

CS4311 Fall 2001

 2001 CS4311

HATS Graphical User Interface
Software Requirements Specification
Version <1.5>
11/01/2001

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
ii

Document Control

Approval
The Guidance Team Dr. Roach, Dr. Gates and Mr. Leyva, and the customer, Dr. Victor Winter, shall approve
this document.

Document Change Control
Initial Release: 5/1/2001
Current Release: HATS GUI SRS 1.5
Indicator of Last Page in Document: ♦
Date of Last Review: 11/01/2001
Date of Next Review: None scheduled
Target Date for Next Update: None scheduled

Distribution List
This following list of people shall receive a copy of this document every time a new version of this document
becomes available:

Customer: Dr. Victor Winter
Guidance Team: Dr. Ann Gates, Dr. Steve Roach, Francisco Javier Leyva
Software Teams: Creative Team, Omega Team, Porcelain Team, Resilient Team,
 Suzaku Team

Change Summary
The following table details changes made between versions of this document

Version Date Modifier Description
0.1 5/5/01 F. Leyva Combined SRSs from Software Teams
0.2 5/15/01 F. Leyva Edited to remove redundancies
0.3 5/22/01 S. Roach Organized, reduced volume
0.4 5/23/01 F. Leyva Use case revisions, diagrams
0.5 5/30/01 S. Roach User interface descriptions
0.6 6/07/01 S. Roach Added Scenarios for Use Cases
0.7 6/13/01 F. Leyva/S. Roach Added More Scenarios for Use Cases
0.8 6/14/01 F. Leyva/S. Roach Revisions to Scenarios for Use Cases
0.9 8/1/01 S. Roach Modified HATS specification
1.0 8/3/01 Roach/Leyva Version 1.0 sent to Winter for approval
1.1 8/15/01 Roach Communication protocol revised
1.2 8/21/01 Roach Protocol reviewed by Dr. Winter
1.3 8/27/01 Roach SDT search clarified by Dr. Winter
1.4 10/01/01 4311 class Typographic errors found by CS4311, HATS-

SML interface clarified by Dr. Winter.
1.5 11/01/01

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
iii

TABLE OF CONTENTS
DOCUMENT CONTROL.. II

APPROVAL.. II
DOCUMENT CHANGE CONTROL.. II
DISTRIBUTION LIST .. II
CHANGE SUMMARY.. II

1. INTRODUCTION ... 6
1.1. PURPOSE AND INTENDED AUDIENCE... 6
1.2. SCOPE OF PRODUCT .. 6

1.2.1. Definitions.. 6
1.2.2. Acronyms.. 9

1.3. OVERVIEW.. 10
1.4. REFERENCES... 10

2. GENERAL DESCRIPTION ... 12
2.1. PRODUCT FEATURES... 13

2.1.1. Management Of Applications... 14
2.1.2. Parsing Of Transformation Language Programs and Target Files... 14
2.1.3. Execution of Transformation Language Programs.. 14
2.1.4. Examination of SDT and Pretty-Printed Output From Transformations..................................... 14

2.2. USE CASES.. 14
2.2.1. Actors ... 15
2.2.2. Use-case Descriptions.. 16

2.2.2.1. Use-case 1: Parse ... 16
2.2.2.2. Use-case 2: Execute Transformation Program... 17
2.2.2.3. Use-case 3: Select Application... 18
2.2.2.4. Use-case 4: Select File ... 18
2.2.2.5. Use-case 5: Prepare Application .. 19
2.2.2.6. Use-case 6: Configure Application .. 21
2.2.2.7. Use-case 7: Display SDT Transformation Output.. 23
2.2.2.8. Use-case 8: Display Pretty-Printed Text Transformation Output... 25
2.2.2.9. Use-case 9: Generate Pretty-printed Output... 26

2.3. GENERAL CONSTRAINTS... 27
2.4. ASSUMPTIONS AND DEPENDENCIES .. 27

3. SPECIFIC REQUIREMENTS ... 28
3.1. EXTERNAL INTERFACE REQUIREMENTS.. 28

3.1.1. User Interfaces... 28
3.1.2. Hardware Interfaces .. 30
3.1.3. Software Interfaces .. 30

3.1.3.1. HATS-SML.. 30
3.1.3.2. Host OS.. 30

3.2. BEHAVIORAL REQUIREMENTS .. 31
3.2.1. Related Real-world Objects ... 31

3.2.1.1. Application... 31
3.2.1.2. Input and Output .. 32
3.2.1.3. HATS-SML.. 32
3.2.1.4. Display Windows... 32

3.2.2. Stimulus/Response.. 33
3.2.2.1. Menu Items .. 33

3.2.2.1.1. File Menu ... 33
3.2.2.1.2. Application Menu... 33

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
iv

3.2.2.1.3. Configure Menu ... 34
3.2.2.1.4. Run Menu... 34
3.2.2.1.5. View Menu... 34

3.2.2.2. Mouse and Keyboard actions ... 34
3.2.2.3. HATS-SML Completion.. 35

3.2.3. Related Features .. 35
3.2.3.1. Prepare Application.. 35
3.2.3.2. Parse/Execute Transformation ... 35
3.2.3.3. Display Transformation Output ... 36

3.2.3.3.1. Displayed Node and Text Selection ... 36
3.2.3.3.2. Display Windows ... 37
3.2.3.3.3. Display of SDTs ... 37
3.2.3.3.4. Navigation .. 38
3.2.3.3.5. Display of Pretty-Printed Text.. 40
3.2.3.3.6. Display of Errors .. 40
3.2.3.3.7. Display of SDT and Pretty-Printed Text from Common Target file 40

3.3. NON-BEHAVIORAL REQUIREMENTS .. 41
3.3.1 Performance Requirements.. 41
3.3.2 Qualitative Requirements... 41

3.3.2.1 Security .. 41
3.3.2.2 Portability... 41

3.3.3 Design and Implementation Constraints.. 41
3.4. OTHER REQUIREMENTS .. 41

4. APPENDIX A: HATS-GUI CLASS DIAGRAM .. 42
5. APPENDIX B: HATS-GUI DATA FLOW DIAGRAM ... 43
6. APPENDIX C: HATS-GUI STATE TRANSITION DIAGRAMS.. 48
7. APPENDIX D: HATS-SML COMMUNICATION PROTOCOL... 49
8. APPENDIX E: SDT SEARCH CRITERIA... 51

