
A platform for low-latency continuous keyboard sensing
and sound generation

Giulio Moro
Queen Mary University of London

E1 4NS, Mile End Road
London, England

g.moro@qmul.ac.uk

Andrew P. McPherson
Queen Mary University of London

E1 4NS, Mile End Road
London, England

a.mcpherson@qmul.ac.uk

ABSTRACT

On several acoustic and electromechanical keyboard instru-
ments, the produced sound is not always strictly depen-
dent exclusively on a discrete key velocity parameter, and
minute gesture details can affect the final sonic result. By
contrast, subtle variations in articulation have a relatively
limited effect on the sound generation when the keyboard
controller uses the MIDI standard, used in the vast ma-
jority of digital keyboards. In this paper we present an
embedded platform that can generate sound in response to
a controller capable of sensing the continuous position of
keys on a keyboard. This platform enables the creation
of keyboard-based DMIs which allow for a richer set of in-
teraction gestures than would be possible through a MIDI
keyboard, which we demonstrate through two example in-
struments. First, in a Hammond organ emulator, the sens-
ing device allows to recreate the nuances of the interaction
with the original instrument in a way a velocity-based MIDI
controller could not. Second, a nonlinear waveguide flute
synthesizer is shown as an example of the expressive capa-
bilities that a continuous-keyboard controller opens up in
the creation of new keyboard-based DMIs.

Author Keywords
Augmented keyboard, continuous control, Hammond organ

CCS Concepts
•Computer systems organization → Embedded soft-
ware; •Applied computing → Sound and music com-
puting;

1. INTRODUCTION
Several keyboard instruments offer a more or less subtle
position and/or gesture dependent control on the timbral
and temporal characteristics of the sound of a note, as re-
viewed in [10, 15]. The Ondioline, an electronic synthesizer
invented in 1941 by Georges Jenny, is a particularly out-
standing demonstration of how the effect of continuous key
position, combined with side-by-side vibrato can produce
a remarkably expressive instrument, even by today’s stan-
dards [2]. Regardless, for many years it has widely been ac-
cepted that the scalar parameter of onset velocity is enough
to characterise the qualities of a note for the purposes of
synthesising or analysing a performance [17, 14].

The complex gestural language of a DMI performer is
reduced in dimensionality and bandwidth to fit through

Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Copyright

remains with the author(s).

NIME’20, July 21-25, 2020, Royal Birmingham Conservatoire,
Birmingham City University, Birmingham, United Kingdom.

the affordances provided by the interface, projected down
through a bottleneck and then expanded out again into the
parameters that control the sound generation [5]. Any data
not actively selected for “digitisation” will not reach the
sound generator and will not affect the resulting sound,
and consequently get lost in the process. When a keyboard
DMI is designed to let through its bottleneck only the in-
formation relative to the note pitch and velocity, all those
more or less subtle forms of control available on acoustic
and electromechanical keyboard instruments which are not
velocity-based disappear.
McPherson in [9] introduced a portable device to sense

the continuous position of the key on the piano, designed
for the purpose of performance analysis and augmentation.
We use their keyboard scanner as a controller for DMIs,
applying it to keyboards other than the piano. Its sensing
capabilities allow us to widen the bottleneck of digital key-
boards and to design instruments that respond to different
touch gestures and key position in a way impossible with
velocity-based controllers. The raw positional data can be
used directly to control parameters of a sound generator,
or processed through a gesture recognition algorithm. In
our platform we connect the scanner to a Bela1 computer
for real-time sound synthesis, solving a number of associ-
ated engineering challenges, ultimately achieving action-to-
sound latency shorter than 5 ms. In the remainder of this
paper we describe our platform, as well as two instruments
we designed with it.

