
Software Sustainability & High Energy Physics
Daniel S. Katz1, Sudhir Malik2, Mark S. Neubauer3, Graeme A. Stewart4,
Kétévi A. Assamagan5, Erin A. Becker6, Neil P. Chue Hong7, Ian A.
Cosden8, Samuel Meehan9, Edward J. W. Moyse10, Adrian M.
Price-Whelan11, Elizabeth Sexton-Kennedy12, Meirin Oan Evans13,
Matthew Feickert14, Clemens Lange15, Kilian Lieret16, Rob Quick17, Arturo
Sánchez Pineda18, and Christopher Tunnell19

1d.katz@ieee.org, University of Illinois at Urbana-Champaign, USA,
0000-0001-5934-7525
2sudhir.malik@upr.edu, University of Puerto Rico Mayaguez, USA, 0000-0002-6356-2655
3msn@illinois.edu, University of Illinois at Urbana-Champaign, USA,
0000-0001-8434-9274
4graeme.andrew.stewart@cern.ch, CERN, Switzerland, 0000-0003-0182-7088
5ketevi@bnl.gov, Brookhaven National Laboratory, USA, 0000-0002-4826-2662
6ebecker@carpentries.org, The Carpentries, USA, 0000-0002-6832-0233
7N.ChueHong@software.ac.uk, University of Edinburgh, UK, 0000-0002-8876-7606
8icosden@princeton.edu, Princeton University, USA, 0000-0003-3780-9172
9samuel.meehan@cern.ch, CERN, Switzerland, 0000-0002-3613-7514
10edward.moyse@cern.ch, University of Massachusetts, Amherst, USA,
0000-0003-4449-6178
11adrianmpw@gmail.com, Center for Computational Astrophysics, Flatiron Institute,
USA, 0000-0003-0872-7098
12sexton@fnal.gov, Fermilab, USA, 0000-0001-9171-1980
13meirin.oan.evans@cern.ch, University of Sussex, Brighton, UK, 0000-0002-4259-018X
14matthew.feickert@cern.ch, University of Illinois at Urbana-Champaign, USA,
0000-0003-4124-7862
15clemens.lange@cern.ch, CERN, Switzerland, 0000-0002-3632-3157
16kilian.lieret@lmu.de, Ludwig Maximilian University of Munich, Germany,
0000-0003-2792-7511
17rquick@iu.edu, Indiana University, USA, 0000-0002-0994-728X
18arturos@cern.ch, ICTP, INFN and University of Udine, Italy, 0000-0001-8241-7835
19tunnell@rice.edu, Rice University, Houston, USA, 0000-0001-8158-7795

ABSTRACT

New facilities of the 2020s, such as the High Luminosity Large Hadron Collider (HL-LHC), will be relevant
through at least the 2030s. This means that their software efforts and those that are used to analyze
their data need to consider sustainability to enable their adaptability to new challenges, longevity, and
efficiency, over at least this period. This will help ensure that this software will be easier to develop and
maintain, that it remains available in the future on new platforms, that it meets new needs, and that it is as
reusable as possible. This report discusses a virtual half-day workshop on “Software Sustainability and
High Energy Physics” that aimed 1) to bring together experts from HEP as well as those from outside to
share their experiences and practices, and 2) to articulate a vision that helps the Institute for Research
and Innovation in Software for High Energy Physics (IRIS-HEP) to create a work plan to implement
elements of software sustainability. Software sustainability practices could lead to new collaborations,
including elements of HEP software being directly used outside the field, and, as has happened more
frequently in recent years, to HEP developers contributing to software developed outside the field rather
than reinventing it. A focus on and skills related to sustainable software will give HEP software developers
an important skill that is essential to careers in the realm of software, inside or outside HEP. The report
closes with recommendations to improve software sustainability in HEP, aimed at the HEP community via
IRIS-HEP and the HEP Software Foundation (HSF).

Keywords: high energy physics, software sustainability, education, training

1 INTRODUCTION
New and being-developed facilities of the 2020s, such as the High Luminosity Large Hadron Collider
(HL-LHC), will be relevant through at least the 2030s. This means that their software efforts and those that
are used to analyze their data need to consider sustainability to enable their adaptability to new challenges,
longevity, and efficiency, over at least this period. Considering sustainability in software development will
help ensure that it will be easier to develop and maintain, that it remains available in the future on new
platforms, that it meets new needs, and that it is as reusable as possible. Software sustainability practices
could lead to new collaborations, including elements of HEP software being directly used outside the
field, and, as has happened more frequently in recent years, to HEP developers contributing to software
developed outside the field rather than reinventing it. Finally, a focus on and skills related to sustainable
software will give HEP software developers an important skill that is essential to careers in the realm of
software, inside or outside HEP.

To address this challenge, the first four authors of this paper organized a virtual half-day workshop on
“Software Sustainability and High Energy Physics”1. This workshop had two complementary goals:

1. To bring together experts from HEP, as well as those from outside, to share their experiences and
practices, and

2. To articulate a vision that helps the Institute for Research and Innovation in Software for High Energy
Physics (IRIS-HEP) in creating a work plan to implement elements of software sustainability.

Eighty nine people registered for the workshop, though as a virtual workshop, attendees came and went at
various times. We estimate that there were about 70-80 participants in the workshop at any one time.

This report discusses the workshop, and is organized similarly to the workshop, as shown in Table 1.
The remainder of this section and the next two (§2 and §3) summarize the talks given during the workshop,
which were presented by the the authors of this report. The final section (§4) reports on the breakout
groups that discussed future plans, and the plenary planning discussion that followed.

09:00 IRIS-HEP Blueprint process Mark Neubauer
09:05 Introduction to software sustainability Daniel S. Katz

09:20 Experiment experiences Edward Moyse
09:35 Experiment experiences II Danilo Piparo
09:50 HSF: HEP Software Foundation Graeme A Stewart
10:05 Community Software Successes & Failures Elizabeth Sexton-Kennedy

10:25 Software Sustainability Institute (SSI) Neil Chue Hong
10:35 Astropy Adrian Price-Whelan
10:45 The Carpentries Erin Becker
10:55 HSF training Samuel Meehan
11:05 Research Software Engineers Ian Cosden
11:15 Software maintenance and capacity building in HEP Ketevi Adikle Assamagan

11:25 Discussion breakout groups
12:15 Reports from breakouts plenary discussion
12:30 Planning next steps plenary discussion
13:00 Adjourn

Table 1. Workshop Agenda (times are CDT) Presentations are available from the workshop website*.
*https://indico.cern.ch/event/930127/timetable/

1.1 IRIS-HEP Blueprint process
The goal of the Institute for Research and Innovation in Software for High-Energy Physics (IRIS-HEP) is
to address key computational and data science challenges of the HL-LHC and other HEP experiments
in the 2020s. IRIS-HEP resulted from a 2-year community-wide effort involving 18 workshops and 8

1https://indico.cern.ch/event/930127/

2/18

https://indico.cern.ch/event/930127/timetable/
https://indico.cern.ch/event/930127/

position papers, most notably a Community White Paper (The HEP Software Foundation et al., 2019)
and a Strategic Plan (Elmer et al., 2017). The institute is an active center for software R&D, functions
as an intellectual hub for the larger community-wide software R&D efforts, and aims to transform the
operational services required to ensure the success of the HL-LHC scientific program.

The IRIS-HEP Blueprint activity is designed to inform development and evolution of the IRIS-HEP
strategic vision and build (or strengthen) partnerships among communities driven by innovation in software
and computing. The blueprint process includes a series of workshops that bring together IRIS-HEP team
members, key stakeholders, and domain experts from disciplines of importance to the Institute’s mission.
This blueprint meeting on the topic of sustainable software for HEP is one of a series of workshops that
have also included

• Analysis Systems R&D on Scalable Platforms (2019)
• Fast Machine Learning and Inference (2019)
• A Coordinated Ecosystem for HL-LHC Computing R&D (2019)
• Software Training (2020)

The blueprint workshop discussions are captured and inform key outcomes which are summarized in a
short report made publicly available, such as this report.

1.2 Introduction to software sustainability
The reason software sustainability is important is that software stops working eventually if is not actively
maintained.