8.1. OVERVIEW.. 51
8.2. DEFINITIONS ... 51

8.2.1. Well-formed SDT string of a node ... 51
8.2.2. β derives α ... 51
8.2.3. Search pattern.. 51

8.3. SEARCHING... 51
8.4. EXAMPLE.. 52

9. APPENDIX F: TEXT SEARCH CRITERIA.. 54
10. APPENDIX G: EXAMPLE SDT DISPLAY ... 55

LIST OF TABLES

TABLE 1: DEFINITIONS USED IN SRS 6
TABLE 2: ACRONYMS USED IN THE SRS 9
TABLE 3: FILES COMPOSING AN APPLICATION 13
TABLE 4: TYPES OF DISPLAYED NODES 22
TABLE 5: MENU ITEMS FOR HATS-GUI 28
TABLE 6: APPLICATION CONFIGURATION ELEMENTS 31
TABLE 7: SUMMARY OF HATS-SML PROGRAMS 49
TABLE 8: RESULTS FROM EXAMPLE TREE SEARCHES 53
TABLE 9: SPECIAL SYMBOLS IN TEXT SEARCH STRINGS 54
TABLE 10: RESULTS FROM EXAMPLE TEXT SEARCHES 54

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
v

LIST OF FIGURES

FIGURE 1 HATS ARCHITECTURE ... 12
FIGURE 3: HATS-GUI CLASS DIAGRAM.. 42
FIGURE 4: HATS-GUI DATA FLOW DIAGRAM -- LEVEL 1... 43
FIGURE 5: HATS-GUI DATA FLOW DIAGRAM: MANIPULATE AND NAVIGATE SDT ... 44
FIGURE 6: HATS-GUI DATA FLOW DIAGRAM: PREPARE APPLICATION.. 45
FIGURE 7: HATS-GUI DATA FLOW DIAGRAM: MANIPULATE PRETTY-PRINTED TEXT 46
FIGURE 8: HATS-GUI DATA FLOW DIAGRAM: APPLY TRANSFORMATION .. 47
FIGURE 9: HATS-GUI STATE DIAGRAM... 48
FIGURE 10: TREE SEARCH EXAMPLE .. 52

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
6

1. Introduction

1.1. Purpose and Intended Audience
The purpose of the Software Requirements Specification (SRS) is to clearly and precisely describe the
requirements of the software system being developed, hereafter referred to as the HATS-GUI. The HATS-GUI
is a Graphical User Interface (GUI) for the High Assurance Transformation System (HATS). This document
shall serve as a reference guide to the developer for software design, implementation, and maintenance.

The SRS divides the system requirements into two major sections, behavioral requirements and non-behavioral
requirements. Behavioral requirements describe the interaction between the system and its environment. Non-
behavioral requirements are the ones that relate to the definition of the attributes of the product as it performs its
functions.

The intended audience of this document is Dr. Winter, the Guidance Team, and the software development team.
The SRS is an agreement on requirements between these parties regarding the software to be developed.

Text give in gray highlight refers to changes since the previous version of this document.

1.2. Scope of Product
The High Integrity Software (HIS) program at Sandia National Laboratories developed HATS in order to utilize
transformation-based software development. Transformations are a well-known formal method for developing
software. The intent of HATS is to develop software via high assurance transformations that have been proven
to preserve the semantics of the transformed programs. Such a system benefits the high assurance software
community by providing a tool with which to develop software.

The HIS program has requested the implementation of a platform-independent GUI to simplify user interaction
with HATS. The system shall provide to the user the ability to prepare applications, utilize HATS to apply
transformations, and display and manipulate the output resulting from execution of transformations. The
development of a platform-independent GUI will give the members of the transformation and research
community a chance to experiment using HATS. This will increase the use of HATS and will provide the HIS
program with feedback from the members of the transformation and research communities that will aid in the
development of this tool.

A prototype of this system has been developed, but is inadequate due to its lack of portability and its inability to
display outputs adequately. The goal of developing the HATS-GUI is to make the system more user-friendly,
make the user interface platform independent, and to increase the use of the HATS system.

1.2.1. Definitions
Table 1 below lists the definitions used in this document with respect to the HATS-GUI. The definitions given
below are specific to this document and may not be identical to definitions of these terms in common use. The
purpose of this section is to assist the user in understanding the requirements for the system.

Table 1: Definitions used in SRS

TERM DEFINITION
Abstract Tree See “Tree.”

Active window The window in a graphical user environment that is currently accepting keyboard and
mouse input.

Ancestor nodes The ancestor nodes of a node N is the set of nodes N* such that every element of N* is
either the parent of N or the parent of some node in N*.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
7

Application A set of files describing a problem domain and a (possibly empty) set of
transformation language programs, target files, and output files. An application is a
stand-alone entity and contains all the data sets required to perform and view
transformations. A set of associations and user-selected configurations is also part of
the application.

Associations Relations between files in an application. For example, a file may be mapped to the
file used to generate this file or a file (or program) used to edit the file.

Child node A node that has a parent node. The child relationship is the inverse of the parent
relationship. (See Edge.)

Collapse To hide the descendants of a displayed node.
Color Scheme The selected colors and shapes used to represent different types of displayed nodes in

a displayed graph of a syntax derivation tree.
Configuration The set of characteristics related to an application that controls the behavior of the

HATS-GUI. Table 6 lists the elements of a configuration.
Copy-and-paste An operation that allows a user to copy text from one process into another process.

Typically, copy-and-paste operations transfer data to and from an active process into
an operating system buffer.

Core A set of files consisting of one lexical specification file, one grammar file, and zero or
one user-defined libraries.

Cursor A display element in a graphical user environment that marks a location in a window
or buffer.

Descendant nodes The descendant nodes of a node N is the set of nodes N* such every element of N* is
either a child of N or the child of some node in N*.

Directory A special file in a hierarchical file system that contains either files or other directories.
Directory is synonymous with folder.

Displayed graph The visual representation of an SDT or a part of an SDT. A displayed graph is a set of
displayed nodes and the arcs connecting those nodes.

Displayed node The visual, graphical display of a node. Every displayed node has a corresponding
SDT node. Not every SDT node has a corresponding displayed node.

Domain Language over which transformations take place. The domain is defined by the files in
the core (see core).

Drag An operation using a mouse or other pointing device where the user presses the
pointing device button and moves the pointing device while the button is pressed.

Edge A directed relation between two nodes in a tree. If edge e is a relation from node N1 to
node N2, we write e(N1,N2). N1 is the parent of N2. N2 is the child of N1.