2. THE PLATFORM
We aim to create a responsive platform, with an action to
sound latency that is low enough not to be detrimental for
performance. David Wessel recommended 10 ms with a jit-
ter of ±1 ms as the recommended worst case latency for
a responsive instrument [18]. Jack et al. confirm those
findings, in particular showing that larger jitter values can
be detrimental to the perceived quality of the instrument
[4]. In order to meet these requirements, we started with a
Bela board, which was designed to achieve action to sound
latency figures below 1 ms when reacting to audio or sen-
sor inputs [12, 11], and we connect McPherson’s keyboard
scanner to it.
The scanner’s native interface to the host is via its USB

device port, through which it streams Sysex MIDI data to
the host. However, there is no way of accessing the USB bus
in a real-time safe way from the Bela audio environment, as
USB communication goes through the generic Linux driver,
which cannot guarantee low-latency and low-jitter perfor-
mance, especially under heavy CPU load. We therefore
engineered a solution where one of the PRUs2, acts as the

1http://bela.io
2PRU(Programmable-Realtime-Unit), is a microcontroller on-board
the Texas Instruments AM3358 System on Chip.

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

97

http://bela.io

Bela

TI AM3358 System-on-chip

PRU 1
SPI master

PRU 0
Audio I/O  
Analog I/O

CPU
ARM Cortex-A8

MIDI
controller

tlv320aic3104 Audio Codec

I2S

peripheral

Keyboard scanner

Board 0  

(sensing 25 keys)

SPI slave 0

Board 1  
(sensing 24 keys)

SPI slave 1

Board 2  
(sensing 24 keys)

SPI slave 2

USB host

USB device
Host

computer

SPI
peripheral

AD7699 ADC

AD5668 DAC

Internal SPI bus

Figure 1: Block diagram of the system comprising the keyboard scanner and the Bela board

SPI3 master on the internal communication bus used by
the keyboard scanner boards. A block diagram of the sys-
tem comprising the keyboard scanner and the Bela board
and all the relevant peripherals and communication buses
is detailed in Fig. 1.

The Scanner I/O thread, running on PRU1, handles the
communication with the scanner boards. It gathers data
from each board every 1ms (sampling rate is 1kHz), and it
sends a synchronization message every 5ms, to ensure that
the devices remain time-aligned. As soon as a frame of data
is received, the PRU sends an interrupt request (IRQ) to a
companion Scanner Processing real-time thread running on
the ARM Cortex A8 single-core CPU. The thread wakes up
and retrieves the data from the PRU memory, applies the
linearisation algorithm and makes the linearised data avail-
able to the user code. This thread can also perform signal
processing on the key scanner data, in order to compute
key velocity, or extract touch features, from the raw data.
On the other hand, when the instantaneous position of the
key is used to directly control a parameter in the audio
generator, then the audio thread can access the positional
information directly through a shared buffer, and apply the
necessary filtering to smooth the data, if needed.

When running alongside the Bela environment, the Bela
audio thread will also run on the ARM CPU, while the Bela
PRU code will run on PRU0. The Bela audio thread and
the Scanner Processing thread will therefore be contending
for CPU time. Given how we regard a glitch in the audio as
more detrimental than a delay in retrieving a scanner read-
ing, or even the loss of one full frame of scanner data, we
give a higher priority to the Audio Thread than the Scan-
ner Processing thread, so that the former can preempt the
latter as needed. Some lower-priority threads run alongside
the Audio and Scanner threads on the ARM CPU. These
provide facilities such as MIDI I/O, for an external USB
MIDI controller, and disk output, to write logging audio
and key position data to disk for later analysis.

2.1 Action to sound latency
We performed a series of measurements to evaluate the
action-to-sound latency of the platform, by measuring the
delay between flashing a IR source in front of the sensor and
the resulting sound output. The overall latency figure will
include the scanning latency of the sensor boards, the au-
dio processing block size on Bela and the built-in latency of
Bela’s audio DAC. The summary of our results are shown in
Table 1. The mean latency is 3.33 ms for an audio block size
of 16, and the jitter, that is the maximum variation between
the mean and the worst case scenario, is below ±0.5 ms. At
64 samples per block, the mean latency is 4.15 ms, and the
jitter is ±0.7 ms, so that the worst case scenario is always
below 5 ms. CPU usage does not seem to have a consider-

3Serial Peripheral Interface, a 4-wire high-speed communication bus.

able effect on the latency figures, however we would expect
that when the CPU usage of the audio thread approaches
90%, the performance may degrade severely, as the scanner
thread will start missing some of its deadlines. Our results
confirm that the performance of our platform well exceeds
the criterias set by [4] and can consistently achieve better
results than most devices commonly used for DMIs [11].

