

Tool Evaluation - Technical Annex to the Paper

“Systematic Evaluation and Usability Analysis of Formal Methods Tools
for Railway Signaling System Design”

DOI: 10.1109/TSE.2021.3124677

Franco Mazzanti, Alessio Ferrari, Davide Basile, Maurice ter Beek

CNR-ISTI, Via G. Moruzzi 1, Pisa, Italy

Email: {franco.mazzanti, alessio.ferrari, davide.basile, maurice.terbeek}@isti.cnr.it

Table of Contents

Table of Contents 1

Overview 2

The Evaluation Sheet Reference Template 3

SPIN 10

Simulink 14

NuSMV/nuXmv 18

ProB 22

AtelierB 26

UPPAAL 30

FDR4 32

CPN-Tools 36

CADP 39

mCRL2 43

SAL 47

TLA+ 50

UMC 53

1 Overview

This document collects the evaluation sheets of 13 tools for system design, namely CADP (2020-g), FDR4 (4.2.7),
NuSMV(1.1.1), ProB(1.9.3), Atelier B (4.5.1), Simulink (R2020a), SPIN (6.4.9), UMC (4.8), UPPAAL (4.1.4), mCLR2
(202006.0), SAL (3.3), TLA+ (2) and CPN Tools (4.0).

The tools were evaluated by three assessors following the steps described below:

1) install and run the tool;

2) consult the website of the tool, to check the official documentation;

3) opportunistically search for additional documentation to identify useful information to fill the evaluation sheet;

4) refer to the structured list of papers on formal methods and railways published at https://goo.gl/TqGQx5, to check
for tools' applications in railways;

5) perform some trials with the tools to confirm claims reported in the documentation, and assign the value to those
features that required some hands-on activity to be evaluated;

6) report the evaluation on the sheet, together with the links to the consulted documents and papers, and appropriate
notes when the motivation of some assignment needed clarification.

In the following section the reference document for assessment, with features and values, is reported. Then, for each
tool, we attach the associated sheet.

2 The Evaluation Sheet Reference Template

______________Information Part____________

Tool/Framework Name:

Description:

Web Sites:

Documentation:

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textual, Graphical, Textualimport

 Textual (TEXT): Models are edited with the tool in plain textual form.

 Graphical (GRAPH): Models are edited with the tool through a graphical interface.

 Textualimport (TEXTIM): The tool just operates on textual data provided by other tools.

Code Generation: Yes, No

 Yes: The tool supports the automatic generation of program code from the models.

Document / Report Generation: Yes, No, Partial

 Yes: The tool supports automated generation of readable reports and documents, which describe the
artifacts produced with the tool, or the activities carried out with the tool.

 No: Feature not mentioned.

 Partial: The tool allows to generate diagrams or partial reports that can be in principle included in official
documentation.

Requirements Traceability: Yes, No

 Yes: The tool supports traceability of requirements to the artifacts produced with the tool.

Project Management: Yes, No

 Yes: The framework supports the management of a project and the GUI-based navigation of its conceptual
components (models, submodels, verification results, tests, etc.).

 No: No project management is supported.

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: No, Graphical, Textual, Textual+Graphical

 Graphical (GRAPH): the visualisation of the simulation is purely in the form of visual diagrams

 Textual (TEXT): the visualisation of the simulation is purely in textual format

 Textual-Graphical (MIX): the visualisation of the simulation is mainly textual but it is aided by visual
diagrams

 No: the tool does not support simulation of the possible system evolutions

Formal Verification: Refinement Checking, Theorem Proving, Model Checking (Linear,
Branching, Observer)

 Refinement Checking (RF): Allows to verify equivalence / refinement relations among models. Note that
refinement can also be proved through, e.g. theorem proving, here for refinement checking we intend
automatic checking of refinement.

 Model Checking Linear (MC-L): Allows to verify linear time properties along the possible evolution
graph of the system (this includes model checking of invariants as a subcase).

 Model Checking Branching (MC-B): Allows to verify branching time properties along the possible
evolution graph of the system (this includes model checking of invariants as a subcase).

 Model Checking Observer (MC-O): The property to be verified is expressed in the same graphical
language of the tool, in the form of an observer block. The model assumes inputs and checks that the output
fulfils the desired value.

 TheoremProving (TP): Allows to automatically verify logical properties of the model or to mechanically
verify theorem proofs over the model.

Large-scale Verification Technique: On-the-fly model checking, Partial order reduction,
Bounded Model Checking, Symbolic Model Checking, SAT-SMT Constraint Solving and
Theorem Proving, Statistical Model Checking, Compositionality and Minimization

 On-the-fly model checking (FLY): the state is generated on demand.

 Partial order reduction (POR): exploitation of symmetries in the state space.

Parallel computation (PAR): parallel computation distributed on more hosts.

Bounded Model Checking (BMC): state space exploration up to a certain depth.

Symbolic Model Checking (SYM): compact state space representation.

SAT-SMT Constraint Solving and Theorem Proving (SCT): avoid explicit reasoning on
the state space.

Statistical Model Checking (SMC): avoid state space generation using simulations and
provide an approximate solution.

Compositionality and Minimization (COM): divide the problem into smaller subproblems.

Model Based Testing: Yes, No

 Yes: The framework supports the automatic generation of test

 No: The framework does not support automatic generation of test

Property Specification Language: name (informative)

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: name

 (just informative aspect)

Nondeterminism: Internal Choice (INT), External Choice (EXT)

 INT: the model allows internal non deterministic system evolutions

 EXT: the model allows external choices associated to inputs or trigger-events

Concurrency: Asynch, Synch, A/Synch, No

 Asynch: The model can be constituted by a set of asynchronously interacting elements

 Synch: The model can be constituted by a set of synchronous elements

 A/Synch: The modelling language supports synchronous and asynchronous elements

 No: The model is constituted by just one element

Timing aspects: Yes, No

 Yes: The language of the tool supports the notion of time.

 No: The language does not have this feature.

Probabilistic or Stochastic aspects: Yes, No

 Yes: The language of the tool supports the notion of probability.

 No: the language does not have this feature.

Modularity of the Language: High, Medium, Low

 High: The tool allows the user to model in a hierarchical way, and the partitioning of the model into modules.

 Medium: The tool allows the partitioning of the model into modules but does not allow the user to model in
a hierarchical way.

 Low: The tool allows the partitioning of models into modules, but the modules have no way to interact,
neither by messages nor by shared memory.

 No: no modules supported.

Supported Data Structures: Basic, Complex

 Basic: The language supports numeric types, but no composite expressions

 Complex: The language supports complex expressions like sequences, sets, array values.

Float Support: Yes, No

 Yes: The language supports floating point numbers as primitive types

 No: Otherwise

Model kind: Imperative, Functional, Algebraic, Logical, Graphic
 (just informative aspect)

 Imperative: the model is described by a textual imperative language

 Functional: the model is described by a textual functional language

 Algebraic: the model is described by a textual process algebra

 Logical: the model is described by a textual logical language

 Graphic: the model is described by a graphical notation

Tool Flexibility

Backward Compatibility: Yes, Likely, Moderate, Uncertain

 Yes: The vendor guarantees that legacy versions of the models can be used in the current version of the
tool or the future availability of legacy versions of the tool.

 Likely: The tool is open source, or the input language is stable and standard de facto or there is evidence
of interest in preserving backward compatibility.

 Moderate: The tool is not open source, and the provider does not show evidence regarding the backward
compatibility, even if the language is rather stable and standard de facto.

 Uncertain: Sources not available, input format not necessarily stable, no information available from
vendor.

Standard Input Format: Standard, Open, Partial
 Standard: The input language is based on a language standardised by an international organization (e.g.
ISO).

 Open: The input language is open, public and not proprietary.

 Partial: The structure of the model specification is easily accessible, but not publicly documented.

Import/Export to other tools: High, Medium, Low

 High: The tool provides several import/export functionalities

 Medium: The tool has a standard format used by other tools, or exports w.r.t. to other formats.

 (Known cases of interactions with tools are mentioned.)

