more pronounced for small message sizes. As the message

size increased, the overhead decreased and eventually disappeared. This sug-

gests that the overhead introduced by container engines is more significant for

fine-grained communication patterns.

In IoT settings, energy efficiency and resource utilization are key, as devices

often operate under stringent limitations in terms of power, memory, and com-

putational capabilities. Our analysis indicates that balenaEngine might not be

40



the most resource-efficient option when compared to other container engines in

terms of overhead and memory usage. Such limitations could impact the op-

erational efficiency of IoT devices, potentially affecting battery life and overall

system performance. However, balenaEngine has been engineered with a fea-

ture set that is particularly tailored for the unique challenges of the IoT. For

example, it strongly optimizes image download and update. It uses differential

image updates to minimize network traffic, and reduces both bandwidth con-

sumption and energy usage during updates. It also employs on-the-fly image

extraction to optimize storage space and also offers efficient cache management

during image downloads.

These features may not directly enhance resource efficiency, but they are

important to maintain a robust and secure IoT environment. In terms of secu-

rity, balenaEngine utilizes unique API keys for each device and supports VPN

connectivity to contribute to the secure operation of IoT systems. Moreover,

it offers orchestration capabilities to allow for efficient management and scal-

ing of the IoT device fleet, a feature often missing in more resource-efficient

alternatives.

Similarly, cloud-based solutions may lack some the optimization of HPC-

dedicated engines but they provide a broader feature set (especially in terms of

orchestration) and they are easier to use and configure.

In conclusion, our experiments suggest that there is no one-size-fits-all so-

lution for containers. The best choice of container engine will depend on the

specific requirements and constraints of the target environment. However, our

results provide some guidance on the trade-offs and potential benefits of the

different container engines in each context.

5.1. Threats to Validity

This section summarizes the most important threats to the validity of pre-

sented results by following the structure proposed in [57].

Internal Validity. One key issue that may affect the internal validity of our

findings relates to our choice of benchmarks. While we selected a diverse set of

41



benchmarks aimed to offer a comprehensive overview of the performance of con-

tainer engines, the set is not exhaustive. Other benchmarks could potentially

yield different insights and might be considered for future studies. Moreover,

the environment configurations we used, particularly for our HPC experiments,

might be seen as a potential threat. These experiments were conducted in

Azure’s cloud-based HPC environments, which inherently involves a layer of

double virtualization. Although such a setup could induce performance fluctu-

ations, we mitigated this issue by using benchmarks that repeat tasks across

thousands of iterations and confirmed low variance in obtained results.

Another factor that may affect internal validity is the limitation related to

running multiple containers concurrently with Charliecloud and Sarus. Our fo-

cus was on assessing the native capabilities of each container engine, and Char-

liecloud and Sarus do not support this feature by default. While workarounds

such as using screen26 or tmux 27 could be employed, these methods would re-

quire manual management of the container lifecycle, diverging from the auto-

mated container management features of container engines.

External Validity. As for the generalizability of our findings, our study is

based on specific configurations and platforms. While we expect similar per-

formance trends to be observable on other systems, the exact outcomes may

differ. Additionally, the methodology we adopted heavily relies on the number

of GitHub stars to prioritize projects for evaluation. Although this approach

does offer some level of community validation, it might not comprehensively

capture all relevant or high-quality projects in the field.

Construct Validity. The metrics used in the study focus on capturing a bal-

anced view of performance across different facets such as start-up time, memory

usage, and disk I/O. While these metrics are informative, they may not be fully

exhaustive in capturing every performance aspect that could be relevant for the

users of container engines. To add robustness to our findings, we calculated

26https://linux.die.net/man/1/screen
27https://linux.die.net/man/1/tmux

42



confidence intervals for all our measurements. Despite the complexities and

the different layers of potential variability inherent in any empirical evaluation,

these intervals demonstrate that our results are stable and can be considered

reliable.

6. Related Work

Containerization emerged as a fundamental enabler for deploying applica-

tions in a lightweight and portable way in multiple contexts. For this reason,

some significant research work around this technology have been presented in

the literature.

Pahl et al. [39] propose a survey on container-based approaches demonstrat-

ing the relevance of the technology and its significant impact on the research

landscape.

Plauth et al. [40] present a performance comparison of containers, unikernels,

whole-system virtualization, native hardware, and combinations thereof. In par-

ticular, they assess application performance with HTTP servers and databases

and evaluate the startup time, image size, network latency, and memory foot-

print. Their work compares two container technologies (Docker, LXD), three

unikernels (Rumprun, OSv, MirageOS), and two virtualization technology (KVM,

Xen). While we share a similar goal with this research, our work is different

because we focused only on container engines, we analyze their features (and

not only performance), and we compare their performance with different bench-

marks in different contexts.