Generally, the structure of computational science software stacks (Hinsen, 2019) is:

1. Project-specific software: software to do a computation using building blocks from the lower levels:
scripts, workflows, computational notebooks, small special-purpose libraries and utilities

2. Discipline-specific software: tools and libraries that implement disciplinary models and methods
3. Scientific infrastructure: libraries and utilities used for research in many disciplines
4. Non-scientific infrastructure: operating systems, compilers, and support code for I/O, user interfaces,

etc.

Software builds and depends on software in all layers below it. Any change in an underlying layer may
cause the software to collapse.

Given this, we can define research software sustainability as the process of developing and maintain-
ing software that continues to meet its purpose over time, which includes that the software adds new
capabilities as needed by its users, responds to bugs and other problems that are discovered, and is ported
to work with new versions of the underlying layers, including software as well as new hardware.

In order to sustain research software, we can

• do things that reduce the amount of work needed,
• do things that increase the available resources, or
• do things that both reduce the amount of work needed and increase the available resources.

To reduce the amount of work needed, we can train developers, which involves finding or developing
training material (see §3.4). We can also use best practices, which involves finding or developing best
practices.

There are a number of potential things we can do to increase the available resources. We can create
incentives that reward people who contribute to the software. One specific example is to make the software
citable, to make contributors authors, and to encourage users to cite the software, so that for developers in
research institutions, they are rewarded through citations, which usually match the existing metrics on
which they are hired and promoted. We can also attempt to change career paths and associated metrics,
by either adjusting existing career paths so that they reward software work, perhaps by adding new
metrics, and by developing new career paths that focus on and reward software work, such as for Research
Software Engineers (see §3.5). Though it is a long-term activity, we can try to increase the funding
available for software work by first making the role of software in research clear to research funders, and
then by clearly making the case for them to increase funding for new software, and to provide funding
for software maintenance. Finally, we can seek institutional resources for software that is considered

3/18

sufficiently important to the institution, either operationally or for its reputation, and we can demonstrate
to our own institutions when other institutions do this.

To both reduce work and bring in new resources, we can encourage collaboration. For example, using
the work of others rather than reimplementing a function or package reduces what a software team (or
its developers) needs to do themselves, even without assuming that the collaborators contribute to the
software, which also may happen. Similarly, if others use a team’s software and contribute to maintaining
it, the team has less they need to do. To make this work, the software has to be designed from the start to
be modular and reusable, and it must also be clearly documented and explained to potential users, even
those in fields other than the developer’s. And the team has to put effort into engaging and working with
the potential user and contributor community.

Given that volunteers and collaborators are important to a number of sustainability paths, it’s worth
considered why volunteers or collaborators choose to put effort into a software project, and thinking about
how we can engage them. In the context of community activities and organizing, Porcelli (2013) defines:

Engagement = intrinsic motivation + extrinsic motivation + support - friction

Where intrinsic motivation includes self-fulfillment, altruism, satisfaction, accomplishment, pleasure
of sharing, curiosity, and making a real contribution to science; extrinsic motivation includes things like
a job, rewards, recognition, influence, knowledge, relationships, and community membership; support
means ease, relevance, timeliness, and value; and friction is technology, time, access, and knowledge.

Some examples of things we can do to increase engagement include the following. Use GitHub (or
GitLab) for development; this reduces friction by using a technology known to most developers. Provide
templates for issues and guidelines for good pull requests; this reduces friction by providing knowledge
of how to work with our project, and increase support by easing the means of doing so. Provide a code of
conduct and a welcoming and encouraging environment; this increases extrinsic motivation by helping
develop relationships and a sense of community. Add contributors to a list of authors who are cited when
the software is used; this increases both intrinsic motivation and extrinsic motivation through recognizing
accomplishments. Highlight examples of how the software is used; this increases intrinsic motivation by
demonstrating the contribution to science.

In addition to the general activities, we can also plan for a progression of types of engagements, as
proposed by Cabunoc Mayes (2020) and as shown in Figure 1, with the goal of engaging a potential
contributor in their first interaction with the software, and then moving their interaction to a higher and
more significant level over time through intentional activities.

Figure 1. How a project can encourage the potential contributor to move to from level to another
(Cabunoc Mayes, 2020).

We should also remember that the challenge of software sustainability is not unique to HEP, and there

4/18

are a number of other groups also working on this problem. In software sustainability generally, these
include the Software Sustainability Institute (SSI) (see §3.1) and US Research Software Sustainability
Institute (URSSI) Conceptualization2. The Research Software Alliance (ReSA)3 is working to coordinate
and align these organization with an interest in research software. There are a number of different groups
working on Research Software Engineering (RSE) (see §3.5), including the Society of Research Software
Engineering4, the US-RSE Association5, and groups in other countries/regions (DE, NL, Nordic, BE,
AUS/NZ)6. Finally, working on training and education is The Carpentries (see §3.3).

2 HEP EXPERIENCES
The first session of contributions focused on general software experiences from the HEP community,
including: ATLAS and CMS, the two largest experiment collaborations; the HEP Software Foundation
(HSF), an organization that facilitates cooperation and common efforts in High Energy Physics software
and computing internationally; and some lessons about previous software experiences.

2.1 ATLAS experiences
ATLAS is a large collaboration of around 2,900 scientific authors and around 1,200 students spread
around the world. This situation is far from unique in HEP, but it does present some challenges, such
as the complexity of managing a distributed team of developers (especially given the lack of traditional
carrots and sticks found in industry).

ATLAS initially used many home-grown tools (or at least, tools that were exclusive to HEP). Examples
include CMT7, TagCollector (Albrand et al., 2005), and CLHEP8. The advantage was that, at least in
principle, we get tools and libraries that are perfectly tailored to our use case. The disadvantage is that
we have an ongoing maintenance burden for software outside of our core tasks, and also that dedicated
training is needed for non-standard tools.

In recent years, ATLAS has moved to more modern, industry-standard options, such as git + CMake,
Eigen, etc. This means developers learn transferable skills, can benefit from excellent online tutorials, and
in many cases, the community benefits from better written software. Reducing the amount of extraneous
work we need to do is a huge step towards being able to focus on the sustainability of our core software.

Athena (ATLAS Collaboration, 2019) is ATLAS’s event processing framework, and consists of >1
million lines of Python and >4 million lines of C++. We open-sourced Athena at the end of run-2 (late
2018), which made it easier to collaborate with industry, and others in the field, once again reducing
the burden on ATLAS’s developers. Other examples of open-sourced software originating from ATLAS
include Rucio9, GeoModel10, ACTS (Salzburger et al., 2020) and Phoenix (Labra et al., 2020).

Within ATLAS, we make extensive use of social coding features, such as merge (pull) request reviews
and continuous integration. We have two levels of shifters, working in morning and afternoon shifts, and
they review approximately 40 merge requests per day. These reviews are vitally important to improving
the quality (and sustainability) of our software.

We also run various checks on our software every night. We build about 20 different branches of
Athena, and on each of these we run:

• Unit tests,
• Longer local tests,
• Grid-based large statistics tests,
• Checks on technical performance (CPU and memory).

The primary purpose of the non-unit tests is to catch more subtle bugs and regressions. And we also run
even larger (around 1 million events) validation campaigns to measure physics performance (and find
very, very rare bugs.)

2http://urssi.us/
3https://www.researchsoft.org
4https://society-rse.org/
5http://us-rse.org/
6https://researchsoftware.org/assoc.html
7http://www.cmtsite.net
8http://proj-clhep.web.cern.ch
9https://rucio.cern.ch

10http://geomodel.web.cern.ch/geomodel

5/18

http://urssi.us/
https://www.researchsoft.org
https://society-rse.org/
http://us-rse.org/
https://researchsoftware.org/assoc.html
http://www.cmtsite.net
http://proj-clhep.web.cern.ch
https://rucio.cern.ch
http://geomodel.web.cern.ch/geomodel

Merge request reviews only examine code that is changing, but we periodically also use various static
analysis tools, such as cppcheck, lizard, and Coverity, to examine the entire codebase.

For documentation, we use TWiki, and also have some dedicated expert-maintained documentation,
which is, unlike the content on Twiki, public and visible to search engines.