 Low: Tool not oriented towards export/export functionalities

Modularity of the tool: High, Medium, Low

 High: The tool is composed of many packages that can be loaded to address different phases of the
development process.

 Medium: The tool offers multiple functionalities, but not in the form of packages that can be loaded and
combined.

 Low: The tool has a limited number of functionalities in a monolithic environment.

Team Support: Yes, No

 Yes: The tool supports collaborative team development.

 No: The tool does not have this feature.

Maturity

Industrial Diffusion: High, Medium, Low

 High: The tool is claimed to be used in industry, and the website of the tool reports several industrial cases.

 Medium: The tool is claimed to be partially used in industry, and the website of the tool reports a limited
number of industrial cases.

 Low: there are no known cases of use of the tool in industry

Stage of Development: Mature, Partial, Prototype

 Mature: The tool is a stable product with a long history of versions

 Partial: The tool is a recent tool but with a solid infrastructure

 Prototype: The tool is at the level of a prototype

Usability

Availability of Customer Support: Yes, Partial, No

 Yes: Reliable customer support can be acquired for maintenance and training

 Partial: Free support is available for maintenance and training (e.g. mail for bug notifications and public
forums for discussions)

 No: Communications channels need to be established among producers and users

Graphical User Interface: Yes, Partial, Limited, No

 Yes: the tool has a well defined and powerful graphical user interface

 Partial: a user friendly GUI exists, but does not cover all the tool functionalities in a graphical form

 Limited: a GUI exists, but not particularly effective in the design and usability

 No: The tool is a command line tool.

Mathematical Background: Basic, Medium, Advanced

 Which mathematical background is needed for an effective use of the tool

 Basic: the tool does not require particular logical/mathematical skills

 Medium: the tool requires knowledge of temporal logics

 Advanced: the tool requires advanced logical/mathematical skills, such as theorem proving and process
algebras.

Quality of Documentation: Excellent, Good, Limited

 Excellent: The documentation is extensive, updated and clear, and includes examples that can be used by
domain experts, and it is accessible and navigable in an easy way

 Good: The documentation is complete, but offline and requires some effort to be navigated

 Limited: The documentation is not sufficient, or easily accessible, to effectively use the tool, but that activity
can still be finalised with additional effort

Company Constraints

Cost: Pay, Free, Mix

 Pay: Available only under payment

 Mix: Free under limited conditions (e.g., academic) and moderate cost for industrial uses

 Free: Free for all industrial or academic uses

 Supported Platforms: names of platforms

 names of platforms: the names of the supported platforms (macOS, Windows, Linux - ALL if all all three are
supported)

Complexity of License Management: Easy, Moderate, Adequate, Complex

 Easy the tool is free for commercial use, and no license management system is required

 Moderate the tool has a free version and a commercial one. While trying the tool with a free license, we
did not encounter any licensing problem. Limited information is provided concerning the licensing system for
commercial licenses. (The underlying assumption is that the license management for commercial licenses will
be sufficiently easy, as experimented for free licenses).

 Adequate the tool is only available upon payment. When trying the tool with the academic license we
encountered a limited overhead in dealing with licenses. The licensing information provided in the website of
the tool is clear and accurate.

 Complex several problems were encountered with the license management system.

Easy to Install: Yes, No, Partial

 Yes: The tool is mostly self contained, does not require external libraries, and can be easily installed.

 Partial: The tool installation depends on external components, and the installation process is not smooth

 No: The installation process can interfere with the customer development environment.

Railway Specific Criteria

CENELEC certification: Yes, No, Partial

 Yes: The tool is certified according to the CENELEC norm

 Partial: The tool includes a CENELEC certification kit, or if the tool is certified according to other safety-
related norms (e.g., DO128C)

 No: otherwise

Integration into the CENELEC process: Yes, Medium, Low

 Yes: the tool or language is mentioned in the text of the CENELEC norm, in the literature and in the tool
documentation we found evidence of the usage of the tool for the development of railway products developed
according to the CENELEC norms.

 Medium: in the literature and in the tool documentation we found evidence of the usage of the tool in
railways, but we did not find any evidence of CENELEC products developed with the support of the tool.

 Low: in the literature and in the tool documentation we did not find any evidence of usage of the tool in
railways.

3 SPIN

______________Information Part____________

Tool/Framework Name: SPIN

Description:
SPIN8 (Simple Promela Interpreter) is an advanced and very efficient tool specifically targeted for the
verification of multi-threaded software. The tool was developed at Bell Labs in the Unix group of the Computing
Sciences Research Center, starting in 1980. In April 2002 the tool was awarded the ACM System Software
Award. The language supported for the system specification is called Promela (PROcess MEta LAnguage).

See also: https://en.wikipedia.org/wiki/SPIN_model_checker.

Web Sites:
http://spinroot.com

Documentation:
http://www.spinroot.com/spin/whatispin.html
http://spinroot.com/spin/Man/index.html
http://www.spinroot.com/spin/Man/GettingStarted.html
http://www.spinroot.com/spin/Man/promela.html
Book: Principles of the Spin Model Checker
Book: The SPIN Model Checker: Primer and Reference Manual
Many books, tutorials, slides, available online.

https://www3.risc.jku.at/education/oldmoodle/file.php/9/Spin-Introduction.pdf

Reports on Industrial Uses of the Tool (in Railways):
"A Formal Specification and Validation of a Critical System in Presence of Byzantine Errors"
 https://link.springer.com/chapter/10.1007/3-540-46419-0_36

"Towards Model-Driven V&V assessment of railway control systems"
 https://link.springer.com/article/10.1007/s10009-014-0320-7

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

SPIN is mainly a command line oriented model checker. It is not an integrated design/verification framework.
The jSpin/iSpin GUI are provided by third parties, with little capabilities. The Promela specification language is
the source/target of many (unsupported) translators provided by third parties.

Specification/Modeling: Textual
The tool "spin" is just a verification/analysis tool working on textual files.

The "jspin.jar" and "ispin.tcl" GUI also allow the editing of models.

Code Generation: No

Document / Report Generation: Partial
The ispin/jspin GUI allow to visualize execution diagrams generated interactively or through the guidance if a
counter-example.

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual

Formal Verification: Model Checking (Linear)

Large-scale Verification Technique: On-the-fly Model Checking, Partial Order Reduction,
Parallel Computation

Model Based Testing: No

Property Specification Language: LTL

 (just informative)

Notes:

Verification allows to specify fairness constraints and assertions. LTL is state based. Built-in deadlock analysis.

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: Promela

Nondeterminism: Internal
The choice operator allows non deterministic selection of transition rules.

A system is seen as a collection of processes. Processes interact through synchronous Message Passing
towards buffered channels. The behavior of a process can be nondeterministic. The choice of which process
is selected for progress is nondeterministic. Processes can share memory.

Concurrency: Asynch
A system is composed of a set of processes scheduled by interleaving.

Timing aspects: No

Stochastic aspects: No

Modularity aspects: High
A system is composed by a dynamic set of hierarchical processes.

Supported Data Structures: Basic
Expressions can only be of elementary types, statically sized arrays variables are allowed.

http://spinroot.com/spin/Man/arrays.html

Float Support: No

Model kind: Imperative

Flexibility

Backward Compatibility: Likely
The modelling language is a de facto standard and very stable. The tool is also open source.

Standard Input Format: Open

Import/Export to other tools: Medium
Actually there is no need for built-in import/export functionalities, since the design language is open.

In the literature are mentioned many cases of conversion from/to promela models.

Modularity of the tool: Low

Team Support: No

Maturity

Industrial Diffusion: High
Many cases of industrial uses.

Stage of Development: Mature

Usability

Availability of Customer Support: Partial

http://spinroot.com/fluxbb/ SPIN Public Discussion Forum

Graphical User Interface: Limited

Two GUI exist, jSpin and iSpin. But design functionalities are limited.

Mathematical Background: Medium
Properties are encoded as LTL formulae, possibly with fairness constraints.