Saha et al. [45] carry out a performance evaluation for executing scientific

applications in cloud-based environments with Docker and Singularity. They

aim to help practitioners choose the most suitable container engine approach

for HPC workloads. They perform four HPC benchmarks (among them also

OSU) and find that the performance of different containerization approaches is

extremely close to bare metal, a result similar to the one we obtained in our

experiments. Another work on this topic is proposed by Arango et al. [2] and an-

43



alyzes the features of LXC, Docker, and Singularity. According to their results,

Singularity containers are the most suitable containers for HPC. Compared to

this paper, our work is broader. It describes more and different container en-

gines, their features, and it does not only focus on HPC.

Liu et al. [28] analyze the performance of containerization in HPC de-

ployments, highlighting how this technology is becoming increasingly impor-

tant for highly parallel computations. They compare Singularity and Docker

against bare-metal executions and they show that for applications that involve

intense inter-process communications, containerization provides worse perfor-

mance compared to bare-metal. In our work, we reach a similar conclusion

but only if the communication involves small and frequent messages, while the

overhead introduced by containers with larger messages appears to be negligi-

ble. As described above, our work does not focus only on HPC and provides a

comprehensive comparison among six different container engines.

Potdar et al. [42] compare the performance of Docker containers and VMs.

Their main outcome is that Docker outperforms VMs in every test. Our work

is different because compares different container engines with a comprehensive

qualitative and quantitative analysis. Similarly, Kozhirbayev et al. [27] propose

a comparison among Docker, LXC and bare-metal executions. They focus on

performance and they discover that, for CPU-bounded tasks, the overhead in-

troduced by containerization is negligible. On the contrary, I/O- and network-

intensive applications are faster on bare-metal. Compared to our work, they

only compare two container technologies and they focus on their performance,

whereas we compared both the features and the performance of six container

engines.

Salah et al. [46] compare the performance of applications built with the

microservice architecture deployed on VM and container on the Amazon Web

Service cloud. For container executions, they rely on Elastic Container Service

(ECS), a Container-as-a-Service platform provided by Amazon. They discover

that the performance of the application running on VMs is significantly better

than the ones executed on ECS. Compared to our work, we focus on six container

44



engines and their performance against bare-metal. We also performed some

application-level tests (see Section 4.5) but we did not obtain similar differences

in the performance. One possible explanation for this is that ECS introduces

additional overhead during the executions.

7. Conclusions and Future Work

Containerization is a key enabling technology that increases portability across

execution environments, eases application management, and speeds up the scal-

ing and reconfiguration of systems. Container engines are the means to create

container images, share them on public or private registries, and execute and

manage container instances.

This paper analyses six container engines, compares their features, and

presents some experiments to confront their performance. We provide 10 key

insights to spread the light on the characteristics of these technologies and on

the differences among them. We discovered that, in general, container engines

dedicated to HPC are heavily optimized as for performance, cloud-based solu-

tions are richer feature-wise, while IoT tools pose unique challenges that must be

tackled by a dedicated approach (e.g., orchestrating a fleet of privacy-sensitive

devices).

This paper focuses on container engines as core enablers for running con-

tainerized applications, in the future we will provide an analysis of container

orchestrators that are becoming increasingly important for managing single or

multiple distributed systems in the Cloud and beyond.

References

[1] , . Open container initiative. URL: https://www.opencontainers.org/.

[2] Arango, C., Dernat, R., Sanabria, J., 2017. Performance evaluation of

container-based virtualization for high performance computing environ-

ments. arXiv:1709.10140.

45



[3] Balaji, S., Nathani, K., Santhakumar, R., 2019. Iot technology, applications

and challenges: a contemporary survey. Wireless personal communications

108, 363–388.

[4] Balena, 2022a. Balena os. URL: https://www.balena.io/os/.

[5] Balena, 2022b. Balena website. URL: https://www.balena.io.

[6] Baresi, L., Quattrocchi, G., 2020. Cocos: A scalable architecture for con-

tainerized heterogeneous systems, in: 2020 IEEE International Conference

on Software Architecture (ICSA), IEEE. pp. 103–113.

[7] Benedicic, L., Cruz, F.A., Madonna, A., Mariotti, K., 2019. Sarus: Highly

scalable docker containers for hpc systems, in: Weiland, M., Juckeland,

G., Alam, S., Jagode, H. (Eds.), High Performance Computing, Springer

International Publishing, Cham. pp. 46–60.