Writing modern, maintainable code is very important. To this end, we run various training campaigns:
every new ATLAS person is strongly encouraged to go to a week-long induction, which includes an
introduction to software development. We also run more infrequent training for core developers, and on
particular software topics.

One key problem we experience with maintaining our software is retaining our experts. Many leave
because they cannot find a job in the field. We have made efforts to combat this, with software grants
and trying to encourage institutional commitment to maintenance tasks, but ultimately the solution is that
funding agencies prioritise hiring software experts.

2.2 CMS experience
Computing and offline software is central to CMS data collection and processing operations, Monte Carlo
production, and physics analysis, and is orchestrated over hundreds of thousands of cores. Key elements
of software sustainability are somewhat built into its very design.

The CMS software has always been open source and has been hosted on GitHub for almost a decade11.
The CMS software stack also includes several third-party packages that are also open source, such as
ROOT and Geant 4 (Monte Carlo event generators).

While CMS is attentive to software support and sustainability in the Run 4–5 timescale (2027–2030
and 2032–2034), the challenges posed by HL-LHC invite CMS to explore solutions that might be
disruptive. It is desirable to model future evolution based on as much common tools as possible across
HEP and even outside it.

Prerequisites for CMS event processing and computing software are cost effective computing ar-
chitectures, and being able to rebuild on different platforms, adapt to CMS needs, and rely on existing
community of developers and users. While the exact details of the microarchitectures on which the code
will run in 10 years from now are unknown, a prerequisite for being forward compatible is to avoid any
platform-specific code or other intrinsic elements. Continuous integration on different platforms ensures
an early detection of bugs in the code and improves its quality, numerical stability and memory usage
patterns. For aspects related to toolkits for detector simulation and description, and data and workload
management infrastructures, CMS values the adoption of standard tools where possible. Examples are
Rucio for data management, CRIC (Computing Resource Information Catalogue) as an information
system, and DD4hep as a geometry description toolkit.

CMS is committed to addressing the challenge of disk storage needed to support data analysis. The
experiment has been able to drastically shrink the size of its analysis datasets: the size of an event in the
NanoAOD format12 is about 1–2 kB. This format is now produced for all the CMS data and Monte Carlo
samples, and CMS plans to increase its utilization in the next years.

CMS believes that these approaches will empower the long-term sustainability of its software.

2.3 HEP Software Foundation
As many of the problems faced by the scientific community regarding software are quite general it is
natural to take a whole community approach to solving them. To this end the HEP Software Foundation13

was founded in 2015 to encourage a cooperative attitude towards improving software in the High Energy
Physics domain.

One of the first tasks undertaken was to survey the field to establish a roadmap for the next decade’s
work (The HEP Software Foundation et al., 2019), including the specific issues surrounding software
development and tooling (Couturier et al., 2017), which inform many of the points made here.

Firstly, we strongly encourage developers to consider re-using existing software packages and projects,
contributing any missing features, rather than embarking on developments that duplicate existing tools.
Efforts to establish catalogues of software to help with searches for existing software have often fall

11https://github.com/cms-sw/cmssw
12https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06021.

pdf
13https://hepsoftwarefoundation.org/

6/18

https://github.com/cms-sw/cmssw
https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06021.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06021.pdf
https://hepsoftwarefoundation.org/

foul of not finding dedicated or community effort to sustain them, although the HSF is working with the
ESCAPE project14 to attempt this again in a more sustainable way.

When starting new software projects it is far easier to begin well than to have to correct defects post
facto. The HSF provides a set of best practice recommendations (Hegner et al., 2020) and even has a
template15 that can be used to setup a project with many of the right pieces done correctly (e.g., hooks
for tests, documentation, license, etc.). For projects written in C++, CMake has become the defacto
standard for the build system and there is an excellent guide to modern CMake practice (Schreiner, 2020).
Similarly for Python projects the Scikit-HEP project provides a useful guide for developers16. One thing
that should be established from the outset is the copyright holder for the code and the licensing terms.
For copyright, HEP projects can usually usefully assign this to the host laboratory, e.g., CERN, whose
scientific mission is to ensure dissemination of knowledge. This is achieved by licensing the software
as open-source. There are many licenses that are considered open-source and the HSF has a guide to
help developers understand the options (Jouvin et al., 2016) options. More liberal licenses (non-GPL)
are usually preferred as these provide the most flexibility for users of the software to combine with other
software and to license their own software on the terms that they would like.

The software used in HEP experiments these days consists of many components, from generic libraries
to very domain specific components, and these are built into a software stack. Ensuring integration with
other software, and a clear understanding of dependencies, will make the life of software librarians easier
and help adoption of the software. Spack (Gamblin et al., 2015) is one popular build tool and orchestrator
that is popular in the scientific community and is being used to provide turnkey stack solution as part
of the CERN Experimental Physics Department’s R&D and HSF’s Key4hep projects17. For software
that forms part of the smaller stack used by analysers Conda is a popular alternative18. Solving this
dependency and orchestration problem makes it easier for end-to-end domain solutions to take the form
of a toolkit, consisting of smaller, more focused pieces that are easier to attract contributions to, but also
easier to replace in the overall scheme if that proves to be necessary.

All sustainable software evolves over time and there is one particular challenge that scientific software
in general, and HEP software in particular, faces today. This is the change of hardware away from CPUs
and towards accelerators, such as GPUs. Such devices rely on less sophisticated programming models
than C++ and there is a large, and evolving, variety of hardware available. Making software sustainable
and evolving it appropriately in these circumstances is difficult. The community is now putting significant
efforts into finding the best sustainability APIs, based on the needs of HEP19, but this remains an open
point to keep an active watch on.

Finally, it should be emphasised that it is a learned skill to write the kind of good, well structured,
software that forms part of a sustainable ecosystem. To that end good training must be provided and
making such training available as a curriculum for people entering the field, particularly at more junior
levels, is vital. The HSF Training Working Group has recently been highly active in developing such
training materials and running such courses, as discussed more in §3.4.

2.4 Community Software Successes & Failures
The field of high energy physics has a long history of community software developed for the greater good
of supporting science without commercial pressures, and allowing scientist to focus on software that
processes their unique scientific instruments instead of implementing, yet again, common mathematical
functions. CERN’s CERNLib is probably the oldest example of this, written over 40 years ago in the
late 1960s and 1970s in FORTRAN66 and 77 (Brun et al., 2012). It only faded away in the 2010s20. If
Tim Burners-Lee did not have this greater good attitude in mind, the World Wide Web would not have
developed as an open and free system.

Because of this long history, it is possible to examine many software projects both successful and
the unsuccessful. For the unsuccessful one can ask, “Why did it die?”, and for the successful, one can
ask, “What is it about this project that has sustained it over the years? Are there valuable lessons to be

14https://projectescape.eu/
15https://github.com/HSF/tools
16https://scikit-hep.org/developer
17https://test-ep-rnd.web.cern.ch/topic/software/turnkey-software-stack
18https://conda.io/
19https://indico.cern.ch/event/908146/contributions/3826737/
20Some may argue it is not dead yet, however the most recent port to scientific Linux 6 in 2012 was its last.

7/18

https://projectescape.eu/
https://github.com/HSF/tools
https://scikit-hep.org/developer
https://test-ep-rnd.web.cern.ch/topic/software/turnkey-software-stack
https://conda.io/
https://indico.cern.ch/event/908146/contributions/3826737/

learned from its story?” Projects that have lasted more then 10 years are the most interesting in this
respect. In a survey of such projects, the software developers and the institutions that support their careers
are the most significant factor in guaranteeing the longevity of a project. Another significant factor is
open software; it is a requirement of sustainability. Many operating systems have come and gone, some
even superior like VAX/VMS, but Linux is still with us because it is open and freely available. That
openness allows multiple institutions and companies to sustain it through the decades. An example of
multi-institutional software development in HEP is INSPIRE. SLAC, IN2P3, IHEP, Fermilab, DESY,
and CERN all contribute to the software and sustain the service as it is so intimately tied to the mission
of these institutions. Other multi-institutional products include dCache, RUCIO, and the children of
CERNLib: Geant4 and ROOT.