Block CPU Latency(ms)
size usage Mean σ

2 Min jitter Max Jitter
16 25% 3.33 0.19 -0.37 0.44
16 60% 3.33 0.19 -0.37 0.35
64 25% 4.15 0.28 -0.65 0.62
64 60% 4.17 0.28 -0.67 0.69

Table 1: Action to sound latency figures for our
platform. We performed 1600 measurements for
each condition.

.

2.2 Sensor linearisation

Figure 2: QRE1113: Normalized collector current
vs Distance between device and reflector. This im-
age is our overlay (red) on top of an image from the
QRE1113 datasheet. The solid red line is the curve
described by Eq. (1).

The keyboard scanner uses near-field optical reflectance
sensors (Fairchild QRE1113). The collector current of the
sensing phototransistor, which is sensed by the board’s ADC
after being converted to voltage, is a non-monotonic func-
tion of the distance of the reflecting surface (the key), as
shown in Fig. 2.

In the monotonic region, between 0.6 mm and 5 mm, the
relation between the sensor reading s and the key displace-
ment x can be described by the following formula:

s =
a

(x+ b)2
+ c (1)

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

98

Figure 3: The “calibration comb”

Our semi-automated calibration procedure measures the sen-
sor output at three known points: key top, key bottom, and
an intermediate point, the latter of which is obtained using
the calibration tool in Fig. 3. The three readings are used to
infer parameters a, b and c through least-squares numerical
curve fitting, so that x can be computed at runtime.

2.3 Percussiveness detection
A percussive key press occurs when the finger is already
moving downwards before hitting the key, and we are in-
terested in obtaining a discrete metric for each key onset,
to quantify the amount of percussiveness. [1] obtain a per-
cussive metric from the ratio of the key depression at half
the attack duration to the maximum key depression and the
average of the key depression curve. Besides introducing a
latency in the detection, by postponing the computation of
the metric until the key has reached the key bottom, this
approach would not work in the presence of incomplete key
presses. The approach in [9] considers the ballistic collision
that causes the key to bounce off the finger shortly after the
initial finger-key impact.

Fig. 4 shows the key and velocity profiles of a percus-
sive key press played on a Yamaha CP-300 digital piano4,
sensed through the piano scanner. As the key is hit by
the finger, kinetic energy is transferred from the finger to
the key, and the key starts a fast downward motion while it
temporarily loses contact with the finger, which is still mov-
ing downwards but more slowly. The key is moving freely
downwards, and the kinetic energy progressively dissipates
until the key stops and eventually starts moving upwards.
Shortly after that moment, the finger, which has kept mov-
ing down all along, catches up and the key starts moving
downwards again, this time under the direct pressure of
the finger. This behaviour translates in the velocity profile
exhibiting an initial spike due to the impact, and the key
profile exhibiting a local maximum during the early part of
the onset, corresponding to the point where the key starts
the upwards motion.

The percussion detection algorithm starts by detecting a
local maximum in the key position during the early part
of the key onset, when a maximum is found, the program
looks back at the recent history of the key position to find

4https://uk.yamaha.com/en/products/music_production/
stagekeyboards/cp300

Figure 4: The position and velocity profile of a per-
cussive key press.

the maximum value of the velocity, and that value is then
used as the percussiveness metric.

2.4 Aftertouch
Aftertouch is the term used to indicate the extra pressure
put into the key once it reaches key bottom. In [9], the after-
touch threshold is set dynamically for each key press when a
local maximum is encountered in the temporal evolution of
the key position. When playing pressing the key fully, this
local maximum would correspond to the key bouncing back
ever so slightly after hitting the keybed (see Fig. 4). How-
ever, when playing the keyboard in a continuous fashion,
the player would often perform partial key presses, where
they may move the key up and down in the key throw, thus
generating several local maxima, without ever reaching the
key bottom. Our solution is to record the key bottom po-
sition during calibration, and to also record the maximum
amount of key displacement in response to an aftertouch
gesture for each key. These two values are used to normalise
the aftertouch data across the keys.

