An Architecture-Centric Process for MILS Development

Julien Delange, Min-Young Nam, Peter
Feiler, and Will Klieber
Carnegie Mellon Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612, USA
{idelange,mnam,phf,weklieber}@sei.cmu.edu

ABSTRACT

Safety-critical embedded systems are now software-reliant and evolv-

ing at an incredible pace. With the emerging Internet of Things
(IoT) ecosystem, these systems are now interconnected to several
networks and exposed to potential attackers. This increases the po-
tential surface of attack and, ultimately, the likelihood of a success-
ful attack that would penetrate the system. Until recently, many
security efforts were focused on code analysis, but studies have
shown that security is also a matter of good software architecture
design and practices. For example, MILS requires isolating secu-
rity domains in partitions using appropriate security components.
However, because embedded systems are evolving quickly, new
design methods are now required to overcome the challenges of
developing them.

In this paper, we introduce a research agenda for a new architecture-

centric development approach for MILS systems. This would lever-
age architecture models and augment them with security informa-
tion in order to perform the different activities of the development
process, including security policy validation, implementation, and
testing. Using the same model throughout development improves
the consistency of the development process by avoiding any transla-

tion between different—and potentially inconsistent—representations.

In addition, automating the generation of implementation and tests
avoids the traditional mistakes of manual code production, such as
bugs and developers’ assumptions about ambiguous requirements.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Verification;

D.2.11 [Software Engineering]: Software Architecture—Languages;

D2.4 [Software Engineering]: Software Verification—Validation

General Terms

Security, MILS, Software Architecture, Assurance, Testing

Keywords
AADL, MILS, Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MILS workshop *2016

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION

Safety-critical embedded systems now rely on software to a great
degree and are no longer physically isolated as they used to be. Ex-
isting functions, previously implemented using hardware, are now
realized using software. New features are also automatically imple-
mented using software on different processors interconnected with
specific buses. For example, automotive systems now contain a lot
of interconnected functions classified at different criticality levels,
such as low criticality for entertainment systems and high criticality
for cruise control.

Because these systems are classified at different criticality lev-
els, engineers must ensure that low-criticality functions cannot dis-
turb functions of higher criticality (e.g., the entertainment system
cannot disturb the cruise control). In addition, there has been an
increasing demand to connect these systems to the Internet, mak-
ing them available to the so-called Internet of Things ecosystem
but also exposing them to external threats. The attack surface is
no longer limited to physical system boundaries, and these criti-
cal systems must be protected from external threats. One common
example is the emerging technology of self-driving cars, which are
interconnected with noncritical (entertainment features) and critical
(traffic control) infrastructures while operating a life-critical func-
tion (driving a car). These systems must be carefully designed to
ensure that noncritical functions cannot interfere or disrupt critical
ones (e.g., interrupting the driving function, which might result in
a car accident).

Unfortunately, ensuring software isolation within the car or the
absence of impact from external attack is very hard to achieve [1,
11, 12]. Over the last few years, researchers have demonstrated
that actual systems are exposed to security attacks that could have
catastrophic consequences; for example, an attacker could take full
control of the car using a remote connection [12]). Such attacks
have catastrophic consequences not only for people in the vehicle
but also for manufacturers. A single successful attack requires the
manufacturer to update the software and potentially recall all af-
fected cars. In fact, in 2015 manufacturers recalled more than 1.8M
cars—at least 1.4M for Chrysler and 433K for Ford—because of
security-related software issues.

For years, security issues have been classified as coding issues
(e.g., buffer overflow, inappropriate libraries). However, a bet-
ter software architecture design, such as one that isolates software
functions from each other from the beginning, would automatically
block such attacks. While current research efforts focus on such
approaches, they lack methods and tools to support them.

In the current paper, we present our agenda for a new approach
to design secure systems using architecture models. Our methods
aim to achieve the following objectives:

1. Specify a software architecture with its security constraints
(security domains, security mechanisms, etc). We extend the
Architecture Analysis and Design Language (AADL) [14]
with a new annex dedicated to security modeling.

2. Check the security policy correctness with new dedicated
analysis tools that process a model that has been annotated
with security constraints. The tools validate the security ar-
chitecture, detect issues, and suggest potential design im-
provements of the software architecture.