It is possible for a single institution to sustain a software product if it is closely tied to the mission of
that institution and it has thousands of users. Examples of this in HEP are INDICO, Enstore, Frontier,
FTS, and HTCondor. Most of these are supported at HEP laboratories that can create careers and
succession plans for the developers that sustain and modernize the product. The very interesting exception
is HTCondor. This is an example of a product sustained by a single US funding agency, at a University
by the commitment and force of personality of its PI. It is a wildly successful batch scheduling system
used all over the globe. The common element for these single institution products is the people involved.
Counter examples of products that are fading away are PhedEx, HPSS, and gridFTP. There are no clear
owners of these software packages. PhedEx was under-supported and the CMS experiment decided to
move to the community supported RUCIO tool. HPSS is indifferently maintained by IBM and the HEP
community believes gridFTP will die out in this community because the Globus tool kit has been moved
to closed source.

The above gives two models of supporting software over many decades. However both demonstrate
that it is the people involved that determine longevity success or failure.

3 SOFTWARE, TRAINING, CAREERS
The second session of contributions focused on more general software experiences, including: the
Software Sustainability Institute, a UK organization that works to improve research software; Astropy,
a community that develops software for astronomy; The Carpentries, a community that develops and
delivers training material, including for research software; the HSF and IRIS-HEP training activities that
use The Carpentries model with content specialized for HEP; research software engineering, a specialized
role that sits at the intersection of research and software engineering; and the Snowmass 2021 activity as
a means to build community consensus around some of these ideas and potential solutions.

3.1 Software Sustainability Institute (SSI)
The Software Sustainability Institute (SSI) (Crouch et al., 2013) was established in 2010, with support
from the UK research councils, to improve the quality of software used by researchers. Over the last
ten years, it has provided a wide range of resources – including expertise, services, tools, events, policy,
guidance, data and opportunities – creating a national facility for cultivating better, more sustainable,
research software to enable world-class research.

The work of the SSI is split into five areas: software consultancy, training, community building,
policy, and outreach. When the SSI first started, the focus was on consultancy. However, to increase the
impact of its work, it was clear that other activities were required that scaled up the number of people
who could benefit. By delivering training and establishing communities of practice, who could then
takeover the work of improving research software practice themselves, the SSI was able to reach a much
wider audience and gain from bringing together the community to identify and address key challenges,
such as recognition for software development and maintenance. By collecting evidence on the research
community’s use of software, it was possible to argue for changes in policy. Each part of the SSI informs
the work of the rest.

Part of this strategy is helping focus individual efforts, knitting them together, and amplifying them. We
helped universities in the UK deliver Carpentries training workshops, coordinating requests for instructors
and supporting local hosts. This has gone from 7 workshops in 2012 to 57 in the last 12 months, with
the UK contributing to the global Carpentries community by developing and maintaining lessons. Our
Fellowship program (Sufi and Jay, 2018) has helped bring together a cohort of over 150 individuals
championing software practice in their own domains. This has enabled them to work together to deliver

8/18

domain-specific initiatives or tackle challenges such as helping make research open and reproducible. The
role of the Research Software Engineer was born21 from a discussion session at the SSI’s Collaborations
Workshop in 2012 on how to achieve recognition for working on research software and, with coordination
and backbone support from the SSI, has become a worldwide movement that has led to the formation of
new job titles, career paths and a professional society22.

However, to achieve cultural change, it is also necessary to change systems and policy. The SSI has
supported this through the collection and publishing of data, including the 2014 UK Research Software
Survey (Hettrick, 2018) and ongoing international RSE surveys (Philippe et al., 2019). This feeds into the
campaigning work the SSI does to gain recognition for the fundamental and underpinning role software
plays in research, and the development of policies and guidance - in collaboration with other organizations
- to ensure that software is reliable, reproducible and reusable.

Research software sustainability, computational and data skills, and career paths for research software
professionals are intrinsically linked. The Software Sustainability Institute was one of the first organiza-
tions working to improve practice in this space, but it can’t be the last. To achieve a lasting impact, in
domains such as High Energy Physics, there must be support for the formation of communities of practice
to ensure the sharing, learning and growing of practice and process around software sustainability.

3.2 Astropy
Astropy23 started as a community-developed Python library aimed at helping astronomers perform their
research (Astropy Collaboration et al., 2013). This library (i.e., the installable Python package astropy)
is both open source and open development, and contains core functionality that all or most astronomers
use on a regular basis. Astropy has since grown into the broader, community-oriented “Astropy Project,”
which is both an ecosystem of software packages aimed at astronomers and physicists (including the
Astropy core library and other, domain-specific packages) and the community that supports and uses this
code (i.e., the developers, maintainers, users, educators, researchers, etc.). The core Astropy library now
serves as a base package and exemplar of the Project’s values (community oriented, open source, open
development) upon which more focused packages are built (Astropy Collaboration et al., 2018). In the ∼8
years since its inception, Astropy and the affiliated ecosystem of packages have become a fundamental
part of the astronomical research toolkit (for example, the Astropy core library summary papers currently
receive about 100 citations per month, but the rate is still increasing).

The Astropy Project contains an ecosystem of packages, but this is an ecosystem within an ecosystem:
The broader set of more general Python packages that enable the “Python scientific software stack.”
Within this context, the Astropy ecosystem is built on the Astropy core library, which is built on and
parallel to the scientific analysis and visualization ecosystem (e.g., scipy, matplotlib, pandas), which is
built on the core numerical and functional ecosystem (e.g., numpy, Jupyter, Cython). In reality, these
ecosystems are not as stacked as they are inter-connected at the software level, but it is important to
acknowledge that the communities oriented around these ecosystems may not be as connected. From the
perspective of software sustainability, this can become a problem, both because it can create a disconnect
between large user groups and developers, but also because it inhibits spreading maintenance and support
work over a larger pool of contributors.

A key goal of the Astropy Project is to empower scientists and scientific software developers to write
their own software within the Astropy ecosystem, but to also encourage communication and contribution
back upstream through the whole software stack. One of the ways we enable this is by providing a
package template24 to help scientists package their code, which implicitly encourages them to adopt the
open source values and the software standards (for testing, documentation, and packaging) of the Astropy
Project. However, there are many other key aspects of software sustainability that go beyond sustaining
the software stack and Python ecosystem. In particular, within Astropy, we have focused on:

• maintaining code and adapting it for continued utility,
• supporting contributors and training new ones, and
• educating and growing the user base.

21https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
22https://society-rse.org/
23https://www.astropy.org/
24http://github.com/astropy/package-template

9/18

https://www.software.ac.uk/blog/2016-08-17-not-so-brief-history-research-software-engineers-0
https://society-rse.org/
https://www.astropy.org/
http://github.com/astropy/package-template

For the code, we prioritize developing and maintaining the infrastructure behind the code, testing the
code with continuous integration services, providing regular releases, and developing new features driven
by community input. As an open source and open development project, most of our work is done on
GitHub, tested with continuous integration services (CircleCI, TravisCI), and our documentation is built
automatically with Sphinx on ReadtheDocs.

For contributors, we have an explicit code of conduct25, we are now beginning to fund core maintainers,
and we have recently established a new, clearer governance structure for the project26. Our code of conduct
has been critical for establishing clear expectations for our contributors, maintainers, and users, both about
how to behave and in defining responsibilities. Lastly, while historically much of the development work
within Astropy has been done in volunteer time, we now have funding from the Moore Foundation for
Sustaining and Growing the project (which we are using to pay developers, to establish a better contributor
pipeline, and to formalize our governance structure).

For supporting and training users, we run workshops as a part of career development tracks at
conferences (e.g., the American Astronomical Society meetings), and provide many points of access
between users and maintainers (mailing lists, Slack group, GitHub issues). We have also found that the
open development model that we use has naturally created many entry points into the user-to-maintainer
pipeline, allowing people with different experiences and training to join the Project in different capacities.
While we have many success stories with empowering users to become “bug reporters” or educators,
we are still in the process of figuring out how to foster the next steps in the pipeline (empowering
“power-users” to contribute and take on leadership roles in the project).