Quality of Documentation: Good

Company Constraints

Cost: Free

Free software BSD-3Clause license

see http://www.spinroot.com/spin/spin_license.html

Supported Platforms: ALL

Complexity of License Management: Easy

Easy to Install: Yes
For MAC OS it requires Developers Tools with Command Line extensions (e.g. gcc compilation system).

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium
The tool appears to be used in the railway field but without explicit references to CENELEC related activities.

Notes

4 Simulink

______________Information Part____________

Tool/Framework Name: Simulink

Description:
Simulink, developed by MathWorks, is a graphical programming environment for modeling, simulating and
analyzing multi domain dynamical systems. Its primary interface is a graphical block diagramming tool and a
customizable set of block libraries. It offers tight integration with the rest of the MATLAB environment and can
either drive MATLAB or be scripted from it. Simulink is widely used in automatic control and digital signal
processing for multidomain simulation and Model-Based Design.

Web Sites:
https://it.mathworks.com/products/simulink.html

Documentation:
https://it.mathworks.com/help/index.html
https://it.mathworks.com/help/simulink/getting-started-with-simulink.html
Webinar: https://it.mathworks.com/videos/
 /model-based-approach-for-ertms-railway-wayside-system-specification-validation-and-proof-90417.html
https://www.mathworks.com/help/sldv/ug/workflow-for-proving-model-properties.html

Reports on Industrial Uses of the Tool (in Railways):
"A Story About Formal Methods Adoption by a Railway Signaling Manufacturer"
 https://link.springer.com/chapter/10.1007/11813040_13

"Contract Modeling and Verification with FormalSpecs Verifier Tool-Suite - Application to Ansaldo STS Rapid
Transit Metro System Use Case"
 https://link.springer.com/chapter/10.1007/978-3-319-24249-1_16

"The Metrô Rio case study"
 https://www.sciencedirect.com/science/article/pii/S0167642312000676

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Graphical

Code Generation: Yes

Document / Report Generation: Yes

 https://www.mathworks.com/products/SL_reportgenerator.html

Requirements Traceability: Yes

 https://it.mathworks.com/discovery/requirements-traceability.html

Project Management: Yes

https://it.mathworks.com/discovery/model-based-testing.html

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Graphical

Formal Verification: Model Checking Observer
The model must be extended with "observer" components to highlight the properties of interest. Although it
does not use the LTL syntax to express the properties, linear time properties can be encoded in blocks.

The "Design Verifier" functionality calls a SAT based Bounded model checker.
 https://it.mathworks.com/discovery/formal-verification.html
 https://it.mathworks.com/products/sldesignverifier.html https://it.mathworks.com/help/sldv/ug/workflow-
for-proving-model-properties.html

Large-scale Verification Technique: Bounded Model Checking

Model Based Testing: YES

 Through Simulink Design Verifier it is possible to automatically generate tests, with a full coverage
(https://it.mathworks.com/discovery/model-based-testing.html)

Property Specification Language:
Properties are specified in the Simulink language, and observers and proof operators

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: Simulink

Nondeterminism: External
Input signals and values may trigger alternative behaviors. Single transitions rules are deterministic.

Concurrency: No

Even if the model can be decomposed into a set of interacting components, the overall system semantics is
that of a single sequential system.

Timing aspects: Yes

The Clock block represents the current simulation time, which can be retrieved also with the function
getSimulationTime() in Stateflow.

Stochastic aspects: No

Modularity aspects: High

Supported Data Structures: Complex
Typical programming language types are supported (float, pointers)

Float Support: Yes

Model kind: Graphic

Flexibility

Backward Compatibility: Likely
Old versions of the tool remain available and new versions of the model can be downgraded

(see https://it.mathworks.com/help/simulink/ug/saving-a-model.html)

Standard Input Format: Partial

Import/Export to other tools: Low
It is theoretically possible to export the models into custom export formats.
(E.g. SCADE provides functionalities to import Simulink Models)

Modularity of the tool: High

Team Support: No

Maturity

Industrial Diffusion: High
Claimed to be (from "An Operational Semantics for Stateflow" by Gregoire Hamon and John Rush) one of the
most widely used environments of this kind is the Matlab suite from Mathworks which, with more than 500,000
licensees, is widespread throughout aerospace, automotive, and several other industries, and ubiquitous in
engineering education.

Stage of Development: Mature

Usability

Availability of Customer Support: Yes

Graphical User Interface: Yes

Mathematical Background: Basic
The tool is very rich and complex. Mastering it requires deep training.

System properties are specified by graphically combining predefined operators.

No deep mathematical knowledge is needed.

Quality of Documentation: Excellent
The documentation for MatLab is very good, several topics are covered (see for an overall index:
https://it.mathworks.com/help/index.html) and there is an active community, also because of the widespread
usage of the tool (see Industrial Usage). Parts of the online documentation require a client account.

However, it is mainly used by engineers and it is difficult sometimes to find answers to more theoretical
questions, as for example the possibility of expressing and verifying temporal logic formulae within this
framework.

Company Constraints

Cost: Pay

Supported Platforms: ALL

Complexity of License Management: Adequate
Student, academic, and commercial licenses, individual or by group, based on the set of needed functionalities
are available. Detailed information is available

(see https://it.mathworks.com/pricing-licensing.html)

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: Partial

There are available kits for certifying software that has been created using this framework, in
particular a DO Qualification Kit (for DO-178) and IEC Certification Kit (for ISO 26262 and IEC 61508) (both
for code generation aspects) are available.
Integration into the CENELEC process: Yes

5 NuSMV/nuXmv

______________Information Part____________

Tool/Framework Name: NuSMV (nuXmv)

Description:
NuSMV is a reimplementation and extension of SMV symbolic model checker, the first model checking tool
based on Binary Decision Diagrams (BDDs).[1] The tool has been designed as an open architecture for model
checking. It is aimed at reliable verification of industrially sized designs, for use as a backend for other
verification tools and as a research tool for formal verification techniques.

NuSMV has been developed as a joint project between ITC-IRST (Istituto Trentino di Cultura in Trento, Italy),
Carnegie Mellon University, the University of Genoa and the University of Trento. Since version 2, it combines
BDD-based model checking with SAT-based model checking.

Its last evolution, called nuXmv, allows the verifications of infinite-state systems.

It is maintained by Fondazione Bruno Kessler, the successor organization of ITC-IRST.

Web Sites:
http://nusmv.fbk.eu/
https://nuxmv.fbk.eu/

Documentation:
http://nusmv.fbk.eu/NuSMV/userman/index-v2.html
http://nusmv.fbk.eu/NuSMV/tutorial/index.html
http://nusmv.fbk.eu/NuSMV/papers.html
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

Reports on Industrial Uses of the Tool (in Railways):
http://es.fbk.eu/projects

"A formal systems engineering approach in practice: an experience report"
 https://dl.acm.org/citation.cfm?id=2593850.2593856

"Formalization and validation of a subset of the European Train Control System"
 https://dl.acm.org/citation.cfm?id=1810312

"Validation of requirements for hybrid systems: A formal approach"
 https://dl.acm.org/citation.cfm?id=2377659

"A Story About Formal Methods Adoption by a Railway Signaling Manufacturer"
 https://link.springer.com/chapter/10.1007/11813040_13

"Formal Verification and Validation of ERTMS Industrial Railway Train Spacing System"
 https://link.springer.com/chapter/10.1007/978-3-642-31424-7_29

_________ Evaluation Part ____________

Development Functionalities

How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textualimport
NuSMV is essentially a model checking engine.

NuSMV textual models are edited outside the NuSMV framework, often as translations from other
specification/design languages.

NuSMV is essentially a verification engine, not a design framework.

Code Generation: No

Document / Report Generation: No

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual

Formal Verification: Model Checking (Linear, Branching)
Supports both linear and branching time properties. Supports both BDD based and SMT based verification
techniques. Allows to specifications of Fairness Constraints.

Large-scale Verification Technique: Bounded Model Checking, Symbolic Model Checking

Model Based Testing: No

Property Specification Language: LTL CTL, RTCTL, PSL

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: NuSMV

Nondeterminism: Internal / External
Nondetermism is introduced by explicit "input variables" and by non deterministic system initializations and
transformations.

