
Toward Formalizing The Emergent Behavior in
Software Engineering

Toufik Mohamed Ailane,Mohammad Abboush,Christoph Knieke,Abram Lawendy,Andreas Rausch
Institute for Software and Systems Engineering (ISSE) , Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Emails: mohamed.toufik.ailane@tu-clausthal.de, mohammad.abboush@tu-clausthal.de,
christoph.knieke@tu-clausthal.de, abram.lawendy@tu-clausthal.de, andreas.rausch@tu-clausthal.de

Abstract—The emergence phenomenon has been widely dis-
cussed in many fields such as: Biology, natural sciences, control
theory, computer science... to name few. Different definitions
and many attempts were made in order to shape one concrete
definition that serves as a reference. In the midst of this
struggle, we propose a new attempt to define the emergence
phenomenon from a software engineering perspective. Whereas
many fields study the phenomenon based on observation and
report, software systems engineering includes the fact that we are
not only observing but further participating in the creation of the
system of interest, giving a different perspective in defining and
understanding the phenomenon. In this paper, we propose both
informal and formal definitions, discuss some characteristics and
list categories of the emergent behavior and how can we harness
such a behavior.

Index Terms—Emergent Behavior, Emergent Systems, Emer-
gent Properties, Software Engineering.

I. INTRODUCTION

Nowadays, software-intensive systems are growing bigger
in terms of complexity and size, for development and
maintenance reasons of such systems, formal definitions and
standards are always preferable, this is more vital when it
comes to safety-critical systems. One major phenomenon that
is hard to formalize and standardize in complex systems is
the emergence phenomenon. More precisely, the emergent
behavior that might take place and the emergent properties
that are desired to obtain. Basically, this is due to the fact
that it is a challenging task to define formally the emergent
behavior within the frame of a specific context or domain.

The emergence phenomenon has been a subject of study
in different fields for a long time including the field of
computer science and software engineering [6], yet it is still
challenging to find one concrete formal definition due to
the obscure nature of the phenomenon. Epistemologically ,
the verb to emerge originates from the Latin word emegere,
which indicates the arise and manifestation of an object out
of something else. Often, The emergent behavior in complex
systems is usually referred to using the sentence: ”the whole
is more than the sum of the parts”. However, this is not
formal enough to be adopted for developing and engineering
computer and software systems. For this reason, in our
endeavor to define and formalize the emergent behavior in

software system, we first define what is the ”the sum of the
parts” (which will turn out to be the design of the system),
and later we conclude what would be ”the whole minus the
sum of the parts”.

The motivation for such work can be seen in the importance
to define and distinguish an emergent behavior in software
systems, as will be shown throughout the rest of the paper,
this type of behaviors can be of two main categories beneficial
or detrimental, as the names indicate, the first pattern of
behaviors usually used to fulfill the emergent properties of a
given system, which can be be based on an some particular
type of design defined at design time and checked at run-
time, the other type of emergent behavior however needs
a continuous analysis, run-time monitoring and forecasting
mechanisms to avoid obtaining it, in safety-critical systems,
this kind of behaviors can lead to catastrophic results.
Hence,understanding and analyzing the emergent behavior is
of high value, during and after the development of software
systems.

In our approach, we go through the software system
development process phase by phase as shown in figure
1. At each phase, we capture the relevant behavior for the
engineering process and check in what way would does the
relevant behavior relate to the emergence phenomenon. In
this way, we make the use of the formal definition of each
type of the relevant behaviors and use it to conclude a formal
definition of the emergent behavior.

The rest of this paper is organized as follows: Section
II provides a brief literature review of the related works that
studied the emergent phenomenon, section III is the core part
of the work presented in this paper, where both the approach
and the results are described in details, section IV provides an
example that further explains the findings and the definitions
that were concluded. In section VI we conclude our work
and highlight the scope of our future work.

II. RELATED WORK

In this section, we review several related works that
discussed the emergence phenomenon from different

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

perspectives and in difference contexts.