A large component of why the Astropy Project has been sustainable thus far is that we exist within
an established ecosystem that is maintained by, and with, other communities (i.e., the scientific Python
stack). However, the Astropy Project is now consciously fostering long-term sustainability by focusing on
building our community, and empowering that community to lead and drive itself.

3.3 The Carpentries
The Carpentries is a community-led project27 that focuses on developing and providing training in the
core computational and data skills for efficient, shareable, and reproducible research. Short, intensive,
hands-on Carpentries workshops give researchers the opportunity to engage in deliberate practice as they
learn these skills, starting with strong foundational skills and receiving feedback as they learn. Carpentries
workshops are designed for people with little to no prior computational experience and teach not only an
introduction to programming, but also the perspectives and skills for developing software in an applied
context. This model has been shown to be effective, with the vast majority (more than 90%), of learners
saying that participating in the workshop was worth their time and led to improvements in their data
management and data analysis skills. Since 2012, The Carpentries has trained over 57,000 learners in 61
countries and trained more than 2,400 volunteer instructors to deliver over 30 collaboratively-developed,
openly-licensed lessons. In addition, The Carpentries supports its community in developing, sharing,
and collaborating on lessons beyond its core curricula, with its Incubator and CarpentriesLab projects28.
As of September 2020, these projects contain more than 30 contributed lessons on topics ranging from
containerization to fMRI image analysis.

As a volunteer-led project, the success of The Carpentries is predicated on its ability to sustainability
engage and support an extensive network of volunteers with a wide variety of skill sets, technical expertise
levels, and domain backgrounds. Its sustainability model rests on six core principles:

1. Gather people with shared values - The Carpentries community grew organically around an implied
set of values, which The Carpentries has since formally identified through a community-driven
process, and articulated29. The Carpentries focuses on creating a welcoming environment for
individuals who already share these values.

2. Provide multiple avenues to contribution - The Carpentries recognizes that people have different
capabilities and access to different resources. It strives to provide a wide range of options for people
to get involved - to maximize community energy and accessibility.

25https://www.astropy.org/code_of_conduct.html
26https://github.com/astropy/astropy-APEs/pull/61
27The Carpentries is a fiscally-sponsored project of Community Initiatives, a 501(c)3 non-profit based in California, USA.
28https://carpentries.org/community-lessons/
29https://carpentries.org/values/

10/18

https://www.astropy.org/code_of_conduct.html
https://github.com/astropy/astropy-APEs/pull/61
https://carpentries.org/community-lessons/
https://carpentries.org/values/

3. Value all contributions - The strength of The Carpentries lessons depend on continuous improvement
from its community. The Carpentries welcomes all contributions, from typo corrections to creating
entire new curricula, and each of the 2400 instructors have contributed to the lessons.

4. Provide growth opportunities - The Carpentries works with its volunteers to provide valuable skills
that they can use for their current or future jobs. Depending on individual interests and career
trajectories, this ranges from pedagogical training and teaching experience to experience with
specific technologies and community development.

5. Reward volunteerism - The Carpentries recognizes its volunteers through multiple avenues, includ-
ing certification, authorship credit, community service awards30, and visibility on our website31.
The Carpentries works with volunteers’ employers to recognize their volunteer work through
memoranda of understanding.

6. Focus on resource creation - Lastly, The Carpentries focuses on producing high-quality documenta-
tion and other resources for every aspect of its work. By externalizing the expertise of its community
members, The Carpentries lowers barriers to involvement and increase the ability of its community
to carry out their mission.

These six aspects of its sustainability model have enabled The Carpentries to grow from a handful
of instructors teaching a few workshops a year to a global community of thousands, collaboratively
developing and delivering nearly 500 high-quality training events for 12,000 learners per year.

3.4 HSF training
Having sustainable software requires that the research community be educated such that they can fully
harness the capabilities of software in the present and that this expertise persist as senior generations
retire and are replaced by younger generations of scientists. The HEP Software Foundation appreciates
this and has formalized its role by creating a group dedicated to training32 with the mission to help the
research community to provide training in the computing skills needed for researchers to produce high
quality and sustainable software. This group develops training materials and executes workshops with a
pedagogical approach similar to that of the Software Carpentries33 rooted in five principles: 1) hands-on,
2) student-centric, 3) experiment agnostic, 4) re-useable, and 5) open and accessible.

These lessons are cast in a style inherited from The Carpentries and housed on an open source
HSF-training GitHub space34 such that any individual can contribute. A comprehensive overview over all
planned and completed training modules is given in the HSF Training Curriculum35. As lessons become
more mature, video playlists are developed to facilitate a broader reach and virtual instruction. These
videos are housed on the HSF YouTube channel36. The developed content aims to be complementary to
that already available within the curriculum of The Carpentries and covers topics ranging from continuous
integration to machine learning and code documentation.

Training events are held in two formats: 1) in-person and 2) virtual. Each training event requires the
participation of a Facilitator to be the primary organizer, one or more Instructors to develop the event’s
material and drive the event itself, and a cohort of Mentors to serve as teaching assistants to provide
individual instruction by ensuring that the ratio of participants to educators does not exceed five. In-person
events are held for audiences of up to 50 participants and the training materials are presented and worked
through in real time by the instructor with support from the mentors. Virtual events are organized using
the “flipped classroom”37 paradigm in which individuals work through self-guided materials in the form
of training video playlists that complement the lesson web page at their own pace, with support from
educators on a virtual chat platform (e.g., Slack/Mattermost) and then gather in small groups with mentors
after a period of a few days to debug any confusion or explore more advanced topics. In both training
formats, it is essential that there be time for both the core training materials as well as the ability to

30https://carpentries.org/awards/
31https://carpentries.org/instructors/
32https://hepsoftwarefoundation.org/workinggroups/training.html
33https://software-carpentry.org/
34https://github.com/hsf-training
35https://hepsoftwarefoundation.org/training/curriculum.html
36https://www.youtube.com/watch?v=Q-vuR4PJh2c
37https://en.wikipedia.org/wiki/Flipped_classroom

11/18

https://carpentries.org/awards/
https://carpentries.org/instructors/
https://hepsoftwarefoundation.org/workinggroups/training.html
https://software-carpentry.org/
https://github.com/hsf-training
https://hepsoftwarefoundation.org/training/curriculum.html
https://www.youtube.com/watch?v=Q-vuR4PJh2c
https://en.wikipedia.org/wiki/Flipped_classroom

explore advanced topics and application/experiment specific issues. The level of learning is gauged by
self-reported estimates by participants and in both formats, it is generally reported to be successful in
achieving the learning goals of the training event. An in-depth guide to organizing training events in both
formats is available on the HSF training website38.

In the future, we would like to continue to develop the core content of our curriculum (e.g., “C++
for HEP” training), collaborate more closely with The Carpentries in the context of the Incubator39 to
make the lesson content more available to a wider audience for both consumption and development,
and understand what aspects of training in computing factorizes into and can be implemented through
augmentation of university curricula. Finally, we also feel that a concrete commitment through the creation
of career paths and other incentives with enhanced focus on training will facilitate more effective future
progress since at the moment all aspects of the HSF training group and their community of educators is
performed on a voluntary basis by individuals who recognize its importance to our long-term success as a
field.

3.5 Research Software Engineers
The breadth and sophistication of software development skills required to build and maintain research
software projects are increasing at an unprecedented pace. Researchers thrust into the role of developing
software, with little or no software development experience or training, often employ ad-hoc, potentially
detrimental development methods. It has become clear in recent years that the level of effort and
required skills to keep pace with computer and programming tools is not in the repertoire of the average
researcher (Merali, 2010). When novices develop software or when researchers are more focused on
research publications than on producing quality software, problems can arise that limit its usability,
sustainability, and even accuracy (Miller, 2006; Bhandari Neupane et al., 2019). It is not uncommon for
software tools and research code to become unusable after a project ends or the primary developer leaves.

One solution to the problems facing research software is the emergence of the Research Software
Engineer (RSE). Coined in 2012, the term Research Software Engineer has been broadly used as an
inclusive title to describe anyone who understands and cares about both good software and good research40

(Baxter et al., 2012). More specifically, an RSE is someone who views the development of research
software as the primary output of their work efforts. This distinguishes RSEs from domain researchers
who view research publications as the primary focus of their work.