3. Produce a security attack surface and an attack tree from
the software architecture model. This dedicated analysis tool
processes security-enhanced AADL models [14] and gener-
ates documents that contain the attack surface as well as the
attack tree of the system.

4. Generate security attack tests from the software architec-
ture model. The attack tests will then stress-test the software
architecture, to try to attack and challenge the software im-
plementation. Such tests demonstrate that the security policy
is correctly implemented. Even if our approach generates the
security policy (see below), generating tests is still relevant,
especially for certification purposes or when some parts of
the system are manually implemented.

5. Generate the security policy using dedicated tools that auto-
produce configuration files (e.g., XML files that configure
dedicated embedded kernels or specific networks) that im-
plement the security policy. This approach ensures that the
security policy designed in the models and previously vali-
dated is correctly implemented.

In the following sections, we present current state-of-the-art re-
search efforts, distinguish our contribution, and detail our research
agenda for the next two years to realize these objectives.

2. OVERVIEW OF THE APPROACH

In this section, we first present existing related work. We then
detail what is new in our approach. The next section explains each
part of our approach.

2.1 Related Work

The MILS' principles were proposed by John Rushby years ago [13].

The overall goal is to isolate activities in different domains in dis-
tinct partitions. In a MILS system, activities in one partition must
not impact activities in other partitions [3] unless there is a func-
tional justification to do so. The isolation is realized in terms of
space (software with different security domains should not exchange,
or read/write, data) and time (each software partition has a dedi-
cated, fixed amount of time to execute).

A MILS system relies on trustworthy seperation kernel and mid-
dleware to ensure isolation across partitions. Both commercial and
open-source MILS separation kernels are currently available.

Hansson et al. [7] introduce modeling guidelines to map several
MILS principles to the AADL [14]. This approach focused on the
functional aspect of the system and neglected the execution plat-
form (how the software is deployed), which can be a major threat

!Historically MILS stands for "Multiple Independent Levels of Se-
curity" and today is considered as a proper noun

if, for example, there is lack of encryption or no isolation between
the execution of software in different security domains. In Delange
et al. [6], the authors extend the approach to include deployment
aspects and generate the security policy of the underlying MILS
separation kernel.

Van der Pol et al. [17] proposed a MILS-specific notation (MILS-
AADL) for the specification of MILS architecture. The notation
contains necessary artifacts to define the system components with
the characteristics of the security policy, such as protection mecha-
nisms and security domains. Hawkins et al. [8] designed a method
to use this notation to produce assurance cases and show the degree
of compliance of a given architecture with MILS requirements.

2.2 Roadmap

Our approach relies on a new AADL security annex that is cur-
rently under definition. This new annex will provide the ability to
capture security constraints in AADL models [14]. Functional as-
pects have been already addressed [6, 7, 17], but there has been
limited support for validation of the association with the execution
platform [6, 17]. The MILS-AADL language [17] reuses AADL
principles and provides the ability to specify several security mech-
anisms, but it has two shortcomings: (1) some mechanisms, such as
time and space isolation used in safety-critical operating systems,
are not available, and (2) it is a new language and incompatible
with the existing AADL standard, so models designed with MILS-
AADL cannot be used with other analysis tools.

Our proposed new annex will capture security concerns in the ar-
chitecture in a manner that is fully compatible with the core AADL
standard [14]. It will allow designers to reuse models previously
developed for other purposes, and extend them with security-specific
modeling patterns (e.g., by capturing platform-specific security mech-
anisms such as time and space isolation of the MILS separation
kernel). We are planning to submit a draft of the annex to the SAE-
AADL standardization committee in 2016 and are planning to seek
committee approval for standardization in 2017.

Validation tools will leverage this new notation and check se-
curity policy using augmented architecture models. For example,
it will check that a components having different security domains
are isolated and that legitimate communication use isolation mech-
anisms. Our tools will also produce the Attack Surface [10] and
Attack Tree [16] from the models to support system validation ef-
forts. We are currently working on these aspects and will release a
first draft of these tools in early 2016.

The security policy of the system will be automatically generated
from validated models. We will modify the Ocarina AADL tool-
suite [18] in order to be able to generate the security policy from
models (such as the separation kernel validation). We will release
our modification in 2016 and plan to support mostly open-source
software such as SeL4 [9] or POK [6] (the list of supported plat-
forms still has to be decided).