[8] Bentaleb, O., Belloum, A.S., Sebaa, A., El-Maouhab, A., 2022. Container-

ization technologies: Taxonomies, applications and challenges. The Journal

of Supercomputing 78, 1144–1181.

[9] Botez, R., Strautiu, V., Ivanciu, I.A., Dobrota, V., 2020. Containerized

application for iot devices: comparison between balenacloud and amazon

web services approaches, in: 2020 International Symposium on Electronics

and Telecommunications (ISETC), IEEE. pp. 1–4.

[10] Buildah, 2022. Buildah. URL: https://buildah.io/.

[11] Celesti, A., Mulfari, D., Fazio, M., Villari, M., Puliafito, A., 2016. Ex-

ploring container virtualization in iot clouds, in: 2016 IEEE international

conference on Smart Computing (SMARTCOMP), IEEE. pp. 1–6.

[12] Charliecloud, 2022. Charliecloud website. URL: https://hpc.github.io/

charliecloud/.

[13] Computing, A., 2022. Torque. URL: https://adaptivecomputing.com/

cherry-services/torque-resource-manager.

46



[14] Containerd, 2022. An industry-standard container runtime with an empha-

sis on simplicity, robustness and portability. URL: https://containerd.

io/.

[15] Docker, 2022a. Docker hub. URL: https://hub.docker.com/.

[16] Docker, 2022b. Docker website. URL: https://www.docker.com/.

[17] Docker, 2022c. Dockerfile reference. URL: https://docs.docker.com/

engine/reference/builder.

[18] Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F.,

Mustafin, R., Safina, L., 2017. Microservices: yesterday, today, and tomor-

row. Present and ulterior software engineering , 195–216.

[19] Elazhary, O., Werner, C., Li, Z.S., Lowlind, D., Ernst, N.A., Storey, M.A.,

2022. Uncovering the benefits and challenges of continuous integration

practices. IEEE Transactions on Software Engineering 48, 2570–2583.

doi:10.1109/TSE.2021.3064953.

[20] Gantikow, H., Walter, S., Reich, C., 2020. Rootless containers with podman

for hpc, in: International Conference on High Performance Computing,

Springer. pp. 343–354.

[21] Giallorenzo, S., Mauro, J., Poulsen, M.G., Siroky, F., 2021. Virtualization

costs: benchmarking containers and virtual machines against bare-metal.

SN Computer Science 2, 404.

[22] Godlove, D., 2019. Singularity: Simple, secure containers for compute-

driven workloads, in: Proceedings of the Practice and Experience in Ad-

vanced Research Computing on Rise of the Machines (Learning), Asso-

ciation for Computing Machinery, New York, NY, USA. URL: https:

//doi.org/10.1145/3332186.3332192, doi:10.1145/3332186.3332192.

[23] Hallyn, S.E., Morgan, A.G., 2008. Linux capabilities: Making them work .

47



[24] Higgins, J., Holmes, V., Venters, C., 2015. Orchestrating docker containers

in the hpc environment, in: International Conference on High Performance

Computing, Springer. pp. 506–513.

[25] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., Dig, D., 2017. Trade-offs

in continuous integration: Assurance, security, and flexibility, in: Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineer-

ing, Association for Computing Machinery. p. 197–207.

[26] Kernel.org, 2022. Squashfs: a squashed read-only filesystem for linux.

URL: https://www.kernel.org/doc/Documentation/filesystems/

squashfs.txt.

[27] Kozhirbayev, Z., Sinnott, R.O., 2017. A performance comparison of

container-based technologies for the cloud. Future Generation Computer

Systems 68, 175–182.

[28] Liu, P., Guitart, J., 2021. Performance comparison of multi-container de-

ployment schemes for hpc workloads: an empirical study. The Journal of

Supercomputing 77, 6273–6312.

[29] Man7, 2022. Overview of linux capabilities. URL: http://man7.org/

linux/man-pages/man7/capabilities.7.html.

[30] Merkel, D., 2014. Docker: Lightweight Linux Containers for Consistent

Development and Deployment. Linux Journal .

[31] Microsoft, 2022. Run your first windows container. URL: https:

//docs.microsoft.com/en-us/virtualization/windowscontainers/

quick-start/run-your-first-container.

[32] Morabito, R., Kjällman, J., Komu, M., 2015. Hypervisors vs. lightweight

virtualization: a performance comparison, in: 2015 IEEE International

Conference on cloud engineering, IEEE. pp. 386–393.

48



[33] NVIDIA, 2022. Nvidia container runtime. URL: https://developer.

nvidia.com/nvidia-container-runtime.