By combining an intimate knowledge of research with the skills of a professional software engineer,
RSEs have the ability to transform traditional computational research by directly compensating for a
domain researchers’ lack of software development expertise. An experienced RSE has the tools and
knowledge to allow them to work collaboratively with domain researchers in a manner that ensures the
quality, performance, reliability, and sustainability of the software.

In addition to the software development and technical expertise they bring to a project, RSEs serve
two other key roles in the research software ecosystem. First, RSEs serve as leaders and mentors to
novice software developers, including undergraduates, graduate students, and postdoctoral researchers. By
providing mentorship on research software projects, RSEs serve to elevate domain scientist’s development
through exposure to professional best practices. Second, RSEs are increasingly recruited to design and
deliver software training programs to students and researchers. These training programs are uniquely
beneficial as RSEs understand the technology, audience, and requirements of research software.

Often the most common entrance into an RSE career begins with an early-career researcher who
shows interest in software development, or has it thrust upon them (Brett et al., 2017). Recently, however,
national and international RSE organizations have formed to support this important work and provide a
community for people in RSE roles, advocate for the role, and support the formation and formalization of
an RSE career path41.

3.6 Software maintenance and capacity building in HEP
The Particle Physics Community Planning Exercise, Snowmass 202142, organized by the Division of
Particles and Fields of the American Physical Society, is a scientific study that provides an opportunity

38https://hepsoftwarefoundation.org/training/howto-event.html
39https://carpentries.org/involved-lessons/
40https://society-rse.org/
41https://researchsoftware.org/assoc.html
42https://snowmass21.org

12/18

https://hepsoftwarefoundation.org/training/howto-event.html
https://carpentries.org/involved-lessons/
https://society-rse.org/
https://researchsoftware.org/assoc.html
https://snowmass21.org

for the particle physics community to come together to identify and document a scientific vision for the
future of particle physics in the U.S. and its international partners. Snowmass includes ten Frontiers
(focus areas). Two of these, the Community Engagement and Computational Frontiers, aim to discuss
issues related to software sustainability, and to suggest recommendations for improvement.

These issues include software documentation as a key part of software maintenance. Well-documented
software provides a good example for the people that inherit such software. This decreases the chances
that they will rewrite it, which often happens if the software is not understood or liked, and such rewriting
is a waste of time and effort. Good documentation also serve as a excellent educational platform when the
software is passed on to the younger generation. Another key issue is increasing diversity and inclusion in
the computing and software fields.

4 DISCUSSION
After the talks, all remaining participants (about 25) were assigned to one of five breakout groups and
asked to talk about the workshop goals, and to propose three specific actions that the HEP community
could take to make software more sustainable. At least two were intended to be things that could be
accomplished within two years, or at least that would make significant progress that would lead to a
measurable difference within two years.

4.1 Ideas
Group 1 focused on developing better software, including how to help developers ensure that their software
worked on multiple platforms through continuous integration, perhaps including a collaborative effort
to build a continuous integration platform for HEP. They also discussed how to improve documentation,
including possible incentives such as awards and how documentation fits with citation. Finally, they
discussed career paths for those who work in computing and software.

Group 2 started by discussing career paths, comparing academia, national laboratories, and industry.
They also discussed how emphasizing software work affected these options, particularly as compared to
emphasizing hardware work, which seems in part to be related to software sometimes not being seen as a
core part of an experiment. Different HEP experiments also seem to have different policies, cultures, and
practices with respect to the value of software and its developers and maintainers. When talking about
actions, they felt that it was important for software work to be rewarded through publication credit, and
that the national laboratories are currently doing a good job with this. To go further, they suggested that
all software created as part of experiments must be written up in a software paper and that this must be
cited by experiments. They also suggested that it was important to recognize that longer term positions
are essential for software to be sustained, as otherwise knowledge is lost too quickly. To impact funding
agencies, they suggest having HEP RSEs on the funding panels and on funder advisory committees. To
impact universities and laboratories, they suggest having HEP RSEs on hiring committees. And to impact
experiments, the suggest a “service pledge”, where an institution needs to have software professionals and
contribute their effort in order to have continued access to the collaboration (access to collision data, etc.)

Group 3 started in the present by discussing how COVID-19 had changed research, focusing on the
rise of virtual meetings. While on one hand, virtual meetings are more sustainable and scalable, lower
cost and easier to participate in, they also don’t involve the same commitment from attendees as when
they travel to an event. It’s much easier to register for an event, particularly if there is no registration cost,
that to actual commit the time for the event. For example, the recent PyHEP conference had about 1000
people who registered, with actual attendance between 40 and 400 at various times. Furthermore, the
financial burden of participation in a given event is considerably lower as there are no costs associated
with travel and housing and generally the registration fee is considerably lower or non-existent. The group
asked, given that current budgets include travel costs that are not being spent for travel, how could these
budgeted funds be reused? They examined ideas to incentivize participation by more people using money,
particularly in carpentries-style training events. One form this could take is to pay some participants as a
means to get their undivided attention, which could be done selectively and could be used as a way to get
participants to commit to being a training/mentor later on. Similarly, mentors and instructors could be
paid for their time and effort to help ensure a standard of quality that does not only rely on “the good will”
of those teaching. This concept of paying for instruction can be extended to the development of training
content, thereby allowing for a core HEP software curriculum to be developed more rapidly and reward,

13/18

in a concrete way, those who commit time and energy to doing so. Another possible method to ensure
commitment of attendees is to provide certificates of completion requests.

Group 4 discussed three separate topics. First, the fact that C++ skills are needed for those that will
do research, development, maintenance, and operations for software needs to be emphasized, particularly
as there are performance-critical parts of data processing and analysis, where C++ delivers much faster
code than Python. Thus, C++ training needs to be brought to the same level of maturity and success as
Python training, for the fraction of the software community who will need it. The FNAL C++ course is an
example of a successful course, but it is not immediately scalable. Last year (2019), 50 people attended,
and 30 completed the course, with positive feedback and a high level of engagement. Second, given the
increased use and sharing of containers, the HEP community needs to develop best practices (and possibly
tools, or adopt industry solutions) for their use in sustainable software development. Third, there is a need
to develop a plan to provide better incentives and mentoring for young scientists to engage in software and
computing. Specifically, this need is for an appropriately balanced mixture of RSEs (professionals) and
scientists working together to create a sustainable situation with both the software and pipeline of talent
that works on the software. However, the appropriate incentives and professional development aspects are
unclear.

Group 5 discussed a number of distinct topics. One was the fact that application containers are
not important, and one possible path to facilitate sustainability is to use Docker locally, with automatic
conversion to facility-dependent HPC container technology, which requires an adoption of standards,
such as the Linux flavor and version that is maintained inside the container. A second idea was to
use preexisting open software tools to generate project templates for new projects, including testing,
documentation, and other software quality control procedures. A third idea was to hold a workshop to
identify places for common software, such as for data management, tracking software, user interfaces,
and software delivery. This would include a systematic review of current codebases. A fourth idea was
to identify opportunities for services needed by HEP that experiments or other groups are interested in
would co-develop, to eventually reduce costs. A fifth idea was to collaborate with organizations trying
to professionalize software development and cyberinfrastructure in academic environments. This is
currently being explored in some HPC centers and with infrastructure providers such as those providing
gateway services. This would provide a career path for those researchers that take code development and
cyberinfrastructure as their core role.

4.2 Potential actions
After each group proposed its three actions, the participants collectively voted on them, with each
participant asked to vote for three items. Table 2 contains the actions and the votes.

4.3 Next steps
Given these suggestions and the discussion in the workshop, we recommend that the IRIS-HEP project
and the HSF consider the following potential actions, related to training, software, and people.

4.3.1 Training
• Repurpose nominal funding from in-person training (travel, lodging, food) to pay for the develop-

ment of training material. This could be done through a set of limited-duration Visiting Pedagogy
Fellowships. Each would be aimed at either an existing need for curricular material (as defined by
the HSF/IRIS-HEP training group) or proposed by the fellow, but agreed to by the training group.
A fellowship project could create initial content for a module, improve the initial content developed
by someone else, or both.

– As a concrete need identified today, the large body of training material being used in upcoming
HEP C++ training43 could be converted into a more sustainable Carpentries style.