Concurrency: Synch

Previous versions allowed to make use of an explicit "process" construct (now deprecated).
Data flow oriented specifications actually describe fully parallel and synchronous transformation rules.

Timing aspects: Yes

nuXmv supports the definition of timed transition systems.

Stochastic aspects: No

Modularity aspects: Medium

A system can be decomposed into a set of modules when global state and the global transition relation can
be split in orthogonal fragments.

Supported Data Structures: Complex
Expressions are of basic types (integer, booleans, enumerations).

Array variables are allowed.

nuXmv supports floating point numbers.

Float Support: Yes

Model kind: Logical

Flexibility

Backward Compatibility: Likely
The modelling language is a de facto standard and quite stable. The tool is open source.

Processes are deprecated and no longer supported in nuXmv.

Standard Input Format: Open

Import/Export to other tools: Medium
In the literature are found many cases of conversion from /to nuSMV

Modularity of the tool: Low

The framework supports various kind of model checkers,

Team Support: No

Maturity

Industrial Diffusion: High
many cases of industrial uses

Stage of Development: Mature

Usability

Availability of Customer Support: Partial
It is possible to submit bug reports (http://nusmv.fbk.eu/bug_report.html) and subscribe to mail lists for news,
updates and contact with other users (nuxmv-users@list.fbk.eu).

Graphical User Interface: No

Mathematical Background: Medium
Properties are encoded as LTL /CTL /PSL formulae, possibly with fairness constraints.

Quality of Documentation: Good

Company Constraints

Cost: Mix

Usable only for non-commercial or academic purposes, need special agreement in case of commercial use

 https://nuxmv.fbk.eu/index.php?n=Download.Download

Supported Platforms: ALL

Complexity of License Management: Easy

Open Source license LGPL v2.1.
This license kind allows free academic and commercial usage of NuSMV. No need for further kinds of
licenses.

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium

6 ProB

______________Information Part____________

Tool/Framework Name: ProB
ProB is an animator, constraint solver and model checker for the B-Method (see the B-Method site of Clearsy
- http://www.methode-b.com/en/). It allows fully automatic animation of B specifications, and can be used to
systematically check a specification for a wide range of errors. The constraint-solving capabilities of ProB can
also be used for model finding, deadlock checking and test-case generation.

The B language is rooted in predicate logic, arithmetic and set theory and provides support for data structures
such as (higher-order) relations, functions and sequences. In addition to the B language, ProB also supports
Event-B, CSP-M, TLA+, and Z. ProB can be installed within Rodin, where it comes with BMotionStudio to
easily generate domain specific graphical visualizations. (See for an overview of ProB's components).

Commercial support is provided by the spin-off company Formal Mind (http://formalmind.com)

Pro B exists as a standalone tool or as a plugin for Rodin.

In this evaluation sheet we report the evaluation of the tool when used with its reference language, i.e. EventB.
Certain observations, like no concurrency, no temporal aspects, low modularity, are strictly related to the
characteristic of the B notation and would not apply when models are imported from other notiations like CSPm.

Web Sites:
http://formalmind.com
https://www3.hhu.de/stups/prob/index.php/Main_Page

Documentation:
https://www3.hhu.de/stups/prob/index.php/Documentation
http://www.atelierb.eu/wp-content/uploads/sites/3/ressources/manrefb1.8.6.uk.pdf
https://www3.hhu.de/stups/prob/index.php/User_Manual
https://www3.hhu.de/stups/prob/index.php/Tutorial
https://www3.hhu.de/stups/prob/index.php/Links
https://www3.hhu.de/stups/prob/index.php/ProB_Validation_Methods
Clearsy: "B Language reference Manual"
 (http://www.atelierb.eu/wp-content/uploads/sites/3/ressources/manrefb1.8.6.uk.pdf)

Book "Formal Methods Applied to Complex Systems - Implementation of the B Method"
Book: J R Abrial "The B Book"

Reports on Industrial Uses of the Tool (in Railways):
"Automated Property Verification for Large Scale B Models"
 https://link.springer.com/chapter/10.1007/978-3-642-05089-3_45

"Formal Implementation of Data Validation for Railway Safety-Related Systems with OVADO"
 "https://link.springer.com/chapter/10.1007/978-3-319-05032-4_17"

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textual
The ProB application allows the direct editing of textual models.

Code Generation: No

ProB does not directly support code generation. However, models can be exported to AtelierB, which does
support code generation.

Document / Report Generation: Partial
ProB allows to visualize "state projections", and produce animations of the system behavior.

Requirements Traceability: No

Formal Mind distributes also the open source ProR and RIF/ReqIF tools for requirements management.

Project Management: Yes

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual, Graphic

Formal Verification: Model Checking (Linear, Branching), Refinement Checking
ProB offers several alternative approaches to formal verification.
See https://www3.hhu.de/stups/prob/index.php/ProB_Validation_Methods for summarising schema.

Consistency Checking (see https://www3.hhu.de/stups/prob/index.php/Consistency_Checking)
Constraint Based Checking (see https://www3.hhu.de/stups/prob/index.php/Constraint_Based_Checking)
Refinement Checking (see https://www3.hhu.de/stups/prob/index.php/Refinement_Checking)
LTL/CTL Model Checking (see https://www3.hhu.de/stups/prob/index.php/LTL_Model_Checking)
LTL Bounded Model Checking (see https://www3.hhu.de/stups/prob/index.php/Bounded_Model_Checking)

Large-scale Verification Technique: SAT-SMT Constraint Solving and Theorem Proving

Model Based Testing: Yes
The framework supports the automatic generation of test
 (see https://www3.hhu.de/stups/prob/index.php/Test_Case_Generation)

Property Specification Language: LTL, CTL

 The supported logics are basically state based, but allow also a restricted form of event related aspects.

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: Event B (ProB flavour)

Nondeterminism: Internal, External

Incoming events constitute a possible way to introduce determinism in the system.

"CHOICE", "SELECT", "ANY" operators allow internal nondeterministic behaviors.

Concurrency: No

A B model can be composed of a set of elements, but the overall behavior is that one of a single state machine.
Imported CSPm models would not suffer from this limitation.

Timing aspects: No

Stochastic aspects: No

Modularity aspects: Low
The model is essentially a single sequential state machine. Limited forms of machine decomposition are
allowed.

Supported Data Structures: Complex

Float Support: No

Model kind: Imperative

Flexibility

Backward Compatibility: Likely
Event B is a rather standard modelling language, even if ProB adopts its own syntactic flavour.

The tool is open source and previous versions of the tool are still available for download (see
https://www3.hhu.de/stups/prob/index.php/DownloadPriorVersions)

Standard Input Format: Open

Import/Export to other tools: High
The tool also imports and verifies models in TLA+, Z, CSPm.

Modularity of the tool: High

The tool addresses mainly the abstract design phase of the development process

Team Support: No

Maturity

Industrial Diffusion: High

Stage of Development: Mature
Actually not a long history of versions, but very stable.

Usability

Availability of Customer Support: Yes

Commercially provided by Formal Mind (http://formalmind.com/services/).

Graphical User Interface: Partial

A GUI exist. But design functionalities are limited.

Mathematical Background: Medium

Properties are encoded as LTL / CTL formulae.

Quality of Documentation: Good

Company Constraints

Cost: Free
https://www3.hhu.de/stups/prob/index.php/ProBLicense

Supported Platforms: ALL

Complexity of License Management: Easy
Open Source (see https://www3.hhu.de/stups/prob/index.php/Download

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Yes
B Method is explicitly mentioned in the CENELEC norm and there is an abundant amount of literature
documenting railway specific success stories using the method

7 AtelierB

______________Information Part____________

Tool/Framework Name: Atelier B (Rodin version)

Description:
Developed by ClearSy, Atelier B is an industrial tool that allows for the operational use of the B Method to
develop defect-free proven software (formal software). It is available in 2 versions :
 1- Community Edition available to anyone without any restriction,
 2- Maintenance Edition for maintenance contract holders only.
 3- RODIN Plugin

It is used to develop safety automatisms for the various subways installed throughout the world by Alstom and
Siemens, and also for Common Criteria certification and the development of system models by ATMEL and
STMicroelectronics.