Expandable node A leaf node of a displayed graph whose corresponding tree node has immediate
descendants.

External editor Any editor available on the host OS that can be started as a separate process by the
HATS-GUI.

File name The name of a file in a file system. A file name consists of a path name and a unique
file name. The root name of a file name is a file name without a path name and
without a file extension.

File extension A set of characters in a file name including and following the right-most period of the
file name.

Folder See Directory.
Grammar file A file representing a set of rules that define the language of the domain over which

transformations are defined.
High Assurance
Transformation Systems
(HATS)

The transformation system developed by HIS at Sandia. The system includes both the
HATS-SML programs and a user interface. Together, these provide services that allow
parsing and running transformation language programs.

HATS-SML A set of service programs that provide the parsing, transforming, and pretty-printing
functions of HATS.

Host OS The operating system under which HATS-SML and the HATS-GUI are running.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
8

Java The programming language Java.
Java Virtual Machine
(JVM)

An abstract computing machine that is responsible for the hardware and operating
system independence of the Java platform.

Keyboard cursor The cursor associated with the keyboard. This cursor may be moved by using
keystrokes such as the arrow keys, the tab key, or the enter key.

Leaf node A node in a displayed graph that does not have any displayed descendant nodes.

Level The number of edges that must be traversed in order to reach a node in a tree starting
from the root.

Lexical specification A file defining the tokens to be recognized by a transformation language.
Linux The operating system Linux, a Unix-like operating system available on most

platforms.
Locator box Rectangle drawn around a sub-tree in a navigation window indicating the sub-tree

displayed in the SDT display window relative to the entire SDT.
Mouse cursor The cursor associated with a pointing device such as a mouse. This cursor may be

moved by moving the pointing device.
Navigation window A displayed window containing an abstract representation of an entire SDT. The intent

of the navigation window display is to facilitate navigation of large SDTs.
Node An element of a tree or a displayed graph. Nodes in SDTs contain text tokens derived

from parsing input strings and applying transformations. Nodes in displayed graphs
(displayed nodes) are visual representations of nodes in SDTs. Nodes in SDTs should
not be confused with displayed nodes.

Parent node A node that has at least one child node. The parent relation is the inverse of the child
relation. (See Edge.)

Parse To generate an SDT from a non-SDT (i.e. string) input file such as a transformation
language program or a target.

Parser A program that parses either transformation language programs or target programs.
Parsed transformation
language program

The SDT representation of a transformation language program. This is the form used
by HATS. A parsed transformation language program is said to be parsed.

Path A text string that represents the sequence of directory names and a file name that
uniquely specifies the location of a file in a file system.

Platform The combination of hardware and operating system software that comprise a
computing system.

Pretty-print style file The input file that specifies how to display the pretty-print format of the target
language.

Pretty-printed text A text string output by HATS representing the formatted result from applying a
transformation language program to a target file. Formatting is done according to the
pretty-print style.

Problem Domain See domain.
Program SDT An SDT generated by parsing a transformation language program.
Proper sub-tree A tree T1 is a proper sub-tree of a tree T2 if T1 is a sub-tree of T2 and T1 has fewer

nodes than T2.
Relative path A path that starts at a directory other than the root directory.
Root node The first and initial element in a tree represented by nodes.
Scroll To move information across a display screen as if unrolling a scroll.
Smallest well-formed tree Given a tree T and a set of nodes N in T, the smallest well-formed tree of N in T is a

tree S such that S is a sub-tree of T, every element of N is in S, every descendant of the
root of S in T is also an element of S, and S has no proper sub-trees that are smallest
well-formed trees of N in S.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
9

Sub-tree A tree T1:<N1,E1> is a sub-tree of a tree T2:<N2,E2> if
• N1 ⊆ N2,
• E1⊆ E2,
• If R is the root of T1,∀ (n∈ N2)((n is a descendant of R) → n∈ N1), and
• ∀ (e∈ E2) (e(na,nb) ∧ na∈ N1 ∧ nb∈ N1) → e∈ E1.

Syntax Derivation Tree A tree where nodes represent either the left-hand side of grammar productions used to
parse a string or terminal symbols in the grammar. The children of nodes represent the
right-hand side of the production used to parse the node.

Target file The program to which the High Assurance Transformation System applies a
transformation.

Target Program A target file that contains a computer program.
Target SDT An SDT generated by parsing a target file.
Terminal node A node in a tree that has no descendants.
Time Stamp The date and time of the most recent modification of a file. It is assumed that the Host

OS keeps the time stamp for each file.
Tlp_parsed file See parsed transformation language program.
Token A text string used as a single unit, for example, a word. Tokens are described by the

lexical specification.
Transformation A rule that specifies the translation of one string into another string. HATS applies

transformations to target files.
Transformation Problem A target file in an application.
Transformation language
program

A sequence of transformations along with constructs to control the application of the
transformations.

Transformed Program The program that results from applying a transformation language program to a target
file.

Tree A tree T<N,E> is an abstract data type composed of a set of nodes N and a set of
directed edges E:NxN. An edge E1 from node N1 to node N2 associates the parent node
(N1) with the child (or immediate descendant) node N2. Each child node has exactly
one parent. Each tree has exactly one distinguished node, the root node, which has no
parent. The descendant nodes of a node are found by computing the transitive closure
of the child relationship. No node may be a descendant of itself.

Unix The Unix operating system developed by AT&T.
User-defined functions A file that defines the semantics of some function symbols in the language of the

domain.
Well-formed tree See “Smallest well-formed tree.”
Window An element of a graphical user environment that contains at a minimum a border and a

viewing area.
Windows The Windows operating system developed by Microsoft.

1.2.2. Acronyms
Table 2 lists the acronyms and their associated definitions used in this document.

Table 2: Acronyms used in the SRS

ACRONYM MEANING
DFD Data Flow Diagram
GUI Graphical User Interface
HATS High Assurance Transformation System
HATS-GUI HATS graphical user interface
HIS High Integrity Software
JVM Java Virtual Machine
ML Meta language
OS Operating System

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
10

SDT Syntax Derivation Tree
SNL Sandia National Laboratories
SRS Software Requirements Specification
UTEP The University of Texas at El Paso

1.3. Overview
The SRS is divided into four major sections: Introduction, General Description, Specific Requirements, and
Appendices. Section 2, the general description, describes the product, its functionality, and its structure. It
contains:

(1) Product Features, which describes from a high-level point of view the main features of the software;
(2) User Characteristics, which identifies the different types of system users, and describes their individual

interaction with the system. Use-cases are used to define the user characteristics; a description of the
actors, use-cases, and scenarios are included in this section;

(3) General Constraints of the system; and
(4) Assumptions and Dependencies of the system.