One early study that focused on the study and exploitation
of the emergent behavior in computer science is can be
found in [1]. In that study, the author demonstrates a general
understanding of emergence by the fact that the interaction
between elements and their environment at the local level,
governed by a set of intervention rules, leads to new patterns
that relate to emergent behavior. As could be spotted in the
literature over the years, great efforts have been made to study
the phenomenon of emergence from different perspectives.
Seminal contributions have been made in [9] [10] [11]. Some
studies have presented the definition based on the effects of
global behavior on the goals of the complex system, which
can be either beneficial or harmful. For example, the research
in [12] has reported the aspects of emergent misbehavior
by focusing on problematic behavior that might emerge in
software systems without including bugs or component errors.

Static/dynamic and positive/negative emergent behavior
were described in [13] and [14], respectively. The terms
static/dynamic were used to describe the change of the
emergent behavior over time,it is considered dynamic
emergent behavior if and only if emergence has been captured
with respect to time. On the other hand, positive/negative
emergent behavior is used to indicate whether or not the
goals of a system of systems have been achieved.

The predictability of emergent behavior has become a
topic that has attracted research attention. In [15] for
example, the authors have defined the emergent behavior as
a property of the system. This emergence, however, cannot
be predicted from the properties of the components of the
system. Thus, it is not easy to define the transition states
of emergent behavior. Moreover, the presented study in
[16] provided an interesting framework for the emergent
behavior in ecosystems. What the author demonstrates is
the relationship between the presence of the knowledge of
the internal/external observer and the detection of emergent
behavior.

In the last decade, emergent behavior in Internet of
Things (IoT) systems has attracted remarkable attention in
both academia and industry. The authors in [17] point out the
fact that it is possible to have the emergent behavior induced
from locally based rules at different levels of hierarchical
organizations. Some information about the background of the
problem in emergent configurations of connected systems
was the discussion main topic in [18]. Findings offered by
the authors propose a new approach to provide guidance
for emergent configurations in the Internet of Things (IoT)
systems.

the study of emergent behavior in software systems have also
been discussed thoroughly in the field of system of systems
(SoSs) engineering. One famous work in this regard can

Deliver

Intended
Behavior

Specified
Behavior

Designed
Behavior

Implemented
Behavior

Obtained
Behavior

Devops Loop

Model	DesignerRequirement
EngineerStakeholders Implementation

Team OperatorsDeliver Deliver Deliver

Intended Behavior

Specified Behavior

Designed Behavior

Implemented Behavior
Obtained Behavior

Fig. 1. Behavior aspects capture during the life cycle of software systems
development.

be found in [19]. It was observed in this work and related
references that the emergent behavior occurs in SoSs and
cannot be localized at the constituent systems level. Referring
to [20], a description of a SoSs is given by the author
based on five different characteristics, where the emergent
behavior is considered as one main attribute to define a SoSs.
Alternatively, the notion of emergent behavior for SoSs has
also been investigated in [21]. According to the author, the
emergent behavior is described as a macro-scale behavior,
meaning, it is a behavior that can be observed from different
perspectives at different scale levels. Following the similar
definition in [22], the author defines emergent behavior as
follows ”Emergent behavior is that which cannot be predicted
by analysis at a simpler level than that of the system as
a whole. Emergent behavior is, by definition, that which
remains after everything else has been explained”. The result
of the study presented in [11] states that emergent behavior
is a macro-level phenomenon of a whole that emerges only
when it is new with respect to the non-relational aspects
of one of its own micro-level parts. Moreover, emergent
behavior cannot be reduced to the behavior of the isolated
parts of a system in the context SoSs.

III. CONCEPTS AND DEFINITIONS

First of all, before providing a formal definition for the
emergent behavior for a software system developer, an infor-
mal definition is to be defined. For this reason, we need to
elaborate all types of behaviors that are captured during the
different steps of a software system development life cycle
(figure 1) 1.

A. Informal definition:

1) Intended behavior: It is the type of behavior that we
would like and intend that the final system adopt. It is
defined by the stakeholders, usually described in a high

1The figure should not imply that the different sets of behaviors are of the
same size, any set behavior can be either finite or infinite, and can be of any
size. The goal is to reflect how these definitions can overlap and differ during
the process of the software system development.

level natural language and provided/negotiated with the
requirements engineer/analyst.