Additionally, it has been used in a number of other sectors, such as the automotive industry, to model
operational principles for the onboard electronics of three car models. Atelier B is also used in the aeronautics
and aerospace sectors.

Atelier B exists as a standalone tool or as a plugin for Rodin.

Web Sites:
https://www.atelierb.eu/en/
http://www.clearsy.com/en/our-tools/atelier-b/
https://www.atelierb.eu/en/atelier-b-tools/
http://www.clearsy.com/en/

Documentation:
Clearsy: "B Language reference Manual"
 (http://www.atelierb.eu/wp-content/uploads/sites/3/ressources/manrefb1.8.6.uk.pdf)

Book: "Formal Methods Applied to Complex Systems - Implementation of the B Method"
Book: J R Abrial "The B Book"

Reports on Industrial Uses of the Tool (in Railways):
"Safety Analysis of a CBTC System: A Rigorous Approach with Event-B"
 https://link.springer.com/chapter/10.1007/978-3-319-68499-4_10

"Safe and Reliable Metro Platform Screen Doors Control/Command Systems"
 https://link.springer.com/chapter/10.1007%2F978-3-540-68237-0_32

"Automated Property Verification for Large Scale B Models"
 https://link.springer.com/chapter/10.1007/978-3-642-05089-3_45

"Using Formal Proof and B Method at System Level for Industrial Projects"
 https://link.springer.com/chapter/10.1007/978-3-319-33951-1_2

"Aligning SysML with the B Method to Provide V&V for Systems Engineering"
 https://hal.inria.fr/hal-00741134/document

"Safe and Reliable Metro Platform Screen Doors Control/Command Systems"
 https://link.springer.com/chapter/10.1007%2F978-3-540-68237-0_32

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Translators of B to C, ADA and High Integrity ADA (industrial)

Specification/Modeling: Textual
The specification of components is defined textually (from the tool GUI).

Code Generation: Yes
Translators are available from B to C, ADA and High Integrity ADA.

The documentation on the translators can be found at the url:
 http://www.atelierb.eu/wp-content/uploads/sites/3/ressources/DOC/english/translators-user-manual.pdf
The free (academic license) AtelierB.app application doesn't seem to contain these functionalities.

Document / Report Generation: Partial
The tool supports a graphical representation at the level of a project. The project components are displayed.
The user can choose different display options, for example the type of links to be viewed, the view of the whole
dependence graph of a project or the dependence graph of a component.

Requirements Traceability: No

Project Management: Yes

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: No

Formal Verification: Theorem Proving
The system generates automatic proof obligations. A B component is correct when its proof obligations are
demonstrated. Proofs can be carried on in an automatic or interactive way.

Large-scale Verification Technique: SAT-SMT Constraint Solving and Theorem Proving

Model Based Testing: No

Property Specification Language:

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: Event B (Atelier B flavour)

Nondeterminism: Internal, External

Incoming events constitute a possible way to introduce determinism in the system.

"CHOICE", "SELECT", "ANY" operators allow internal nondeterministic behaviors.

Concurrency: No

A model can be composed by a set of elements, but the overall behavior is that one of a single state machine.

Timing aspects: No

Stochastic aspects: No

Modularity of the Language: Low

Supported Data Structures: Complex

Float Support: No

Model kind: Imperative

Flexibility

Backward Compatibility: Moderate
Event B is a rather standard modelling language, even if AtelierB adopts its own syntactic flavour.

Being based on the Eclipse environment, may suffer compatibility problems inherited from it.

Previous versions of the tool may be available under certain conditions (see
http://www.atelierb.eu/en/download/.)

Standard Input Format: Open
Event B specifications are encoded with a tool based flavour (Atelier B). Translators exist among the various
Event B flavours.

Import/Export to other tools: Medium
 Models can be exported to Rodin/ProB

Modularity of the tool: Medium

The tool is monolithic, but can be used in the abstract design, detailed design and coding phases.

Team Support: Yes
Atelier B can be used by several users in a network. These users can work on the same project at the same
time (see https://www.atelierb.eu/en/atelier-b-tools/).

Maturity

Industrial Diffusion: High

Stage of Development: Mature

Usability

Availability of Customer Support: Yes

 provided by Clearsy for its maintenance edition

Graphical User Interface: Partial

Mathematical Background: Advanced
Property verification may require advanced theorem proving techniques.

Quality of Documentation: Excellent

Company Constraints

Cost: Free

https://www.atelierb.eu/en/download/

The community edition is free (does not include code generators).

The maintenance edition is commercial and its price depends on the number of licenses.
 (see https://www.atelierb.eu/wp-content/uploads/sites/3/atelierb/licenses/4.0/license-atelier-b-utilisation-
en-V4.pdf)

https://www.atelierb.eu/en/download/distribution-policy/
https://www.atelierb.eu/en/2017/01/13/the-new-version-4-4-2-of-the-atelierb/

Supported Platforms: ALL

Complexity of License Management: Easy
Zero cost license for the community edition (without support)

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Yes
B Method is explicitly mentioned in the CENELEC norm and there is an abundant amount of literature
documenting railway specific success stories using the method

8 UPPAAL

______________Information Part____________

Tool/Framework Name: Uppaal

Description:
Uppaal is an integrated tool environment for modeling, validation and verification of real-time systems modeled
as networks of timed automata, extended with data types.

It is appropriate for systems that can be modeled as a collection of non-deterministic processes with finite
control structure and real-valued clocks, communicating through channels or shared variables. Typical
application areas include real-time controllers.

and communication protocols in particular, those where timing aspects are critical.

The tool is developed in collaboration between the Department of Information Technology at Uppsala
University, Sweden and the Department of Computer Science at Aalborg University in Denmark.

Web Sites:
http://www.uppaal.org/
http://www.uppaal.com/

Documentation:
http://www.it.uu.se/research/group/darts/uppaal/documentation.shtml
http://www.it.uu.se/research/group/darts/papers/texts/uppaal-smc-tutorial.pdf
http://www.it.uu.se/research/group/darts/uppaal/small_tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf

Reports on Industrial Uses of the Tool (in Railways):
"Verification and Implementation of the Protocol Standard in Train Control System"
 http://ieeexplore.ieee.org/document/6649879/

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Graphical

Code Generation: No

Document / Report Generation: Partial
The tool allows the visualization of sequence diagrams corresponding to selected interactive simulations or
counterexample guided execution paths.

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify. The model-checker can check invariant and reachability properties by exploring the state-
space of a system, i.e. reachability analysis in terms of symbolic states represented by constraints.

Simulation: Graphical

Formal Verification: Model Checking (Linear), Refinement Checking
The supported logic has the structure of an LTL fragment, but includes operators for reasoning about time and
probabilities. The tool supports also refinement checking

(http://people.cs.aau.dk/~adavid/ecdar/download.html)

Large-scale Verification Technique: Statistical and Symbolic Model Checking

Model Based Testing: Yes
(https://www.it.uu.se/research/group/darts/uppaal/download.shtml)

“Yggdrasil/Test case generator refactored and moved into Tools menu.“

Property Specification Language: MITL

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: Timed Automata

Nondeterminism: Internal/External

Concurrency: Sync

The model can be constituted by a set of elements, each one with its own clock, but time advances consistently
for all elements.

Timing aspects: Yes

Stochastic aspects: Yes

Modularity of the Language: Medium

The system can be structured into a fixed set of processes.

Supported Data Structures: Complex

Float Support: Yes

Model kind: algebraic, graphic
When using the graphical GUI the elements are defined in a graphical way.

The underlying code is based on the algebraic notion of timed automatons, and models can be textually
encoded and verified by the command line version of the tool.

Flexibility

Backward Compatibility: Likely

UPPAAL 4.x changes the language syntax but old versions of the models are still supported via an option
(http://people.cs.aau.dk/~adavid/utap/syntax.html)

Some conversion tools ("convert.jar") are provided.