2.5 Monophonic key detection
Keyboard instruments with limited polyphony need to adopt
a strategy to decide what keys emit sound when more keys
than the polyphony limit are pressed at the same time.
In the case of monophonic synthesizers, the most common
strategies are lowest-key, highest-key or most-recent key pri-
ority. However, these priority schemes only make sense in
the context of discrete key states, where a key can only be
“pressed” or “not pressed”. However, in the case of an in-
strument where the key position continuously shapes the
sound, like ours, a more complicated model is needed in or-
der for the interaction to be intuitive. We created a priority
algorithm that can be defined as “most recent and deepest
priority” to be used with our platform when in monophonic
mode, which aims at being intuitive for the player, so that
the latest key that has seen considerable action is the ac-
tive one, unless it is being released, in which case another
key can take priority more easily. This is achieved through
dynamic movement thresholds informed by the state of the
key, according to [9]’s state machine.

3. HAMMOND ORGAN EMULATOR
The Hammond organ, patented by Laurens Hammond in
1934, is an electromechanical keyboard music instrument, a
polyphonic additive synthesizer, whose oscillator bank con-
sists of 91 quasi-sinusoidal signals. Each contact is con-
nected to one of the sinusoids from the tone generator,
and each of these corresponds to the frequency of one of
the harmonics or sub-harmonics of the note. Every time
a key is pressed, this causes each contact to close against
one metal bar (“busbars”), connecting each oscillator, via
resistive wires that allow for passive scaling and summa-
tion, to the output busbar. The characteristic onset tran-
sient of notes on the Hammond is due to a combination
of the non-synchronous triggering point for the nine con-
tacts, and their bouncing pattern, which is dependent on
the continuous key position and key velocity during the key
press [16]. Because of manufacturing tolerances, each con-
tact closes at a different point in the key-throw, so that the
activation of each contact is dependent on the instantaneous
position of the key. Additionally, the velocity measured
around the point where key contacts close affects the dura-
tion of the of each contact’s bouncing pattern. The Ham-
mond is therefore touch-responsive, in such a way that can-
not be captured with traditional velocity-based keyboard
sensing. Most digital emulations of the Hammond organ do
not allow the player to control the sound generator with the

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

99

https://uk.yamaha.com/en/products/music_production/stagekeyboards/cp300
https://uk.yamaha.com/en/products/music_production/stagekeyboards/cp300

continuous position of the key, as they tend to use regular
MIDI keyboards as controllers, with the notable exceptions
of Hammond-Suzuki’s New B-35 (9 switches), and XK-56

(3 switches).
We created a Hammond emulator for the purpose of a per-

formance study (not presented here) on the effect of map-
pings between key position and virtual contacts in the tone
generator, thus maintaining the playing interface (keyboard
and expression pedal) as close to the original instrument
as possible was of primary importance. We used the key-
board of an actual Hammond C-3 console as a controller,
by installing the keyboard scanner on its lower manual and
replacing the organ’s sound generator with audio generated
on Bela.

Figure 5: The keyboard scanner installed on the
lower manual of a Hammond C-3

3.1 From discrete to continuous
setBfree7, an open-source Hammond emulator which served
as the sound generator, is a fully-featured Hammond em-
ulator that, in its original implementation, receives MIDI
note messages to activate each key, and implements static
or random envelopes to emulate contact bouncing. In order
to take advantage of the continuous keyboard controller, we
implemented the following additional features:

• position-dependent activation of the individual contacts,
adding hysteresis to avoid repeated triggering as a conse-
quence of noise in the key position signal

• a dynamic bounce generator where the initial speed of the
contact can be set for every contact for every onset

• instantaneous velocity detection at the moment of contact
activation, in order to drive the bounce generator