2) Specified behavior: It is the formalization and ab-
straction of the intended behavior the set of require-
ments are defined and processed by the requirements
engineer/analyst, based on which the problem space is
defined. The requirements will be checked for consis-
tency, correctness and completeness. Both functional and
non-functional requirements are addressed in order to
formalize and specify the intended behavior. It is to be
noted that the requirement engineer may fail to specify
the exact intended behavior -due for example to the
limitation of the formal language used for this purpose,
or the lack of skills of how to use the tool by the analyst.

3) Designed behavior: Once the requirements of the sys-
tem are ready, formal techniques such as algebraic
specification or model-based approaches (Petri Nets,
Markov chains, state machines...etc) are used to design
the set of all possible states of the system as well as
the behavior which reflects how does the system react
to internal and external events including the notion of
time. The designed behavior defines the behavior of the
system in the solution space.

4) Implemented behavior: It is the behavior that is imple-
mented in the form of code and hardware configurations.
Usually, this is the same as the obtained behavior.
Nevertheless, it may diverge from the obtained behavior-
because for example the system can be implemented
in one platform and deployed in a different platform
resulting in a two different behaviors for the same
implementation. (or compiling error at the level of
the compiler for example).

5) Obtained behavior: It is the run time behavior that the
system is manifesting or exercising during the time of
its functioning.

As it can be noticed in figure 1, moving from one
phase of development to the next one, may result into
missing some aspects of the behavior from the last
phase and/or define further aspects than needed in the
succeeding step. Since it is often the case that the
stakeholders and the requirement engineers come to
agree on what should be intended and specified as
a result of one or several negotiation and discussion
sessions, it is valid to assume that the intended
behavior is exactly the specified behavior, meaning that.
Similarly, we assume that the implemented behavior
and the obtained one are equal as shown in figure 1.

6) Emergent behavior: Based on the previous definitions,
we define the emergent behavior to be the non-designed
behavior that is obtained at run-time; that is, the behavior
that is not reached or explained simply by using the
model of the system. Moreover, As show in figure 2, the
emergent behaviour can be intended or non-intended, it
can also be specified as shown in the example section.

(1)

(2)

A : Intended Emergent behavior failed to emerge (not obtained)
B : Intended Emergent behavior that succeeded to emerge (Obtained)

C : Non-Intended Emergent behavior that has emerged (Obtained)

Intended and
Specified Behavior

Designed Behavior

Implemented and
Obtained Behavior

Emergent Behavior

Good Behavior
Good Behavior

Neutral Behavior

Faulty Behavior

B
A C

Fig. 2. Definition and classification of the emergent behavior with respect to:
(1): obtained, specified and intended. (2): obtained and designed behavior

Hence, it can be obtained or might fail to emerge.
The source of the emergent behavior can vary from

one case to another. A faulty behavior for example may
emerge as a result of the lack of knowledge during the
design phase, where a fault is not something that one
might design explicitly but it is somewhere, a part of the
design (part of a poor design). Moreover, an faulty emer-
gent behavior might take place due to the differences of
the behavior sets that are shown in figure 1, where some
behaviors are not aligning with the designed behavior.
Alternatively, the beneficial emergent behavior is usually
a behavior that fulfills requirements referred to usually
as ”emergent properties” , such properties are abundant
in complex systems where the design or the model of the
system is difficult to obtain or construct (constructed by
coupling component systems of the high level system for
example). Thus, an emergent behavior with no explicit
design, only obtained based on the interoperable systems
is preferred to fulfill such requirements [2].

Hence, we conclude that in the software engineering realm, the
emergence phenomenon in the form of the emergent behavior
is defined in relevance to the design of the system. As will
be shown in the next section, the design of the system will
play the reference role to define both the normal and the
emergent behavior. Furthermore, each type of the emergent
behavior requires real-time monitoring and controlling. For
faulty emergent behavior, the control can consist of setting the
rules and constraints that should not be violated by any sort
of emergent behavior. Whereas, for the beneficial emergent
behavior, the real-time monitoring can consist of making sure
that the new emergent behavior is indeed fulfilling certain
requirements and properties.

