EU Green Week PARTNER EVENT

Special Symposium on PFAS elimination from Drinking Water

Rastatt / Karlsruhe 12.-13. June 2024

#WaterWiseEU

THE TREATMENT OF PFAS CONTAMINATED WATER

ZeroPM PFAS Symposium, 12.-13.06.2024 Marcel Riegel

PFAS-ELIMINATION DURING DRINKING WATER TREATMENT

Effective processes:

- Adsorption
 - Activated carbon
- Dense membrane filtration
 - Nanofiltration (NF)
 - Reverse Osmosis (RO)

Ineffective processes:

- Bank Filtration
- Air Stripping
- Flocculation
- Iron Removal
- Ultrafiltration (UF)
- Oxidation (O₃, KMnO₄)
- Disinfection (Cl₂, UV)

AKTIVATED CARBON FILTRATION

Removal of every substance = Breakthrough curve

Start of breakthrough depends on various factors,
 mainly on adsorption behaviour of the selected substance

PFAS: DIFFERENT LEVELS OF ADSORBABILITY

- Short chain carboxylic PFAS are much more difficult to remove
- ⇒ If short chain PFAS have to be removed, frequent AC changes are necessary

17W

Type of PFAS contamination is important Slide 5

"If short chain PFAS need to be removed, the AC filter needs to be changed frequently" Hale, Sarah, 2024-06-11T10:43:10.936

PROBLEM WITH SHORT CHAIN PFCA

Chromatography effect due to substance replacement

HS0 Perfluoroalkyl carboxylic acids

Not perfluorated

Hale, Sarah, 2024-06-11T10:43:59.782

PFAS FATE AFTER ADSORPTION

- After AC replacement ⇒ thermal treatment
 - Combustion
 - Reactivation and Reuse
- Total destruction of PFAS ⇒ sufficient temperature and time
- Transformation into fluoride (F⁻)

GENERAL TREATMENT OPTIONS (GROUNDWATER, WASTEWATER, ...)

Process engineering grouping:

- 1. Adsorption
- 2. Flocculation
- 3. Liquid-liquid separation
- 4. Destruction

**Riegel, M., Egner, S., Sacher, S.:* Review of water treatment systems for PFAS removal. Concawe Report no. 14/20 (2020)

Slide 8		
HS0	https://www.concawe.eu/wp-content/uploads/Rpt_24-8.pdf	
	This is a nice report too! See who wrote it 🗐 Hale, Sarah, 2024-06-11T10:45:22.038	

1. ADSORPTION

Activated carbon Marco Müller
 Ion exchange (single use) Björn Dinges
 Other materials (modified organo-clay "FluoroSorb") Fiona Rückbeil
 Material mixtures Ronit Erlitzki

Challenges:

- High selectivity and capacity for PFAS
- Short-chain PFAS are difficult to adsorb
- Competition with other water constituents (DOC or sulphate)

HSO I would change Ronits to "Full scale results" Not sure I get what mixtures are Hale, Sarah, 2024-06-11T10:47:44.502

2. FLOCCULATION

Providers are (for example):

- PerfluorAd
- InSite
- Pre-Treatment
- Longer operation times for downstream AC filters

- Only for use in Groundwater remediation
- Flocculation chemicals not suitable for use in drinking water
- PFAS-containing flocculation sludge
 - Landfilling
 - Incineration

Slide 10

Also what is flocculation sludge? Is it PFAS contaminated sludge where a flocculant has been added? Hale, Sarah, 2024-06-11T10:49:29.648

3. LIQUID-LIQUID SEPARATION

TREATMENT WITH REVERSE OSMOSIS (RO)

Primary purpose: Desalination (softening)

- 'Pore diameter' approx. 0.1 nm
- Pressure difference: approx. 8 bar
- Retention of
 - dissolved salts
 - almost all water constituents
- Permeate = 'distilled' water
- Separation process
 - Permeate: free of 'all' ingredients
 - Concentrate: contains all ingredients

Quelle: Toray

PFAS-ELIMINATION WITH RO

- Reverse osmosis removes 100 % of PFAS
- Use of RO for softening: only in bypass mode
- Removal in bypass: 0 %
- Bypass share: approx. 50 %
- Total PFAS removal: 50 %

HSO You can remove the - between PFAS and elimination Hale, Sarah, 2024-06-11T10:50:23.999

INCREASING THE REMOVAL RATE

- Bypass treatment using activated carbon
- Full stream treatment with RO

FULL STREAM TREATMENT

PFAS containing concentrate

• 20 % of the raw water volume

Additional water treatment for hardening Higher water demand (20 %)

ION EXCHANGER INCLUDING REGENERATION

Problem: Regeneration of well absorbable long chain PFAS only possible using organic solvents

HS0	Problem: Regeneration of highly adsorbable				
	Hale, Sarah, 2024-06-11T10:51:09.309				

FOAM FRACTIONATION

- separation mechanism due to surfactant properties of PFAS
- *ex-situ* (reactor) and *in-situ* (well, only with air)
- O₃: Oxidation of precursors to PFAS

GENERAL EVALATION OF LIQUID-LIQUID SEPARATION

4. DESTRUCTION

- Electrochemical Oxidation / Degradation
- Sono-chemistry
- Oxidation processes (AOP using sulphate radicals)
- Plasma destruction
- Incineration
- High energy costs
- Pre-concentration necessary (liquid-liquid separation)
- By-products

 C-F-bond: very stable

CONCLUSTIONS OF PFAS ELIMINATION OUT OF WATER

 Energy required for destruction

Dr.-Ing. Marcel Riegel TZW: DVGW-Technologiezentrum Wasser Karlsruher Straße 84 / 76139 Karlsruhe 0721 9678-132 marcel.riegel@tzw.de

Using GAC for PFAS & Reactivation

Product Development for best results and Mineralization of PFAS Marco Müller – Head of Activated Carbon Application & Quality Assurance

Agenda

- Short introduction into activated carbon
- Product Development for best results against PFAS
- Results on the most important, short chain length substances
- Reactivation of spend carbon
- Mineralize PFAS during the reactivation

HYDRAFFIN[®]

granular & powdered types for efficient treatment of all types of water

Characteristics of Activated Carbon

Main characteristics in water applications

- lodine number (mg/g)
- Apparent density after backwash and drainage (kg/m³)
- Pore size distribution (proportion of micro-, meso- and macropores)
- Granulation (mm) or (mesh)
- Chlorine half value length (cm)
- Hardness (wt.%)
-

Pore radius 0,25 nm

Product Portfolio at a glance

The main granulated Hydraffin[®] products for water treatment according customer requirements

Hydraffin®	CC 8x30	C 8x30 CC 8x30 plus XC 30 A 8x30		30 N	
Application		Drinking water		Waste	water
COD	•	•	•••	•••	••
BTX / PAH	•••	•••	•••	••	••
Halogenated HC	•••	••	••	•	••
Chlorine & Ozone	•••	••	••	•	••
Micro pollutants	•	••	••	•••	•
Odour & taste	•••	•••	•••	•	••
PFAS	•	••••*	••	••••*	••

* Specially developed for the adsorption of PFAS

PFAS - new development Hydraffin CC 8x30 plus

PFAS at a glance

The danger of this group of substances with its over 10,000 different individual substances is becoming more and more an issue. Per- and polyfluorinated alkyl compounds (PFAS) are suspected of harming people and the environment. PFAS are manufactured industrially and can be found in many everyday items such as textiles, carpets, cosmetics and firefighting foams. They enter the environment during production, further processing, use and disposal. Due to the knowledge of their influence on people's health, the demand for high-quality activated carbons remains high.

Substance Shortname	Molecular formula	perfluorinated chain length
PFBA	C4HO2F7	short
PFPeA	C5HO2F9	short
PFHxA	C6HO2F11	short
PFHpA	C7HO2F13	short
PFOA	C8HO2F15	long
PFNA	C9HO2F17	long
PFDA	C10HO2F19	long
PFBS	C4HO3F9S	short
PFHxS	C6HO3F13S	long
PFHpS	C7HO3F15S	long
PFOS	C8HO3F17S	long

PFAS - new development Hydraffin CC 8x30 plus

Comparison of the pore size distribution of the new development

Hydraffin CC 8x30 plus vs. Hydraffin CC 8x30

→ Conclusion: Pore size matters!

Aktivkohle	Rohstoff	BET	Porenvolumen	Mikroporen	Mesoporen	Makroporen	
Hydraffin CC 8x30	Kokosnussschalen	1126	0,699	0,441	0,073	0,185	DONAL
Hydraffin CC 8x30 plus	Kokosnussschalen	1158	0,824	0,446	0,153	0,225	

19.06.2024 – © Donau Chemie Group, all rights reserved

PFAS - new development Hydraffin CC 8x30 plus

19.06.2024 – © Donau Chemie Group, all rights reserved

PFAS – reactivation of Hydraffin

Conclusion

- » Short-chain PFAS, which are the focus of attention due to coadsorption and lower adsorption capacity, can be retained very well using **Hydraffin CC 8x30 plus**.
- » **Reactivation** frees the **Hydraffin** activated carbon from PFAS and demineralises it so that the "chemical of the century" is removed from the environment

19.06.2024 – C Donau Chemie Group, all rights reserved

Lewatit[®] ion exchange resins for PFAS remediation: Challenges & Removal

Dipl.-Ing. Björn Dinges, Technical Marketing Manager, LANXESS Deutschland GmbH

ZerOPM Rastatt, June 12, 2024

Versatile specialists – comprehensive product portfolio provides advanced solutions

The general structure of ion exchange resins

Structure of IX resins made from a styrene-DVB copolymer

- Synthetic ion exchange beads consist of an organic copolymer material
- Polymer chains are linked to form a three-dimensional network
- Cross-linker connects different polymer chains to enhance physical strength
- Each monomer unit carries a functional group

Monodisperse droplet generation by jetting process

Stable scaffolds for demanding metals processing applications!

Description

- Continuous process
- Raw materials are fed through a nozzle plate at the bottom of the column
- The resulting monomer jet is chopped into droplets of the same size
- Particle size can be controlled by adjustment of the whole width of the nozzle plate
- The droplets formed at the bottom start to encapsulate as they proceed to the column head
- Polymerization of the monodisperse encapsulated droplets is completed afterwards

Bead size distribution: HD vs. MD

A flexible portfolio of solutions for critical separation challenges

Physical Properties

Critical parameters are:

- Diameter d [mm]
- Fines d < 0.315 [mm]</p>
- Unifority coefficient UC

effective bead size = D _{R90%}	= 0,52 mm	= 0,58 mm
<u>Uniformity</u> coefficient = D _{R40%} /D _{R90%}	= 0,72mm / 0,52 mm 1,38 (HD)	= 0,62 mm / 0,58 mm 1,07 < 1,1 (MD)

The UC is an indicator how homogenious the beads are. UC<1.1 means very low content of fines that would block the colomn nozzles and low content of bigger beads that are less stabile and that cause uneven loading profile.

The structure of macroporous resins

Small opaque beads are actually of a highly permeable sponge-like structure

Ion Exchange resin terminology

Crosslinkage

- Crosslinkage range typical 4-20%
- Crosslinkers maintain the resin shape
- In non-oxidative media, resins cannot dissolve
- Dependant on solvant polarity, they either swell or shrink

- The higher the resin density the more polymer is sold. With this high crosslinkage (low water retention) the resins swell less during operation and regeneration.
- Especially customers who order material in the swollen form have to take care when they compare total capacities of products.

Ion Exchange Resin Terminology

 Customers have to understand the relationship between the total amount of functional groups in the volumetric measured resin matrix (eq/ liter resin) and the delivered ionic form. In this example the strong acidic cation resin swells after acid regeneration by +8%, so the total capacity of the resin is reduced by -8%.

- Also important is the amount of fines, to avoid a blocking of the nozzles customer who order heterodisperse resin have to backwash the material more intensive. The small beads that affect the total resin capacity result have to be washed out and the real capacity of the material is lower.
- F.e. is the theoretical cupper capacity of Lewatit TP207:

$$TC'(g/L) = \frac{TC(eg/L) * MG(g/mol)}{charge(eg/mol)} = \frac{2.2 * 65}{2} = 71.5 g_{Cu}/l_{resin}$$

Basic Design Parameters

Influence of Velocity on breakthrough

Influence of Competing Ions on breakthrough

IX= Lewatit TP 207; Co(Ni) = 120 - 153 µg/l, c(Ca) = 45 - 51 mg/L, pH = 7.5 - 7.9

IX= Lewatit TP 207; Co(Ni) = 81 - 140 μg/l, c(Ca) = 45 - 51 mg/L, vF = 29 - 30 m/h, pH = 5.3 - 7.4

Basic Design Parameters

Jes Vorlagentextes zu bearbeiten

Specific pressure loss	(15 °C) approx. kPa*h/m²	1.0
Pressure loss	max. kPa	200
	[m] x v [m/h] x F _V x F _T x diagram 1] from diagram 2] fic pressure drop) from table 1 [kPa	c F_R a x m ⁻² x h]

Diagram 1 Velocity Factor

Diagram 2 Temperature Factor

Ion Exchange Resin Terminology

Definition of Selectivity

Selectivity describes the tendency of certain ion species (e.g.) of being adsobed on an ion exchange material () in comparison to other ionic species (e.g.))

Ion exchange resin terminology :Selectivity as...

So₃Na
Ba^{2+>} Pb^{2+>} Sr^{2+>} Ca²⁺ >Ni²⁺>Cd^{2+>} Cu²⁺ > Co²⁺>Zn²⁺ >Fe²⁺>Mg²⁺>Mn^{2+>} Alkalis > H⁺
earth-alkali metals > heavy metals > alkali metals > H⁺

condensation reaction

Ion exchange resin terminology : Selectivity as...

H₃C 、

weakly basic resin

H₃C

selectivity: surfactants, tannins, lignins ...

 $\mathbb{R}^{-N(CH_3)_3Cl} + NO_3^{-} \longleftrightarrow \mathbb{R}^{-N(CH_3)_3NO_3} + Cl^{-}$ $\mathbb{R}^{-N(CH_2-CH_2-CH_3)_3Cl} + NO_3^{-} \longleftrightarrow \mathbb{R}^{-N(CH_2-CH_2-CH_3)_3NO_3} + Cl^{-}$ selectivity: perchlorate, nitrate, borate, iodide

Vessel Technologies

Flow Patterns

Reduced effective bed depths

Filter Nozzles

Key properties of ion exchange resins

Precise control of resin parameters for critical separation challenges

- Functional group (type of chelating)
- Polymer Matrix (styrenic or acrylic)
- Morphology (gel or macroporous)
- Crosslinking
- Bead size (mono- vs. heterodisperse)
- Kinetics
- Resin swelling

Chemical structures of most critical Per- and Polyfluorinated Alkyl (PFAS) substances

Highly efficient resin for the removal of toxic anions such as perchlorate, chlorate, and bromate

Long chain

Perfluorooctanesulfonic acid (PFOS) MW = 500 g/mol

Perfluorooctanoic acid (PFOA) MW = 414 g/mol

Short chain

Perfluorobutanesulfonic acid (PFBS) MW = 300 g/mol

Perfluorobutanoic acid (PFBA) MW = 214 g/mol

A high-performance ion exchange resin required in order to remove mixture PFAS

Options for treatment of PFAS

Ion exchange is most efficient technology especially for short chain PFAS!