Section 3 describes specific requirements. It consists of

(1) External Interface Requirements, which describes the requirements for user, hardware, software, and
communications interfaces;

(2) Behavioral Requirements, which divides behavioral requirements into the following categories: related
real-world objects, stimulus, related features, and functional requirements;

(3) Non-Behavioral Requirements, which includes performance requirements, qualitative requirements,
and design and implementation constraints; and

(4) Other Requirements, which will list all other requirements not included in the previous sections.

Appendix A contains the object model for the HATS-GUI.
Appendix B contains the data flow diagrams for the system.
Appendix C contains state descriptions of the HATS-GUI.
Appendix D describes communications between HATS and the HATS-GUI.
Appendix E and F describe searching outputs strings and trees.
Appendix G gives an example Syntax Derivation Tree (SDT) display.

1.4. References
[1] Creative Software, Omega Software, Porcelain Software, Resilient Software, Suzaku Software,

Interview Report. February 2001.
[2] Creative Software, Omega Software, Porcelain Software, Resilient Software, Suzaku Software,

Feasibility Report. February 2001.
[3] Creative Software, Omega Software, Porcelain Software, Resilient Software, Suzaku Software,

Prototype Report. March 2001.
[4] Creative Software, Omega Software, Porcelain Software, Resilient Software, Suzaku Software, Draft

SRS. May 2001.
[5] Roach, S., Communications Protocol Memorandum, e-mail message dated 2/22/2001, 5:02 p.m.
[6] Roach, S, Memorandum from Dr. Winter, e-mail message dated 2/28/2001, 5:53 p.m.
[7] Omega Software Solutions, Personal Communication Notes on Dr. Winter Q&A, April 20, 2001.
[8] Winter, V., An Overview of HATS: A language Independent High Assurance Transformation System,

1999.
[9] Leyva, F., Outputs from HATS, e-mail message dated 3/2/2001, 5:43 p.m.
[10] Leyva, F., Responses from Dr. Winter, e-mail message dated 3/26/2001, 3:55 p.m.
[11] Roach, S., vlwinter@sandia.gov:MEMO, e-mail message dated 2/28/2001, 5:53 p.m.
[12] Roach, S., Important HATS Information, e-mail message dated 4/2/2001, 7:15 p.m.
[13] Roach, S., Winter Responses, e-mail message dated 4/19/2001, 9:53 a.m.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
11

[14] Winter, Victor L., Meeting with Dr. Winter. University of Texas at El Paso, Computer Science
Building, Room 308. April 20, 2001. 3:00 p.m.

[15] Winter, Victor L., S. Roach, Personal communication 5/23/2001.
[16] Winter, Victor L., S. Roach, Personal communication 6/18/2001.
[17] Winter, Victor L., S. Roach, Personal communication 7/20/2001.
[18] Winter, Victor L., S. Roach, Personal communication 8/15/2001.
[19] Winter, Victor L., S. Roach, Personal communication 9/15/2001.
[20] Winter, Victor L., S. Roach, Personal communication 8/28/2001.
[21] Fuehrer, Gary., S. Roach, Personal communication 9/28/2001.
[22] Winter, Victor L., S. Roach, Personal communication 10/1/2001.

Software Requirements Specification

Software Requirements Spe

2. General Description
HATS was developed to explore transformation-based software development. Transformations are a well-
known formal method for developing software. The HATS-GUI is intended to provide HATS users with an
intuitive graphical interface to the HATS system. HATS is publicly available, and the HATS-GUI will be
delivered with HATS.

The purpose of HATS is to perform program transformations in a provably correct fashion. This enables users
to construct software by transforming a target program, or simply a target, written in an abstract language to a
transformed output program written in a more concrete language. By demonstrating that the transformations
preserve the semantics of the target program, the user has assurance that the transformed program is correct. An
overview of the HATS architecture is given in Figure 1 below. HATS applies a sequence of transformations to a
target program by following instructions in a transformation language program. A transformation language
program consists of sequences of transformation instructions and constructs to control the application of
transformations.

HATS provides a set of
ML, which has been port
programs. There is one
referred to in this doc
transformation language
describes the language o
stored in a separate file:
language, and a library of

An application consists o
outputs. These rules are a
target program may be a
by applying pretty-print r
may be any number of p
files in a given applicatio
A summary of the files, f

1 The term HATS-SML re
to targets.

Output

Target
Parser

Program
Parser
Target
cification CS4311 Date:
11/01/2001

Page
12

Figure 1 HATS Architecture

services that execute transformation language programs. It is written in the language
ed to most common computer platforms. HATS services are invoked by executing ML
ML program for each function that HATS provides. The collection of programs is
ument at HATS-SML and is described in Appendix D.1 HATS-SML executes
programs written in a particular problem domain. The core of a problem domain

ver which transformations may occur. It consists of three elements, each of which is
a description of tokens in a language, a description of a context-free grammar for a
 user-defined functions that evaluate some of the function symbols in the language.

f a domain, rules for transforming input strings to output strings, and sets of inputs and
pplied to a target program. The result of applying a sequence of transformations to a

n SDT, a pretty-printed text string, or both. The pretty-printed text string is generated
ules to an SDT. The pretty-print rules are contained in a pretty-print style file. There
retty-print style files, target programs, transformation language programs, or output
n. Additionally, there may be a parsed version of a transformation language program.

ile extensions, and names is given in Table 3.

fers to the set of services provided by the ML programs for applying transformations

SDT

Program

HATS Rewriting
Engine

Prettyprinter

Output Text

Control
Language

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
13

Table 3: Files Composing an Application

File Type EXTENSION CONTENT DESCRIPTION
Grammar File .grm Definition of the language over which transformations take place. This

is part of the core, and exactly one is required for each problem domain.
Lexer
Specification
File

.spec Descriptions of tokens in the language over which transformations take
place. This is part of the core, and exactly one is required for each
problem domain.

User-Defined
Functions

.sml Function definitions written in ML that define semantics for evaluating
function symbols in the language. These functions are evaluated
semantically, not just syntactically. This is part of the core, and exactly
one file is required for each problem domain.

Target file .tgt Input program to be transformed. There may be any number of target
files in an application.