B. Formal definition:
In this section, based on the formal representation of the

systems model, a formal definition of the emergent behavior
is proposed.
Let be the deterministic discrete event system φ that is
formally defined using discrete event systems specification
(DEVS) as the following:

Mφ = (Xφ, Y φ, Sφ, δ, λ) (1)

where:
Xφ : is the set of all inputs of system φ, where Xφ ⊆ X (set
of all input events).
Y φ : is the set of all outputs of system φ, where Y φ ⊆ Y
(set of all output events).
Sφ : the set of all states of system φ, where Sφ ⊆ S (set of
all states).
δ : Sφ x Y φ− > Sφ : is the transition function.
λ : Sφ x Xφ− > Y ∪ {∅} : is the output function

Then, a normal behavior NB of system φ can be defined in
terms of states and transitions as follows:

NBφ = { (s, x, y, s′) ∗ | ∀s,∀s′ ∈ Sφ, ∀x ∈ Xφ, ∀y ∈
Y φ, δ(s, y) = s′, λ(s, x) = y }

The normal behavior of the system φ can be represented
as a set of multiple 4-tuple, each tuple contains: the previous
state (s), the input event that triggered the transition (x, which
can be a clock tick to indicate a time event), the output event
that resulted from the reaction of the system (y) (which can
be a silent output, meaning: non-observable), the new reached
state s’.

Similarly, and based on the definition of the normal
behavior, we define the emergent behavior EB as the
following:

EBφ = { (s, x, y, s′) ∗ | { ∃s and/or ∃s′) /∈
Sφ , or δ(s, y) 6= s′} and/or {∃y /∈ Y φ, or λ(s, x) 6=
y} }
or:
EBφ = AB −NBφ, where AB is the set of all behaviors
or:
EBφ = NBφ

c, where NBφ
c is the complement set of the set

of normal behavior

That is, the set of emergent behavior (EB) is equal to
the set all behaviors (AB) except for the normal behavior
set (NB). This means that the set of emergent behavior will
include faulty behaviors, sub-optimal behaviors, and if the
design of the system can be further developed, the emergent
behavior set includes the most/more optimal behavior as well.

It is to be noted that we do not assume any constraints
about the input events, a new, emergent event (x) does not

necessarily imply an emergent behavior. Hence, the emergent
behavior is defined as the sequence of tuples where there exists
at least:

1) A state that is not defined in the model design (∃s /∈ Sφ).
2) A state that is not reached by applying the states

transition function defined in the model design (∃s :
δ(s, y) 6= s′).

3) An output event that is not defined in the model design
(∃y /∈ Y φ) .

4) An output event that is not reached by applying the
event output function defined in the model design (∃y :
λ(s, x) 6= y)

C. Emergent behavior characteristics:

Hereby, we try to provide some characteristics that are
related to the emergent behavior based on the proposed
definitions we discussed in early sections:

1) Types of emergent behavior: we distinguish three
main types of emergent behavior: beneficial, detrimental
or neutral. First, the beneficial emergent behavior can
be interpreted in terms of services that the system
of interest can provide or any type of behavior that
fulfills one or more requirements defined by different
stakeholders of the system, in a system of systems type
of systems, a state of balance reached through a non
designed behavior can be interpreted as a beneficial
emergent behavior. On the other hand, the detrimental
emergent behavior can be either a sub-optimal or a
faulty behavior that has a bad impact on the system,
predicting and forecasting such behaviors is important,
especially in safety-critical systems. Finally, neutral
emergent behavior is neither beneficial nor faulty but
yet, it can take place.

2) Predictability: A beneficial emergent behavior can be
intended and specified at early stages of the system
development in the form of emergent properties. Hence,
in this case it is predictable by concept. As discussed in
[?], global synchronization is an emergent property that
is specified as a requirement at design phase, whereas
the elements of the system (constituent systems)
are not designed explicitly to achieve the global
synchronization. Eventually, a global synchronization
is achieved through the emergent behavior that is not
only predictable but also required. On the other hand,
the faulty behavior is one good example of emergent
behavior that is challenging to predict (in terms of
time,nature...etc). One example is a simple program
returning random numbers, in such a case, returning
the same number (being predictable) is an emergent
behavior (a faulty one), whereas an unpredicted number
represents the normal designed behavior. Hence, the
emergent behavior can be predictable as it can be
non-predictable.