Finally, security tests will be automatically generated from the
models. This will help engineers to verify that the implementation
of the desired MILS security policy is correct. Generating security
tests from models could be useful in several contexts:

1. When certifying the system, such tests are required. As em-
bedded systems implement more critical functions and en-
forcing security policies becomes more difficult, regulatory
agencies will require evidence the system enforces the secu-
rity policy. The security tests provide this evidence.

2. If the security platform is not certified or verified, security
tests can detect potential issues in their implementation.

3. When configuration code is manually implemented and not

Attac.k"
eneration.& Testing

Architecture !
(AADL)

<

Security
Assurance

Security.-'lsol icy > "
I'mplem‘éntatio.ri

Security. Polic
Validation

Figure 1: Integration of our approach in a traditional develop-
ment process

generated from models, automating security tests from mod-
els will ensure that the engineers have correctly implemented
the security policy and have not introduced any errors.

We will also implement the generation of security tests by ex-
tending the Ocarina AADL toolsuite [18] and its associated C code
generator. Our modifications will be published in 2016.

3. DETAILS ABOUT THE APPROACH

Our approach uses an architecture specification enhanced with
security annotation to drive several aspects of the development pro-
cess. As illustrated in Figure 1, the annotated software architecture
is used to:

1. validate the security policy at the design-level

2. implement the system and its security policy from models
(e.g. generation of MILS components such as the separation
kernel).

3. generate assurance of security policy conformance (e.g. as-
surance case)

4. generate security tests (e.g. attack of partitions separation)
in order to check the correct implementation of the security
policy.

This section details our approach and our plans to implement it.

3.1 Architecture Specification

The AADL [14] has been used for design and validation of safety-
critical systems from different perspectives, such as performance [5]
or safety [4]. The core language can be extended with user-defined
properties and the language annex.

We propose a new security-specific annex to augment AADL
models and define security constraints and requirements in archi-
tecture models. We used a similar approach for safety [15]; now
our objective is to provide an extension from a security perspec-
tive.

This AADL annex aims at augmenting the core language to spec-
ify

e security policy: security domains and levels on components
and their relationships

e protection mechanisms: isolation and protection features,
such as the MILS separation kernel, encryption mechanisms
of data, and security-specific protocols and buses

e architecture annotation: specification for components that
have been formally verified and analyzed (e.g., a Multiple
Levels of Security (MLS) component for filtering classified
data to be sent to an unclassified network)

Figure 2 shows the functional view of a software architecture
with two sender components, two receivers, and one merger. Each
function is captured using an AADL abstract component (dashed
rectangles on Figure 2). AADL abstract components can be later
refined in specialized types, such as system or process. Users
can then refine the functional architecture into an implementation
architecture by adding new components, refining the existing ones,
and preserving all the characteristics of the functional architecture.

In the following example, data are classified at two security do-
mains: secret (in red) and unclassified (in green). The merger com-
ponent is an MLS component that handles data at different security
domains:

e secret data is encrypted by the merger and sent to another
secret partition that will ultimately decrypt it

e unclassified data is separated and sent to an unclassified par-
tition

Assuming that the merger component is marked as validated and
verified, each security level is separated in a single component.

Because this MLS component handles data at different security
levels, it should be verified and, eventually, annotated as being re-
viewed and validated for use. The AADL security annex will pro-
vide the ability to add this annotation.

The implementation and deployment of this functional architec-
ture are shown in Figure 3. The implementation model adds the
execution platform, represented using an AADL processor com-
ponent (shown as a box with an unbroken line), and its partitions,
represented using AADL virtual processor components (shown
as boxes with dashed lines).

All functions (AADL abstract components) associated with a
given security level are bound to a single partition. This associa-
tion, which the AADL notation calls a binding, is represented us-
ing an arrow with a dashed line. The merger partition is associated
with a dedicated partition. This implementation ensures the correct
implementation of the security policies: each security level, as well
as the MLS component, is confined in a single partition.

With this notation, it is then possible to (1) describe the security
mechanisms to protect data flows (e.g., encryption) and (2) specify
the security mechanisms of the execution runtime (e.g., time and
space isolation as prescribed by MILS [2, 13]).

This new AADL annex will leverage existing research efforts [6,
17], and we will propose it as a new SAE standard to constitute
the official AADL annotation mechanism to specify security con-
cerns. We will also support this new AADL annex with a textual
editor integrated in the Eclipse-based Open Source AADL Tool En-
vironment (OSATE) tool so that model designers can annotate their
models with an efficient textual editor.