Standard Input Format: Partial

Import/Export to other tools: Low
Can import timed automaton in textual format.

Modularity of the tool: High

Team Support: No

Maturity

Industrial Diffusion: High

Stage of Development: Mature

Usability

Availability of Customer Support: Yes

Provided by www.uppaal.com

Graphical User Interface: Yes

Mathematical Background: Medium
System properties are specified with a custom MITL temporal logics.

Quality of Documentation: Good

Company Constraints

Cost: Mix

Free for academic uses. Commercial licenses available.

Supported Platforms: ALL

Complexity of License Management: Moderate

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium

9 FDR4

______________Information Part____________

Tool/Framework Name: FDR4

Description:
FDR4 is a refinement checker that allows the user to verify properties of programs written in CSPM, a lan-
guage that combines the operators of Hoare’s CSP with a functional programming language. Originally
developed by Formal Systems (Europe) Ltd in 2001, since 2008 it is supported by the Computer Science
Department of University of Oxford.

Web Sites:
https://cocotec.io/fdr/index.html

Documentation:
https://www.cs.ox.ac.uk/projects/fdr/manual/dr/

https://cocotec.io/fdr/manual/

"The Theory and Practice of Concurrency"
 https://www.cs.ox.ac.uk/bill.roscoe/publications/68b.pdf

Reports on Industrial Uses of the Tool (in Railways):
"A formal specification of an automatic train protection system"
 https://link.springer.com/chapter/10.1007/3-540-58555-9_118

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textualimport
The tool just operates textual pre-existing models written in CSPm.

Code Generation: No

Document / Report Generation: Partial
The tool allows the visualization of abstract views of the model behavior (e.g. by hiding not relevant transitions
and minimizing the graph according to selected equivalence relations).

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual
The possible evolutions of a process can be probed interactively (optionally Guided, interactive, Random)

Formal Verification: Refinement Checking

Large-scale Verification Technique: Compositionality and Minimization, Partial Order Reduction

https://cocotec.io/fdr/manual/cspm/definitions.html#csp-partial-order-reduction

Model Based Testing: No

Property Specification Language: n/a

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: CSPm, tock-CSP

Nondeterminism: Internal, External

Concurrency: Asynch

The model is constituted by a set of concurrent processes communicating through synchronous
communication channels (no shared memory among processes).

Timing aspects: Yes
The tock-CSP language, for the design of timed systems, is supported.

Stochastic aspects: No

Modularity of the Language: High

Supported Data Structures: Complex

The ML functional language is used for the definition of data values and types.

Float Support: No

Model kind: algebraic, functional

Flexibility

Backward Compatibility: Moderate
The modelling language is rather stable and standard but the tool is not open source, and little evidence of
attention to backward compatibility issues has been found.
(https://www.cs.ox.ac.uk/projects/fdr/manual/changes.html)

Standard Input Format: Open
CSPm and tock-CSP are the standard language references

Import/Export to other tools: Medium
Language is open and not proprietary. Indeed ProB also operated onCSPm models complementing its
functionalities.

Modularity of the tool: Low

Team Support: No

Maturity

Industrial Diffusion: Medium
Little evidence of industrial uses has been found.

Stage of Development: Mature

Usability

Availability of Customer Support: Partial
There is a mailing list for announcements and bug reports.

Graphical User Interface: Limited

Mathematical Background: Advanced
System properties are expressed in terms of various kinds of refinement relations.

Quality of Documentation: Excellent

Company Constraints

Cost: Mix

FDR is only freely available for academic teaching and research purposes.

For commercial /evaluation licenses is given the contact: fdr-queries@cs.ox.ac.uk

https://www.cs.ox.ac.uk/projects/fdr/licensing.html

https://www.cs.ox.ac.uk/projects/fdr/manual/licenses.html

Supported Platforms: ALL

Complexity of License Management: Moderate

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium

In the literature, CSP appears to be used for the design of railway systems, although FDR4 is not
explicitly mentioned in the analysed literature it is one of the few tools that support CSP designs.

10 CPN-Tools

______________Information Part____________

Tool/Framework Name: CPN Tools

Description:
CPN Tools is an environment for editing, simulating, and analysing Colored Petri Nets. It was originally
developed by the CPN Group at Aarhus University from 2000 to 2010. The main architects behind the tool are
Kurt Jensen, Søren Christensen, Lars M. Kristensen, and Michael Westergaard. From the autumn of 2010,
CPN Tools was transferred to the AIS group, Eindhoven University of Technology, The Netherlands.

Web Sites:
http://cpntools.org/

http://sml-family.org/

Documentation:
http://cpntools.org/2018/01/16/documentation-2/
http://cpntools.org/2018/01/16/state-space-analysis-2/
Book: Coloured Petri Nets — Modeling and Validation of Concurrent Systems.

Reports on Industrial Uses of the Tool (in Railways):
"Model-based test generation techniques verifying the on-board module of a satellite-based train control
system model"
 http://ieeexplore.ieee.org/document/6696307/

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Graphical

Code Generation: No

Document / Report Generation: No

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Graphical

Formal Verification: Model Checking (Branching)

Large-scale Verification Technique: Bounded Model Checking

Model Based Testing: No

Property Specification Language: CPN

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: CPN

Nondeterminism: Internal

Concurrency: Asynch

Timing aspects: Yes

Stochastic aspects: No

Modularity of the Language: High

Supported Data Structures: Complex

Data types, data values and auxiliary function are defined in the functional language "Standard ML"

Float Support: No

Model kind: functional, graphic

Flexibility

Backward Compatibility: Likely
The sources of the various components of the framework are available (current and old versions, see
http://cpntools.org/2018/01/15/source/).

There are some backward compatibility issues of new versions of the tools w.r.t old versions of the models.

(see http://cpntools.org/2018/01/23/change-logs/).

The issue of backward compatibility is however taken into due consideration by the developers.

Standard Input Format: Partial

Import/Export to other tools: Medium

Modularity of the tool: Low

Team Support: No

Maturity

Industrial Diffusion: Medium
There is a list of industrial projects using CP nets, some of them are railway related.

(see http://cs.au.dk/cpnets/industrial-use/)

Stage of Development: Mature

Usability

Availability of Customer Support: Partial

Graphical User Interface: Partial

Mathematical Background: Medium
System properties are encoded as logical CTL formulae.

Quality of Documentation: Good

Company Constraints

Cost: Free

http://cpntools.org/category/licenses/

Supported Platforms: Windows

Complexity of License Management: Easy

The CPN Tools GUI is licensed under the GNU General Public License (GPL) version 2.

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium

11 CADP

______________Information Part____________

Tool/Framework Name: CADP

Description:
CADP (Construction and Analysis of Distributed Processes) is a verification framework for the design of
asynchronous concurrent systems. While its origins date back to the mid 80s, since then it has been
continuously improved and enriched, and is currently actively maintained by the CONVECS team at INRIA.

Web Sites:
http://cadp.inria.fr/

Documentation:
http://cadp.inria.fr/tutorial/
http://cadp.inria.fr/man/
http://cadp.inria.fr/publications/
http://cadp.inria.fr/tools.html

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textualimport
LNT or LOTOS models are generated in plain textual form outside of the framework.

Code Generation: Yes
The tool "ceasar.adt" allows the translation of a LOTOS process into an executable "C" program.
Specifications in the "LNT" language are translated into LOTOS by the "LNT.open" tool.

Document / Report Generation: Partial
The tool allows the visualization of abstract views of the model behavior (e.g. by hiding not relevant transitions
and minimizing the graph according to selected equivalence relations).

Requirements Traceability: No

Project Management: No

Verification Functionalities

The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual

Formal Verification: Model Checking (Branching), Refinement Checking
Several verification engines are provided ("evaluator3", "evaluator4") that allow the on the fly verification of
system properties expressed in MCF, through their translation into a boolean equation system (BES). Further
verification functionalities are provided by the "bcg_min" tool that allow the generation of abstract minimizations
of a system according to several predefined equivalence relations.