– A second example is found in the 2020 US-ATLAS Computing Bootcamp 44, held virtu-
ally with 44 participants during August 2020. The entire bootcamp had closed captions
professionally provided by White Coat Captioning, which facilitated both a deaf bootcamp
organizer and deaf participant to fully engage in the bootcamp, and was additionally used by

43https://indico.cern.ch/event/946584/
44https://indico.cern.ch/event/933434/

14/18

https://indico.cern.ch/event/946584/
https://indico.cern.ch/event/933434/

#
votes

Proposed action Proposing
group

10 Repurpose nominal funding from in-person training to pay content developers 3

8 Promote recognition and financial support/career paths: Have HEP RSEs on the
funding panels / funder advisory committees / hiring committees

2

4 Incentives and professional development, some certification? RSEs training
incoming HEP students. Mentoring

4

4 Organize a workshop to explore and define common software and services,
including libraries, data and computational services, and gateways (VREs) and
analysis services

5

3 Figure out how to develop career paths for the people who work in this 1

3 C++ training for HEP (that is sustainable and scalable). Modern C++. This is
now a speciality. Make this equal with detector development specialism.

4

2 Repurpose nominal funding from in-person training to pay participants 3

2 Incentivize training participant to instructor transitions 3

2 Use of containers (to support analysis; well developed in ATLAS). Sustainable
and integrated with repo + CI. Develop best practices

4

2 Define 2 or 3 common development environments as community accepted
standards, then make these available via application container technology (e.g.
Docker), and include project templates for testing, documentation and more.
Proposed name (tongue in cheek): the HEP software development kit (HPSDK).

5

0 Expand the use CI or other testing, to as many platforms as feasible & reasonable 1

0 Figure out how to reward documentation 1

0 Create a policy at experiment/community level that all software created as part
of experiments must be written up in a software paper (something that gets a
DOI) and that this must be cited by experiments

2

0 Have software professionals and contribute their effort from your organization
(pledge agreements)

2

Table 2. Proposed actions and attendees votes (each attendee present at the end of the meeting was
allowed to vote for 3 options)

other students to help follow the presented material. All of the material created and taught at
the bootcamp is publicly available45, and some of the modules taught at the 2020 bootcamp
have been made into official HSF training modules46.

• Invest in scalability of training. IRIS-HEP and HSF are collaborating on software training, setting
up a model of training across HEP. A framework of a scalable and sustainable software training
model has been established that is still its initial phase. Hundreds of people have been trained at
several software training and outreach events. The training framework elements47 are:

– publicly shareable software training material

– a community of trainers

– feedback surveys on usefulness of training

– improvement and funding to sustain training

45https://matthewfeickert.github.io/usatlas-computing-bootcamp-2020/
46https://github.com/hsf-training
47https://hepsoftwarefoundation.org/workinggroups/training.html

15/18

 https://matthewfeickert.github.io/usatlas-computing-bootcamp-2020/
https://github.com/hsf-training
https://hepsoftwarefoundation.org/workinggroups/training.html

Scalability means maximising the impact of this work with the least involvement. Two main factors
for scalability are human resources and costs. To self-sustain, scale, and survive means having the
ability to train with minimal funding and without direct involvement by HSF or IRIS-HEP. While
continuing the existing work, and developing and evolving the training material, we recommend
that next major step be spreading the training events and training experts geographically to keep the
costs low, and mostly moving to an online training model, reducing in-person training. Training
should be structured such that only a minimal number of people are needed to keep the training
infrastructure running and identify what are additional costs for additional events. We need a
funding model beyond IRIS-HEP. Mentoring the trainers/mentors to increase the community is
an important aspect of sustaining the workforce. In addition, giving them recognition can keep
the community vibrant, motivated and help in careers. People should continue to see value in our
training and how it can advance our field.

4.3.2 Software
• Explicitly consider and invest in tools that enable and support software sustainability. A concrete

need is to renew the HSF’s template for C++ projects48, moving to a cookiecutter49 design and
revamping its CMake template with modern best practice. Likewise, another need is to work with
Scikit-HEP to develop a similar project template for Python modules50. These projects would be
intended to support the HP community generally, including IRIS-HEP, so that IRIS-HEP would
contribute to the HSF templates, rather than creating its own. Finally, the HEP community could
contribute to Projects Carpentry51 lesson development, which is currently under discussion.

• Increasingly code, and to a lesser extent data, is being shared via containers such as through Docker
and Singularity. Containers bring the convenience of execution environment and portability but
also challenges in terms of sustainability. IRIS-HEP could play a role in developing best practices
and technical solutions that support the use of containers for the sharing and transfer of knowledge
and code (e.g., between students to evolve an analysis.) For example, through creation of a ‘sharing
technologies forum’, and bringing in notebooks and model sharing that leverage the kubernetes-
based infrastructure of the IRIS-HEP Scalable Systems Laboratory and OSG-LHC. The ongoing
Snowmass process in the US could provide one of several avenues for a testbed for supporting how
people share knowledge, code and data.

• While issues with sustainability of software and related personnel are well identified, Snowmass
2021 provides an opportunity to have these issues heard, especially at the centers of powers and
funding. We submitted a letter of interest52 on this topic to start this conversation.

• Organize a workshop exploring common software and services across HEP, perhaps associated
with a major conference such as ACAT or CHEP. Focus on a particular topic (e.g., small matrix
linear algebra libraries) could increase the chances of a successful outcome here.

4.3.3 People
• Organize a workshop exploring career opportunities within and outside HEP, as key to sustainability

of HEP software is sustainability of its personnel. To make this productive, department chairs and
laboratory management would need to attend.

• Advocate to establish rewards for software contribution and innovation (similar to how CPAD53

does this for the HEP hardware). Many experiments (like CMS and ATLAS) are already recognizing
software contributions of young scientists by giving awards. EPS already offers a few HEP prizes,
and in 2019 Josh Bendavid won the Young Physicist prize and was cited, amongst other things, for
‘software development’. The list of APS awards does not seem to have such an award. 54 What we

48https://github.com/HSF/tools
49https://cookiecutter.readthedocs.io/
50https://scikit-hep.org/
51https://github.com/carpentries-incubator/proposals/issues/2
52https://www.snowmass21.org/docs/files/summaries/CommF/SNOWMASS21-CommF0_

CommF4-CompF0_CompF7_DanielSKatz-038.pdf
53https://www.anl.gov/hep/coordinating-panel-for-advanced-detectors
54https://www.aps.org/programs/honors/listings.cfm

16/18

https://github.com/HSF/tools
https://cookiecutter.readthedocs.io/
https://scikit-hep.org/
https://github.com/carpentries-incubator/proposals/issues/2
https://www.snowmass21.org/docs/files/summaries/CommF/SNOWMASS21-CommF0_CommF4-CompF0_CompF7_DanielSKatz-038.pdf
https://www.snowmass21.org/docs/files/summaries/CommF/SNOWMASS21-CommF0_CommF4-CompF0_CompF7_DanielSKatz-038.pdf
https://www.anl.gov/hep/coordinating-panel-for-advanced-detectors
https://www.aps.org/programs/honors/listings.cfm

need and recommend is not one award but a few number of them for software contributions and
even software training recognition. These rewards will be a good way to keep the talent motivated.

ACKNOWLEDGMENTS
We thank the attendees for their active participation in the workshop. We also thank IRIS-HEP and
HSF for the opportunity to gather to discuss these issues and suggest paths forward. This workshop was
partially supported through the U.S. National Science Foundation (NSF) under Cooperative Agreement
OAC-1836650.

REFERENCES
Albrand, S., Fulachier, J., Collot, J., and Lambert, F. (2005). The TAG Collector: A Tool for ATLAS

Code Release Management. In Proceedings of Computing in High Energy Physics and Nuclear Physics
2004. https://doi.org/10.5170/CERN-2005-002.531.

Astropy Collaboration et al. (2018). The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package. Astronomical Journal, 156(3):123. https://doi.org/10.3847/
1538-3881/aabc4f.