3.2 Dynamic contact bounce model
We used an empirical approach to simulate the bouncing
of contacts during the note onset, producing a physically-
justified model that can dynamically respond to the initial
velocity of the contact. We describe the motion of a contact
bouncing on the busbar as the piece-wise concatenation of
harmonic motions, where each time the contact touches the
busbar, a new motion is started with reduced initial velocity,
due to the energy dissipated in the impact [6]. To account
for the higher frequency oscillations of the contact beam,
we threshold the contact position obtained above so that if
it is higher than a high threshold thh, it is fully open, if it is
lower than a low threshold thl it is fully closed, and if it is in

5https://www.soundonsound.com/reviews/hammond-b3
6http://hammondorganco.com/products/portable-organs/xk-5/
7https://github.com/pantherb/setBfree

Figure 6: Synthesized contact bounce.

between the two, its behaviour is randomised, as observed
in the measurements in [16, figure 5]. This behaviour is
shown in Fig. 6, and can be controlled dynamically by the
initial velocity of the contact.

After a visual inspection of the audio recordings of the
actual instrument (such as the ones in [16, Figure 2]), we
noticed that the amount of amplitude modulation caused by
the contact bounce was smaller than the full-range value it
could be expected to have, possibly for a combined effect of
the capacitive coupling between the contact and the busbar
and of the inductance of the coupling transformer. We took
this into account by introducing a tunable parameter to
control the actual amplitude excursion of the bounces.

3.3 Touch responsiveness
We implemented three different mappings between key posi-
tion and contact triggering. For each of them, the triggering
points are adjustable.

• M1, Single triggering point, no velocity: the onsets
of all the contacts are triggered when the key crosses a
given threshold.

• M2, Single triggering point, velocity: the onsets of
all the contacts are triggered after the key crosses a given
threshold. The onset of each individual contact is delayed
in time depending on the velocity of the onset, resulting
in a temporal staggering effect where faster velocities will
trigger all the contacts closer together, whereas slower ve-
locities will spread them over a longer period of time.

• M3, Individual triggering points: each contact is set
to trigger at a given threshold in the key-throw. This
can be customized per-contact and per-key. The tempo-
ral staggering is due in this case to the different thresh-
olds for each contact, which prevent them from closing
synchronously, similarly to an actual Hammond organ.

For key presses that have a constant acceleration and
go all the way to the bottom of the key, the behaviour
of M2 and M3 can be virtually the same. However, for
partial presses, or when the acceleration is distributed non-
uniformly during the key press, then the difference between
them becomes more obvious. The instantaneous velocity of
the key at the triggering point, computed as the difference
between the current and previous sensor reading, can be
used as a proxy for the initial velocity of the contact in the
contact bounce model. By combining the triggering point
mappings and the instantaneous velocity we can reproduce
the macroscopic behaviour of the Hammond, or of some
Hammond emulators.

The Clavia Nord C2 features “An ultra fast trigger-to-

sound response time”.8 Our understanding is that this be-
haviour is achieved by triggering on the upper contact of
the otherwise standard two-contact key-bed it is equipped
with. As a consequence of triggering on the first contact,
we expect that there will be no velocity control available
to drive the sound engine. This behaviour can be approx-
imated using mapping M1 with no velocity control on the
dynamic bounce model.

The sound engine of the Crumar Mojo keyboard9 provides
velocity-sensitive onsets, where the duration of the onset is
affected by the velocity. This behaviour can be approxi-
mated using mapping M2 and applying velocity control to
the dynamic bounce model.

The behaviour of the C-3 organ measured in [16] can be
approximated by using mapping M3 with triggering points
selected in the range illustrated in their Figure 6. When
using M3, our instrument allows to reproduce some specific

8https://www.nordkeyboards.com/products/nord-c2
9https://www.crumar.it/?a=showproduct&b=4

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

100

https://www.soundonsound.com/reviews/hammond-b3
http://hammondorganco.com/products/portable-organs/xk-5/
https://github.com/pantherb/setBfree
https://www.nordkeyboards.com/products/nord-c2
https://www.crumar.it/?a=showproduct&b=4

Bela

M
a

p
p

in
g

 l
a

y
e

r

Keyboard controller

Keyboard

Non-linear waveguide flute

Aux audio input

Keyboard
scanner

Audio output PressurePosition

Percussiveness

Pitch bending
Input

Pitch

Note number

Jet ratio

Non-linearity

M
a

p
p

in
g

 l
a

y
e

r

Figure 7: Block diagram of the physical modelling
flute controlled with continuous key position.