3.2 Validating MILS Security Policy

Analysis tools process the AADL model with security anno-
tations, including security policy and constraints, and check the
model against the security policy to assess compliance. The tool
works in two steps:

’~ N
sender_secret ; . receiver_secret
me::sende] merger ! =g receiver
dataout i exmerger ! datain
> datai : > 4
atain_secre
' - ‘7 ataout_unclassifiedl 1
! I
ifi H 1 datain_unclassified 1
sender_unclassified | - I | receiver_unclassified
me:sender 1 y . datae~.t_unclassified2 | o3 i enreceiver
1 1 Y idatain =~
dataout} i T TT—
[! !]
: 1
! 1
\ o
Figure 2: Functional view of the system
p ™
sender_secret | " recelver_secret |
me::sende merger mereceiver
@ . datain
me::merger .
1 datain_secre
] Wataout_unclassifiedl
_________ [V
1
1
sender_ufclassified
me::sende;
1
1
! o s -
} ST e
1 —— [
1 e Tmea |
V. r = T
- i -"‘!-._
‘i _Ar’/' me::sepﬂmflnrrikenré!.?mpl..__
————= - o . Ty T —
=.._. pam-l-lon;ﬁ:_!c[gt . I‘i "’6" parttion_mis ——<71 ﬁ"u p:,mmun_umflfa.s;sifietlI
! .me..pa ition i i i. mezzpartition “ ! me::partition ! i
[¥ [, x L’_ ______________ 4
L y,

Figure 3: Implementat

1. Validating security policy: Components’ definitions and con-
nections are compliant with the security policy. In this step,
the tool checks that components do not mix security levels or
downgrade data (unless they have been verified).

. Implementing correctness validation: Implementation and
allocation of components to the execution platform do not
break the previously validated security policy. For example,
when allocating two functions with different security levels
that are assigned to the same processor, the analysis tool will
check that appropriate security mechanisms (e.g., separation
kernel) are used to ensure data isolation.

3.3 Generating the Attack Surface and Attack
Tree

The same architecture model can be leveraged to generate the
attack surface [10] and the attack tree [16].

The attack surface is an enumerated list of all potential attacks
that the system is exposed to. The software architecture exhibits
how functions are deployed on the execution platform. An analysis
tool can then detect architectural defects that expose the system to
security threats.

Similarly, an analysis tool can generate an attack tree. An attack
tree is a comprehensive diagram that shows how a system can be
compromised by listing all the related potential attacks and show-
ing their dependencies using a tree layout. The system architecture
notation, with its associated hierarchical nature, can be leveraged
to produce an attack tree.

ion of the system

3.4 Generating Security Tests

An implementation architecture model, like the one shown in
Figure 3, is used to produce comprehensive and application-specific
security tests. With the security constraints in the model, tools can
produce efficient tests, specifically tailored to the system being in-
spected.

For our example, the tool would create security tests to be exe-
cuted in the unclassified partition that will try to read data stored in
the secret partition. This would test the correct implementation of
the MILS security policy and its associated space isolation across
partitions. Similarly, for a distributed system, a test would check
that appropriate encryption protocols are used to transport secret
data, especially when the network is not physically isolated.

3.5 Implementing Security Policy

Finally, the architecture model and its security and implementa-
tion details are leveraged to generate the security policy [6]. This
creates code (such as XML code) to configure MILS execution
components (e.g., separation kernel, middleware) and security mech-
anisms (e.g., encryption algorithms, encryption key management).

In our example, the tool would (1) configure the separation ker-
nel partitions, (2) deploy the encryption keys on appropriate com-
ponents — the merger and receiver_secret — and (3) configure
encryption algorithms to use the correct keys. Automating config-
uration and deployment code from a previously validated model
ensures the correctness of the security policy implementation and
avoids errors related to manual development efforts.

4. CONCLUSION AND NEXT STEPS

In this paper, we present our research agenda toward a new ar-
chitecture centric design approach for MILS. Leveraging existing
research efforts, our approach uses the software architecture as the
main asset to validate the MILS isolation principles, configure the
runtime components, show assurance security correctness, and, ul-
timately, test the system. Such an approach avoids the typical prob-
lems of producing code by hand and, by using the same model,
guarantees the overall development process. It guarantees secu-
rity policy correctness in the architecture and, coupled with code
analysis tools that catch security issues at the code level, will sig-
nificantly reduce potential security threats.