Reverse osmosis/ nanofiltration	 Effectively removes even smaller chain PFAs Capex cost is high Operating cost and energy consumption is high Results in a relatively large waste stream 	Cost of a com activation Costs in Normaliz	Cost Calculation usin a competitor ion exc activated carbon		
Granulated activated carbon	 Low-cost media difficult to change and expensive to reactivate Large footprint Low selectivity short chain PFAS results short cycles frequent exchanges 	100 80 60 40	23 69		
lon exchange	 Fast kinetics, small vessels, Spent material is easy to be exchanged Very high selectivity, long cycles, low exchange rate 	20 0 A E	8 ctivated carbon C quipment ■ Material		

Cost Calculation using Lewatit[®] TP 108 DW, a competitor ion exchange resin (IER), and activated carbon

LAN

Energizing Chemistry

20 15.06.2024

Lewatit[®] PFAS resins

Lewatit® TP 108 DW	 Very high selectivity to PFAS Especially effective against short-chains, e.g., PFBA types Not recommended for regeneration NSF 61 Certified for drinking water application
Lewatit® MonoPlus TP 109	 High selectivity to PFAS species Macroporous structure for improved kinetics, fouling resistance and easier regeneration Monodisperse resin bead size for improved hydraulics Optimum functional group hydrocarbon chain length for balance PFAS removal and regeneration High regeneration efficiency 70% methanol + 1% NaCl^[1]
Lewatit® MP 62 WS Lewatit® MP 62 WS Eco	 Medium selectivity for PFAS species weak base anion exchange resin, short chains regenerated NaOH Suitable for highly PFAS-contaminated waters such as point sources or aquifers Macroporous structure for improved kinetics, fouling resistance and easier regeneration A high operating capacity and total capacity (≥1.7 eq/l), ideal as a pretreatment resin 24% greenhouse gas savings² due to usage of ISCC² Plus certified styrene in accordance with mass balance approach
 Deng et al. Water Research 2010, 	44, 5188

² Compared to standard Lewatit[®] based on fossil monomer (acrylonitrile/styrene). ISCC refers to International Sustainability & Carbon Certification

21 15.06.2024

Required resins and filter arrangements

Interactions of PFAS with anion exchange resins

Strongest interaction between Lewatit[®] TP 108 DW and long chain PFAS

Warminster plant comparison

Lewatit® TP 108 offers longer lifetime than competitor resin

Energizing Chemistry

1.5 L, 30 BV/h PFOS 429 ppt, PFHxA 80 ppt, PFOA 174 ppt, PFHxS 110 ppt

PFPrA¹⁾ and PFBA²⁾ removal from process stream

Lewatit[®] MP 62 WS outperforms with high loading capacity and efficient regeneration using 4% NaOH

operating conditions						
applied form	free base form					
PFPrA _{feed}	103 ppm					
PFPrA _{loading} capacity	10.3 g/L					
PFBA _{feed}	602 ppm					
PFBA _{loading} capacity	145 g/L					
Volume	900 L					
рН	2					
SV	2 BV/h					
Reg.	4% NaOH, 3-4 BV					
Configuration	merry-go-round					

PFPrA and PFBA removal by Lewatit[®] MP 62 WS

Reliable and efficient PFAS removal for several years at waste water plant in Germany

25 15.06.2024

PFOA and PFOS removal from ground water

Lewatit[®] TP 108 DW offers longer lifetime than competitor resin and activated carbon

PFOA and PFOS removal pilot in Italy Operating Conditions PFAS concentration in the effluent (ppt) **Resin in CI form** 7 6 **PFOS** 61 ppt 5 **PFOA** 44 ppt 4 75 L Volume 3 2 pН 7 1 SV 15 BV/h 0 10,000 20,000 30,000 40,000 50,000 60,000 0 70,000 Temp 20°C Throughput (bed volumes) GAC PFOA **Competitor Resin PFOA Breakthrough** > 1 ppt Lewatit[®] TP 108 PFOA and PFOS GAC PFOS

26 15.06.2024

Lewatit[®] TP 108 DW offers longer lifetime than competitor resin

Pilot Trial in a River Water Project, USA

- 20 BV/Hour
- EBCT = 3 min
- Competitor resin is a gel type non-regenerable PFAS resin

	Bed Volumes	PFOS, ppt	PFOA, ppt	PFBS, ppt	PFHxS, ppt	PFNA, ppt	GenX, ppt	PFHxA, ppt	PFHpA, ppt
IX Resins	Raw Water	20.8	23.5	6.1	9.3	5.9	28.7	64.9	42.5
TP 108 DW	27,400	ND	ND	ND	ND	ND	ND	ND	ND
TP 108 DW	62,500	ND	ND	ND	ND	ND	10.9	7.8	ND
TP 108 DW	90,900	ND	ND	ND	ND	ND	23.5	37.0	6
TP 108 DW	133,400	ND	ND	ND	ND	ND	28.7	68.7	11.5
A Competitor Resin	27,400	ND	ND	ND	ND	ND	ND	ND	ND
A Competitor Resin	62,500	ND	ND	ND	ND	ND	21.5	16.9	2.5
A Competitor Resin	90,900	ND	3.5	ND	ND	ND	20.3	37.6	15.7
A Competitor Resin	133,400	ND	12.5	ND	ND	ND	24.6	50.6	26.3

ND: non-detect

PFOA and GenX Removal

PFOA (feed) = 23.5 ppt; GenX (feed) = 28.7 ppt

Lewatit[®] TP 108 DW offers longer lifetime than competitor resin

California OCWD Pilot Data (Phase 2)

- 30 BV/hour, run for about 19 months
- EBCT = 2min

Bed Volumes (BV)	PFOA	PFOS	PFHxS	PFBS	PFHxA
Avg. Influent conc., ppt	20.1	24.5	10.3	14.9	4.5
0	ND	ND	ND	ND	ND
20,000	ND	ND	ND	ND	ND
40,000	ND	ND	ND	ND	ND
60,000	ND	ND	ND	ND	2
80,000	ND	ND	ND	ND	4.9
100,000	4	ND	ND	ND	4.9
120,000	5.5	ND	ND	ND	4.9
140,000	7.6	ND	ND	ND	4.7
160,000	10	ND	ND	ND	4.5
180,000	10.5	ND	ND	ND	4.3
200,000	12	ND	ND	ND	4.3
220,000	12.5	ND	ND	ND	4
240,000	14.5	ND	ND	ND	3
260,000	14.9	ND	ND	ND	3

19 Month Trial

PFOS, PFHxS and PFBS didn't breakthrough

ND: non-detect

Lewatit[®] TP 108 DW offers the highest capacity for most PFAS species found in drinking water sources

29 15.06.2024

Resin performance for PFAS application Simulated breakthrough curves by use of Klinkenberg model

PFNA breakthrough curves 20 BV/h, 60 ppt PFNA in 1.1 0.9 0.7 0.5 0.3 0.1 -0.1 10.000 20.000 30.000 40.000 50.000 60.000 70.000 0 80.000 Throughput (BV) Lewatit[®] TP 108 DW Macro, trimethyl Macro, TBA Gel, trimethyl Gel, tributyl

Conclusions

- Lewatit[®] TP 108 DW best resin to be used as single use polisher: longest cycle time and lowest leakage
- Macroporous resins, shorter cycle times and higher leakage values due to lower total capacity
- Technique established that yields fast access to breakthrough curves 2-3 weeks instead of 15 weeks for traditional method

$$\frac{C}{C_f} \approx \frac{1}{2} \left[1 + erf\left(\sqrt{\tau_1} - \sqrt{\xi} + \frac{1}{8\sqrt{\tau_1}} + \frac{1}{8\sqrt{\xi}}\right) \right]$$
$$\xi = \frac{kKu}{z} \left(\frac{(1-\vartheta)}{\vartheta}\right) \quad \tau_1 = k\left(t - \frac{z}{u}\right)$$

30 15.06.2024

Case study at fire training site Australia

One of the most successful PFAS water treatment plants

Containerized PFAS treatment plant

Characteristics

- Training using aqueous fire-fighting foam (AFFF) containing per- and poly-fluoroalkyl substances (PFAS)
- PFAS leached into groundwater
- Discharge criteria for long and short-chain PFAS to comply with
- Processes: oxidation, pH adjustment, flocculation, solids separation, media filtration, ion exchange and adsorption

PFAS treatment in a fire-fighting facility

Lewatit[®] TP 108 DW reduced most PFAS compounds to non-detect!

PFAS treatment summary

- Influent: total PFAS up to 200 ppb
- Effluent targets
 - PFOS and PFHxS combined total less than 0.07 ppb
 - PFOA less than 0.56 ppb
 - PFBA to non-detect level up to 10,000BVs
- 20 m³/hour flow rate
- In operation for 12 months and treating nearly 14 million gallons of water
- Deemed one of the most successful PFAS water treatment plants in Australia

Operational Guidelines

Recommended Operational Conditions

- Total suspended solids in the feed < 0.5 ppm</p>
- Pressure drop <150kpa to prevent mechanical stress on the resins
- Free chlorine < 0.05 ppm: effective pre-treatment is required to prevent irreversible chemical damage to the resins
- Presence of other oxidants e.g., ozone, permanganate and etc are not tolerable- same as above
- Organic as TOC < 1 ppm: effective pre-treatment is required to prevent fouling of the resins and prevent poor performance
- Oil & grease are not tolerable- same as above
- Heavy metals: <0.05 ppm</p>

Design Considerations

- Specific flow rate: 10-20 BV/hour
- Vessels: 8 ft, 12 ft diameter vessels are typical
- Cross-sectional linear velocity: > 5 m/hour
- Bed depth: minimum 3 ft
- Backwash: not recommended except startup
- Pretreatments
 - High TOC: GAC, Acrylic resin pre-filter
 - High PFAS concentration: regenerable resins as pre-filters
- Configuration
 - Lead/lag

Overview of LANXESS resins and adsorbers for drinking water applications

Strong portfolio of Lewatit[®] ion exchange resins for critical water purification challenges

Pollutant		Chelating resin	Strong base	anion resin (S		Ferric hydroxide adsorber		
		Lewatit [®] MonoPlus TP 207	Lewatit [®] TP 107	Lewatit [®] TP 108 DW	Lewatit [®] TP 106	Lewatit® S 5128	Lewatit [®] DW 630	Bayoxide® E33 / E33 HC
Heavy metals	НМ	-						
Chromium	CrO ₄ ²⁻		-					
Nitrate	NO ₃ -				-			
Per- and polyfluoroalkyl substances	PFAS			-				
Perchlorate	CIO ₄ -				-			
Natural organic matter	NOM					-		
Uranium	UO ₂ (SO ₄) ₂ ²⁻						-	
Arsenic	AsO ₄ ³⁻							-

34 15.06.2024

Country specific potable water approval certificates can be received as manufacture's declaration.
Please get in contact with us

Contact details

Dipl.-Ing. Björn Dinges Technical Marketing Manager LANXESS Deutschland GmbH

Mobile: +49 (0)151 74650606 E-mail: Bjoern.dinges@lanxess.com

Linked in

Marco Dreiner Area Sales Manager Germany LANXESS Deutschland GmbH

Mobile: +49 (0)1622003262 E-mail: marco.dreiner@lanxess.com

Linked in

35 15.06.2024

LANXESS Energizing Chemistry

Disclaimer

Health and Safety Information: Appropriate literature has been assembled which provides information concerning the health and safety precautions that must be observed when handling the LANXESS products mentioned in this publication. For materials mentioned which are not LANXESS products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be followed. Before working with any of these products, you must read and become familiar with the available information on their hazards, proper use and handling. This cannot be overemphasized. Information is available in several forms, e.g., material safety data sheets, product information and product labels. Consult your LANXESS representative in Germany or contact the Regulatory Affairs and Product Safety Department of LANXESS Deutschland GmbH or - for business in the USA - the LANXESS Corporation Product Safety and Regulatory Affairs Department in Pittsburgh, PA, USA.

Regulatory Compliance Information: Some of the end uses of the products described in this publication must comply with applicable regulations, such as the FDA, BfR, NSF, USDA, and CPSC. If you have any questions on the regulatory status of these products, contact – for business in the USA-, the LANXESS Corporation Regulatory Affairs and Product Safety Department in Pittsburgh, PA, USA or for business outside US the Regulatory Affairs and Product Safety Department of LANXESS Deutschland GmbH in Germany.

The manner, in which you use and the purpose to which you put and utilize our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis must at least include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by us. Unless we otherwise agree in writing, all products are sold strictly pursuant to the terms of our standard conditions of sale. All information and technical assistance is given without warranty or guarantee and is subject to change without notice. It is expressly understood and agreed that you assume and hereby expressly release us from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance, and information.

Any statement or recommendation not contained herein is unauthorized and shall not bind us. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent.

ZerOPM

Special Symposium on PFAS elimination, 12.6.2024, Karlsruhe/Rastatt

Lukas Lesmeister, Dr.-Ing. Marcel Riegel

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

Perfluoroalkyl acids (PFAA)

Current Situation

Impact of the new DWD

⇒Up to 80 % reduced operating time (presence of short chain PFAA)
⇒Additional effort & costs • Former guidance values (LW), health orientation values (GOW)

Substanz		С	perfluorinated, C _F	LW, µg/L	GOW, μg/L
PFBA	Perfluorobutanoate	4	3	10	-
PFPeA	Perfluoropentanoate	5	4	-	3.0
PFHxA	Perfluorohexanoate	6	5	6	-
PFHpA	Perfluoroheptanoate	7	6	-	0.3
PFOA	Perfluorooctanoate	8	7	0.1	-

New threshold, RL 2020/2184/EU Σ_{20} PFAS = 0.1 µg/L

Approach in the EU ZeroPM project

Selection of suitable test resins

 Comparison of adsorption and desorption on different anion exchange resins (16 resins, 5 manufacturers) in the laboratory

Test in pilot plant:

- >Weakly basic resin (Purolite A111, regenerable)
- Strongly basic resin (Lewatit MonoPlus M600, regenerable)
- PFAS-specific strongly basic resin (Amberlite PSR2+, not regenerable)

Water matrix

Threshold ΣPFAS-20 = 100 ng/L

Parameter	Unit	Mean	Parameter	Unit	Mean
рН	-	6.2	TFAA	ng/L	907
Temperature	°C	12	PFPrA	ng/L	18
El. Conductivity	μS/cm	301	PFBA	ng/L	32
ТОС	mg/L	0.58	PFPeA	ng/L	91
Total hardness	°dH	6.6	PFHxA	ng/L	94
Total hardness	mmol/L	1.18	PFHpA	ng/L	39
Sulphate	mg/L	24.7	PFOA	ng/L	187
Chloride	mg/L	19.5	ΣPFAS-20	ng/L	442
Nitrate	mg/L	27.1			

Scheme of the pilot plant

GAC-Filter (hard coal)

Effluent ΣPFAS comparison

- GAC1: Hard coal
- GAC2: Coconut shell-based

Table: Comparison of flow parameters.

Parameter	GAC	PSR2Plus
v _F / (m/h)	10	10
Throughput / (BV/h)	5	10

Strongly basic anion exchanger, M600

- R, regeneration using 1 M NaNO₃ in pilot plant
- *R8 and R9: regeneration using 1 M NaCl.

Weakly basic anion exchanger, A111

• *R3 and R11: regeneration using 0.01 M NaOH.

Weakly basic anion exchanger, A111

• *R3 and R11: regeneration using 0.01 M NaOH.

Process evaluation (example)

Assuming regeneration every 3 weeks:

- 10 080 L treated drinking water
- 25 L regenerate \rightarrow process efficiency: 99.8%
- 60 L flush water cut-off \rightarrow process efficiency: 99.1%

<u>Comparison with reverse osmosis treatment:</u> approx. 80%

Without consideration of additional treatment of regenerates or concentrates

Conclusions / outlook

- Process evaluation:
 - Effective: PFAA concentration in the effluent < 100 ng/L \checkmark
 - Efficient: > 99% 🗸
 - Treatment costs: materials, specific costs pending
- Treatment of Regenerate **pending**

Team

Dr.-Ing. Marcel Riegel *Coordinator*

M. Sc. Lukas Lesmeister Doctoral student

Julian Schmid *Technician*

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

Thank you for your attention!

Subscribe to our newsletter TZW NEWS. Registration on www.tzw.de

M.Sc. Lukas Lesmeister Department of Water Supply/ Section: Concepts for Supply Structures and Technology TZW: DVGW-Technologiezentrum Wasser (German Water Centre) Karlsruher Straße 84 76139 Karlsruhe lukas.lesmeister@tzw.de

EU Green Week HANDLING A PFAS GROUNDWATER CONTAMINATION: EXPERIENCE OF A WATER UTILITY

Symposium on PFAS elimination from Drinking Water

12th June 2024 Rastatt, Germany

STADTWERKE RASTATT AS AN EXAMPLE OF ENGAGEMENT

- Highlights of a real example of a public utility that has effectively managed a PFAS contamination
- Challenges of PFAS, drinking water regulations and water supply responsibilities
- Immediate measures and actions taken: investigation, best technologies, expert involvement, investment and treatment optimization
- Crisis Management: priorities, decision making
- Ensure a reliable water supply: long term efforts and continuous engagement

CURRENT SITUATION

- PFAS discovered in groundwater well in 2012 by chance of a full water-analysis
- PFAS contamination in the region "Mittelbaden" is one of the biggest environmental scandal in Germany
- The groundwater and soil remediation is economically impossible
- Measures taken regarding PFAS removal made it possible to ensure a safe water supply

ZerOPM STADTWERKE

CURRENT SITUATION

SOIL

1.100 hectares contaminated with PFAS so far11% of the total agricultural land

GROUNDWATER

170 million m³
58 km² of groundwater surface (Lake Starnberg)

CURRENT SITUATION

SOIL

1.100 hectares contaminated with PFAS so far11% of the total agricultural land

GROUNDWATER

170 million m³
58 km² of groundwater surface (Lake Starnberg)

ZerOPM STADTWERKE

CURRENT SITUATION OF WATER TREATMENT PLANTS

- Measures taken for safe water:
- Inter-municipal pipe connections
- ► New internal pipelines
- Treatment technology: activated carbon filters in treatment plants
- ► PFAS-Monitoring
- Construction of new wells
- Further research for most economical solutions

CAUSE OF THE CONTAMINATION

WHO?

► A compost company from Baden-Baden

WHAT?

Experts conclusion: the contamination was most likely due to compost distribution on fields mixed with paper sludge

HOW?