Figure 8: The keyboard scanner installed on the
Yamaha CP-300.

Hammond behaviour such as partial key presses (i.e.: a key
press that does not go all the way down and does not trigger
all of the key contacts), and very slow presses (i.e.: a key is
depressed very slowly so that the harmonics start playing
one at a time).

4. NONLINEAR WAVEGUIDE FLUTE SYN-

THESIZER
This instrument was designed as a probe for studying the
generalization of keyboard playing skills to changes in the
mapping of the keyboard interface (study not presented
here). It is a monophonic synthesizer based on a physical
model of a flute and it associates several continuous gestures
on the key with a clear sonic effect. We use an off-the-
shelf weighted keyboard controller without any mechanical
modifications but, by using it as a continuous controller,
we attempt to extend the concept of keyboard beyond its
common understanding, and we challenge some of the basic
assumptions underpinning most keyboard instruments:

• continuous control: the key is a continuous controller,
and the key position affects the sound throughout the du-
ration of a note.

• onsets: onset velocity has no effect, but percussive on-
sets are detected and a percussive sound is produced in
response.

• interaction between keys: pressing two neighbouring
keys at the same time results in an interaction between
them, producing a pitch bending gesture with the second
key acting as a continuous controller on the pitch of the
first.

The high-level block diagram of our instrument is dis-
played in Fig. 7. We fitted two boards of the piano scanner
on a Yamaha CP-300 digital keyboard, covering the range
from B♭3 to B6 (38 notes). None of the sounds or electron-
ics from the Yamaha were used, only its weighted keyboard.
A picture of the instrument is shown in Fig. 8.

The starting point for the sound engine is a nonlinear
waveguide physical model of a flute developed in the FAUST
10 programming language [13]. We modified the model to
provide control over the length of the delay of the air jet
between the mouth and the mouthpiece, so that it allows
to generate overblown tones and interesting turbulent and
multi-phonic timbres when set to non-integer fractions of
the bore delay [8].

10http://faust.grame.fr/

The FAUST compiler produces a C++ file that contains
the DSP code as well as wrapper code for the platform it will
run on, which we modified in order to integrate it with the
keyboard scanner library. Our full code is available online
and implementation details can be found in [15].11

4.1 From discrete to continuous
The original FAUST implementation of this synthesizer would,
upon receiving a MIDI note input, trigger envelopes applied
to the air pressure, to provide smooth fade in and fade out
of the note, and to introduce a 5Hz modulation to produce
a delayed vibrato effect.

When using a continuous keyboard controller all the au-
tomations can be replaced by the player’s action on the key
itself, and the parameters from the physical model can be
controlled by the performer’s gestures:

• air pressure (intensity of breath): controlled by the ver-
tical position of the current key.

• pitch (length of the bore): controlled by the current ac-
tive key, and during bending gestures by the vertical po-
sition of the bending key.

• jet ratio (angle between lips and mouthpiece): changed
during a pitch bending alongside the pitch parameter.

• auxiliary audio input: if a key is struck percussively, a
percussive sound is injected into the resonant bore.

4.2 Gestures and sounds
The mapping of key position to air pressure will make so
that when the player presses the key with a swift, decisive
gesture, similar to a forte on a piano, the corresponding
sound will attack immediately. Conversely, to fade in a
note, they can press the key slower, as if they were playing
pianissimo, the tone will then transition from an airy, in-
harmonic breathy sound to a fuller tone, richer and richer
in harmonics as the air pressure increases. The intensity
and timbre of the note once the key has reached the bottom
will be the same in the two cases, what changes is uniquely
the shape of the onset transient. To play a quieter note,
the key will have to be partially pressed and held half-way
through the key-throw. There is no need for the key to
reach a particular point for the sound to begin, in fact the
onset gesture can be infinitely long, or never reach the bot-
tom: sound will be produced throughout. At any point in
the key throw, vertical oscillating motions on the key will
naturally translate into a tremolo effect. Pressing into the
keybed gives access to an extended range of pressure which
yields a growling sound.