3) Observability: A behavior of a system regardless of
whether it is emergent or not, can be either observable
or non-observable. It is quite common in the literature
of systems verification and diagnosing that the faulty
behavior is sometimes non-observable [3], where the
challenge of detecting it as soon as possible is of big
importance. Hence, an emergent behavior (faulty type
for example) can be either observable or non-observable.

4) System structure: It is often assumed that an
emergent behavior is exclusively resulted from the
interconnection of a network of systems in a complex
system (or constituent systems in the literature of system
of systems SoS). Nevertheless, it is also possible that
a monolithic system or a single component would
experience an emergent behavior. Again, the faulty
behavior is one good example to demonstrate that
the failure of a component to function as designed is
regarded as an emergent behavior. However, due to the
nature of interconnected systems (System of systems
for example), where the interconnection between the
constituent systems in a dynamic environment is not
captured during design phase, this will result in an
environment that can be rich of emergent behaviors,
which makes this type of systems the suitable for the
study of the emergent behavior (particularly, beneficial
emergent behavior). To design the model of a given
complex system would require coupling atomic systems
which can be an expensive task in terms of time
and space complexity and computational cost, hence,
having no model (Designed behavior description) will
make any behavior that might take place between the
interacting systems emergent by definition.

5) Strength of emergence: In the literature of complex
systems, emergent behavior is also classified either as
a weak or a strong emergence. These concepts are
mostly applicable when discussing systems of hierar-
chical structure, where the design model of the sub-
systems are available, which makes the prediction of
the emergent behavior easy to achieve (hence weak
emergence). However, moving from the bottom level to
a higher one, new behavioral patterns can take place,
since the design model is hard to construct (by coupling
the atomic models for example), the emergent behavior
is considered strong.

IV. EXAMPLE OF EMERGENT BEHAVIOR IN TRAFFIC
LIGHT SYSTEMS

In this section, a simple traffic light system introduced in [5]
will be used as a guideline example to explain the emergent
behavior. The system consists of traffic light pole with three
lights used to control a road traffic.

A. Intended and specified behavior:

In [5], the intended behavior can be summarized as ”defin-
ing a systematic way to manage pedestrians and vehicles
traffic at a given intersection”, the specified behavior then
can be described in the form of three types of requirements:
functional, non-functional and emergent requirements.

• Functional requirements:
RQ1 : A system of three lights is defined based on three
light signals.
RQ2 : Each signal is switched on based after a pre-
defined specific time period
RQ3 : Signals are displayed in a sequential way.

• Non-Functional requirements [4]:
Packaging: The system is internal traffic department
use only and will not be packaged and sold as a retail
product.
Performance: Traffic Light Control System shall not
take longer than 15 seconds to respond to a traffic light
request for turn on or response to controller or sensors.
Supportability: The Traffic Light Control system should
be supportable in current equipment such as computers,
monitors, calculations etc.
Security: The connection between the control system
the road sensors should has high level of security to
avoid hacking.

• Emergent requirements:
First, we define what is an emergent requirement or
property, it is a requirement that needs an emergent
behavior to be fulfilled, which means that the requirement
is not achievable using an existing design of one of the
existing systems, but rather, it is reached through the
interoperability of those systems without prior explicit
design of how the systems might interact or behave
as a group of systems. Since requirements are often
classified into functional and non-functional types, many
researchers also distinguish between functional emergent
requirements and non-functional emergent requirements
[7].
Emer-RQ1 : Pedestrians should not queue for long
and must be able to cross as soon as the road has no
vehicles (self-optimization property).
Emer-RQ2 : Vehicles should not queue for long and
must be able to move as soon as there are no pedestrians.
(self-optimization property).
Emer-RQ3 : Neighbour poles should be synchronized
in way that .(self-organization property).