Spreading PFAS-containing compost over large areas of agriculture land between 2000 and 2006

EVENTS HAPPENED

Handling a PFAS groundwater contamination

Seite 9

ZerOPM STADTWERKE *

CHALLENGES

Seite 10

ZerOPM STADTWERKE *

CHALLENGES

Seite 11

SOLUTION APPROACHES

TECHNICAL SOLUTIONS

- First urgent measure
- Water wells were taken out of operation
- Feasibility study for best technologies
 Activated carbon for PFAS removal

► Extension of damage

Water, soil and groundwater analysis

Engineering

Research

Interconnection pipeline for redundancy
 Reconstruction of water treatment plants
 Construction of additional water wells

PFAS-Monitoring

➡ Over 35 measuring points

Groundwater models

Handling a PFAS groundwater contamination

Seite 12

SOLUTION APPROACHES

SOLUTION APPROACHES

ACTIVATED CARBON TECHNOLOGY IN WATER TREATMENT PLANT IN RAUENTAL

► 4 filters with granulated activated carbon (GAC)

- ► 25 tons of activated carbon
- ► 250 m³/h treatment capacity
- 2,33 kg of PFAS removed to date

Handling a PFAS groundwater contamination

SOLUTION APPROACHES

RESEARCH PROJECTS

- Research projects with activated carbon and ion exchangers
- Effectiveness test with ion exchangers for short-chain PFAS removal
- Collaboration in the EU project ZeroPM

COMMUNICATION AND NETWORKING

- ► Networking for PFAS cases
- Specialist reinforcement
- ► Information exchange with authorities and water utilities
- Transparent communication with public stakeholders
- Symposiums with technical and legal experts
- Communication with the Environment Agency and politicians

Handling a PFAS groundwater contamination

Seite 15

SOLUTION APPROACHES

LEGAL ACTIONS

- Criminal complaint against unknown person
- ► Civil action in 2019 for damages for amount of 6.5 million € against the compost manufacturer
- Legal action against the state of Baden-Württemberg
- Application for compensation from the National Sewage Sludge Compensation Fund
- Lawsuit against water management plan

Mittelbaden / Bühl

BNN bei WhatsApp

130 Hektar belastete Fläche

Kosten durch PFAS-Belastung im Grundwasser: Stadt Bühl und Stadtwerke Rastatt klagen gegen Land

Sporttabeller

Die Stadtwerke Rastatt und die Stadt Bühl klagen vor dem Verwaltungsgerichtshof Baden-Württemberg gegen das Land Baden-Württemberg wegen der Belastung des Grundwassers in Mittelbaden mit PFAS, bislang bekannt als PFC.

Handling a PFAS groundwater contamination

CONSECUENCES OF ACTIONS TAKEN FOR PFAS REMOVAL

OUR SOLUTION APPROACHES

CONSECUENCES OF NEW LIMITS OF THE EU DRINKING WATER DIRECTIVE 2020/2184

EU WATER DIRECTIVE 2020/2184

PFAS Total < 0,5µg/L

Sum of PFAS-20 < $0,1\mu$ g/L

GERMAN DRINKING WATER DIRECTIVE

Sum of PFAS-20 < 0,1µg/L

Sum of PFAS-4 < 0,02µg/L

- Shorter service life of activated carbon: more frequent filter changes and regeneration cycles
- Reduction of the adsorption efficiency of activated carbon due to short-chain PFAS
- Research for more cost-efficient processes
- Higher demand for laboratory analysis
- Staff training

UNFORTUNATELY, WE ARE NOT THE ONLY ONE...

Research results of Stadtwerke Rastatt (2022):

- ► 187 cases of PFAS contamination in Germany
- ► 50% related to extinguishing water or foam use
- Greatest damage caused by soil application
- Groundwater is the most affected by PFAS
- 23 water utilities in Germany are dealing with PFAS contamination caused by extinguishing foams

Handling a PFAS groundwater contamination

Seite 19

RECOMMENDATIONS FOR WATER UTILITIES

DETERMINATION OF POLLUTION

Analytics, groundwater models

ENSURING THE WATER SUPPLY

Reconstruction of water treatment plants, investment, redundancy

► IMPLEMENTATION OF TECHNICAL SOLUTIONS

Testing, feasibility studies, research, experts support, training

► PROTECTING REPUTATION

Public relations, documentation, legal measures

CONVEYING SECURITY

Consumer protection and public and transparent communication

Handling a PFAS groundwater contamination

CONCLUSIONS

▶ Public water utilities are forced to "remove" PFAS from the environment

Uncertain and unknown duration of the cost increase and contamination

► Technical and legal processes due to PFAS contamination leads to considerable costs

Citizens and municipalities assume the costs through water price increases

The new limits for PFAS leads to further expenses and efforts for water utilities

UNKNOWNS

- ► How could such cases of contamination be avoided in the future?
- ► How long will the contamination last ?
- What responsibilities should PFAS manufacturers take ?
- ► Will PFAS be banned in future ?

ZerOPM

STADTW

THANK YOU!

Olaf Kaspryk Tel.: 07222 773-0 E-Mail: <u>o.kaspryk@stadtwerke-rastatt.de</u>

Lorena Rodriguez Tel.: 0164 2424642 E-Mail: mlorena.rodriguez@outlook.com

Stadtwerke Rastatt GmbH Markgrafenstraße 7, 76437 Rastatt www.stadtwerke-rastatt.de

Agenda

Wednesday 12 th June Time	Activity	Location
12.30 - 14.50	Presentations	BadnerHalle
15.00 - 16.00	Free time	
16.00 - 18.30	Buses to the Rauental water works for tours	Buses depart from BadnerHalle at 16.00. Group one will arrive back at around 17.15 and group two by 18.15
18.30 – late	Dinner	Avocado Restaurant, Karlstraße 38, 76437 Rastatt

Thursday 13 th June Time	Activity	Location	
8.15	Depart for TZW	Buses depart from BadnerHalle at 8.15!	6
9.15	Presentations	TZW, Karlsruher Str. 84, 76131 Karlsruhe	-
15.30	End of event		

Back up

Handling a PFAS groundwater contamination

ZerOPM STADTWERKE

ERFOLG: NEUE GRENZWERTE

EU-Trinkwasserrichtlinie hinsichtlich PFAS	Erfüllt von	Deadline
Umsetzung der neuen Grenzwerte für PFAS in die Deutsche Trinkwasserverordnung	Mitgliedstaaten	24. Juni 2023
Festlegung technischer Leitlinien bzgl. der Analyseverfahren zur Überwachung von "PFAS gesamt" und "Summe PFAS"	EU- Kommission	12.Januar 2024
Klärung des Parameters "PFAS gesamt"	EU- Kommission	12. Januar 2024
Umsetzung der nötigen Maßnahmen	Mitgliedstaaten	12. Januar 2026

PFAS EU-Verbotsverfahren: Anfang 2023 veröffentlichte ECHA Vorschlag zur EU-weiten Beschränkung
von PFAS, der aktuell wissenschaftlich bewertet wird. Die Beschränkungen sollen 2026/27 in Kraft treten.Deutsche Trinkwasserverordnung hinsichtlich PFASErfüllt vonDeadlineSumme PFAS-20 < 0,1µg/L</td>Deutsche
Wasserversorger12. Januar 2026Summe PFAS-4 < 0,02µg/L</td>Deutsche
Wasserversorger12. Januar 2028

PFAS-Beherrschung durch die Stadtwerke Rastatt

HERSTELLERVERANTWORTUNG

- Wichtige Quellen von PFAS-Emissionen sind die Hersteller von Fluorchemikalien und/ oder Fluorpolymeren sowie Karton- und Papierfabriken
- Die europäische Chemikalienagentur ECHA eröffnet Konsultation zur Beschränkung von PFAS
- EU-Kommission verbietet alle PFAS als Gruppe in Feuerlöschschäumen sowie in anderen Verwendungszwecken und Zulassung ihrer Verwendung, es sei denn, dass sie für die Gesellschaft unerlässlich sind
- Derzeit keine Einstufung oder Aufnahme der kurzkettigen PFAS, da bisher keine Toxizität nachgewiesen werden konnte
- Ersatzstoffe sind kritisch: nach dem Verbot der PFAS werden Ersatzstoffe auf dem Markt gebracht die jedoch nur unzureichend auf gesundheitliche Auswirkungen getestet wurden. Als Beispiel ist die GenX-bezogene Chemikalie
- In den USA werden PFAS-Hersteller bereits verklagt
- Deutsche Industrieverbände warnen vor einer Gefährdung der EU-Klimaziele bei einem umfassenden Verbot von sogenannten Ewigkeits-Chemikalien

Seite 27 PFAS Beherrschung durch die Stadtwerke Rastatt

WIE KANN PFAS IM TRINKWASSER ENTFERNT WERKE

Wirksame Verfahren:

- Adsorption
 - Aktivkohle
 - (lonenaustausch)
 - (Bentonit)
- Membranfiltration
 - Nanofiltration (NF)
 - Umkehrosmose (UO)

Unwirksame Verfahren:

- Uferpassage
- Belüftung
- Flockung
- Enteisenung
- Ultrafiltration
- Oxidation (O₃, KMnO₄)
- Desinfektion (Cl₂, UV)
- •

-> Pilotversuche bei den SW Rastatt, um Erfahrungen zur großtechnischen Umsetzung zu bekommen.

AKTIVKOHLE: WIE KANN DAS GUT FUNKTIONIEREN?

- Effizienz abhängig von der Kettenlänge
- Kurzkettige PFAS sind deutlich schlechter entfernbar

STADTWE

- Chromatographie-Effekt
- ⇒ Häufige Aktivkohlewechsel

ERFAHRUNGEN MIT DER MEMBRANTECHNIK ZerOPM STADTWERKE

- Die Umkehrosmose entfernt nahezu 100 % der PFAS

- Verschnitt muss PFAS-frei sein

KONSEQUENZ FÜR DIE MEMBRANTECHNIK ZerOPM STADTWERKE *

WEITERE FORSCHUNG & ENTWICKLUNGEN ZerOPM STADTWERKE

– Die Hoffnung gilt dem **lonenaustausch**:

EU Green Week
PARTNER EVENT

ZeroPM Special Symposium on PFAS elimination from drinking water

Rastatt / Karlsruhe 12th and 13th June 2024 #WaterWiseEU

An introduction to the PFAS problem and ZeroPM's approach to solve it

Sarah Hale TZW sarah.hale@tzw.de

The PFAS problem

North Yorkshire town has UK's highest concentration of 'forever chemicals'

PFAS contamination recorded in groundwater on Angus Fire site in Bentham, and includes chemicals with known health impacts

Jersey people with high PFAS levels could get treatment

() 21 October 2023

<

PFAS, used in firefighting foam, leaked into the area by the airport's fire training ground in the early 1990s

Experts have recommended that a blood treatment is offered to Jersey people with high levels of PFAS.

Experts call for tighter limits on 'forever chemicals' in water

© 18 October 2023 - ₱ Comments

<

itallard ;ience reporter, BBC News

its are needed on levels of 'forever chemicals' in UK drinking h are potentially harmful to human health, experts have warned.

Bentham is home to the Angus International Safety Group – locally known as
Photograph: Rob Whitrow/Rob Whitrow/Ends Report

The ZeroPM approach to solve it

Zero pollution of persistent, mobile substances

 ZeroPM will interlink and synergize three strategies to protect the environment and human health from <u>persistent</u>, <u>mobile</u> substances: Prevent, Prioritize and Remove.

ZeroPM's concept

Interlinked Strategy

Preventing regrettable substitution for prioritized PM substances, by assessing hazards, sustainability, exposure and removal.

Prioritizing PM substances and groups based on intrinsic properties, exposure, and hazard to select those substances to prevent and remove most urgently

Removing prioritized PM substances via effective, sustainable and safe remediation methods, that prevent unfocused remediation effort

WP2 Alternatives Assessment

Objective: to provide **safer chemical alternatives to non-essential uses** of PM substances

 for each use of substances of concern, the database provides its chemical function, end-use function, and function as a service

ZeroPM Alternatives Uses Fluorinated gases Food contact material **Use categories** Active pharmaceutical ingredients Propellants Sub-uses **Database Biocidal product** Foam blowing agents Refrigeration and heat pumps Building and construction products **Consumer mixtures** Industrial Non food refrigeration packaging Cosmetics Applications Domestic and Electronics and semiconductors Food & feed commercial hea Domestic Consumer packaging pumps refrigeration cookwa Energy sector Fluorinated gases Heat transferring Heat transferring Corrosion Waterproofing Functions agent Food contact materials sent into the Lubricant public consultation for Remove heat from a space Provide heat Resistant to Water, oil and Medical devices End-uses grease repellency Metal products manufacture and metal plating Petroleum and mining the broad PFAS Preservation of Increase Facilitate cleaning Services goods in cool temperature temperature in a building Plant protection products (e.g. food in frigerator, freezers restriction Prevent food Improve Facilitate cleani from sticking Ski wax during cooking Alternatives Transport Textile, upholstery, leather, apparel, and carpets (TULAC) General structure of the ZeroPM alternatives database for PFAS -Examples of fluorinated gases and food contact material

WP2 Alternatives Assessment

- Social perceptions
- An extra layer of essentiality beyond technical function
- Relevant for assessing diverse stakeholder perspectives (industry, general public, policy)

Social science methods:

- Assess what different stakeholders know/think about PFAS, across key groups in society.
- Assess whether there is majority support for policy changes to enforce PFAS regulation for certain uses, when people are adequately informed of the risks/benefits.
- Test and use best-practice communications about the risks/benefits of PFAS to foster support for regulatory control of PFAS (+ extend practice to other SVHCs).

Suffill et al. Environ. Sci. Europe. 2024

WP2 Overall Sustainability Considerations

- Consider life cycle impact analysis with alternatives assessment
- Also consider technology and impacts of water removal technology

Energy intensive reverse osmosis facility to eliminate PFAS at the Rastatt test site to make drinking water potable

Holmquist et al. Environ. Sci. Technol. 2020, 54, 10, 6224-6234

WP3 Policy

Objective: to **stimulate and support policy changes** to more effectively tackle PM substances

- ZeroPM Regulatory Watch
- Policy actions tailored to groups of PM/PFAS substances, uses or sectors facilitating a transition towards zero pollution from PM substances
- Design roadmaps for groups of PM substances, uses or sectors
- To promote implementation of PM substance assessment into EU legislation engaging all relevant stakeholders

https://zeropm.eu/regulatory-watch/

WP4 Market Transition

Objective: to catalyse a market transition away from harmful PM substances

WP4 Market Transition

- Map PFAS in products to provide information to companies
- Existing reports, databases and publications

- The investigate section lists and explains typical PFAS uses showing red flags where these uses are suspected to contain PFAS.
- There is a section on supply chain communication explaining how and what to ask ٠ suppliers about PFAS.
- There is a section with a basic introduction to different methods for chemical analysis of PFAS in different types of products.
- The phaseout section gives a short introduction to substitution and alternatives assessment and links to further resources on this.
- There is a short summary of the regulatory situation for PFAS in the EU and the US.
- There are also links to good reports by others about PFAS and how to substitute PFAS in different sectors, such as Paints, Textiles, Food Packaging, Construction and more.
- There is also a database where you can search for sectors, products, uses and functions to understand if you have "PFAS hotspots" in your business

This chapter will teach you about typical "red flags" indicating that PFAS could be in a product. You will also find suggestions on how to municate about PFAS in the supply chain and what to do if you do not get the answers you need from your suppliers, or want to verify them.