Parsed target
file

.tgt.parsed SDT corresponding to a parsed target file. There may be zero or one
parsed target files for each target file.

Transformation
language
program

.tlp Sequence of transformations to be applied to a target file. There may be
any number of transformation language program files in an application.

Parsed
Transformation
language
program

.tlp.parsed SDT corresponding to a parsed transformation language program. There
may be zero or one parsed transformation language programs for each
transformation language program.

Pretty-print
Style file

.sty Directives that control the formatting of a transformed target file. Any
number of pretty-print files may appear in an application.

Pretty-printed
output

.txt Formatted output obtained by applying a transformation language
program to a target file.

SDT output .sdt Syntax derivation tree obtained by applying a transformation language
program to a target file.

Parser A parser program generated from the grammar and lexical
specifications to parse transformation language program files and target
files.

Script file .scr A file containing a sequence of HATS-SML programs to be executed in
order with minimal user intervention.

The HATS-GUI is a system that will provide a user with an intuitive interface to HATS-SML. This system will
facilitate the creation, storage, retrieval, and modification of the files in an application. The HATS-GUI will
also facilitate the parsing and execution of sequences of transformation language programs, display error
messages generated by HATS-SML, and facilitate the display and exploration of transformation outputs in the
form of SDTs and pretty-printed text. It is the expectation of the client that by making the interface portable, the
number of users of HATS will increase, and that the reliability of HATS-SML will increase due to the increased
exercising of its capabilities resulting in error detection and correction.

2.1. Product Features
The HATS-GUI shall provide a user with the ability to construct and use transformations. The HATS-GUI shall
facilitate the following activities:

• management of applications;
• parsing of transformation language programs and target programs;
• execution of transformation language programs; and
• examination of SDT and pretty-printed output from transformations.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
14

The subsections that follow provide an overview of each of the mentioned features. The flow of data between
these functions is illustrated in the Data Flow Diagrams (DFD) given in Appendix B. The transition of states
that the system will be in is illustrated in the State Transition Diagram given in Appendix C.

2.1.1. Management Of Applications
The HATS-GUI shall facilitate the creation, deletion, and modification of the files related to an application. As
a practical matter, all files related to an application shall be stored in the same directory or folder. In addition,
the HATS-GUI shall manage file associations within an application. File associations are relationships between
files. For example, target files will be associated with the most recently used pretty-print style files. The HATS-
GUI shall allow the user to examine and modify these associations.

2.1.2. Parsing Of Transformation Language Programs and Target Files
The HATS-GUI shall orchestrate the parsing of transformation language programs and target files. Parsing
entails translating a human-readable text file into a syntax derivation tree. Parsing can be a time-consuming
operation, particularly for multiple look-ahead grammars. In order to expedite execution of transformations,
parsed versions of files can be saved.

Two types of files must be parsed. A transformation language program is a text file describing a set of
transformations to be applied to a target file. A target program is a text file containing the input string to be
transformed. Parsing is done through the use of a parser program, which HATS-SML generates. Parser
generation requires the lexical specification and the grammar as input.

2.1.3. Execution of Transformation Language Programs
The HATS-GUI shall orchestrate the execution of transformation language programs. In order for HATS-SML
to execute a transformation program, the program must be parsed and saved as an SDT. The transformation
language program specifies which target programs will be transformed. The user creating the transformation
language program is responsible for correctly identifying the target program. Input file names are embedded in
the transformation language program.

During execution of a transformation language program, HATS-SML creates SDTs as output. These SDTs
contain a parsed version of the transformed (output) string suitable for use as input to another transformation or
as input to the pretty-print service. (The pretty-print service transforms a target SDT into a text string according
to formatting rules contained in a pretty-print style file.) In addition to the output file, the transformation
language program may specify that debugging and error outputs. The HATS-GUI shall capture data written to
these streams and make that data available to the user.

2.1.4. Examination of SDT and Pretty-Printed Output From Transformations
The HATS-GUI shall facilitate the display of transformation output and error messages received from HATS-
SML in response to parsing or transformation. There are several types of output that can be received from
HATS-SML. During a given session, data sets may be created, saved as files, used as inputs, or deleted. The
HATS-GUI will associate saved files with the application. The HATS-GUI will make a list of these files
available to the user and allow the user to select files for display. The display of SDTs and pretty-printed text
shall allow the user to manipulate the display by choosing portions of the tree to display and by allowing the
user to search for text strings and sub-trees.

2.2. Use Cases

There are three actors in this system: a user, HATS-SML, and the host O. S. The user will access the HATS-
GUI primarily to apply transformations to target files. A user may set up an application for another user. Before
applying a transformation to a target file, a user must first prepare the application. A user may also choose to
view output from a previous transformation. These actors and use cases are discussed below.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
15

Select Application

Select File

Prepare Application <<include>>

<<include>>

Dis play Pretty Printed Text
Trans form ation Output

<<in clud e>>

<<include>>

Dis play SDT
Trans form ation Output

<<include>>

<<include>>

Configure Application

<<include>>

Pars e

<<include>>

<<include>>

Execute Trans form ation
 Prog ram

<<include>>

<<include>>

<<include>>

Hos t O.S.

HATS-SML

Us er

Generate Pretty-printed
 Output

Figure 2 - Use Case Diagram

2.2.1. Actors
User: A user is someone who interacts with the HATS-GUI in order to prepare and execute program
transformations. Users of the HATS-GUI will be experts in a given domain and have a high level of
understanding of transformations as a tool for constructing software. These users are expected to be computer
savvy, possessing experience with the operation of editors and software tools, hierarchical file systems, and
menu navigation. A limited amount of direction and assistance will be necessary.

HATS-SML: HATS-SML provides the following services: make a parser file, parse a target file, parse a
transformation language program, apply a transformation language program to a target file, and pretty-print an

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
16

output target SDT. HATS-SML may generate parsed transformation language programs, SDTs, pretty-printed
text, or error messages as output. The protocol for the use of HATS-SML is detailed in Appendix D.

Host OS: This is the operating system under which the HATS-GUI and HATS-SML run. The host OS is
expected to provide file services and provide a buffer for copy-and-paste operations between applications.