[34] OCI, 2022a. Open container initiative image format specification. URL:

https://github.com/opencontainers/image-spec.

[35] OCI, 2022b. Open container initiative runtime specification. URL: https:

//github.com/opencontainers/runtime-spec.

[36] OCI, 2022c. Open containers initiative: runc: Cli tool for spawning

and running containers according to the oci specification. URL: https:

//github.com/opencontainers/runc.

[37] OpenBenchmarking, 2022. A centralized testing ecosystem. URL: https:

//openbenchmarking.org/.

[38] Pahl, C., 2015. Containerization and the paas cloud. IEEE Cloud Com-

puting 2, 24–31.

[39] Pahl, C., Brogi, A., Soldani, J., Jamshidi, P., 2019. Cloud container tech-

nologies: A state-of-the-art review. IEEE Transactions on Cloud Comput-

ing 7, 677–692.

[40] Plauth, M., Feinbube, L., Polze, A., 2017. A performance sur-

vey of lightweight virtualization techniques, in: De Paoli, F., Schulte,

S., Broch Johnsen, E. (Eds.), Service-Oriented and Cloud Computing,

Springer International Publishing, Cham. pp. 34–48.

[41] Podman, 2022. Podman website. URL: https://podman.io/.

[42] Potdar, A.M., Narayan, D., Kengond, S., Mulla, M.M., 2020. Performance

evaluation of docker container and virtual machine. Procedia Computer

Science 171, 1419–1428.

[43] Priedhorsky, R., Randles, T., 2017. Charliecloud: Unprivileged contain-

ers for user-defined software stacks in hpc, in: Proceedings of the Inter-

49



national Conference for High Performance Computing, Networking, Stor-

age and Analysis, Association for Computing Machinery, New York, NY,

USA. URL: https://doi.org/10.1145/3126908.3126925, doi:10.1145/

3126908.3126925.

[44] Project, M., 2022. An open framework to assemble specialized container

systems. URL: https://mobyproject.org/.

[45] Saha, P., Beltre, A., Uminski, P., Govindaraju, M., 2018. Evaluation of

docker containers for scientific workloads in the cloud. Proceedings of the

Practice and Experience on Advanced Research Computing URL: http://

dx.doi.org/10.1145/3219104.3229280, doi:10.1145/3219104.3229280.

[46] Salah, T., Zemerly, M.J., Yeun, C.Y., Al-Qutayri, M., Al-Hammadi, Y.,

2017. Performance comparison between container-based and vm-based ser-

vices, in: 2017 20th Conference on Innovations in Clouds, Internet and

Networks (ICIN), pp. 185–190. doi:10.1109/ICIN.2017.7899408.

[47] Sampedro, Z., Holt, A., Hauser, T., 2018. Continuous integration and

delivery for hpc: Using singularity and jenkins, in: Proceedings of the

Practice and Experience on Advanced Research Computing, Association

for Computing Machinery.

[48] Sarus, 2022a. Osu micro benchmarks. URL: https://sarus.

readthedocs.io/en/stable/cookbook/osu_mb/osu_mb.html.

[49] Sarus, 2022b. Sarus documentation. URL: https://sarus.readthedocs.

io/en/stable/.

[50] SchedMD, 2022. Slurm workload manager. URL: https://slurm.

schedmd.com/.

[51] SGE, 2022. Sge documentation. URL: https://docs.hpc.shef.ac.uk/

en/latest/sharc/sge.html.

50



[52] Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L., 2007.

Operating System Virtualization: A Scalable, High-performance Alterna-

tive to Hypervisors, in: Proc. of the 2nd ACM European Conference on

Computer Systems, ACM.

[53] Suite, P.T., 2022. Open-source, automated benchmarking. URL: http:

//phoronix-test-suite.com/.

[54] Sylabs, 2022a. Singularity. URL: https://sylabs.io/singularity/.

[55] Sylabs, 2022b. Singularity cloud library. URL: https://cloud.sylabs.

io/library.

[56] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung, V.J., Egele,

M., Coskun, A.K., 2019. Online diagnosis of performance variation in

hpc systems using machine learning. IEEE Transactions on Parallel and

Distributed Systems 30, 883–896. doi:10.1109/TPDS.2018.2870403.

[57] Wohlin, C., Höst, M., Henningsson, K., 2006. Empirical Research Methods

in Web and Software Engineering. Springer Berlin Heidelberg, Berlin, Hei-

delberg. pp. 409–430. URL: https://doi.org/10.1007/3-540-28218-1_

13, doi:10.1007/3-540-28218-1_13.

51