A pitch bending is generated when holding one key down
and progressively pressing one of the keys within a major
third interval. The vertical position of the bending key then
controls the pitch of the tone. Bending a note on a trans-
verse flute is done in practice by changing the distance be-
tween the upper lip and the mouthpiece, therefore resulting
in a timbral change during the bending. As the sound of a
pitch change obtained by adjusting the length of the bore
is pretty flat and uninteresting, we change both bore length
and jet ratio, which produces a more turbulent and unsta-
ble sound, akin to the one obtained when gliding between
notes on a transverse flute. A state machine is implemented
in software so that, if the player lingers in the pitch bend-
ing space, the sound can become unstable and break into
a multi-phonic or overblown sound, which can be used for
creative purposes.

When a percussive key press is detected, a percussive
sound, a pre-recorded sample of a person producing a “T”
sound with their mouth into a microphone, is injected into

11https://github.com/giuliomoro/flute-key/

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

101

http://faust.grame.fr/
https://github.com/giuliomoro/flute-key/

the resonant bore of the physical model through the auxil-
iary audio input. This is not strictly equivalent to the effect
of a flutist pronouncing a “T” sound into the mouthpiece,
however, the resulting “chuff” is reminiscent of the sound of
a sharp attack on a flute.

Video and audio recordings of example gestures and sounds
can be found online.12

5. IMPLICATIONS
The instruments we developed provide richer interactions
with the key than most keyboard DMIs. In terms of [5]’s
concept of bottleneck, we made the bottleneck of our in-
struments wider. Our hybrid Hammond instrument allows
some gestures to produce an audible difference that would
not otherwise do so on a velocity-based keyboard. The be-
haviour of the instrument with M3 is somewhere between
discrete and continuous: a key press no longer amounts to
a single instantaneous measurement, but at the same time
the continuous behaviour unfolds over a timescale that is
too short for conscious control of all the detail during nor-
mal playing. However, it brings in a certain sonic rich-
ness associated with different key trajectories, which could
lead performers to skilfully manipulate the character of the
onset, consciously or unconsciously. Where [5] observed a
progressive impoverishment of the gestures used in an in-
strument with a narrow bottleneck, we expect a progressive
enrichment as a consequence of a wider one.

Our flute synthesizer is a more radically “continuous” in-
strument, where each key acts as a continuous controller
and percussive gestures have a specific sonic result. One of
the most important advantages of MIDI is that of general-
ity : as long as a sound generator can understand note and
velocity information, then it can be played with a keyboard
(or other MIDI controllers). Our instrument requires the
player to move the fingers on the keyboard in some new
and unusual ways, due to the specific characteristics of the
mapping between gesture and sound. Therefore, if we were
to try and replace the sound generator, it would be an ar-
duous task to maintain the exact meaning of gestures, and
the performer would have to make an effort to adapt to the
new mappings. By making the bottleneck wider, we have
gained in the amount of control available, and in the char-

acter of the instrument, but we lost in the generality of the
control data.

Some previous attempts to overcome the discrete charac-
teristics of the keyboard interface, such as the Seaboard [7]
and the Continuum [3], did so by completely transforming
the mechanics of the instrument and its haptic and tactile
response, eventually preserving only the spatial location of
the notes. Continuous key sensing allows to control sound
generators through a conventional keyboard controller with
a degree of detail in certain respects similar to that of the
Haken or the Seaboard, with the advantage of preserving
a familiar interface for trained keyboard players, and the
platform we presented can serve as the basis for new in-
struments of this kind. Expressive E’s recent announce-
ment of the Osmose13 keyboard with continuous sensing
and MIDI 2.0’s upcoming support for high resolution per-
key controllers14 pave the way for an exciting future for
continuous keyboards.

6. ACKNOWLEDGMENTS
This work was funded by EPSRC grants EP/L019981/1 and
EP/N005112/1.

12https://vimeo.com/364675614
13https://www.expressivee.com/discover-osmose
14https://www.midi.org/midi-2

References

[1] M. Bernays and C. Traube. Piano touch analysis:
A matlab toolbox for extracting performance descrip-
tors from high-resolution keyboard and pedalling data.
Proc. JIM, 2012.