2.2.2. Use-case Descriptions
The following use cases describe possible interactions between the HATS-GUI, the user, HATS-SML, and the
host operating system. They do not describe every possible interaction. In the descriptions that follow, steps in a
scenario are numbered sequentially. Alternatives to a particular step are suggested by the flag “ALT <n>”
where <n> is an alternative listed below the scenario. Steps in the alternative replace steps in the main scenario.
The step numbers in the alternative indicate what steps in the main scenario are being replaced. For example,
the step number “A1-2A” indicates this step is in the alternative numbered 1 (A1) and this step is the first step
replacing step 2 in the main scenario. If more than one alternative is listed, either alternative may be taken.

2.2.2.1. Use-case 1: Parse
Use Case Summary: The user requests the parsing of a transformation language program or a target file. The
file to be parsed and the parser file are inputs to HATS-SML. HATS-SML generates an SDT. The output is
saved in the application.
Actors: User, HATS-SML, Host OS
Used by: Execute Transformation
Preconditions:

1. An application has been selected (Refer to Use Case 3).
2. The transformation language program and core domain files have been created (Refer to Use Case 5).

Scenario 1:
1. User selects the option to parse a transformation language program from currently open application

(ALT 1).
2. User selects a transformation language program file (.tlp) to parse (Refer to Use Case 4) (ALT 2).
3. The HATS-GUI compares the time stamps on the lexical specification and grammar files to the time

stamp on the application’s parser file. The parser file is the youngest of the three files (ALT 3, ALT 6).
4. The HATS-GUI sends a message to the Host OS to start either the ParseTarget or the ParseProgram

program and sends the names of the target file or program file, the output file, and the parser file to the
Host OS.

5. HATS-SML parses the input file (ALT 7) and writes the output to the output file.
6. End of use case.

ALT 1: The user selects the option to parse a target file instead of a transformation language program.
A1-2A: The user selects a target file to parse (Refer to Use Case 4) (ALT 2).
A1-2B: Use case continues with step 3.

ALT 2: A file is already selected.
A2-2A: Step 2 is skipped.
A2-2B: Use case continues with step 3.

ALT 3: No parser file exists.
A3-3A: The HATS-GUI sends a message to the Host OS to start the MakeParser program and sends the
lexical specification and grammar file names and the parser file name.
A3-3B The Host OS starts the MakeParser program.
A3-3C: MakeParser writes the output parser file (ALT 5).
A3-3D: Use case continues with step 4.

ALT 5: Error on creation of parser file.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
17

A5-3A: HATS-SML encounters an error creating the parser file. The HATS-GUI writes the error message
to the error window.
A5-3B: End of use case.

ALT 6: Parser file is not youngest.
A6-3A: Use case continues with step A3-3A.

ALT 7: Parser error
A7-5A: HATS-SML encounters an error parsing the input file. The HATS-GUI writes the error message to
the error window.
A7-5B: End of use case.

2.2.2.2. Use-case 2: Execute Transformation Program
Use Case Summary: The user requests the application of a transformation language program to a target file.
HATS-SML applies the transformation language program to the target.
Actors: User, HATS-SML, Host OS
Preconditions:

1. Target and transformation language programs have been prepared.
2. An application has been selected (Refer to Use Case 3).

Scenario 1:
1. User selects the option to execute a transformation language program from the currently selected

application.
2. User selects a transformation language program file (Refer to Use Case 4) (ALT 1).
3. The HATS-GUI compares the time stamp on the lexical specification and grammar files to the time

stamp on the parser file. The parser file is younger (ALT 2, ALT 3).
4. The HATS-GUI compares the time stamp of the parsed program file and the parser, the transformation

language program, and the user-defined library files. The parsed program file is younger than any of
these files (ALT 4, ALT 5).

5. The HATS-GUI clears the displays for the standard error and standard output.
6. The HATS-GUI sends a message to the Host OS to start the ApplyTransformations program and sends

the names of the parsed program file and the user-defined library file to the Host OS. The HATS-GUI
redirects the standard error and standard output streams of the ApplyTransformation process and
collects data written to these streams for later display.

7. The HATS-SML ApplyTransformation program writes output SDTs to files named in the
transformation language program. (The transformation language program contains all references to
input and output files. The HATS-GUI does not handle file input and file output for
ApplyTransformaion.)

8. End of use case.

ALT 1: A transformation language program file has already been selected.
A1-2A: Step 2 is skipped.
A1-2B: Use case continues with step 3.

ALT 2: No parser file exists.
A2-3A: The HATS-GUI creates a program parser file (Refer to Use Case 1).
A2-3B: Use case continues with step 4.

ALT 3: The parser file is not younger.
A3-3A: Use case continues with step A2-3A.

ALT 4: No program.parsed file exists.
A4-4A: The HATS-GUI creates a parsed program file (Refer to Use Case 1).
A4-4B: Use case continues with step 5.

ALT 5: Program.parsed file is not younger.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
18

A5-4A: Use case continues with step A4-4A.

2.2.2.3. Use-case 3: Select Application
Use Case Summary: The user selects an application.
Actors: User, Host OS
Used by:

1. Parse Transformation Language Program (Refer to Use Case 1).
2. Run Transformation (Refer to Use Case 2).
3. Prepare Application (Refer to Use Case 4).
4. Display SDT Transformation Output (Use Case 5).
5. Display Pretty-printed text Transformation Output (Refer to Use Case 6).

Preconditions: Desired application exists (Refer to Use Case 5).
Scenario 1:

1. System requests from Host OS a list of existing applications within current directory.
2. Host OS returns list of files within current directory.
3. System displays list of existing applications within current directory (ALT 1, ALT 2).
4. User selects an application within the list (ALT 2).
5. System sets selected application as the current application.
6. End of use case.

ALT 1: No applications exist in current directory.
A1-3A: User cannot select any application to perform operations on it.
A1-3B: End of use case.

ALT 2: User chooses to move up or down a directory level.
A2-3A: User selects a subdirectory or the parent directory.
A2-3B: System changes current directory.
A2-3C: Use case continues with step 1.

2.2.2.4. Use-case 4: Select File
Use Case Summary: The user wants to perform some operation, and the system requests a filename. A list of
file names in the currently selected application is presented. The user selects one file name in the application.
Actors: User, Host OS
Used by:

1. Parse Transformation Language Program (Refer to Use Case 1).
2. Run Transformation (Refer to Use Case 2).
3. Prepare Application (Refer to Use Case 4).
4. Display SDT Transformation Output (Refer to Use Case 5).
5. Display Pretty-printed text Transformation Output (Refer to Use Case 6).