<u>(</u>)

/!\

Phase out

To phase out PFAS you need to find a way to achieve the same functionality without them. The most straightforward approach is to simply ce one chemical with a safer one. But this can be tricky. Other ways include changing materials, technologies or production process

PFAS continue to be used on a broad scale despite their adverse effects, linking them to issues such as cancers and infertility. Since these "forever chemicals" do not degrade, they are now found all over the plane! in our environment and in the blood of every single human being

Regulatio	Reg	u	a	tio
-----------	-----	---	---	-----

It has taken some time, but regulation is now finally stepping up to addres this vast and problematic family of chemicals. A compre cted in the European Union within the coming years and a range of regulatory actions are in the pipeline in other regions as well

Many industries use PFAS in some way or another for a variety of function and purposes. These uses can be hard to find at a first glance. In this part of the guide, we publish reports with information on PFAS use and substitution with relevance for specific industry sectors

WP5 Substance Grouping

Objective: To **prioritize PM substances and substance groups** on the global chemical market for prevention and removal

 PFAS Tree to navigate PFAS on Pubchem (>7 million!) https://pubchem.ncbi.nlm.nih.gov/classification/#hid=120

PubChem Classification Browser

Browse PubChem: PFAS and Fluorinated Compounds in PubChem Tree

- PFAS and Fluorinated Compounds in PubChem ? > 21,410,924
 - OECD PFAS definition ? > 6,540,217
 - Organofluorine compounds ? > 20,417,012
 - Other diverse fluorinated compounds ? 125,621
 - PFAS and fluorinated compound collections ? / 1,789,296
 - PFAS breakdowns by chemistry ? 7,497,118
 - Regulatory PFAS collections ? 26,943

Navigating over 6 million PFAS! A walk through the PFAS tree with Emma Schymanski - YouTube

WP6 Risk Assessment

Objective: To **characterise and quantify impacts** of PM substances on human health and the environment

Direct action

Uncertainty (exposure and/or hazard)

No/low concern

WP7 Technical Solutions

Objective: to demonstrate **how and if** legacy and prioritized PM substance pollution **can be remediated**

- Developing passive sampler for PFAS and PMT/vPvM monitoring
- Pilot scale testing of water treatment solutions to PFAS and PMT substances
 - Coupling AC with regenerative ion-exchange and electrochemical degradation
- Pilot scale testing of sludge treatment for PFAS and PMT substances
 - using hydrothermal carbonization (HTC)

WP8 Dissemination and Communication

Objective: to spread and embed ZeroPM's results with our stakeholders

ZerOPM 1,251 followers 2h • S

How to remove $\# \mathsf{PFAS}$ with Sustainable Technical Solutions - The ZeroPM test site in Rastatt

Lukas Lesmeister from the the German Water Center TZW: DVGW-Technologiezentrum Wasser takes you on a tour of the Rauental waterworks Stadtwerke Rastatt GmbH, which has a pilot plant to remove PFAS from the heavily contaminated Rastatt region. One key approach being developed is a hybrid approach to combine granular active carbon #GAC and a regenerative ion-exchange resin to remove both the hydrophobic and hydrophilic PFAS from water. Key to making this approach sustainable is that this is being developed to extend the life of the granular activated carbon and to recycle the ion-exchange resin, so that as little sorption material is needed as possible.

https://lnkd.in/d5TQ3Kxx

Thank you for attending and look out for our next webinar, film, event or opportunity to participate

PFAS occurrence and monitoring – Insights from the NORMAN network

Ian J Allan Emma R Knight Bert van Bavel

Norwegian Institute for Water Research

Prevent Prioritize Remove

This presentation

• Introduction to the NORMAN network

- Organisation
- Activities (JPAs)
- Databasing
- PFAS sampling and passive sampling in water
 - Introduction to passive sampling
 - Passive samplers tested/developed in ZeroPM

NORMAN network

WELCOME TO THE NORMAN NETWORK | NORMAN (norman-network.net)

- Started as a EU 6th FP project and became a self-sustaining network of reference and research laboratories and related organisations involved in ermerging contaminant (bio)monitoring in 2009
- The network has grown over the years to include many stakeholders dealing with emerging substances
 - National authorities
 - Reference laboratories
 - Research centres and academia
 - Industrial stakeholders
- Objectives of NORMAN:
 - Exchange of information and data collection on emerging environmental substances;
 - Validation/harmonisation of common measurement methods and monitoring tools
 - Maintenance/development of knowledge of emerging pollutants by stimulating coordinated, interdisciplinary projects on problem-oriented research and knowledge transfer

NORMAN driving force: Valeria Dulio and Jaroslav Slobodnik

Joint Programme of Activities

NORMAN working groups

Past output of the cross-working group activity on passive sampling

mar

ZerOPM

Prioritiz

- JPAs
- Workshop/discussions
- Position papers
- research cooperation e.g. with ILS ...

Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis | Scientific Data (nature.com)

<u>Position paper on passive sampling techniques for the monitoring of contaminants</u> in the aquatic environment – Achievements to date and perspectives -<u>ScienceDirect</u>

Mobile dynamic passive sampling of trace organic compounds: Evaluation of sampler performance in the Danube River - ScienceDirect

<u>Towards the review of the European Union Water Framework Directive:</u> <u>Recommendations for more efficient assessment and management of chemical</u> <u>contamination in European surface water resources - ScienceDirect</u>

Databases in NORMAN

Chemical occurrence data

2024

Sampling ID Substance Concentration Unit Ecosystem/Matrix Sampling Site/Station Date Country * v 1 24 3927679 Perfluorooctanesultonic acid × LeQ Surface water - River Port de la E219 au Vert 2010/08/30 France (PEOS) water 3927710 Perfluoropctanesulfonic acid <1.00 Surface water - River Port do la D219 au Vort 2010/09/20: France (PFOS) water Surface water - River 3927741 Perfluoropctanesulfonic acid <LoQ Pont de la D219 au Vert 2010/10/11 France (PFOS) water 3927772 Perfluorooctanesulfonic acid < LoQ Surface water - River Pont de la D219 au Vert 2010/11/02 France (PEOS) water 3927803 Perfluorooctanesullonic acid < LoQ Surface water - River Pont de la D219 au Vert 2010/11/22 France (PFOS) water 3927834 Perfluorooctanesulfonic acid < LuQ Surface water - River Pont de la D219 au Vert 2010/12/13 France (PEOS) water 3927987 Perfluorooctanesulfonic acid <LoQ Surface water - River Pont de St-Faziol 2010/08/30 France (PFOS) water 3928018 Perfluorooctanesultonic acid 0.5 µg/l Surface water - River Pont de St-Faziol 2010/09/20 France (PFOS) water 3928049 Perfluorooctanesulfonic acid 2010/10/11 France 1.1 µg/ Surface water - River Port de St Faziol (PFOS) water 3928080 Perfluorooctanesultonic acid 0.68 µg/l Pont de St-Faziol 2010/11/02 Surface water - River France (PEOS) water 3928111 Perfluorooctanesulfonic acid 1.9 µg1 Surface water - River Pont de St-Faziol 2010/11/22 Franca (PEOS) water 3928142 Perfluorooctanesultonic acid 0.52 µg/ Surface water - River Pont de St-Faziol 2010/12/13 France (PEOS) water 3929590 Perfluorooctanesullonic acid < LoQ Pont de la D144 à Merpins Surface water - River 2010/08/30 France (PFOS) water 3929521 Perfluorooctanesulfonic acid 2010/09/20 < 1.nQ Surface water - River Pont de la D144 à Morpins France (PFOS) water

SARS-CoV-2 in sewage

A database with the latest information on SARS-CoV-2 in sewage across Europe and

internationally; including a common protocol for

ZerOPM

emov

NORMAN network: PFAS work

Date	Activity	Туре
2009	3rd Interlaboratory study on perfluorinated compounds in water, fish and sludge Organised by: NORMAN and QUASIMEME (IVM-VU University, Amsterdam)	ILS
2020	Proficiency test 5/20 - TW S3 - TW S4 – PFC in drinking water Organised by: IWW and AQS Baden-Württemberg, Germany	ILS
2021	PFAS Analytical Exchange Organised by: Environment Agency (UK) in collaboration with Aarhus University (DK), Finnish Environment Institute SYKE (FI), IWW Water Centre (DE), Norwegian Environment Agency (NO), Örebro University (SE), University of the Basque Country (ES), VITO NV (BE), Wageningen Food Safety Research (NL)	International exchange
2022	PFAS suspect HRMS lists and lists of PFAS-containing products Organised as a part of the NORMAN JPA 2022 by QAEHS – the Queensland Alliance for Environmental Health Science, The University of Queensland, Australia; IRSA-CNR - Water Research Institute of the National Research Council of Italy and University of Amsterdam, The Netherland	Survey/ international exchange
2022	Proficiency Test 2/22 - TW S7 – Trifluoroacetic acid in drinking water Organised by: AQS Baden-Württemberg at Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart-Büsnau, Germany	ILS
2022	PFAS analytical exchange - TOP Assay Method Comparison Organised by: Environment Agency (UK) In collaboration with University of the Basque Country, Vito NV, Fraunhofer IME, Örebro University, Wageningen University & Research, Luleå University of Technology, German Federal Environment Agency, The French National Centre for Scientific Research	Exchange
2022	Proficiency Test PT 7/22 TW S4 – PFAS according to EU drinking water directive Organised by: AQS Baden-Württemberg at Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart-Büsnau, Germany and IWW Water Center, Moritzstr. 26, 45476 Mülheim an der Ruhr, Germany	ILS M

ZerOPM

ILS on target and non-target PFAS analysis of passive sampling and water extracts (2023-2025)

Number of participating labs: 29 institutions, 16 different countries!

Dr Sara Gorji, QAEHS, Australia <u>s.ghorbanigorji@uq.edu.au</u> Dr Sarit Kaserzon, QAEHS, Australia <u>k.sarit@uq.edu.au</u>

ILS on target and non-target PFAS analysis of passive sampling and water extracts (2023-2025)

One passive sampling configuration for target and suspect/non-target screening. The aims are to examine the following:

(i) Type of PFAS that can be monitored using passive sampling devices and SPE
(ii) Comparativeness of analytical methods (i.e., chromatography-mass spectrometry methods)
(iii)Effectiveness of extended suspect screening workflows for the detection of PFAS in PS extracts and comparativeness of the processing methods using a set list of target and spiked PFAS as well as expanded NTA reporting from each participating laboratory.

Dr Sara Gorji, QAEHS, Australia <u>s.ghorbanigorji@uq.edu.au</u> Dr Sarit Kaserzon, QAEHS, Australia <u>k.sarit@uq.edu.au</u>

Passive sampling

- Passive sampling measures a concentration of contaminant boundary
 Codisponded bile in watever
 Based on diffusive processes
- In/ex situ measurements of trace contaminants:
 Dissolved/labile in water, in sediment/soil pore waters
 That are bioaccessible
- Integrative monitoring over periods of days to months
- Improved limits of detections and simplified matrix composition

Principle of accumulation into passive samplers

Contaminant accumulation in time

Example of passive sampling for PFAS

Randselva deployments – upstream and downstream former industrial site (paper producing factory)

00 mg mix of OASIS WAX & HLB : nd ground water POC PFOSA etFOSAA 8:2 FTS 10:2 FTS Site 1 0.001 0.001 0.001 (%RPD industr 68 Mean Site 2 0.005 0.001 0.001 0.002 0.002 0.002 0.002 0.006 0.001 0.001 35 51 (%RPD) 25 Site 3 Mean 0.007 0.036 0.045 0.029 0.007 0.002 0.029 0.014 0.004 0.019 0.003 0.002 (%RPD) 27 27 38 47 164 47 35 50 84 126 77

DGT exposures for 21 days: No detections

	PFPA	PFHxA	PFHpA	PFÓA	PFNA	PFDA	PFUnDA	PFHxS	PFHpS	PFOS	brPFOS	PFOSA	FOSAA	meFOSAA	etFOSAA	6:2 FTS	8:2 FTS	10:2 FTS
	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
Site 1	4.3	2.2	2.2	2.2	2.2	2.2	1.7	0.4	0.7	0.4	0.4	0.4	1.1	1.1	1.1	1.1	1.1	1.1
Site 2	4.3	2.2	2.2	2.2	2.2	2.2	1.7	0.4	0.7	0.4	0.4	0.4	1.1	1.1	1.1	1.1	1.1	1.1
Site 3	4.3	2.2	2.2	2.2	2.2	2.2	1.7	0.4	0.7	0.4	0.4	0.4	1.1	1.1	1.1	1.1	1.1	1.1

Viul/Randselva PFAS contamination

Groundwater concentrations measured with DGT

Exposure 2	PFPA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFHxS	PFHpS	PFOS	brPFOS	PFOSA	FOSAA	meFOSA/	A etFOSAA	6:2 FTS	8:2 FTS	10:2 FTS
Code	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L
GWB 14	3.9	30	114	125	32	14	1.5	7.2	13	86	231	106	20	4.9	603	0.4	30	14
GWB 13	8.1	75	239	114	36	4.9	0.6	1.5	0.7	18	26	0.7	0.4	0.4	1.7	12	37	0.4
GWB 12	1.4	20	97	148	11	1.6	0.6	1.3	0.7	23	31	0.4	0.4	0.4	1.2	0.4	5.1	0.4
GWB 11	2.8	21	64	158	38	6.6	0.6	1.5	2.3	120	74	14	0.6	0.4	1.7	0.4	17	0.4
GWB 10	12	87	306	599	91	0.7	0.6	10	11	37	149	1.0	0.8	0.4	10	0.4	4.4	27
GWB 6	1.4	0.7	0.7	0.7	0.7	0.7	0.6	0.1	0.2	0.1	0.1	0.1	0.4	0.4	0.4	0.4	0.4	0.4
GWB 2	18	68	151	150	13	1.3	0.6	0.5	0.2	4.5	6.6	0.1	0.4	0.4	0.4	1.0	5.1	0.4

When data were below LOQ, LOQs are given in grey

Estimated PFAS emissions between the three sampling sites in Randselva

Table 4. Estimated PFAS emissions to the river two river stretches

6	Flux/emission to the river (mg d-1)*						
	ΣΡFAS	PFOS	PFOA				
Between sites 1 and 2	39-219	13-68					
Between sites 2 and 3	1618 (700-3500)	212 (97-483)	476 (185-925)				

*Based on the longest passive sampler exposure (exposure 2). The "mean" value for F between Sites 2 and 3 is given based on R_s for POCIS-Nylon of 1.5, 1.2 and 1.9 L d⁻¹ for Sites 1, 2 and 3, respectively. The range in brackets is based on R_s values of 1 and 5 L d⁻¹. Detailed data are given in Appendix 9.

PS for PFAS and other PM substances

DGT

Sorbent sandwiched between two membranes (~ 40 cm²) Sorbent enclosed in microporous PE tube (15 cm²)

Sampling cell with small opening for sampling (~ 3 cm²)

G-TIP

muuen

Hale et al. (2021). Using passive samplers to track per and polyfluoroalkyl substances (PFAS) emissions from the paper industry: laboratory calibration and field verification. Frontiers in Environmental Science, 621.

Verhagen et al. (2021). Multisite Calibration of a Microporous Polyethylene Tube Passive Sampler for Quantifying Drugs in Wastewater. Environmental Science & Technology, 55(19), 12922-12929.

Liu et al. (2021). In situ measurement of an emerging persistent, mobile and toxic (PMT) substance-Melamine and related triazines in waters by diffusive gradient in thin-films. Water Research, 206, 117752.

Verhagen et al. (2020). Time-integrative passive sampling of very hydrophilic chemicals in wastewater influent. Environmental Science & Technology Letters, 7(11), 848-853.

Passive sampler development in ZeroPM

Membrane tra	nsfer					
Diffusion cell	Affinity and cap	pacity Calibration				
Film stack Inert?	Batch sorption (K _d)	Lab scale	Monitoring			
		Sampling rates (Rs)	One size does not fit all			

Performance criteria:

- Appropriate time window for integrative monitoring
- R_s that are insensitive to the level of water turbulences experienced during *in situ* exposures in water/ deployment
- High affinity and selectivity for analytes of interest
- Adequate sensitivity, limits of detection/quantification

PS calibrations in ZeroPM

Field deployment of PS at drinking water plants

Exposures to

- Raw water
- After ozonation
- After AC filtration
- After pilot plant treatment

Deployment of

- DGTs
- POCIS
- MPT
- Silicone to check hydrodynamics

Acknowledgements

- Chiara Scapuzzi
- Environmental Chemistry Section, NIVA
- Aud Helland (COWI)
- Tom Telefsen (COWI)
- ZeroPM project

Dr Emma Knight Postodoctoral Researcher Norwegian Institute for Water Research (NIVA) emma.knight@niva.no

Adjunct Fellow Queensland Alliance for Environmental Health Sciences (QAEHS) The University of Queensland emma.knight1@uq.edu.au

NIL

PFAS contamination in Rastatt and Baden-Baden

Joshua Walter - PFAS-Geschäftsstelle Amt für Umwelt und Gewerbeaufsicht Landkreis Rastatt 13.06.2024

Agenda

- Introduction
- Extent of the PFAS contamination
- Cause of the PFAS contamination
- Effects on soil and agriculture
- Effects on ground and surface water
- Effects on drinking water supply
- Outlook

Extent of the contamination

- 8000+ Soil analyses of 3113 ha
- 1105 ha contaminated farmland
- >10.000 groundwater analyses
- 180 mio m³ contaminated groundwater

Source: LUBW, https://www.lubw.badenwuerttemberg.de/wasser/PFASkarten-online, modified, 31.3.222

17.06.2024

Cause of the contamination

- Papersludge as agricultural fertilizer
 - During 1999-2008
 - presumably: 100.000-200.000 tons
 - Waste disposal

PFAS-Geschäftsstelle

How could this happen?