It is to be noted here that in order to fulfill the
emergent requirements, the system might violate the
designed model. By design, the vehicles will queue for
60 seconds whether the pedestrians are present or not,
and the same goes for the pedestrians. Nevertheless,
a particular design to allow such violation to happen

Green Yellow Red
Inputs: time tick = 57 s/

 Outputs: 57, show_Yellow
Inputs: time tick = 3 s/
 Outputs: 3, show_Red

Inputs: time tick = 60 s/
 Outputs: 60, show_Green

Fig. 3. Traffic light model with labelled states: S={Green, Yellow, Red}, and
labelled transitions: inputs= time in seconds and outputs: Y:{show Green,
show Yello, show Red}, γ:{57,3,60} .

in order to enable the system to dynamically adapt at
runtime situation based on an estimation mechanism.

B. Designed behavior:
Using the same design in [5], a traffic light system TLS

can be designed as shown in figure 3 where each state is
defined using two state variables: the name of the color to
be displayed by the lighting system, and the value of the time
counter that ticks every second. the system is defined using
DEVS specification as follows:

TLS = (S, Y, s0, γ, δ, λ) (2)

where:
S = {Red, Y ello,Green}: is the set of all states of the
system TLS.

Y = {show red, show green, show yellow}: is the set of
signals that represent the output transition labels TLS.

γ = {Green− > 57, Y ellow− > 3, Red− > 60} :is the
deterministic time function that takes as input: the color label
of the current state and returns: how many time ticks that it
is allowed to stay at the corresponding state.

s0 = {Green, 0} : is the initial state set to the state
GREEN and the timing counter to zero.

δ = {Green− > Y ellow, Y ellow− > Red,Red− >
Green} : is the transition function that sets which target state
to transite to once the time function indicates a transition
condition.

λ = {Green− > show yellow, Y ellow− >
show red, Red− > show green} : is the output function that
shows the signals the system generates before transiting from
one state to another

A normal behavior in this case can be for example:

NB1 = {(GREEN, 57, show yellow, Yellow)}

NB2 = {(Yellow, 3, show red, Red)}

NB3 = {(Red, 60, show green, Green)}

In this example, the set of the normal behaviors is finite
and contains only: NB1, NB2 and NB3 . Nevertheless, the set
of normal behaviors can also be larger or even infinite in a
different examples.

C. Implemented behavior:
One type of implementations of the system can be the

simulation code in [5] the authors used PythonDEVS to
simulate the system. The hardware deployment of the system is
also one implementation of the model of course. As mentioned
earlier, one implemented behavior can result into two different
obtained behaviors, this can be explained by the difference in
simulation environments or the models of the used hardware.

D. Obtained behavior:
After the implemented system is deployed to operate in the

environment, the real time behavior is what we reffer to as the
obtained behavior.

E. Emergent behavior:
In this example, an emergent behavior would result when

the obtained behavior does not comply with the design of the
system shown in Figure 3, that is the output, the time or the
transition functions are violated, examples of an emergent
behavior in this scenario can be:

EB1 = {(GREEN, 57, show red, Yellow)}

EB2 = {(GREEN, 57, show yellow, RED)}

EB3 = {(GREEN, 50, show yellow, Yellow)}

EB4 = {(GREEN, 57, show red, RED))}

EB5 = {(GREEN, 57, show yellow, different color c: such
that c /∈ S)}

EB6 = {(GREEN, 57, different signal x: such that x /∈ Y ,
Yellow)}

Although such a behavior may strike the engineer as a
faulty emergent behavior (which can be, like in the case of
EB1,EB2 and EB5), in some scenarios, an emergent behavior
(like in EB3 and EB4) can represent a less optimal behavior
at the local level, but in return it will yield a more optimal
status at a higher level. Whereas the designed behavior helps
achieve a single or multi-objective optimization goals at
a local level, the emergent behavior is one that can help
achieve multi-dimensional optimization, that is optimizing
of different requirements residing at different levels in a
multi-level complex systems.As discussed earlier, emergent
properties are fulfilled based not only on the optimization
of the atomic systems, but rather through a compromise
that is reached based on those interoperable systems. In our
scenario, this can be seen in an intelligent traffic management
systems that contains many systems like the one presented