Preconditions: An application has been selected (Refer to Use case 3).
Scenario 1:

1. System requests from Host OS a list of files in the current directory.
2. Host OS only returns list of files in the current directory.
3. System displays this list of files (ALT 1, ALT 2).
4. User selects a file within the list (ALT 2, ALT 3).
5. System sets selected file as the current file.
6. End of use case.

ALT 1: No files exist in current directory.
A1-3A: User cannot select any application to perform operations on it.
A1-3B: End of use case.

ALT 2: User chooses to move up or down a directory level.
A2-3A: User selects a subdirectory or the parent directory.
A2-3B: System changes current directory.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
19

A2-3C: Use case continues with step 1.

ALT 3: User enters path of file instead of selecting from list.
A3-4A: User types path and file name.
A3-4B: System/OS accesses file using path (ALT 4).
A3-4C: System prompts user to accept copying file into current application. User has option to confirm or
cancel.
A3-4D: User confirms (ALT 5).
A3-4E: System copies file into current application.
A3-4F: Use case continues with step 5.

ALT 4: User-entered file not available.
A4-4A: System presents user with error “file not found.”
A4-4B: End of use case.

ALT 5: User does not confirm.
A5-A3-4A: System does not copy file into current application.
A5-A3-4B: Use case continues with A3-4F.

2.2.2.5. Use-case 5: Prepare Application
Use Case Summary: The user wants to perform some operation on a selected application. These operations
include open, close, save, save as, create new, edit files within application, and configure the application.
Actors: User, Host OS
Scenario 1: Close Application
Preconditions: Application has been selected (Refer to Use Case 3).

1. User selects option to close the currently selected application
2. System asks for confirmation from user to close application.
3. User confirms to close application (ALT 1).
4. System checks that the changes to currently selected application’s configuration have been saved (ALT

2).
5. System sets currently selected application to ‘none’.
6. End of use case.

ALT 1: User cancels operation
A1-3: User selects cancel option.
A1-4: System cancels the operation.
A1-5: End of use case.

ALT 2: Changes to currently selected application have not been saved.
A2-4A: System asks user to confirm save application.
A2-4B: User chooses to save application (ALT 3).
A2-4C: System saves the changes made to the application configuration before closing (Scenario 2).
A2-4D: End of use case.

ALT 3: User chooses not to save application.
A3-4: System closes the application without saving the changes made to the application.
A3-5: End of use case.

Scenario 2: Save Application
Preconditions: Application has been selected (Refer to Use Case 3).

1. User selects option to save currently selected application.
2. System requests Host OS to save configuration file for the selected application.
3. Host OS saves the configuration file for the selected application into a non-volatile storage (ALT 1).
4. System informs user that application has been saved.
5. End of use case.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
20

ALT 1: Host OS operating system was unable to save the current application.
A1-3A: System informs that application has not been saved.
A1-3B: End of use case.

Scenario 3: Save Application As
Preconditions: Application has been selected (Refer to Use Case 3).

1. User selects to save a currently open application using a different directory name.
2. System requests user for a name to save the open application.
3. User enters or selects a name for the application to be saved (ALT 1).
4. System confirms that application name is unique (ALT 2).
5. System requests Host OS to create new directory with the given name.
6. Host OS creates new application with the entered name (ALT 3).
7. System requests Host OS to copy core files, configuration files, and .tlp files to the new directory.
8. Host OS copies all files from selected application to created application (ALT 3).
9. System informs user that application has been saved with entered name.
10. End of use case.

ALT 1: User chooses to cancel operation
A1-3: User selects cancel option.
A1-4A: System cancels the operation and the application is not saved.
A1-4B: End of use case.

ALT 2: Application already exists.
A2-4A: System informs user that an application already exists with this name.
A2-4B: End of use case.

ALT 3: Host OS experiences file system error.
A3: End of use case.

Scenario 4: Edit Files in an Application
Preconditions: Application has been selected (Refer to Use Case 3).

1. User selects option to edit a file within the currently selected application.
2. User selects file to edit (Use Case 4).
3. System checks application to determine if editor is associated with this file. An editor is associated

with the file if the configuration explicitly associates this file with an editor or an editor is associated
with files of this type. An editor is associated with this file (ALT 1).

4. The HATS-GUI sends message to Host OS to start the preferred editor in new process and passes file
name to editor.

5. Host OS initiates process, puts editor in process, sends the filename as argument.
6. End of use case.

ALT 1: No editor is associated with this file.
A1-3A: The HATS-GUI prompts the user to select a configured editor.
A1-3B: The user selects a configured editor.
A1-3C: The HATS-GUI prompts the user to associate the editor with the file or the file type.
A1-3D: The user selects associating the editor with the file type (ALT 2, ALT 3).
A1-3E: The HATS-GUI associates the editor with the file type by updating the application configuration.
A1-3F: The selected editor becomes the preferred editor.
A1-3G: Use case continues with step 4.

ALT 2: User selects associating editor with specific file.
A2-3E: The HATS-GUI associates the editor with the specific file by updating the application
configuration.
A2-3F: Use case continues with step A1-3F.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
21

ALT 3: User selects cancel.
A3-3: End of use case

Scenario 5: Create New Application
Preconditions: None.

1. User selects option to create a new application.
2. Close existing application if one is selected (Refer to Use Case 5 – Scenario 1).
3. System asks user to enter a name and location for new application.
4. User enters name and location for new application (ALT 1).
5. System requests Host OS to create new application.
6. Host OS creates new application (ALT 2).
7. System informs user that new application has been created.
8. End of use case.

ALT 1: User selects to cancel operation.
A1-4A: System cancels operation. No application is created.
A1-4B: End of use case.

ALT 2: An application with the same name already exists.
A2-6A: System presents error message “Application already exists.”
A2-6B: End of use case.

2.2.2.6. Use-case 6: Configure Application
Use Case Summary: The user selects an application. The user configures the settings of the selected
application. The settings of an application include, available editors, SDT display colors, SDT display shapes,
default number of levels to expand, file associations between files and editors, and file associations between
target files and transformation language program.
Actors: User, Host OS
Preconditions: Application has been selected (Refer to Use Case 3).
Scenario 1: Configure Editor List.

1. User selects option to configure editors.
2. The system prompts for editor name and configuration information. Editor configuration information

must be sufficient to start the editor on the Host OS.
3. User enters editor name and parameters (ALT 1).
4. System saves editor configuration in application configuration.
5. End of use case.

ALT 1: User selects to cancel.
A1-3: End of use case.

Scenario 2: Configure SDT display.