- Win-Win-Situation?
- Excessive application
- Lack of legal limits for PFAS
- Lack of analytical tools

Effects on the district

Health

- Large scale soil sampling (2013-2023)
 - 3113 ha sampled
 - 1105 ha contaminated
 - Of which 480 ha are highly contaminated
- TOPA (300+ Samples)
- Research projects

Wasser, 2017

Source: J. Walter

- Agriculture
- Construction
- Disposal

Remediation

- Sealing
- Excavation
- Research

Source: PFAS-Geschäftsstelle

Soil

PFOA: Limit values and background contamination

Groundwater

Groundwater model
(Agricultural) Watering
Dewatering

Source: J. Walter

Source: LUBW, https://www.lubw.badenwuerttemberg.de/wasser/PFAS-karten-online, 31.3.22

17.06.2024

Source: LUBW, https://www.lubw.badenwuerttemberg.de/wasser/PFASkarten-online, modified, 31.3.222

17.06.2024

Surfacewater

- Monitoring
- Fishing
- Bathing

Soil

Source: J. Walter

17.06.2024

PFAS-Geschäftsstelle
LANDKREIS RASTATT

Health

- Domestic water supply
- Public water supply
 - Restructuring
 - Filter
 - Monitoring

LANDKREIS RASTATT

Health

Blood testing 2018 - 2020 - (2023)

- Exposure via drinking water
- PFOA in blood plasma [µg/l]

year	min	max	median
2018 (n= 120)	2,5	71,2	15,6
2020 (n= 101)	1,1	50,6	12,7

Source: Ergebnisse der PFC-Blutkontrolluntersuchung im Landkreis Rastatt 2020, Landesgesundheitsamt Baden-Württemberg, 2021

- Water suppliers > 25 million €
- Research, state and district > 13 million €
- Municipalities: several million €
- Private sector ?

-> Lawsuits pending

Outlook

LANDKREIS RASTATT

Health

Soil

Surfacewater

Protection of the population

 Prevention crosscontamination

Groundwater

Thank you for your attention!

Further information:

PFAS-Newsletter: <u>https://www.landkreis-rastatt.de/pfc_pfas</u>

https://pfas-dilemma.info/

https://www.zdf.de/dokumentation/umwelt-crime/umwelt-crimeder-fall-rastatt-pfas-chemikalien-im-trinkwasser-100.html

Source: J. Walter

EU Green Week
PARTNER EVENT

ZeroPM Special Symposium on PFAS elimination from drinking water

Karlsruhe 12-13 June 2024

#WaterWiseEU

PFAS and sewage treatment plants: point sources and process modification

Nasos Stasinakis, Professor

University of the Aegean, UoA

Mytilene, Greece

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

EU Green Week PARTNER EVENT #WaterWiseEU

Contribution of UoA in ZeroPM project

Participation in **WP7**: Technical Solutions Method Development and Analysis

Objectives

- To study the fate of PFAS (and other PMT substances) during biological and thermal sewage sludge treatment
- To develop/improve technical solutions for removing PMT substances during sludge treatment

Structure of the presentation

• Occurrence and fate of PFAS in WWTPs

ZeroPM

- Laboratory results on PFAS fate during sewage sludge treatment
- Planned research in the pilot-scale system

PFAS and me: first meeting

2005

Detection in Sewage Sludge (USA, SF)

- ✓ Digested and primary sludge from 11 WWTPs
- ✓ [PFOS] in sludge: 14-2610 ng/g
- ✓ [PFOS] in sediments: up to 3.8 ng/g
- ✓ Existence of PFOS precursors in sludge samples: N-MeFOSAA, N-**EtFOSAA**

RETURN TO ISSUE < PREV ARTICLE NEXT > Quantitative Determination of Perfluorochemicals in Sediments and **Domestic Sludge** Christopher P. Higgins, Jennifer A. Field, Craig S. Criddle, and Richard G. Luthy View Author Information ~ O Cite this: Environ. Sci. Technol. 2005, 39, 11, 3946-Share Add to Export 6936 19 473 < 💦 (RIS) Publication Date: April 30, 2005 ~ Technology https://doi.org/10.1021/es048245p Copyright © 2005 American Chemical Society

LEARN ABOUT THESE METRICS

2006

Detection in domestic wastewater (USA, NY)

- ✓ Raw and treated WW from 6 **WWTPs**
- ✓ [PFOA] > [PFOS]
- ✓ [PFOA] in WW: 58-1050 ng/L

Sinclair and Kannan (2006) https://doi.org/10.1021/es051798v

reuse permissions (Subscribed)

PFAS in Greek WWTPs

2012 & 2013

Detection in Greek WWTPs

Arvaniti et al (2012) https://doi.org/10.1016/j.jhazmat.2012.02.015

Stasinakis et al (2013) https://doi.org/10.1016/j.scitotenv.2013.06.087

- Number of studied PFAS: 18
- Collected WW samples (in, out): 24 + 14
- Collected sludge samples: 21 + 17
- Dominant PFAS: PFPeA, PFOS, PFOA
- Range in WW: up to 209 ng/L
- Range in sludge: up to 45 ng/g (d.w)
- Differences in distribution between phases
- No effect of seasonality
- Higher concentrations in WWTP A

Trends in PFAS concentrations found in WWTPs (USA)

Correlations between log-transformed wastewater effluent PFOA and PFBA concentrations and sample year in the US without stated industrial sources.

Thompson et al (2022) https://doi.org/10.1021/acsestwater.1c00377 Treated wastewater

- Declined [C] of long chain PFAS over time Increased [C] of short chain PFAAS
- Average [PFOA] : 68.9 ng/L (data 1998-2020)
- Average [PFOA] : 12.8 ng/L (data 2013-2020)
- Higher concentrations in case that industrial WW are discharged to the WWTP

Sludge

- Average [PFOA] : 23.8 ng/g (data 1998-2020)
- Average [PFOS] : 233 ng/g (data 1998-2020)

Fate of PFAS during wastewater treatment

PFAS sorption to sludge

Arvaniti et al (2014)¹ https://doi.org/10.1016/j.chemosphere.2014.03.087

- Partitioning coefficients increase with increased fluoroalkyl chain length
- PFSA compounds had higher sorption capacities compared to PFCA compounds
- Lower pH and higher [Ca²⁺] increased PFAS sorption
- Important differences on sorption coefficients according to the type of sludge, target compound, protocol used etc^{1,2}

Ebrahimi et al (2021)² https://doi.org/10.1016/j.chemosphere.2020.129530

Occurrence of PFAS in sewage sludge

2015¹

- Number of PFAS detected in sludge: 19
- PFCAs (C4 to C18); PFSAs (C4 to C10); perfluoroalkyl sulfonamides, FASA
- [C]: few ng/g to some hundreds ng/g

¹Arvaniti & Stasinakis (2015) https://doi.org/10.1016/j.scitotenv.2015.04.023

2024²

- Number of PFAS detected in sludge: 178
- Ultrashort- (C<4); new generations PFAS (e.g. GenX); PFAS precursors
- Need for including them in future monitoring studies
- Lack data from specific countries/areas

²Arvaniti et al (2024) under preparation

Sludge management and threats from PFAS detection

- 8300 kt/y of sewage sludge (as DS) are produced in EU
- In EU 50% of the produced sludge is disposed to soil (agriculture + composting)
- In US 43% of the produced sludge is disposed to soil
- Important amounts are also disposed to landfills

Occurrence of PFAS in sludge amended soil

- Few studies concerning the agricultural land contamination with PFAS due to long-term application of biosolids
- Σ_{12} PFAS concentration up to 196 ng/g (d.w.) in soil (15 y of biosolids application)⁴
- PFOS and PFOA were the predominant compounds
- PFAS levels were correlated to sludge loadings
- Limited knowledge on the uptake of PFAS from sludge-amended soils to plants and on their leaching to groundwater
- Lack of long-term experiments

⁴Johnson (2022) https://doi.org/10.1016/j.watres.2021.118035

Fate of PFAS during sludge anaerobic digestion

Limited information

Monitoring of full-scale anaerobic digesters shows³:

- Moderate decrease of ΣPFAS-F (10-38%) in some AD
- No clear trend for the removal of specific PFAS (increase up to 95% for some)³

<u>Problems</u>

- Monitoring of a small number of PFAS
- Presence of precursors
- Collection of grab samples

No clear results on the ability of AD to remove (specific) PFAS

³Lakshminarasimman et al. (2021) https://doi.org/10.1016/j.scitotenv.2020.142431

ZeroPM

Laboratory results on PFAS fate during sludge treatment

Studied Technology 1: Modified Anaerobic Digestion

Biomethane Potential Batch Experiments & Continuous-flow Experiments

- Fate of 7 PFAS during AD
- Modification of the process adding GAC, voltage
- Role sludge pretreatment (thermal, ultrasound)
- Role of T (° C) during AD (mesophilic, thermophilic)

Studied Technology 1: Modified Anaerobic Digestion

Addition of GAC

- Slightly higher removal of VS
- Reduced VFAs concentrations
- Higher methane production

Studied Technology 1: Modified Anaerobic Digestion

- Conventional AD => no removal of target PFAS
- No important differences under mesophilic & thermophilic conditions
- Addition of GAC => increased removal PFAS

Removal based on analysis of dissolved & particulate phase and application of mass balance

Studied Technology 2: Hydrothermal carbonization

Identifying the role of:

- Applied pressure
- Applied temperature (°C)
- pH

Sludge spiked with PFAS Filtration/ separation	HTC T: 250 °C P: 20 – 55 bar solids: 5% – 20% retention times: 2 hours	HTC gases Tar trap Iquid condensate 6 Condensation (distillate) liquid distillate 5 hydrochar (solid) HTC liquor (liquid) 3

Studied Technology 2: Hydrothermal Carbonization

- With exception of PFOS and PFUdA, high removal (>85%) of PFAS under all tested conditions
- Increase of T=> improved PFAS removal
- Detection of trace amounts of some PFAS in the gas phase

Removal based on analysis of dissolved & particulate phase and application of mass balance

Next Work: Operation of the sludge pilot system

Time Schedule

- Start-up: March 2024
- Monitoring for a period of 2 years

Conclusions

- Decreasing concentrations of long chain PFAS over time/increase of short chain PFAS
- No important removal during conventional WW treatment => need for advanced treatment
- Removal from WW via sorption vs Formation by precursors
- PFAS concentrations in sewage sludge up to some hundreds ng/g, expanding the list
- Their fate during AD is not clear, biotransformation seems to be possible for some compounds
- HTC seems to be a promising technology for removing them, need for long-term monitoring

Thank you for your attention

u1

Contact info

Athanasios (Nasos) Stasinakis Department of Environment, University of the Aegean Email: astas@env.aegean.gr u1 Nasos, 12/06/2024

PFAS destruction by electrochemical oxidation in drinking water

Symposium on PFAS, Rastatt, 12.-13.06.2024

Lara Stelmaszyk & Barbara Behrendt-Fryda, Heico Schell, Markus Hegel, Ronja Hesse, Rieke Neuber, Andreas Tiehm

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

Limitations of PFAS treatment methods

- Advanced Oxidation Processes (AOPs) not effective for removal from waste and drinking water¹
- Removal by activated carbon (AC) with efficiencies of 80 % for long chained PFAS (less for short chained)²
- Good removal with ion-exchangers (IEX)², but expensive³
- Removal with AC and IEX results in concentrates/regenerates with high PFAS concentrations

EAOP[®] can overcome current limitations for drinking water treatment

¹ Georgi and Mackenzie, 2022 ² McCleaf et al., 2017 ³ Riegel et al., 2020

Diamond Coating with HF-CVD

Diamond Coating with HF-CVD

Diamond Coating with HF-CVD

Electrochemical Advanced Oxidation Process – EAOP®

Waste Water

EAOP[®] Waste Water Treatment

Toxic and hardly degradable pollutants

PFAS destruction

Pathway 1:

Oxidation by hydroxyl radical

Pathway 2: Direct destruction at BDD anode

Oxidative Destruction of Perfluorooctane Sulfonate Using Boron-Doped Diamond Film Electrodes von K. E. Carter, J. Farrel in Environmental Science and Technology 42(16):6111-5 · September 2008 <u>https://doi.org/10.1021/es703273s</u>

Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater. Trautmann, A. M.; Schell, H.; Schmidt, K. R.; Mangold, K-M; Tiehm, A. in Water science and technology 71 (10), S. 1569–1575. 2015 <u>https://doi.org/10.2166/wst.2015.143</u>.

PFAS destruction – Equipment – Cell

Electrochemical Cell "CONDIACELL® Cell Model SSZ-100" equipped with DIACHEM® anode Electrochemical Cell "CONDIACELL® Cell Model ECWP D20" equipped with DIACHEM® anode

PFAS destruction – Equipment – Electrode

Laminar electrolyte flow for efficient degradation of organic concentrations (range: mg/L to g/L)

Turbulence electrolyte flow for efficient degradation of low organic concentrations (range: µg/L to mg/L)

K. Lindholm 2016, TUM; Characterisation and optimisation of hydrodynamics in a boron-doped diamond electrode reactor for the advanced oxidation of trace organic chemicals

PFAS destruction – Equipment – System

- Ball valve for sampling
- FI Flow meter
- PI Pressure sensor
- **T** Temperature sensor

Relevance of EAOP® processes for drinking water suppliers

e.g. WW Rastatt Rauental

Set up for 20 L scale electrochemical oxidation

electrolysis plant: 20 L scale

- 10 L working volume
- ECWP with 8 electrode packages

Elimination of short chain PFAS in IEX regenerates

PFAS destruction by electrochemical oxidation in drinking water

Elimination of short chain PFAS in *soft* drinking water matrix

scale: 10 L cond. soft drinking water $\kappa \approx 600 \ \mu$ S/cm I = 1.5 A initial PFAS conc.: 100 μ g/L each

Elimination of short chain PFAS in hard drinking water matrix

scale: 10 L cond. hard drinking water $\kappa \approx 1800 \ \mu$ S/cm I = 1.5 A initial PFAS conc.: 100 μ g/L each

Transformation product formation

scale: 10 L cond. soft drinking water $\kappa \approx 600 \ \mu$ S/cm I = 1.5 A initial PFAS conc.: 100 μ g/L PFOA

PFAS destruction by electrochemical oxidation in drinking water

Outlook

- Treatment of **raw water** from Rastatt
- Adjustment of operational parameters to **optimize** treatment efficiancies
- combination of AC desorption and electrochemical oxidation

Norwegian Institute for Water Research

chemsec

INTERNATIONAL CHEMICAL SECRETARIAT

Wasser

Technologiezentrum

TG ENVIRONMENTAL RESEARCH

DVGW

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101036756.

🖉 Fraunhofer ITEM

NIV

UNIVERSITÉ DU LUXEMBOURG

PFAS adsorption on electrically stimulated activated carbon

<u>Anett Georgi</u>, Navid Saeidi, Sarah Sühnholz, Robert Köhler, Katrin Mackenzie Helmholtz-Center for Environmental Research – UFZ, Leipzig, Germany Department of Technical Biogeochemistry

Activated carbon (AC) adsorption is widely applied – Never change a running system?

Problems:

- Short-chain PFAS frequent exchange of AC adsorbers
- AC main production in Asia from hard coal or coconut shell
- AC production and regeneration high CO₂ footprint
- High T processes fossil fuel dependent, not easily electrified

Concept of electrosorption

3

- improve adsorption of hydrophilic short-chain PFAS anions by positive electric potential
- regenerate adsorbent with <u>green</u> electricity <u>on-</u> <u>site</u> by simple potential switch →

re for Environmental

• desorb by negative electric potential

Adsorbent / Electrode material

* Functional groups for illustration / not in the correct size scale

- ✓ Conductive → electrosorption
- ✓ Continuous structures → easy to operate
- ✓ High specific surface area (SSA > 10³ m²/g)
 → high sorption performance

Selection of carbon material – charging properties

When electric potential is applied to AC - chemical and electric charges superimpose. For charge reversal E_{PZC} ... potential of zero net charge must be crossed.

 \rightarrow Higher positive potential needed to cross E_{PZC} for acidic ACF1

E_{PZC} determined as minimum in capacitance by Electrical Impedance Spectroscopy

Selection of suitable charging state – batch experiments

Sorption coefficients K_d of PFBA

 $(pH 6.5, 10 \text{ mM Na}_2 \text{SO}_4)$

Selection of suitable charging state – batch experiments

Sorption coefficients K_d of PFBA

(pH 6.5, 10 mM Na₂SO₄)

- optimum potential range
- optimum = superposition of hydrophobic effect, VdW and electrostatic interactions
- below = electrostatic repulsion of PFBA dominates
- beyond = highly polar/charged surface → strong competition with water molecules

Batch experiments – isotherms and matrix effects

- Modulation of adsorption by electric potential works over wide concentration range and water matrix composition
- Prediction of concentration factors from Freundlich isotherm parameters

$$\frac{V_{ads}}{V_{des}} = \frac{c_{des}}{c_{in}} = c_{in}^{(n_{ads}/n_{des}-1)} \times \left(\frac{K_{F, ads}}{K_{F, des}}\right)^{1/n_{des}}$$

N. Saeidi, F.-D. Kopinke, A. Georgi, Chem. Eng. J. 416 (2021) 129070.

Flow cell: setup

Flow cell: setup

PFBA (electro)adsorption and -desorption experiments

 $C_{0,\text{PFBA}} = 1 \text{ mg/L}$ in tap water, potentials vs. Ag/AgCI

- Stable performance over several cycles
- Positive WE potential increases adsorption performance

- Increasing concentration effect by fitting flow rate to desorption kinetics
- Predicted vs. achieved concentration factor: 42 vs. 16 (miniaturized system)

BMBF-funded collaborative project FABEKO (2021-2024) Soil washing and electrosorption modules for PFAS removal

PFOS removal degree by 3 modules (4 kg ACF, 0.5 m³/h, t_R=7 min)

- Succesful upscaling of modules
- AFFF-contaminated site (PFOS dominating)
- 7 of 12 sampling events ≥ 99% removal degree, 11 of 12 events ≥ 80%
- 732 m³ soil washing water treated
- \rightarrow Adsorption performance of modules is good
- Electro-Desorption stage: 2-4 V cell voltage
 → no water splitting, safe operation
- Pilot test allowed only 1.3 m³ for desorption
 → incomplete desorption
- PFOS prediction: treat > 4000 m³ and desorb into 130 m³ (conc. factor 30)
- PFOS not ideal application

Treatment trains: Separation/Concentration + Destruction

Thank you for your attention!