here, where each system besides it’s design (shown in 3), a
certain design that enables the system to be integrated in a
society of similar systems is designed. This particular design
can be in the form of communication interfaces, negotiation
mechanisms or information collection techniques that do
not explicitly provide the solution decision to the problem
in hand, but rather enables the system to navigate through
more inputs and information to help reach a solution decision
autonomously, a decision that may require the current design
to evolve or at least get violated to a certain degree to fulfil
requirements both on a local and a higher level. In this
paper, we leave the discussion of guidelines and methods
of building emergent solutions and emergent systems for a
future work and restrict the current work for only defining
and formalizing the emergent behavior. Nevertheless, if the
reader is interested in fulfilling the same requirements based
on design rather than the emergent behavior, coupling atomic
models like the one shown in this scenario using DEVS
specification is thoroughly discussed in [8] and [5].

1) Beneficial emergent behavior: In this scenario, a good
emergent behavior is one that fulfills one of the emergent
requirement: Emer-RQ1, Emer-RQ2 or Emer-RQ3. These
requirements are not only possible to reach through the design
of the system shown in Figure 3, but further, it requires a
certain behavior to emergent based on the communication
and the interoperability of a set of systems of the same
type. Hence, a particular design that enables such systems
to fulfill the emergent requirements will consist of: i) A
communication interface to communicate with neighbor
systems, ii) An estimation function that allows the system to
leverage between the global and local optimization; that is
if the system should comply to the design or violate it and
makes the transition for the sake of the global optimization.
Although it is tempting to to have similar emergent behaviors
to fulfill requirements at different levels without going
through the endeavor of explicitly designing the behavior
that fulfills the same requirements (by coupling the atomic
systems using DEVS for example). Nevertheless, it is clear
that such a behavior will require real-time monitoring for
control reasons, a traffic light system can regarded as a
critical-system (based on the fact that a faulty behavior might
lead to human lives losses), which will make the question of
whether to rely on an emergent behavior or a designed one a
critical question to answer.

2) Faulty emergent behavior: A faulty emergent behavior
such as EB1, EB2 or EB5 is the behavior that does not
fulfill any type of requirements (local, global or emergent),
or if fulfills certain requirements in a non-balanced way. As
discussed in section ??EmergentBehaviorCharachteristics, the
faulty emergent behavior can take place at a local level where
the system behaves in faulty way based on a fault at the
design level, or at a higher level where the behavior of the
systems collection is resulting in a harmful consequences on
the individual systems or the failure of fulfilling the emergent

requirements.

V. ACKNOWLEDGEMENT

The results of this contribution are based on the work of
the project “DevOpt: DevOps for Self-Optimizing Emergent
Systems”. DevOpt is funded by the Federal Ministry of
Education and Research (BMBF) of Germany in the funding
programme of “IKT 2020 – Forschung für Innovationen”.

VI. CONCLUSION

In this paper, an attempt to provide a concrete and for-
mal definition for the emergent behavior was provided. Our
approach was based on the analysis of the software system
development process. Furthermore, to maintain a certain level
of formalization, a conventional formal framework to describe
and design systems (Discrete Event Systems Specification
(DEVS)) is adopted and used in order to define the emergent
behavior and analyse it. Informally, we defined the emergent
behavior as the non designed behavior, where a particular
design was introduced as the basic design that covers the
integration of an atomic system in a society of systems, or as
fault of the design that will lead to a faulty emergent behavior.
The results also show that such a behavior is tempting to
consider having in order to decrease the complexity of the
system. That is is due to the nature of the behavior of being
dynamic and adaptive which will help fulfill multiple self-x
properties such as self-adaptability, self-organization and self-
optimization...etc. Nevertheless, we highlighted the importance
of monitoring and controlling the emergent behavior as it
might be harmful due to it’s nature of being designed. In a
future work, we work on providing and architecting emergent
systems, that is systems that use the emergent behavior to
fulfill a variety of requirements from different stakeholders.

REFERENCES

[1] M. Mataric, “Designing emergent behaviors: From lo-cal interactions
to collective intelligence,” in Proc. Int.Conf. Simulation of Adaptive
Behavior: From Animals toAnimats 2, 1992, pp. 432–441.