Large-scale Verification Technique: Compositionality and Minimization, Parallel Computing
The supported size of "bcg" graph (explicitly modelling the evolutions of a system) is in the order of millions of
states. However the overall system behavior can be described by a concurrent set of "bcg" graphs, each of
which can represent a minimised version of the corresponding system component. This compositional
approach to verifications allows the compositional analysis of large complex systems.

Model Based Testing: Yes

see JTorX, tgv

Property Specification Language: MCL, XTL

MCL is an extension of alternation free mu-calculus with regular expressions and parametric fix points

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: LOTOS, LNT
LOTOS and LNT are the two languages natively supported

Nondeterminism: Internal, External

Concurrency: Asynch

The model is constituted by a set of concurrent processes communicating through synchronous
communication channels (no shared memory among processes).

Timing aspects: No

Stochastic aspects: No

Modularity of the Language: High

 The tool allows the user to model in a hierarchical way, and the partitioning of the model Into modules

Supported Data Structures: Complex

Float Support: No

Model kind: Imperative, algebraic
LNT is a language with an imperative style, LOTOS is a process algebraic language.

Flexibility

Backward Compatibility: Likely

Even if the reference language (LOTOS) is an ISO standard, the tool is not open source, and in some cases
backward compatibility issues may arise (see http://cadp.inria.fr/changes.html). The framework provides
conversion aids for specific incompatibility issues.

Standard Input Format: Standard, based on LOTOS

https://www.iso.org/standard/16258.html (LOTOS)
https://www.iso.org/standard/27680.html (E-LOTOS)

Import/Export to other tools: High
The tool allows the user to import and export LTS in various formats.

Modularity of the tool: High

The CADP framework is a collection of more than 50 programs performing various kinds of activities.

Team Support: No

Maturity

Industrial Diffusion: Medium
The tool is claimed to be used in several industrial industrial projects (especially in the communications /
hardware circuits fields), but rarely adopted in railway related projects.

(see http://cadp.inria.fr/case-studies/)

Stage of Development: Mature

Usability

Availability of Customer Support: Partial

Graphical User Interface: Limited
See the eucaliptus tool (xeuca)

Mathematical Background: Advanced
System Properties are expressed in terms or alternation free mu-calculus formulae, and compositional
minimizations performed according to several LTL bisimulation strategies.

Quality of Documentation: Good

A lot of documentation is available in the form of manual pages, articles, tutorial, books, but the
search of all this documentation for the search of specific queries is not immediate.

Company Constraints

Cost: Mix

Free for all or for academic uses, commercial licenses available

Supported Platforms: ALL

Complexity of License Management: Moderate
The license is bound to a specific machine(s) and must be renewed every year.

Easy to Install: Partial

The framework has several dependencies to other software components. (e.g. X11,

Developers Tools with Command Line extensions, Postscript Viewers, gnutar, wget) and

has a not trivial installation procedure.

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium
The Language LOTOS (ISO standard) is explicitly mentioned, among all the other formal languages and
techniques, in the CENELEC norm (pag 104, D28.4). The tool is rarely used in the railway field.

12 mCRL2

______________Information Part____________

Tool/Framework Name: mCRL2

Description:
mCRL is a formal specification language with an associated toolset. The toolset can be used for modelling,
validation and verification of concurrent systems and proto- cols. The mCRL2 toolset is developed at the
department of Mathematics and Computer Science of the Technische Universiteit Eindhoven, in collaboration
with LaQuSo, CWI and the University of Twente. The mCRL2 language is based on the Algebra of
Communicating Processes (ACP) which is extended to include data and time.

Web Sites:
http://mcrl2.org/web/user_manual/index.htmlmucalc.html

https://www.mcrl2.org/web/user_manual/introduction.html

Documentation:
http://mcrl2.org/web/user_manual/user.html
http://www.mcrl2.org/web/user_manual/language_reference/

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textual
Pre-existing textual models can be selected from the "mCRL2.app" GUI, or edited with the "mcrl2xi" program.

Code Generation: No

Document / Report Generation: Partial
The tool allows the visualization of abstract views of the model behavior (e.g. by hiding not relevant transitions
and minimizing the graph according to selected equivalence relations).

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual
Simulation can be interactively monitored with the functionalities provided by LpsXsim

Formal Verification: Model Checking (Branching), Refinement Checking
The login supported is the mu-calculus extended with pattern matching operators, time operators, and
parametric fix points. Once a system has been translated into an explicit "lts", various minimisations and
equivalence checking features become available.

Large-scale Verification Technique: Compositionality and Minimization

Model Based Testing: No

Property Specification Language:
mu-calculus extended with regular expressions.

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: mCRL2

 (just informative aspect)

Nondeterminism: Internal, External
An explicit nondeterministic choice operator models alternative behaviours.

Concurrency: Asynch

The model is constituted by a set of concurrent processes communicating through synchronous
communication channels (no shared memory among processes).

Timing aspects: Yes
Uses positive real-time tags https://www.mcrl2.org/web/user_manual/language_reference/process.html

Stochastic aspects: Yes

(https://www.mcrl2.org/web/developer_manual/libraries/lts/classmcrl2_1_1lts_1_1probabilistic__sta
te.html)

(https://link.springer.com/chapter/10.1007/978-3-030-17465-1_2)

Modularity of the Language: High

Supported Data Structures: Complex

Float Support: No

Model kind: Algebraic

Flexibility

Backward Compatibility: Likely
The tool is open source, and old versions are available. The modelling language is rather stable and standard
de facto. (se http://mcrl2.org/web/user_manual/historic_releases.html#historic-releases)

Standard Input Format: Open

Import/Export to other tools: High
Models in mcrl2 textual format can be converted first in lps format and then in lts format.
from the lts format can be converted into the "aut" (CADP), "dot" (GRAPHVIZ"), fsm (Finite State MAchine)
format.

Modularity of the tool: Medium

The mCRL2 framework is a collection of more than 50 programs performing various kinds of activities.

Team Support: No

Maturity

Industrial Diffusion: Medium
Appears to be used in some industrial projects, but not in railway related projects

see http://mcrl2.org/web/user_manual/showcases.html,

 http://mcrl2.org/web/user_manual/publications.html

Stage of Development: Mature

Usability

Availability of Customer Support: Partial

Graphical User Interface: Partial

Mathematical Background: Advanced
System Properties are expressed in terms or parametric mu-calculus formulae.

System minimizations/ equivalence checking can be performed according to several LTL bisimulation
strategies.

Quality of Documentation: Good

Company Constraints

Cost: Free

Supported Platforms: ALL

Complexity of License Management: Easy

Easy to Install: Yes
Requires Developers Tools with Command Line extensions (e.g. gcc compilation system) when some options
are used.

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Low

13 SAL

______________Information Part____________

Tool/Framework Name: SAL

Description:
SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools for abstraction,
program analysis, theorem proving, and model checking toward the calculation of properties (symbolic
analysis) of transition systems. A key part of the SAL framework is an intermediate language, developed in
collaboration with Stanford and Berkeley, for describing transition systems and specifying concurrent systems
in a compositional way. This language is intended to serve as the target for translators that extract the transition
system description for other modeling and programming languages, and as a common source for driving
different analysis tools. It is supported by a tool suite that includes state of the art symbolic (BDD-based) and
bounded (SAT-based) model checkers, an experimental "Witness" model checker, and a unique "infinite"
bounded model checker based on SMT solving. Auxiliary tools include a simulator, deadlock checker and an
automated test generator.

Web Sites:
http://sal.csl.sri.com

Documentation:
http://fm.csl.sri.com/
http://sal.csl.sri.com/documentation.shtml
http://sal.csl.sri.com/doc/language-report.pdf
http://sal.csl.sri.com/doc/salenv_tutorial.pdf
http://www.csl.sri.com/users/rushby/slides/fm-tut.pdf
http://www.csl.sri.com/users/bruno/publis/sri-sdl-04-03.pdf
http://sal.csl.sri.com/hybridsal/
http://www.csl.sri.com/users/bruno/publis/sri-sdl-04-03.pdf
http://www.csl.sri.com/users/rushby/abstracts/sal-atg

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textualimport
SAL textual models are edited outside the SAL framework.