Dr. Anett Georgi

Email: anett.georgi@ufz.de Phone number: +493412351405

Helmholtz Centre for Environmental-Research - UFZ

Thanks to: Navid Saeidi, Sarah Sühnholz, Robert Köhler, Katrin Mackenzie

See also Review:

Saeidi, et al., **Electrosorption of organic compounds: State of the art, challenges, performance, and perspectives**, Chem. Eng. J. 471 (2023) 144354.

Project partners:

Funding organizations:

EU H2020, Scenarios WP7

Scope: To conduct demonstration activities for up scale remediation of PFAS at Technology Readiness Level 5/6 (TRL5 and 6) in ground water , leachate & drinking water applications

7.1: demonstrate SCENARIOS PILLAR 1 technologies for PFAS detection and monitoring at TRL 5/6.

7.2: demonstrate SCENARIOS PILLAR 2 technologies at TRL 5/6, i.e. Risk Assessment for PFAS, implemented as an open micro-server tool on the internet.7.3: upscale systems and demonstrate SCENARIOS PILLAR 3 technologies for green and nearly zero energy PFAS remediation of groundwaterl leachate and drinking water applications

Tasks:

Task 7.1 Human biomonitoring program and Risk Assessment (DEMO1, Pillar 1 detection and Pillar 2 Risk Assessment). (M12-48) (Lead AOAL/ participen UPO BGU FORTH NTAU NovaM UoB)

Task 7.2 Design, construction and evaluation of upscaled units for demonstration purpose (M6-36) (Lead FORTH participant ENVYTECH SENSOIL IDP)

Task 7.3 Demonstration of remediation activity in groundwater and leachate (DEMO 2). (M24-48) (Lead ENVYTECH/ participant SENSOIL FORTH BGU Geo)

Task 7.4. Demonstration in a drinking water treatment plant (M24-48) (Lead IDP/ partecipant ENVYTECH FORTH)

Contact

Helena Hinrichsen (Passionista, PFASionista) Founder, Chief Commercial Officer PFAS, Envytech Solutions AB

Talks about #pfas, #leachate, #horizon2020, and #watertreatment

PFAS Specialist +46 (0)70 408 24 80 <u>helena.hinrichsen@envytech.se</u>

Griffith University

Envytech Solutions AB

Talk Outline

- Short overview of available PFAS treatment options
- Presentation of SAFF Surface Active Foam Fractionation, the first sustainable (?) PFAS removal technology
- Presentation of treatment results in H2020 Scenarios project:
 - Treatment of PFAS contaminated groundwater at AFFF training site using SAFF in combination with additives for long and short chain PFAS removal
 - Presentation of treatment results from SAFF landfill leachate treatment project in combination with additives and destruction technologies for "closed loop" treatment

Introduction: A summary of treatment technologies for PFAS Contaminated Waters

Adsorption

- Activated Carbon
- Ion exchange mass
- New adsorption materials (!)

Concentration

- SAFF Surface Active Foam Fractionation
- Flocculation Precipitation products
- Reverse Osmosis / Nano Filtration

Destruction

- Electrochemical Oxidation
- Photoactivated Reductive Defluorination
- SCWO super critical water oxidation
- Thermal destruction
- HALT method
- Cold Plasma / Plasma

Adsorption – Filter Medias

Filter Media can be used for almost all organic contaminants as well as metals and "half" metals

- Dissolved PAH
- Petroleum Hydrocarbons
- Dissolved metals
- PFAS
- Nitrogen

It is however, important to know when and how to use filter medias as they are sensitive to:

- Particles
- ∎ pH
- Conductivity, salts, metal ions
- Cross-contaminants
- Other water chemistry , (ex BOD, DOC, COD TOC)

Adsorption – Filter Medias

But why do we have to know this ? Filtermedias remove 99,9% of all PFAS, right ?

YES! 99,9% removal etc. But To what cost – All and all, and for how long?

The cost does not only include the filter media it self, it also involves:

- Cost for rental / buy of pre treatment tech, vessels
- Chemicals for flocculation/precipitation
- Pre-filter medias
- Filter medias
- Service for pre treatment, backflushing etc
- Service for filtermedias exchange
- Cost for sludge handling system
- Cost of transport and deposition of sludge, WHERE?
- Cost of waste from used pre filter, incl Transport and deposition, WHERE?
- Cost of waste used filters, incl. Transport and deposition, WHERE?

Surface Active Foam Fractionation – SAFF

Developed by OPEC systems Australia as a result of a grant from Australian Defence

First full scale plant comissioned in May 2019 in Oakey, Australia

Envytech 🤎 OPEC September 2019

First full scale mobile unit comissioned in Sweden February 2021

Chosen technology for EU grants Horizon2020 as well as EU LIFE

Global deployment on three continents

Over 1 million m3 of PFAS contaminated water treated world wide

e

SAFF Surface Active Foam Fractionation

- A concentration treatment

Perflourinated substances has Hydrophilic head \rightarrow Head loves water Hydrophobic tail \rightarrow Tail hates water

The bubble becomes the perfect environment C6 PFAS and above – tail sticks in the bubble, easy to remove.

Primary step: 10 x initial concentration

By "top up push" stratified short chain PFAS can be removed to some extent

Secondary Step: 1500 x initial concentration

Tertiary Step: 50 000-2 000 000x initial concentration

EPOC SAFF40 containerised System

Full scale SAFF40 system treats flows up to 25 m3/h, using 0,7 kwh/m3 treated, generating less then 10 m3 waste per year

Concentration

SAFF – Surface Active Foam Fractionation – Lets check it out

Primary Fractionation of raw leachate

Primary Fractionation of raw groundwater

Concentration

SAFF – Surface Active Foam Fractionation – Lets check it out

Secondary Fractionation

Tertiery Fractionation

And this is where the patent of this technology is situated, in large. Treatment in series to minimize waste, and the use of vacuum

14

Mobile treatment, winter islotated

"Plug and play" installation procedure

Tuning after start up – needed because all waters are different, approx. 2 days Remote surveillance, fine tuning, 24h / 7 day controlled

You can follow flow, status, electricity used, total volume and more via the app! Every pump, valve and sensor, reports data continuously. We can see exactly when , what and where a problem has occurred and can usually fix it remotely straight away

Treatment control

SAFF is remotely surveilanced by producers EPOC Enviro 24/7

Envytech staff can watch process, change settings for fine tuning of foam contro. Remotely

We train local staff at comissioning, so minimum cost will be spent on external service crew

Can "live" guide local staff for service, sampling or questions on the performance or all else.

The system is completely automatic and have work health and safety measures for minimizing possible contact with PFAS aerosols

15

e

When and Why SAFF

SAFF is a very robust treatment option. PFAS removal efficiency is:

- ✓ NOT sensitive to PFAS levels (High/Low)
- ✓ NOT sensitive to pH
- NOT sensitive to Suspended particles
 DOM, DOC, Salinity
- Not sensitive to cross contaminants, (organics, metals, salts)

Further more

SAFF needs no pre treatment steps

(bagfilter 200 um)

Capable of removing PFAS4 and PFAS6 up to 99,9%

using no consumables or additives

Produces minimal waste amounts

Uses only electricity, 0,7 kwh/m3 treated

Proven technology with over 500 000 m3 treated

16

Expected Removal Rates

Comparison of results of PFAS removal rates for Groundwater/ Leachate / Fire Fighting water / Surface water runoff at airport

Substance	OPEE GW Australia 150 000 m ⁹	NSR Leachate 30 000 m ²	Telge Leachate 250 000 m ³	LOT Leachate 15 000 m ²	Mjölbo Leachate 9000 m ³	Swedish Airport	Fire Fighting water Refinery T2 000 fft ⁹	EU LIFE SouRCe Groundwater	EU LIFE Source Groundwater
PFDA	100%	100%	100%	100%	100%	100%	100%	96%	Up to 99,9%
PFNA	100%	100%	100%	100%	100%	100%	100%	Up to 99,9%	Up to 99,9%
6:2 FT5	100%	100%	100%	100%	100%	100%	99,5%	Up to 99,9%	Up to 99,9%
PFOA	100%	100%	100%	100%	99%	98%	99%	ND	Up to 99,9%
PFOS	100%	99%	98%	100%	100%	100%	100%	84%	98%
PFHXS	97%	100%	100%	99%	99%	79%	99,5%	51%	99%
РЕНрА	67%	99%	98%	90%	92%	99%	95%	93%	Up to 99,9%
PFHXA	20%	54%	29%	35%	10%	0%	35%	42%	99%
PFPeA	24%	0%	3%	38%	7%	0%	0%	4%	98%
PFBA	21%	8%	1%	0%	0%	0%	0%	76%	99%
PFBS	22%	43%	10%	19%	8%	0%	52%	ND	Up to 99,9%
Total PFAS conc.	4000 ng/l	6000 ng/l	4000 ng/l	15 000 ng/l	4000 ng/l	4000 ng/l	100 000 ng/l	100 000 ng/l	2 000 000 ng/l

Perfect combination with Soil Washing

- Amongst other waters ©

Soil wash water (soil for soil wash) contains >95% long chained PFAS After 1,5 years, we see no accumulation of short chain PFAS

Soil wah plants recirculate process water => no outlet target criteria

Only partial flow treatment needed to keep PFAS levels in water low enough for washing.

Full flow can be processed over night during plant stand down

Almost no waste – 25 m3/h \rightarrow < 5 m3 waste per year.

		emi		11111.1/5+2	3-2011
âme	Fabri	0,25-t	Fabet	n,35-1	0,75-1
tomulaslam	8	30,3	2		
62 ETS (Fluorbelomer sulfanat)	Ho/kg Te	1,9	10/1	1993	47
PHBA (Perfloorbotansyna)	Marka is	9,22	ngri	3/	1920
PERS (Pertiunrbutaneattonsyna)	page To	×0,10	ng/i	11	
PER(Perflaordekanspa)	parks is	4.51	ng/]	1.00	25
PElipA (Perticorheptarayas)	µg/kg Ti	0,25	ng/i	1/10	410
Period (Perfilio/bearsyo)	HERE'S	15,42	rø/l	240	12
PITIoS (Perfluorhexamultoneyra)	HAVAR TO	1,4	rig/i	300	71
PSNA (Perfusimonancyra)	HE/KE TS	0.87	ng/l	140	12
PEOA (Participitktengre)	PLEYER TO	2,2	06/T	910	172
PEOS (Perthiomitansulfaceyor)	parke to	290	ngri		HIDE
PIPeA (Perflempentaroyos)	Hafka Ta	0,68	06/1	400	-20
PEOSA (Perfluomktunuttionanid)	pering Te	18	ng/l	2601	720
Summa PEAS 11	parka is	230	nwî .	65000	11000
Summa PEAS 28	HC/kg Te	.250	100	annn	12000

SO, A perfect match for SAFF !

e

But what about short chains - and can we further enhance the effect for long chains

Foam Fractionation works by attracting surface active PFAS compound to an air bubble. But the ability to attach to the bubble

Short chain PFAS are not as surface actie as long chain PFAS, but this can be changed / enhanced.

Research conducted by many suggests that adddition of amendments and/or surfactants can increase short chain uptake by bubble.

We work togehter with Allonnia (US) to develop and trial different additives for different waters to increase SAFF removal potential

Research and trial of additives is also ongoning within the Scenarios project

Immediate Application Possible

SAFF Surface Active Foam Fractionation

- Ready for the future

All Full scale SAFF units are equipped with a Chemical dosing tank and pump system

Possibility to add of solvents / additives or other type of amendments to increase efficiency of the foam fractionation process

Injection is performed straigh tinto the Foam Fractionation process, no extra treatment steps or treatment system needed.

Figure 20: Dosing tank and pump

Scenarios H2020 Team Scenarios

Site 1. Korsör AFFF Fire Fighting training site

Evaluation of Foam Fractionation method SAFF for long chain PFAS in combination with additives for enhanced short chain PFAS Removal

Site 2. Treatment of landfill leachate

Evaluation of potential of different destruction technologies as a sustainable, economic and effective SAFF waste tratment option creating a "closed loop" / no waste option

Site 1 Treatment of AFFF contaminated groundwater at a fire fighting training site in Denmark

- Korsör FF School is Ground Zero for PFAS In Denmark
- Groundwater PFAS levels varies from 20 000 - 100 000 ng/l
- PFAS 6 xx% , short chain PFAS xx%
- Low organic loading, none to low levels of TOC and other contaminants
- Performed trials:
 - Lab scale SAFF treatment using only SAFF
 - Full scale pilot treatment using only SAFF
 - Lan scale SAFF treatment using SAFF+Additives

Active SAFF20 plant treating highly contaminated groundwater, Korsör Brandskole, RESC, Denmark

Envytech miniSAFF

Bench scale testing unit

Situated at Envytech laboratory in Stockholm. Clients can send water from all over Europe to perform treatability studies to evaluate effect of SAFF on site specific waters

Groundwater treatment at Korsör Fire Fighting training center

Step 1: Lab scale trial Performance of lab scale trial using water from the site

Test performed in miniSAFF lab scale model designed and produced by EPOC Enviro

Water was treated in a mini primary reactor build to mimic full scale SAFF plant. Unit isused to evaluate performance potential of SAFF on specific waters.

PFAS removed as foam is collected in separate vessel.

Treated water remains in the primary vessel

Sampling of treated water is carried out by collection of treated water from primary vessel Untreated and treated water was analyzed by Eurofins Sweden

24

^e Groundwater treatment at Korsör Fire Fighting training center

Step 1: Lab scale trial Results

Use of Envytech treatment pattern to enhance the PFAS removal without natural foaming

Results in miniSAFF show minimum of 99% removal of PFASnincluding PFOS, PFOA, 6:2 FTS and PFHpS. Same effciency is expected for PFOSA, PFNA & PFDA

PFHxS removal efficemcy of 94% is expected to be higher in full scale.

Lower removal efficiency – as expected for short chain PFAS.