[2] L. Fourier, C. Roads, and J.-J. Perrey. Jean-jacques
perrey and the ondioline. Computer Music Journal,
18(4):19–25, 1994.

[3] L. Haken, E. Tellman, and P. Wolfe. An indiscrete
music keyboard. Computer Music Journal, 22(1):30–
48, 1998.

[4] R. H. Jack, T. Stockman, and A. McPherson. Effect of
latency on performer interaction and subjective quality
assessment of a digital musical instrument. In Proceed-

ings of the Audio Mostly 2016, pages 116–123. ACM,
2016.

[5] R. H. Jack, T. Stockman, and A. McPherson. Rich
gesture, reduced control: the influence of constrained
mappings on performance technique. In Proceedings of

the 4th International Conference on Movement Com-

puting, page 15. ACM, 2017.
[6] X. Jun, H. Jun-jia, and Z. Chun-yan. A dynamic model

of electromagnetic relay including contact bounce. In
2008 International Conference on Electrical Machines

and Systems, pages 4144–4149. IEEE, 2008.
[7] R. Lamb and A. Robertson. Seaboard : a new piano

keyboard-related interface combining discrete and con-
tinuous control. In Proc. NIME, pages 503–506, Oslo,
Norway, 2011.

[8] M. E. McIntyre, R. T. Schumacher, and J. Woodhouse.
On the oscillations of musical instruments. The Journal
of the Acoustical Society of America, 74(5), 1983.

[9] A. McPherson. Portable measurement and mapping of
continuous piano gesture. In Proc. NIME, pages 152–
157, Daejeon, Republic of Korea, May 2013.

[10] A. McPherson. Buttons, handles, and keys: Advances
in continuous-control keyboard instruments. Computer

Music Journal, 39:28–46, 2015.
[11] A. McPherson, R. Jack, and G. Moro. Action-sound

latency: Are our tools fast enough? In Proc. NIME,
volume 16 of 2220-4806, pages 20–25, Brisbane, Aus-
tralia, 2016. Queensland Conservatorium Griffith Uni-
versity.

[12] A. McPherson and V. Zappi. An environment for
submillisecond-latency audio and sensor processing on
beaglebone black. In Audio Engineering Society Con-

vention 138, 2015.
[13] R. Michon and J. O. Smith. FAUST-STK: a set of

linear and nonlinear physical models for the FAUST
programming language. In Proceedings DAFx, Paris,
2011. IRCAM.

[14] F. R. Moore. The dysfunctions of MIDI. Computer

music journal, 12(1):19–28, 1988.
[15] G. Moro. Beyond key velocity: continuous sensing for

expressive control on the Hammond organ and digital

keyboards. PhD thesis, School of EECS, Queen Mary,
University of London, 2020.

[16] G. Moro, A. P. McPherson, and M. B. Sandler. Dy-
namic temporal behaviour of the keyboard action on
the hammond organ and its perceptual significance.
The Journal of the Acoustical Society of America,
142(5):2808–2822, 2017.

[17] O. Ortmann. The Physical Basis of Piano Touch and

Tone. Kegan Paul, Trenc, Trubner & Co., 1925.
[18] D. Wessel and M. Wright. Problems and prospects

for intimate musical control of computers. Computer

music journal, 26(3):11–22, 2002.

Proceedings of the International Conference on New Interfaces for Musical Expression (NIME-20), Birmingham, 2020

102

https://vimeo.com/364675614
https://www.expressivee.com/discover-osmose
https://www.midi.org/midi2

	Introduction
	The platform
	Action to sound latency
	Sensor linearisation
	Percussiveness detection
	Aftertouch
	Monophonic key detection

	Hammond organ emulator
	From discrete to continuous
	Dynamic contact bounce model
	Touch responsiveness

	Nonlinear waveguide flute synthesizer
	From discrete to continuous
	Gestures and sounds

	Implications
	Acknowledgments