Code Generation: No

Document / Report Generation: No

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual
The tools "sal-sim" allows for interactive simulations.

Formal Verification: TheoremProving, Model Checking (Linear)
Explicit model checking ("sal-esmc"), BDD based Symbolic model checking("sal-smc"), Bounded SAT/SMT
based model checking ("sal-bmc"), using Yices,also for infinite states systems ("sal-inf-bmc"), Theorem
proving using "PVS".

(more complete info and tutorial at http://www.csl.sri.com/users/rushby/slides/fm-tut.pdf)

Large-scale Verification Technique: Parallel Computing, SAT-SMT Constraint Solving and
Theorem Proving

Model Based Testing: Yes

Property Specification Language: LTL

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: SAL

Nondeterminism: Internal, External
External nondeterminism provided by inputs variables, internal by nondeterministic assignments.

Concurrency: Asynch,Synch
SAL modules can be composed in a synchronous or asynchronous way.

Timing aspects: Yes
 for documentation of timed systems in SAL see
 http://www.csl.sri.com/users/bruno/publis/sri-sdl-04-03.pdf

see also http://sal.csl.sri.com/hybridsal/ for documentation of hybrid systems in HybridSal.

Stochastic aspects: No

Modularity aspects: Medium

Supported Data Structures: Complex

Float Support: No

Model kind: logical

Flexibility

Backward Compatibility: Moderate

The tool is Open Source, and previous versions are available (see http://sal.csl.sri.com/download.shtml), but
there is no evidence of particular attention to Backward compatibility issues

Standard Input Format: Open

Import/Export to other tools: Medium
 The tool defines an abstract XML syntax (SAL DTD) for its modelling language to make easier the interactions
with other tools.

Modularity of the tool: Low

The Symbolic Analysis Laboratory comprises a rich set of tools, but all related to verification aspects.

Team Support: No

Maturity

Industrial Diffusion: Low
Little evidence of industrial uses.

Stage of Development: Mature

Usability

Availability of Customer Support: Partial
Mailing lists are available for announcements, bug notifications, and discussions
 (http://sal.csl.sri.com/mailing_lists.shtml)

Graphical User Interface: No

Mathematical Background: Advanced
System properties can be model checked as LTL formulae, or can be verified through advanced theorem
proving techniques.

Quality of Documentation: Good

Company Constraints

Cost: Free
 http://sal.csl.sri.com/download.shtml

Supported Platforms: ALL

Complexity of License Management: Easy

Easy to Install: Yes

Note that a few missing (not found) dynamic libraries issues have to be fixed.

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Low

14 TLA+

______________Information Part____________

Tool/Framework Name:

Description:
The TLA Toolbox is an IDE (integrated development environment) for the TLA+ tools.

Web Sites:
https://lamport.azurewebsites.net/tla/toolbox.html

Documentation:
http://lamport.azurewebsites.net/tla/tla2-guide.pdf
https://lamport.azurewebsites.net/tla/toolbox.html

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textual

Code Generation: No

Document / Report Generation: No

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: No

Formal Verification: TheoremProving / Model Checking (Linear)

Large-scale Verification Technique: Symbolic Model Checker, SAT-SMT Constraint Solving and
Theorem Proving

Model Based Testing: No

Property Specification Language: LTL

 (just informative)

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: name

 (just informative aspect)

Nondeterminism: Internal
Thye TLAPlus language provides the "with" and "either" operators to deal with nondeterminism, plus non
deterministic scheduling among processes.

Concurrency: Asynch

 Processes are scheduled by interleaving.

Timing aspects: No

Stochastic aspects: No

Modularity aspects: Medium

Supported Data Structures: Complex

The support data types include the basic types (numbers, strings, booleans) sets (defined by enumeration or
by properties), records , sequences and functions.

Float Support: No

Model kind: logic

Flexibility

Backward Compatibility: Moderate
The tool is Open Source and previous releases are available.

No specific evidence about backward compatibility issues has been found.

Standard Input Format: Open

Import/Export to other tools: Low
The tool is not particularly oriented for import/export of models.

Modularity of the tool: Low

Team Support: No

Maturity

Industrial Diffusion: Medium
There are not many examples of industrial uses of TLA+, none of which railway related

(see https://en.wikipedia.org/wiki/TLA%2B#Industry_use)

Stage of Development: Mature

Usability

Availability of Customer Support: Partial
Several free access user groups sites exists:

(https://groups.google.com/forum/#!forum/tlaplus, https://www.reddit.com/r/tlaplus/)

(see also https://lamport.azurewebsites.net/tla/hyperbook.html)

Graphical User Interface: Limited

Mathematical Background: Advanced
System properties can be model checked as LTL formulae, or can be verified through advanced theorem
proving techniques.

Quality of Documentation: Good

Company Constraints

Cost: Free

https://lamport.azurewebsites.net/tla/license.html

Supported Platforms: ALL

Complexity of License Management: Easy

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Low

15 UMC

______________Information Part____________

Tool/Framework Name: KandISTI/UMC

Description:
UMC is a verification framework developed at the FM&&T Laboratory of ISTI-CNR for the definition,
exploration, analysis and model checking of system designs represented as a set of communicating (UML)
state machines.

Web Sites:
http://fmt.isti.cnr.it/umc

Documentation:
http://fmt.isti.cnr.it/umc/DOCS/

Reports on Industrial Uses of the Tool (in Railways):

_________ Evaluation Part ____________

Development Functionalities
How the framework supports the construction and refinement of specification models, their translation into
executable code, the production of accompanying documentation artefacts, and the SW development steps
with which it interacts.

Specification/Modeling: Textual

Code Generation: No

Document / Report Generation: Partial
The tool allows to generate minimised abstractions of the system behaviour.

Requirements Traceability: No

Project Management: No

Verification Functionalities
The approaches used by the framework to verify the models and the kind of properties that the frameworks
allows to verify.

Simulation: Textual

Formal Verification: Model Checking (Branching)
The supported CTL/ACTL like logic is state/event based and allows reasoning both on properties of states and
on properties of transitions.

Large-scale Verification Technique: On-the-fly Model Checking

Model Based Testing: No

Property Specification Language: Socl, UCTL

Language Expressiveness
The characteristics of the models that can be generated within the framework.

Name of Language: UMC

Nondeterminism: Internal
 The model behaviour is defined by a set event/condition/action rules. The action part of the rules defines
deterministic transformation of the local state of a state machine. if several rules are applicable, any of them
can be nondeterministically selected. If several state machines are ready to evolve (i.e. have fireable transition
rules) any of them can be nondeterministically selected for the system evolution.

Concurrency: Asynch, Synch

The system is represented by a set of concurrent (communicating) state machines. The concurrency among
machines is modelled by interleaving. A state machine can contain composite substates composed by parallel
regions that evolve synchronously.

Timing aspects: No

Stochastic aspects: No

Modularity aspects: High

At the top level structure we have just a static set of state machines, defined by statecharts. The structure of
a statechart can be defined in hierarchical and modular way using composite states and concurrent regions.

Supported Data Structures: Complex

Heterogeneous, dynamically sized arrays are supported.

Float Support: No

Model kind: Imperative

Flexibility

Backward Compatibility: Moderate

Standard Input Format: Standard (based on UML State Machines)
https://www.iso.org/standard/32620.html

Import/Export to other tools: Medium

Modularity of the tool: Medium

Team Support: No

Maturity

Industrial Diffusion: Low

Stage of Development: Prototype
The tool has a long history of versions, and is quite stable, but its development does not have the robustness
of a commercial tool.

Usability

Availability of Customer Support: Partial

Graphical User Interface: Partial

Mathematical Background: Medium
System properties can be model checked as CTL temporal logic formulae.

Quality of Documentation: Limited

Company Constraints

Cos: Free

Supported Platforms: ALL

The desktop-based graphical user interface is supported only by macOS, but the tool can be used through any
browser.

Complexity of License Management: Easy

Easy to Install: Yes

Railway Specific Criteria

CENELEC certification: No

Integration into the CENELEC process: Medium