		Mini	SAFF - Bench se	cale trial
				Removal rate (Treated -
PFAS substance		Untreated	Treated	Untreated)
PFBA (Perfluorobutanoic acid)	ng/l	5600	5600	0%
PFPeA (Perfluoropentanoic acid)	ng/l	9000	9300	0%
PFBS (Perfluorobutanesulfonic acid)	ng/l	21000	20000	5%
PFHxA (Perfluorohexanoic acid)	ng/l	27000	24000	11%
PFPeS (Perfluoropentanesulfonic acid)	ng/l	19000	12000	37%
PFHpA (Perfluoroheptanoic acid)	ng/l	3800	1100	71%
PFHxS (Perfluorohexanesulfonic acid)	ng/l	18000	1100	94%
PFHpS (Perfluoroheptanesulfonic acid)	ng/l	100	<10	upp till 99,9%
PFOA (Perfluorooctanoic acid)	ng/l	1700	19	99%
PFOS (Perfluorooctane sulfonic acid)	ng/l	190	<10	upp till 99,9%
6:2 FTS (Fluorotelomer sulfonate)	ng/l	26	<10	upp till 99,9%
PFOSA (Perfluorooctanesulfonamide)	ng/l	<10	<10	ND
PFNA (Perfluorononanoic acid)	ng/l	<10	<10	ND
PFDA (Perfluorodecanoic acid)	ng/l	<10	<10	ND
Sum of 20 PFAS	ng/l	110000	73000	34%

Groundwater treatment at Korsör Fire Fighting training center

Step 2: Full scale trial

Results

	IN	OUT	Trial 1	IN	IN TOP	OUT	Trial 2	In	Out	Trial 3
PFAS substance	Results	Results	Removal rate (OUT-IN)	Results	Results	Results	Removal rate (OUT-IN)	Results	Results	Removal rate (OUT-IN)
PFBA (Perfluorobutanoic acid)	840	710	15%	1 100	1 100	1 000	9%	1 400	1 400	0%
PFBS (Perfluorobutanesulfonic acid)	4 900	3 500	29%	6 200	6 800	5 800	6%	7 600	6 800	11%
PFPeA (Perfluoropentanoic acid)	1 400	1 200	14%	2 000	1 900	1 900	5%	2 100	2 100	0%
PFPeS (Perliucropentanesultonic acid)	2.900	490	83%	3 600	4 600	1 700	53%	24 000	4 200	83%
PFHxA (Perfluorohexanoic acid)	4 800	3 100	35%	5 700	7 000	5 500	4%	13 000	8 100	38%
PFHxS (Perfluorohexanesulfonic acid)	10 000	25	100%	15 000	15 000	470	97%	13 000	370	97%
PFHpA (Perfluoroheptanoic acid)	830	14	98%	900	940	150	83%	1 500	70	95%
PFHpS (Perfluoroheptanesulfonic acid)	280	<10	upp till 99,9%	330	340	<10	upp till 99,9%	280	<10	upp till 99,9%
PFOA (Perfluorooctanoic acid)	1 100	<10	upp till 99,9%	950	990	21	98%	940	18	98%
PFOS (Perfluorooctane sulfonic acid)	2 100	<10	upp till 99,9%	2 800	2 600	41	99%	2 000	16	99%
6:2 FTS (Fluorotelomer sulfonate)	400	<10	upp till 99,9%	430	360	<10	upp till 99,9%	250	<10	upp till 99,9%
Sum of PFOA, PFOS, PFNA and PFHxS	13000	25	99,8%	18750	18590	532	97%	15940	404	97%
Sum of 20 PFAS	30 000,00	9 000,00	70%	39 000,00	41 000,00	17 000,00	56%	66 000,00	23 000,00	65%
PFOSA (Perfluorocctanesulfonamide)	<10	<10	ND	<10	<10	<10	ND	<10	<10	ND
PFNA (Perfluorononanoic acid)	<10	<10	ND	<10	<10	<10	ND	<10	<10	ND
PFNS (Perfluorononanesulfonic acid)	<10	<10	ND	<10	<10	<10	ND	<10	<10	ND
PFDA (Perfluorodecanoic acid)	<10	<10	ND	<10	<10	<10	ND	<10	<10	ND

High removal rates (>99%) for PFAS6. Full scale results show as expected higher efficiency then lab scale As expected, lower removal rates for short chain PFAS

e

Lab scale trial groundwater SAFF in combination with Allonnia Booster no1

Lab scale trial **SAFF in combination with Allonnia Booster no1** Results

	1		<u></u>			
envytech -		Korsör IN_1	Korsör OUT_1	Korsör OUT dos 1	Korsör OUT_3_dos2	Korsör OUT_dos 4
Ivilyo & lefinit	Unit		Inget additiv	Additive 1	Additive 2	Additive 3
PFDA (Perfluordekansyra)	ng/l	<10	<10	<0,30	<0,30	<0,30
8:2 FTS (Fluortelomer sulfonat)	ng/l	<20	<20	<0,30	<0,30	<0,30
4:2 FTS (Fluortelomer sulfonat)	ng/l	<10	<10	<0,30	<0,30	<0,30
PFNA (Perfluornonansyra)	ng/l	<10	<10	<0,30	<0,30	<0,30
6:2 FTS (Fluortelomer sulfonat)	ng/l	300	<10	<0,30	<0,30	<0,30
PFOA (Perfluoroktansyra)	ng/l	720	<10	<0,30	0,43	0,47
PFOSA (Perfluoroktansulfonamid)	ng/l	<10	<10	<0,30	<0,30	<0,30
PFHpS (Perfluorheptansulfonsyra)	ng/l	280	<10	<0,30	1,5	2,6
PFHpA (Perfluorheptansyra)	ng/l	670	94	<0,30	<0,30	<0,30
PFOS (Perfluoroktansulfonsyra)	ng/l	2100	<10	3,9	31	33
PFHxS (Perfluorhexansulfonsyra)	ng/l	11000	230	5,6	23	31
PFHxA (Perfluorhexansyra)	ng/l	4100	3300	19	2,7	1,2
PFBS (Perfluorbutansulfonsyra)	ng/l	4500	4100	57	5,2	2,4
PFPeA (Perfluorpentansyra)	ng/l	1500	1400	490	120	42
PFBA (Perfluorbutansyra)	ng/l	810	820	820	630	500
Summa PFAS 4	ng/l	14000	230	9,5	54	64
Summa PFAS 28	ng/l	29000	11000	1400	820	620

Lab scale trial SAFF in combination with Allonnia Booster no1 Results

envytech -		Removal % Bench scale test			
Nuyo & tefnif —	Unit	No additiv	Additive 1	Additive 2	Additive 3
PFDA (Perfluordekansyra)	ng/l	ND	ND	ND	ND
8:2 FTS (Fluortelomer sulfonat)	ng/l	ND	ND	ND	ND
4:2 FTS (Fluortelomer sulfonat)	ng/l	ND	ND	ND	ND
PFNA (Perfluornonansyra)	ng/l	ND	ND	ND	ND
6:2 FTS (Fluortelomer sulfonat)	ng/l	Up to 100%	Up to 100%	Up to 100%	Up to 100%
PFOA (Perfluoroktansyra)	ng/l	Up to 100%	Up to 100%	100%	100%
PFOSA (Perfluoroktansulfonamid)	ng/l	ND	ND	ND	ND
PFHpS (Perfluorheptansulfonsyra)	ng/l	Up to 100%	Up to 100%	99%	99%
PFHpA (Perfluorheptansyra)	ng/l	86%	Up to 100%	Up to 100%	Up to 100%
PFOS (Perfluoroktansulfonsyra)	ng/l	Up to 100%	99,9%	99%	98%
PFHxS (Perfluorhexansulfonsyra)	ng/l	98%	99,9%	100%	100%
PFHxA (Perfluorhexansyra)	ng/l	20%	99,5%	100%	100%
PFBS (Perfluorbutansulfonsyra)	ng/l	9%	99%	100%	100%
PFPeA (Perfluorpentansyra)	ng/l	7%	69%	92%	97%
PFBA (Perfluorbutansyra)	ng/l	-1%	2%	29%	40%
Summa PFAS 4	ng/l	98%	99,9%	100%	100%
Summa PFAS 28	ng/l	62%	95%	97%	98%

Lab scale trial SAFF in combination with Allonnia Booster no1 Results

Analysing treated water in regards of residual surfactant components related to Booster additive.

Results show ND for all compounds proving removal of the added substances in the SAFF process

Dodecyldimetylbensylammonium	µg∕L	<5.0	<5.0	<5.0
Tetradecyldimetylbensylammonium	µg∕L	<5.0	<5.0	<5.0
Hexadecyldimetylbensylammonium	µg∕L	<5.0	<5.0	<5.0
Oktodecyldimetylbensylammonium	µg∕L	<5.0	<5.0	<5.0
Dodecyltrimetylammonium	µg∕L	<5.0	<5.0	<5.0
Tetradecyltrimetylammonium	µg∕L	<5.0	<5.0	<5.0
Hexadecyltrimetylammonium	µg/L	<5.0	<5.0	<5.0
Oktadecyltrimetylammonium	µg∕L	<5.0	<5.0	<5.0
Didecyldimetylammonium	µg∕l	<5.0	<5.0	<5.0
Didodecyldimetylammonium	µg∕l	<5.0	<5.0	<5.0
Ditetradecyldimetylammonium	µg/L	<5.0 ¹⁾	<5.0 ¹⁾	<5.0 ¹⁾
Dihexadecyldimetylammonium	µg∕L	<5.0 ¹⁾	<5.0 ¹⁾	<5.0 ¹⁾
Dioktadecyldimetylammonium	µg∕L	<5.0 10	<5.0 ¹⁾	<5.0 ¹³
Oktylfenoxietoxietyldimetylbensylammoniu	µg∕L	<5.0	<5.0	<5.0
m				
Dodecylpyridinium	µg∕L	<5.0	<5.0	<5.0
Hexadecylpyridinium	µg∕L	<5.0	<5.0	2600
Dodecylisokinolinium	µg∕L	<5.0	<5.0	<5.0
Katjonogena ytaktiva ämnen	µg∕L	<65 2)	<65 2)	2600 2)

Site 2 Treatment of Raw PFAS contaminated Landfill Leachate, Sweden

- Landfill leachate collected at a lined landfill
 - PFAS levels varies of 12 000 ng/l
 - TOC 1400 mg/l
 - DOC 1400 mg/l
- Performed trials:
 - Lab scale SAFF treatment using only SAFF
 - Lab scale SAFF treatment using SAFF+Additives
 - Lab scale destruction trials using:
 - Electrochemcial oxidation (EO) by Aclarity
 - Photoactivated Reductive Defluorination (PRD)
 - Cold Plasma by FORTH, Scenarios H2020

e

Step 1: Lab scale trial Performance of lab scale trial using water from a Swedish Landfill

Trial using no additive

Step 1: Lab scale trial Performance of lab scale trial using water from a Swedish Landfill

Trial using additive

Step 1: Lab scale trial

- Only SAFF no additive
- SAFF with additive

We see remarkable removal rates for PFBS and also also higher reduction rates for PFPeA and PFHxA

		Untreated	Treated 1	Treated 2	Treated 3	Treated 4
enwtech			No additive	Booster 1 dose 1	Booster1 dose 2	Booster1 dose 3
Milio & teknik		2024-03-28	2024-03-28	2024-03-28	2024-03-28	2024-03-28
	Unit					
PFDA (Perfluordekansyra)	ng/l	<10	<10	<10	<10	<10
8:2 FTS (Fluortelomer sulfonat)	ng/l	<20	<20	<20	<20	<20
4:2 FTS (Fluortelomer sulfonat)	ng/l	<10	<10	<10	<10	<10
PFNA (Perfluornonansyra)	ng/l	14	<10	<10	<10	<10
6:2 FTS (Fluortelomer sulfonat)	ng/l	430	<10	<10	<10	<10
PFOA (Perfluoroktansyra)	ng/l	810	<10	<10	<10	<10
PFOS (Perfluoroktansulfonsyra)	ng/l	810	<10	<10	<10	<10
PFOSA (Perfluoroktansulfonamid)	ng/l	<10	<10	<10	<10	<10
PFHpS (Perfluorheptansulfonsyra)	ng/l	40	<10	<10	<10	<10
PFHxS (Perfluorhexansulfonsyra)	ng/l	1500	<10	<10	<10	<10
PFHpA (Perfluorheptansyra)	ng/l	600	<10	<10	<10	<10
PFHxA (Perfluorhexansyra)	ng/l	1900	580	14	<10	<10
PFPeA (Perfluorpentansyra)	ng/l	1600	1600	1100	520	520
PFBA (Perfluorbutansyra)	ng/l	1500	1500	1500	1400	1400
PFBS (Perfluorbutansulfonsyra)	ng/l	2000	1300	110	<10	<10
Summa PFAS 4	ng/l	3100	ND	ND	ND	ND
Summa PFAS 28	ng/l	12000	5000	2700	1900	1900

e

Step 1: Lab scale trial Results, treatment efficency %

Results show remarkable removal rates for long chain PFAS using only air for such complex waters.

2 concentrations steps will be needed to minimize the large foam volumes.

Enhenced short chain removal Possible from 68% up to ND for PFBS and PFHxA

Possible increase for PFHxA from 68% to ND

	Treated 1	Treated 2	Treated 3	Treated 4
onwtech	No Additive	Booster 1 dose 1	Booster1 dose 2	Booster1 dose 3
Milit a takuik	Removal Rate	Removal Rate	Removal Rate	Removal Rate
Muyo & tefmif -	%	%	%	%
PFDA (Perfluordekansyra)	ND	ND	ND	ND
8:2 FTS (Fluortelomer sulfonat)	ND	ND	ND	ND
4:2 FTS (Fluortelomer sulfonat)	ND	ND	ND	ND
PFNA (Perfluornonansyra)	>99,9%	>99,9%	>99,9%	>99,9%
6:2 FTS (Fluortelomer sulfonat)	>99,9%	>99,9%	>99,9%	>99,9%
PFOA (Perfluoroktansyra)	>99,9%	>99,9%	>99,9%	>99,9%
PFOS (Perfluoroktansulfonsyra)	>99,9%	>99,9%	>99,9%	>99,9%
PFOSA (Perfluoroktansulfonamid)	ND	ND	ND	ND
PFHpS (Perfluorheptansulfonsyra)	>99,9%	>99,9%	>99,9%	>99,9%
PFHxS (Perfluorhexansulfonsyra)	>99,9%	>99,9%	>99,9%	>99,9%
PFHpA (Perfluorheptansyra)	>99,9%	>99,9%	>99,9%	>99,9%
PFHxA (Perfluorhexansyra)	68%	97%	99%	>99,9%
PFPeA (Perfluorpentansyra)	-7%	13%	31%	68%
PFBA (Perfluorbutansyra)	17%	17%	0%	7%
PFBS (Perfluorbutansulfonsyra)	32%	67%	>99,9%	>99,9%
Summa PFAS 4	>99,9%	>99,9%	>99,9%	>99,9%
Summa PFAS 28	55%	68%	78%	84%

But about the waste ?

- Many upcoming technologies and providers on the world market
- We have ongoing trials using HALT, SCWO, Cold Plasma, PRD and EO
- Trials have been performed on Full scale tertiery foam concentrate from landfill leachate and soil wash water SAFF concentrate
- Presentation of results and some costs (!!) of :
 - Cold Plasma
 - Electrochemical Oxidation
 - Photoactivated Reductive Defluorinatiom

36

Destruction trial using Cold Plasma Part of H2020 Scenarios project

Cold atmospheric plasma for PFAS destruction in water Task 6.1

Electrical characterization of plasma reactors energized by different high voltage (HV) waveforms Task 6.1

Cold atmospheric plasma for PFOA destruction in water Task 6.1

Cold atmospheric plasma for PFOA destruction in water Task 6.1

Comparison between air and argon plasma under high voltage micropulses and nanopulses

SCENARIOS - H2020 G.A. 101037509

Aclarity

Electrochemical Destruction of PFAS in Foamate

But about the waste ?

Sclarity Electrochemical Destruction of PFAS in Foamate

Table 1: Destruction of MA6 PFAS Compounds

Compounds	Initial Concentration (ng/L)	Final Concentration (ng/L) at 129 W-hr/gal	% Destruction
PFHpA	202000	1200	99.4
PEOA	184000	321	99.8
PFNA	10700	301	97.2
PFDA	<381	<381	NA
PFHxS	45300	1030	97.7
PFOS	11700	704	94.0

Conclusion

Aclarity's SO-1 reactor demonstrated excellent destruction for PFAS compounds across a range of species including long chains (C8-C10) and shorter chains (C4-C7), with destruction of both carboxylic acids (PFOA, PFHpA) and sulfonic acids (PFOS, PFHxS). Aclarity's full-scale Octa™ system is 80x capacity of the SO-1, comprising 80 electrode pairs.

Based on the results of this festing, an electrical energy per order (EEO), or the amount of energy required to destroy 90% of a compound is 23.8 kW-hr/m³/order.

Photoactivated Reductive Defluorination (PRD)

Photoactivated Reductive Defluorination (PRD)

SAMPLE CHARACTERIZATION – HORIZON 2020 LANDFILL LEACHATE FOAM FRACTIONATION TERTIARY FOAMATE

Sample ID	Total [PFAS] (ppb)	Calculated [Organic fluorine] (ppb)	[Inorganic fluoride] (ppb)	рH	Total Dissolved Solids (TDS, ppm)	Transmission @ 254 nm
030A01	138,350	~86,468	286	7.2	6,600	0.4%

	UV Dose								
[0 kWh/m ³ (untreated)	600 kWh/m ³		2,	400 kWh/m ³				
PFAS	µg/L	µg/L	% decrease from untreated	µg/L	% decrease from untreated				
PFNA	1,700	100 U	>94.1%	100 U	>94.1%				
PFOA	41,000	11,000	73.2%	100 U	>99.8%				
PFOS	100 U	100 U	n/a	100 U	n/a				
PFHxS	11,000	100 U	>99.0%	100 U	>99.0%				
PFBS	1,000	100 U	>90.0%	100 U	>90.0%				
HEPO-DA	200 U	200 U	n/a	200 U	n/a				
Sum EPA MCL list PFAS	54,700	11,000	79.9%	All ND	>99.8%				
PFHpA	49,000	20,000	.59.2%	100 U	>99.8%				
PEHxA	23,000	21,000	8.7%	4,800	79.1%				
PFPeS	3,200	100 U	>96.9%	100 U	>96.9%				
6:2 FTSA	5,900	250 U	>95.8%	250 U	>95.8%				
Total PFAS	135,800	52,000	61.7%	4,800	96.5%				
U = non-detect	ed								
Fotal PEAS – su EPA MCL list PE	am of all analytes ex AS = PENA, PEOA,	cluding non-detecte PEOS, PEHKS, PEBS	ed . HEPO-DA: sum exclue	tes non-detr	acted analytes				

Photoactivated Reductive Defluorination (PRD)

TREATABILITY TEST RESULTS - HORIZON 2020 LANDFILL LEACHATE FOAM FRACTIONATION TERTIARY FOAMATE

- · Foamate treated with PRD achieved a high degree of PFAS destruction
- Horizon 2020 landfill leachate foam fractionation tertiary foamate total PFAS concentration is much higher than landfill leachate foamate samples tested by Enspired from other sites

	EEO (Wh/L-order	r) p value
Horizon 2020 Foamate PFOA	e 925	4.40E-04
Horizon 2020 Foamate Sum EPA MCL List PFA	s 1,234	5.79E-03
Horizon 2020 Foamate Total PFAS	1,592	1.29E-03
PFQA cm={9	EPA MOL PEAS	TotaLPFAS
	exee	FF A5 Enconstration (1961)
0 900 5000 1000 2000 2000		0 000 1000 1000 2

	1108	PRAMID Dec PEAS	totalPlas
Systian antestime	56.03	\$1.20	57.27
Silgebon General"	\$1.75	\$2.48	\$2,87
PApilitie reagens	\$1.12	52.¢5	\$1.87
5, get on energy are	\$9.41	52.62	\$2.75
Signion mattice na clenatice	\$0.35	\$2.10	\$11.55
Signilion OFF9"	\$2.52	\$2.72	\$3.24
Cost Indiades hort: CART CARES and ORES per pail fr. 7 class a week, for 15 o CRES is the sum of response to the spectrum the Manaroz.	Kand CPD Ion calcula ware, ware, energi	c Lon: actumet ma g (sel a <mark>nd m</mark> ach)	ctine nos 24 ne

SAFF Economics

Wonderful results! But how much does it cost ?