We will propose the developed security extension for AADL to
the SAE AADL Subcommittee in order for it to become the official
security annotation for this architecture language. New tools will
then use this architecture model, augmented with security informa-
tion to validate the correct use of the MILS principles as well as
generate the security policy of the execution platform, show assur-
ance of security-level isolation, and, ultimately, generate security
attack surfaces and trees using the architecture to check the cor-
rect implementation of the security policy. Using the architecture
to generate security attacks, and thus test the implementation, helps
the tool generate attacks tailored to a specific architecture.

We will execute this research agenda over the next two years.
Our AADL security annex will be proposed to the SAE AADL
Subcommittee while security analysis tools and code generators for
the security policy configuration will be integrated in the OSATE
AADL tool chain.

Acknowledgments

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development
center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EI-
THER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGE-
MENT.

This material has been approved for public release and unlimited
distribution.

Carnegie Mellon(©)is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

DM-0002929

S. REFERENCES

[1] Comprehensive Experimental Analyses of Automotive
Attack Surfaces.

[2] J. Alves-Foss, W. S. Harrison, P. Oman, and C. Taylor. The

MILS Architecture for High-Assurance Embedded Systems.

International Journal of Embedded Systems, 2005.

C. Boettcher, R. DeLong, J. Rushby, and W. Sifre. The mils

component integration approach to secure information

sharing. In Digital Avionics Systems Conference, 2008.

DASC 2008. IEEE/AIAA 27th, pages 1-C. IEEE, 2008.

J. Delange and P. Feiler. Architecture fault modeling with the

aadl error-model annex. In Software Engineering and

Advanced Applications (SEAA), 2014 40th EUROMICRO

Conference on, pages 361-368. IEEE, 2014.

J. Delange and P. Feiler. Incremental latency analysis of

heterogeneous cyber-physical systems. In Third

International Workshop on Real-Time and Distributed

Computing in Emerging Applications (REACTION).

Universidad Carlos III de Madrid, 2014.

J. Delange, L. Pautet, and F. Kordon. Design,

implementation and verification of MILS systems. Software:

Practice and Experience, 42(7):799-816, 2012.

J. Hansson, B. Lewis, J. Hugues, L. Wrage, P. H. Feiler, and

J. Morley. Model-Based Verification of Security and

Non-Functional Behavior using AADL. IEEE Security and

Privacy Magazine, 2009.

[8] R. Hawkins, T. Kelly, and I. Habli. Developing Assurance
Cases for D-MILS Systems. International Workshop 2015 on
MILS: Architecture and Assurance for Secure Systems.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,

M. Norrish, et al. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 207-220. ACM, 2009.

[10] P. K. Manadhata and J. M. Wing. An attack surface metric.
Software Engineering, IEEE Transactions on,
37(3):371-386, 2011.

[11] C. Miller and C. Valasek. Adventures in automotive networks
and control units. In DEF CON 21 Hacking Conference. Las
Vegas, NV: DEF CON. Las Vegas, NV: DEF CON, 2013.

[12] C. Miller and C. Valasek. Remote Exploitation of an
Unaltered Passenger Vehicle. In Black Hat Conference, 2015.

[13] J. Rushby. The Design and Verification of Secure Systems.
In Eighth ACM Symposium on Operating System Principles
(SOSP), pages 12-21, Asilomar, CA, Dec. 1981. (ACM
Operating Systems Review, Vol. 15, No. 5).

[14] SAE International. AS5506 - Architecture Analysis and
Design Language (AADL), 2012.

[15] SAE International. AADL Error Model Annex, (Standards
Document AS5506/1, 2006. in revision as Document
AS5506/3 2014, 2014.

[16] B. Schneier. Attack trees. Dr. Dobb’s Journal, 24(12):21-29,
1999.

[17] K. van der Pol and T. Noll. Security Type Checking for
MILS-AADL Specifications. International Workshop 2015
on MILS: Architecture and Assurance for Secure Systems.

[18] B. Zalila, J. Hugues, and L. Pautet. Ocarina user guide.
TELECOM ParisTech.

3

—

[4

—

(5

—

[6

—_

[7

—