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft,
T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley, A., Crighton, N., Barbary,
K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair, P. H., Unther, H. M., Deil, C., Woillez, J.,
Conseil, S., Kramer, R., Turner, J. E. H., Singer, L., Fox, R., Weaver, B. A., Zabalza, V., Edwards, Z. I.,
Azalee Bostroem, K., Burke, D. J., Casey, A. R., Crawford, S. M., Dencheva, N., Ely, J., Jenness, T.,
Labrie, K., Lim, P. L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., and Streicher, O.
(2013). Astropy: A community Python package for astronomy. Astronomy and Astrophysics, 558:A33.
https://doi.org/10.1051/0004-6361/201322068.

ATLAS Collaboration (2019). Athena. https://doi.org/10.5281/zenodo.3933810.
Baxter, R., Chue Hong, N., Gorissen, D., Hetherington, J., and Todorov, I. (2012). The Research Software

Engineer. In Proceedings of Digital Research 2012 Conference (DR12). http://purl.org/net/
epubs/work/63787.

Bhandari Neupane, J., Neupane, R. P., Luo, Y., Yoshida, W. Y., Sun, R., and Williams, P. G. (2019).
Characterization of Leptazolines A-D, Polar Oxazolines from the Cyanobacterium Leptolyngbya sp.,
Reveals a Glitch with the ”Willoughby-Hoye” Scripts for Calculating NMR Chemical Shifts. Organic
Letters, 21(20):8449–8453. https://doi.org/10.1021/acs.orglett.9b03216.

Brett, A., Croucher, M., Haines, R., Hettrick, S., Hetherington, J., Stillwell, M., and Wyatt, C. (2017).
Research Software Engineers: State of the Nation. https://doi.org/10.5281/zenodo.
495360.

Brun, R., Carminati, F., and Carminati, G. G., editors (2012). From the WEB to the GRID and Beyond,
Computing Paradigms Driven by High-Energy Physics. Springer. https://doi.org/10.1007/
978-3-642-23157-5.

Cabunoc Mayes, A. (2020). Work open, lead open. Chan-Zuckerberg Initiative (CZI) Essential Open
Source Software (EOSS) Kickoff Meeting, Berkeley, California, USA.

Couturier, B., Eulisse, G., Grasland, H., Hegner, B., Jouvin, M., Kane, M., Katz, D. S., Kuhr, T., Lange,
D., Lorenzo, P. M., Ritter, M., Stewart, G. A., and Valassi, A. (2017). HEP software foundation
community white paper working group - software development, deployment and validation. https:
//arxiv.org/abs/1712.07959.

Crouch, S., Chue Hong, N. P., Hettrick, S., Jackson, M., Pawlik, A., Sufi, S., Carr, L., De Roure, D.,
Goble, C., and Parsons, M. (2013). The Software Sustainability Institute: Changing Research Software
Attitudes and Practices. Computing in Science & Engineering, 15(6). https://doi.org/10.
1109/MCSE.2013.133.

Elmer, P., Neubauer, M., and Sokoloff, M. D. (2017). Strategic Plan for a Scientific Software Innovation
Institute (S2I2) for High Energy Physics. https://arxiv.org/abs/1712.06592.

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski, B. R., and Futral, S.
(2015). The Spack package manager: bringing order to HPC software chaos. In SC15: International
Conference for High-Performance Computing, Networking, Storage and Analysis, pages 1–12, Los

17/18

https://doi.org/10.5170/CERN-2005-002.531
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.3847/1538-3881/aabc4f
https://doi.org/10.1051/0004-6361/201322068
https://doi.org/10.5281/zenodo.3933810
http://purl.org/net/epubs/work/63787
http://purl.org/net/epubs/work/63787
https://doi.org/10.1021/acs.orglett.9b03216
https://doi.org/10.5281/zenodo.495360
https://doi.org/10.5281/zenodo.495360
https://doi.org/10.1007/978-3-642-23157-5
https://doi.org/10.1007/978-3-642-23157-5
https://arxiv.org/abs/1712.07959
https://arxiv.org/abs/1712.07959
https://doi.org/10.1109/MCSE.2013.133
https://doi.org/10.1109/MCSE.2013.133
https://arxiv.org/abs/1712.06592

Alamitos, CA, USA. IEEE Computer Society. https://doi.ieeecomputersociety.org/
10.1145/2807591.2807623.

Hegner, B., Morgan, B., and Stewart, G. A. (2020). Proposal for HSF Project Best Practices. https:
//doi.org/10.5281/zenodo.3965581.

Hettrick, S. (2018). UK Research Software Survey 2014. https://doi.org/10.5281/zenodo.
1183562.

Hinsen, K. (2019). Dealing with software collapse. Computing in Science & Engineering, 21(3):104—-
108. https://doi.org/10.1109/MCSE.2019.2900945.

Jouvin, M., Harvey, J., McNab, A., Sexton-Kennedy, E., and Wenaus, T. (2016). Software Licence
Agreements HSF Policy Guidelines. https://doi.org/10.5281/zenodo.1469636.

Labra, E. C., Ali, F., Moyse, E., Couturier, B., and Bianchi, R. M. (2020). Hsf/phoenix: Interim phoenix
version. https://doi.org/10.5281/zenodo.3925404.

Merali, Z. (2010). Computational Science: ... Error ... Why Scientific Programming Does Not Compute).
Nature, 467:775–777. https://doi.org/10.1038/467775a.

Miller, G. (2006). A Scientist’s Nightmare: Software Problem Leads to Five Retractions. Science,
314(5807):1856–1857. 10.1126/science.314.5807.1856.

Philippe, O., Hammitzsch, M., Janosch, S., van der Walt, A., van Werkhoven, B., Hettrick, S., Katz,
D. S., Leinweber, K., Gesing, S., Druskat, S., Henwood, S., May, N. R., Lohani, N. P., and Sinha,
M. (2019). softwaresaved/international-survey: Public release for 2018 results (version 2018-v.1.0.2).
http://doi.org/10.5281/zenodo.2585783.

Porcelli, J. (2013). How to grow users into active community members and get your community more
engaged. 2013 Open Source Software Summit, Washington, DC, USA.

Salzburger, A., Schlag, B., Gumpert, C., Klimpel, F., Grasland, H., Hrdinka, J., Kiehn, M., Calace, N.,
Gessinger, P., Langenberg, R., and Ai, X. (2020). Acts project: v0.20.00. https://doi.org/10.
5281/zenodo.3741401.

Schreiner, H. (2020). Modern CMake. https://gitlab.com/CLIUtils/modern-cmake.
Sufi, S. and Jay, C. (2018). Raising the status of software in research: A survey-based evaluation of

the software sustainability institute fellowship programme [version 1; peer review: 3 approved with
reservations]. F1000Research, 7(1599). https://doi.org/10.12688/f1000research.
16231.1.

The HEP Software Foundation et al. (2019). A roadmap for HEP software and computing R&D for
the 2020s. Computing and Software for Big Science, 3(1):7. https://doi.org/10.1007/
s41781-018-0018-8.

18/18

https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
https://doi.ieeecomputersociety.org/10.1145/2807591.2807623
https://doi.org/10.5281/zenodo.3965581
https://doi.org/10.5281/zenodo.3965581
https://doi.org/10.5281/zenodo.1183562
https://doi.org/10.5281/zenodo.1183562
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.5281/zenodo.1469636
https://doi.org/10.5281/zenodo.3925404
https://doi.org/10.1038/467775a
10.1126/science.314.5807.1856
http://doi.org/10.5281/zenodo.2585783
https://doi.org/10.5281/zenodo.3741401
https://doi.org/10.5281/zenodo.3741401
https://gitlab.com/CLIUtils/modern-cmake
https://doi.org/10.12688/f1000research.16231.1
https://doi.org/10.12688/f1000research.16231.1
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8

	Introduction
	IRIS-HEP Blueprint process
	Introduction to software sustainability

	HEP experiences
	ATLAS experiences
	CMS experience
	HEP Software Foundation
	Community Software Successes & Failures

	Software, Training, Careers
	Software Sustainability Institute (SSI)
	Astropy
	The Carpentries
	HSF training
	Research Software Engineers
	Software maintenance and capacity building in HEP

	Discussion
	Ideas
	Potential actions
	Next steps
	Training
	Software
	People

	References