Rental or Buy:	Ask us for a quote
Capacity :	Up to 25 m³/h, SAFF40 3 step fractionation, up tp 14 m³/h SAFF20 2 step fractionation
Installation:	< 80 h operational staff, including fine tuning
Electricity:	0,7 kwh / m³ treated
Service:	From 8h service technician per month – depending on water
Waste	From leachate: 0,2 - 6m ³ / 50 0000m ³ treated From GW: <0,1 (10 liters) per 50 000 m ³ treated

Possibility!

- Short chain removal using additives
- No waste "Closed loop" possibility Full scale, On-site, within 6-12 months.

Save the date

SCENARIOS Workshop

September

Korsör, Denmark

PFAS Remediation in action: Sustainable solutions and acceptance conditions

This project has received funding from the European Union's H2020 programme under Grant Agreement No. 101037509

EU Green Week
PARTNER EVENT

Special Symposium on PFAS Eleimination from Drinking Water

Karlsruhe, Germany 13 June 2024

#WaterWiseEU

Water consumers in the US wouldn't wait for the formal PFAS EPA regulation

Water consumers in the US wouldn't wait for the formal PFAS EPA regulation

ChartWater:

a global manufacturer and service provider of water treatment solutions with over 8,100 installations in 85 countries

Chart has over 10,000 experts in over 115 locations across the globe with assets installed in 169 countries

Process	Biol Filtr	ogical ration)	Adsorptio	n		0/F	C/F	нмо				lon Ex	change				Membranes	Physical	Oxidation	Oxygenation Aeration	Acidification	Chemfeed
Technology or Media	biottta	NoMonia	AD74	E33	AD140	GAC	FS	AD26	ADGS+	ADGS+	AD88	AD92	ADBor	ADCr6	ADN03	ADPx	ADSOF	ADTOC	RO/NF	Air Stripping & Filtration	HyDOZ	SDOX Turbo Compressors	CDOX	Inline
Ammonia						-																		
Arsenic								1																
Boron	-													-										
BOD		•••••	•••••		•••••			•••••	•••••	•••••	•••••	•••••			•••••	•••••		•••••	••••••	•••••				
Chromium VI																			1					
Disinfection															1					-				
Fluoride																								
Gross Alpha											2													
Hardness ***																			••••••					
Iron								1		-							-							
Lead																			с.			La		
Manganese																								
Nitrates														<mark>.</mark> .		• • • • • • • •			••••••			1		
Perchlorate																			n					
PFAS								•••••		•••••						•••••			••••••					
pH control																								
Radium																								
Selenium											-													
Sulfides/ Odor																								
TDS																			ī,					
TSS									-															
тос																								
Turbidity																							CHA	RT
Uranium																							WAT	ER
VOCs																							\sim	\checkmark

Awareness to PFAS contamination monitoring resulted in piloting programs and hundreds of systems installed

~65,000

Number of public water systems that will have to comply with US Environmental Protection Agency limits for PFOS & PFOA

\$10.3 billion

Amount to be paid by 3M under a settlement of a lawsuit filed by public water utilities to support PFAS remediation (total >\$17bn for potentially responsible parties PRP*)

715

US military sites that the Department of Defense is evaluating for potential contamination by PFAS

Nearly 12,000

Number of closed landfills in the US generating leachate containing PFAS

~3,000

Number of open landfills in the US generating leachate containing PFAS

https://cen.acs.org/environment/persistentpollutants/Competition-destroy-forever-chemicalsheats/102/i7

Environmental Working Group https://www.ewg.org/interactive-maps/pfas_contamination/map/

USEPA – Hotspots for PFAS interactive map

Showing only available water data from UCMR and state reported (Blue and yellow – above UNCR and HA, respectively). Not including spills, superfunds, federal site, industrial sites etc. <u>https://awsedap.epa.gov/public/extensions/PFAS_Tools/PFAS_Tools.</u> html

USEPA's Final Regulation (April 2024)

Apri	il 2024	April 2027	April 2029	
Fina	al Rule	Initial Monitoring Deadline	Compliance Deadline	

PFAS Compound	MCL	PQL	Reporting Example based on Significant Figures
PFOA	4.0	4.0	RAA of 4.04 = round to 4.0 = Compliant
PFOS	4.0	4.0	RAA of 4.05 = round to 4.1 = Exceedance
PFNA	10	4.0	
PFHxS	10	3.0	RAA of 14.9 = round to 10 = Compliant RAA of 15.0 = round to 20 = Exceedance
GenX	10	5.0	
PFBS	н	3.0	RAA of 1.40 - round to 1 - Compliant
Hazard Index (mix) PFNA, PFHxS, GenX, PFBS	1		RAA of $1.50 = round to 2 = Exceedance$

*MCL is Maximum Contaminant Level in parts per trillion or nanograms per liter *PQL is the Practical Quantification Limit in parts per trillion or nanograms per liter *RAA - running annual average

 $HI MCL = \left(\frac{[HFPO-DA_{water}]}{[10 \ ppt]}\right) + \left(\frac{[PFBS_{water}]}{[2000 \ ppt]}\right) + \left(\frac{[PFNA_{water}]}{[10 \ ppt]}\right) + \left(\frac{[PFHXS_{water}]}{[10 \ ppt]}\right) = 1$

4 validated treatment solutions

PFAS Treatment buzz words

- Long chains, short chains
- Sulfonic acids vs. Carboxylic acids
- EBCT, Bed volume
- Footprint, CAPEX, OPEX
- Adsorption vs. destruction
- Acid-rinse GAC
- IX Macro vs. Gel
- Media replacement and disposal
- Hydraulic Loading Rate (HLR)

CAPEX & Footprint depend on media selection

158 M3/hrs (1 MGD)

Media Comparison is there a single critical selection parameter?

= Similar media characteristics	FLUORO-SORB ® (FS)	ION EXCHANGE (IX)	GAC
Media type	Surface modified organo-clay (Quaternary amines) - mined	Gel-type, Buffered Product	Bituminous, can be Acid Rinsed
EBCT	<3 min	<3 min	~10 min
TOC impact on media life	Minimal	Significant	Significant
Free Chlorine	Continuous tolerant up to 1 mg/L	No Continuous Tolerance	Consumed through GAC
TDS / Anions impact on media life	No Impact	Possibly reduced	No Impact
VOC / T&O	Not treated	Not treated	VOC / T&O = Treated by GAC
Bag Filter Pre-Treatment	Required, 5 micron	Required, 5 micron	Not Required, Recommended
Start-Up	 Initial backwash required for fines removal Short Forward Flow 	 No backwash required Forward Rinse for NSF Compliance – 20BV Non-buffered resin may require >150 BV for equilibrium Buffered/Pre-Rinsed Product Available for 0 start-up waste 	Initial BW Required for Fines Removal, 20 BV Forward Rinse for NSF, may required Forward Rinse for arsenic reduction before service
Backwashing (once in service)	Only if Required	None	Only if Required
Leaching	None	None / Unknown	None / Unknown
Manufacturing sites	USA	Europe, China, or India	USA
Media Unit Cost	Moderate	Higher	Lower

LifeCycle Cost Comparison using OCWD Phase 1 Pilot Data

https://onlinelibrary.wiley.com/doi/10.1002/wer.11035

	GAC	IX	FLUORO-SORB
FLOW		694 gpm (1 MGD)	
EBCT (per vessel)	12.8 min	3.0 min	3.0 min
VESSELS	1 x 12ft Pair	1 x 10ft Pair	1 x 10ft Pair
EQUIPMENT COST	\$500,000	\$400,000	\$400,000
TOTAL MEDIA QTY	2,374 cuft	550 cuft	550 cuft
MEDIA COST	\$125 / cuft	\$395 / cuft	\$221 / cuft
TOTAL MEDIA COST	\$296,750	\$217,250	\$121,550
MEDIA LIFE (mths)	14	20	24
10 YR O&M COST (media only)	\$1,271,786	\$651,750	\$303,875
10 YR LIFE CYCLE COST	\$2,068,536	\$1,269,000	\$825,425

• O&M assumes breakthrough out of lead vessel.

• GAC system design assumes 40,000 lbs per vessel.

• GAC pricing assumes rinsed product. IX pricing assumes buffered and pre-rinsed product.

• Turnkey media replacement services and disposal not included.

· Specific water quality and co-contaminants will influence the results

• Footprint and operator preferences will influence the results (e.g., multiple sites standardization)

2020 - Ramsey, NJ

- Multi-contaminant
- Rapid deployment
- PFOA (15ppt) & Arsenic (7ppb)
- 6 wells containerized systems
- ~170gpm (~39 M³/hrs.)
- Limited footprint
- Used 3 types of resin
- Lead-Lag configuration
- The process included chlorination

Selecting IX: GAC footprint was too big + no BW option, resulting in

Optimized design in a 53 ft. container

GAC option

6 x 42" Dia. x 60" SSH EBCT 10min

IX Option

Room for Arsenic treatment & Aux equipment

2 x 42" Dia. x 60" SSH EBCT 3min

Sizing without space restriction:

GAC 96" Dia. x 96" SSH (x1) **IX** 60" Dia. x 72" SSH (x1)

3 different types of IX media

A customized approach for an optimized solution

Installed Arsenic + PFOA Treatment system

2022 - Essex Fells, NJ

- Emergency 24 months rental and still running (TaaS)
- 600gpm (136M³/hrs.)
- PFOA, PFAS, PFHxA, PFPeA 40-50 ppt
- Treated water is blended with other wells to reach <13ppt MCL, so treatment goal was 2ppt PFOA
- Buffered IX (no BW option, footprint limitation)
- Single 120" tank (~3 M)
- Monitoring performance via PFHxA breakthrough (unregulated)
- NJ MCL
 - PFNA 13 ppt (2018)
 - PFOA 14 ppt (2020)
 - PFOS 13 ppt (2020)

Using the non-regulated PFHxA compound to forecast PFOA breakthrough

The canary in the coal mine strategy

- Close monitoring to prepare for media replacement when reaching 4ppt PFHxA and 2ppt PFOA
 - System installed in January 2022
 - 2.78 ppt November 2022
 - 3.32 ppt February 2023
- Media change in Spring 2023 and in June 2024 (proactive)
- Projection to meet < 8 ppt from a single vessel = 120,000 bed volumes (270 million gallons)

PFA694E Lead Virgin Resin - Avg Chemistry BV and break based on Lead 10 PFHxA 8 Original projection to 8 ppt ppt PFAS ex lead **PFHpA** 6 4 2 ppt break point PFOA 2 PFOS 70K BV 100000 0 200000 Current BV based on lead resin volume

Projection

2023 – Yarmouth, MA

- Multi-contaminants, ideal for Fluorosorb®
- Fe, Mn, and PFAS 6
- The system was approved as a full scale pilot permit to meet growing water demand
- 550gpm (125M³/hrs.)
- Containerized system

- PFAS 6:
- PFOS
- PFOA
- PFHxS
- PFNA
- PFHpA
- PFDA

Accelerated Schedule and Permitting via a Full-Scale pilot

Early 2024 – Non detect PFAS6 concentrations

Design considerations:

- 2 wells
- 2 separate trains (potential mobility)
- Fe & Mn pretreatment with ADG (Sorption/ filtration)

Media selection considerations:

 GAC – Footprint limitation
 IX – added complexity due to chlorination for the Fe & Mn removal
 Fluorosorb[®] - can tolerate a 1 ppm residual chlorine level continuously without impacting PFAS removal capacity

2022 - Brunswick-Topsham, ME

- Controlling a PFAS plume to protect a nearby well field
- Location: near a Naval base
- Media: FluoroSorb® footprint, disinfection with chlorine during shutdown
- 250gpm, a single vessel
- All PFAS-6 compounds have been effectively removed to non-detect
- Treated water is discharged to the aquifer
- Rapid delivery
- Intermittent operation (summer only) due to utilization and limited land application during the winter
- Simple, manual operation, no power excluding well pump
- Re-bedding in April 2024 due to customer decision (no DP)

Brunswick-Topsham Data at 53,000BV PFHxA early breakthrough

in

out

Projection: 274,215 bed volumes (524 days) Proactive media change

2019 - Shrewsbury, MA – Pilot Testing

- The City hired T&H for a 18-months pilot (ended in 2023)
- Target of < 20 ng/L "PFAS6": PFOS, PFOA, PFHxS, PFNA, PFHpA, PFDA
- Comparison between different media types in preparation for adding 2 new wells (total 7.87MGD / 30000 M³/day)
- Validated the hydraulics of FS long term differential pressure at the design loading rate.
- No BW was required for duration of pilot
- FS is used as the basis of design

Shrewsbury, MA Pilot Similar Performance for IX & FS

2022 - Hopatcong, NJ

- A simple 70 gpm (16 M3/hrs.)
- PFOS, PFOA removal (29ppt, 22ppt respectively)
- Both IX and GAC were offered, but GAC enabled rapid permitting
 - BW frequency 6 months

Full Scale Reference List

٠

Project Name		Location	Contaminants	Solution	Flow Rate
Aqua	en Well	PA	PFAS	IX	160 gpm
Mou	LA PORT BOA	NJ	PFAS	FS200	200 gpm
Ho H	<u> </u>	NJ	PFAS	IX	339 gpm
Ho F		NJ	PFAS	IX	339 gpm
Ho H		NJ	PFAS	IX	339 gpm
Wes		MA	PFAS	FS200	450 gpm
Yarn	istrict	MA	PFAS	FS200	600 gpm
Ho F		NJ	PFAS	IX	603 gpm
Нора	n Well 8	NJ	PFAS	GAC	70 gpm
Нора	n Well 12	NJ	PFAS	GAC	70 gpm
Нора	on Well 5	NJ	PFAS	GAC	70 gpm
Mah		NJ	PFAS	IX	832 gpm
Pete		MA	PFAS	GAC	10 gpm
Нора	6	NJ	PFAS	GAC	100 gpm
Нора		NJ	PFAS	GAC	150 gpm
Brun	n	ME	PFAS	FS200	250 gpm
Aqua	akwood	СТ	PFAS	GAC	30 gpm
Aqua	enda	СТ	PFAS	GAC	30 gpm
Tusc		AZ	PFAS	IX	340 gpm
Dove	ict	NY	PFAS	IX	40 gpm
Liber	keer	NY	PFAS	GAC	41 gpm
Aqua	lls	PA	PFAS	IX	475 gpm
Esse		NJ	PFAS	IX	600 gpm
Нора	Well	NJ	PFAS	GAC	75 gpm
Aqua	ggs	CT	PFAS	GAC	9 gpm
Aqua	50510 	NC	PFAS	IX	93 gpm
Aqua		NJ	PFAS	IX	25 gpm
Hopa	tyx	NJ	PFAS	GAC	75 gpm
Ram		NJ	PFAS	IX	130 gpm
Ram		NJ	PFAS	IX	170 gpm

- More than 30 installations (GAC, IX, FLUORO-SORB)
- Size: 10 gpm 600 gpm
- Experience with Calgon Carbon F400 (and F400 AR+)
- Experience with all key resin manufacturers (Purolite, Lanxess, ResinTech)
 - Official channel partner and application specialist for CETCO for FLUORO-SORB for the drinking water market