[2] Toufik, A. M., Yao, J., and Jin, Y. (2018). Chorus-line algorithm for
clock synchronization.IEEE Access,6:8412–8425.

[3] Toufik, A. M. and Hammadi, B. (2011). Finite tate ma-chine diagnosers
for distribute diagnosis.Master Thesis-, University of Mohamed Khider
Biskra.

[4] Al-Asmari, O. A. (2016). Requirements engineering forintelligent traffic
lights control system for emergency ve-hicles.

[5] Van Tendeloo, Y. and Vangheluwe, H. (2018). Discreteevent system
specification modeling and simulation. In2018 Winter Simulation Con-
ference (WSC), pages 162–176. IEEE.

[6] Bedau, M. A. and Humphreys, P. E. (2008).Emergence:Contemporary
readings in philosophy and science.MITpress.

[7] Sommerville, Ian. ”Software engineering 9th Edition.” ISBN-10
137035152 (2011): 18.

[8] Zeigler, B. P., Muzy, A., and Kofman, E. (2018).Theoryof modeling
and simulation: discrete event and iterativesystem computational foun-
dations. Academic press.

[9] J. Deguet, Y. Demazeau, and L. Magnin, “Elementsabout the emergence
issue: A survey of emergence defi-nitions,” Complexus, vol. 3, no. 1-3,
pp. 24-31, 2006.

[10] S. Mittal and L. Rainey, “Harnessing emergence: Thecontrol and
design of emergent behavior in system of sys-tems engineering,” in
Proc.Conf.Summer Comput.Simul., 2015, pp. 1–10.

[11] Kopetz, H.; Höftberger, O.; Frömel, B.; Brancati, F.; Bondavalli, A.:
“Towards an Understanding of Emergence in Systems-of-Systems”, 10th
IEEE SoSE, San Antonio, Texas, USA, May 2015.

[12] J. Mogul. Emergent (mis)behavior vs. complex soft-ware systems. In
First European Conf. on Computer Sys-tems, Leuven, Belgium, Apr.
2006.

[13] R. Abbott, “Emergence explained: Abstractions. Get-ting epiphenomena
to do real work,” Complexity, vol. 12,no. 1, pp. 13–26, 2006.

[14] Zeigler, Bernard P. ”A note on promoting positive emer-gence and
managing negative emergence in systems of sys-tems.” The Journal of
Defense Modeling and Simulation13, no. 1 (2016): 133-136.

[15] J. D. Halley and D. A. Winkler, “Classification ofemergence and its
relation to self-organization emergence,”Complexity, vol. 13, no. 5, pp.
10–15, 2008.

[16] De Haan, J. (2006). How emergence arises. EcologicalComplexity,
3(4):293–301

[17] Roca, D.; Nemirovsky, D.; Nemirovsky, M.; Milito,R.; Valero,
M.: “Emergent Behaviors in the Internet-of-Things: The Ultimate
UltraLarge-Scale System”, IEEE Mi-cro, Vol. 36, No. 6, Nov.-Dec. 2016.

[18] [11] Radu-Casian Mihailescu, Romina Spalazzese, ClintHeyer, and
Paul Davidsson. A Role-Based Approach forOrchestrating Emergent
Configurations in the Internet ofThings. CoRR, abs/1809.09870, 2018.

[19] M. Maier, ”Architecting Principles for System-ofSystems,” Systems
Engineering, vol. 1, pp. 267-284,1998.

[20] W. C. Baldwin and B. Sauser, “Modeling the charac-teristics of system
of systems,” in Proc. IEEE Int. Conf.SoSE, Albuquerque, NM, 2009,
pp. 1–6.

[21] F. Oquendo, “Architecturally describing the emer-gent behavior of
software-intensive system-of-systems withsosadl,” in 2017 12th System
of Systems Engineering Con-ference (SoSE),Hawaii, USA, 2017, pp.
1–6.

[22] Dyson and Georg e B. (1997). Darwin Among theMachines:The Evo-
lution of Global Intelligence. PerseusBook Group.