1. User selects option to configure the colors and shapes of the graphical representation of an SDT.
2. System displays a list containing types of displayed nodes and their corresponding current configured

colors. The types of displayed nodes are given in Table 4.
3. User selects a type of node from list. (ALT 1).
4. System displays a list of supported colors and shapes.
5. User selects a color and a shape from the list for the selected type of displayed node (ALT 2).
6. System sets the selected values as the color and shape for the type of displayed node selected.
7. End of use case.

ALT 1: User cancels the ‘configure display’ operation.
A1-3A: System cancels operation. No changes in the default colors of are made.
A1-3B: End of use case.

ALT 2: User cancels operation for a particular type of displayed node selected.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
22

A2-5A: System cancels operation. No change to the default color for a particular type of displayed node is
made.
A2-5B: Use case continues with step 2.

Table 4: Types of displayed nodes

Node Type Description
Root Displayed node corresponding to the root node of the SDT.
Non expandable
node

Displayed node corresponding to a terminal node in an SDT. The
terminal node has no children in the SDT, and the displayed node cannot
be expanded.

Non expandable
node, hidden parent

A non-expandable displayed node D that corresponds to an SDT node N
where N has a parent node P, but there is no display node corresponding
to P. (Although not technically correct, one can consider this the case
where the parent of D is not displayed.)

Expandable node Displayed node drawn as a leaf node (no displayed descendants) but
whose corresponding SDT node is non-terminal.

Expandable node,
hidden parent

An expandable displayed node D that corresponds to an SDT node N
where N has a parent node P, but there is no display node corresponding
to P. (Although not technically correct, one can consider this the case
where the parent of D is not displayed.)

Internal nodes A displayed node drawn with a parent and descendants.

Scenario 3: Configure Expand Levels.

1. User selects option to configure the default number of levels to expand in response to a single mouse
click.

2. System asks user to select or enter a number of levels to expand.
3. User enters or selects a number of levels to expand. Number entered is a natural number.
4. System sets the entered or selected number of levels as the default number of levels to expand.
5. End of use case.

Scenario 4: File Associations: Editors.

1. User selects option to associate file types with editors (ALT 1).
2. System displays a list of configured editors. (Refer to Use Case 6.)
3. System displays a list of file types.
4. User selects a file type from list (ALT 2).
5. User selects an editor from list (ALT 2).
6. System associates the selected file type with the selected editor. When the user tries to edit a file of the

type selected, the system will request the Host OS to initiate a process with the associated editor.
(Refer to Use Case 5.)

7. End of use case.

ALT 1: User selects option to associate a particular file with an editor.
A1-1A: System displays a list of configured editors. (Refer to Use Case 6.)
A1-1B: System displays the list of files in the currently selected application (ALT 3).
A1-1C: User selects a file from list (ALT 2).
A1-1D: User selects an editor from list (ALT 2).
A1-1E: System associates the selected file with the selected editor. When the user tries to edit the selected
file, the system will request the Host OS to initiate a process with the associated editor. (Refer to Use Case
5.)
A1-1F: End of use case.

ALT 2: User cancels operation.
A2-1A: User selects cancel option.
A2-1B: System cancels operation. No changes in the associations are made.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
23

A2-1C: End of use case.

ALT 3: File is already selected.
A3-1: Use case continues with step A1-1D.

Scenario 5: Save Configuration

1. User selects option to save configuration.
2. System saves configuration with the application.
3. End of use case.

2.2.2.7. Use-case 7: Display SDT Transformation Output
Use Case Summary: The user wants to display and manipulate a graphical representation of an SDT.
Manipulation of a graphical representation of an SDT includes selecting and unselecting displayed nodes,
navigation through the display using a navigation window and scrolling, expanding and collapsing displayed
nodes, hiding displayed nodes, searching for SDT sub-trees, and finding smallest well-formed trees.
Actors: User, Host OS
Preconditions: Transformation of a target file was successful and transformation output has been stored and
associated with the application.

Scenario 1: SDT Display.

1. User selects option to view and manipulate a graphical representation of an SDT.
2. User selects SDT to view and manipulate (Refer to Use Case 4).
3. System displays a graphical representation of the selected SDT in an on-screen work area.

The work area of the SDT display contains the following elements:
a) A window that displays the displayed graph representation of the SDT.
b) A text window that displays the labels of the leaf nodes in the currently displayed graph.
c) If either window is too small to contain all the information to be presented, the windows will

have scroll bars to facilitate scrolling. The system will respond to dragging of scroll buttons
(or pressing arrow keys) by shifting the display in the appropriate direction.

d) If the SDT is too large for the window, a separate, small window with a compressed view of
the SDT will be displayed. In this window, a displayed graph of the entire SDT will be drawn.
The nodes of this displayed graph will be smaller than the displayed nodes in the SDT display
work area. It is not necessary that the user be able to read node labels. It is only necessary that
the user be able to see the high-level structure of the SDT. A small box named the locator box
will be displayed showing the part of the SDT currently displayed in the main SDT display
window.

4. User is able to manipulate the displayed graph representation of the SDT. (See the remaining
scenarios.)

Scenario 2: Select nodes.

1. User selects one or more displayed nodes. Displayed node selection methods are described here.
• A single node can be selected by a right mouse click on the node.
• A single node can be selected via the keyboard by moving the keyboard cursor to a node and

pressing the enter key. The keyboard cursor is moved between nodes using the tab key.
• Several nodes can be selected by drawing a mouse box around the desired nodes.
• Several nodes can be selected by holding the shift key down and selecting individual displayed

nodes.
When a user selects a set of nodes using these operations (and the shift key is not held down), the
previously selected set of nodes (if any) is unselected.

2. System highlights the smallest well-formed tree of the selected nodes in the displayed graph.
3. System finds corresponding portion of leaf text of the selected nodes in the displayed graph.
4. System highlights the corresponding portion of leaf text.
5. If both SDT and Pretty-printed text are displayed, the system will find the corresponding pretty-printed

text and highlight that text in the Pretty-print text window.
6. End of use case.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
24

Scenario 3: Navigation window navigation.

1. The user clicks the mouse in the navigation window SDT display.
2. The system determines the node in the displayed graph closest to the mouse cursor and redraws the

displayed graph with this node in the center of the main display.
3. The system updates the locator box in the navigation window display.
4. End of use case.

Scenario 4: Expand

1. User points the mouse cursor at a node and clicks the left mouse button (ALT 1).
2. System displays the tree by expanding descendants of the node in the displayed graph. The number of

levels to expand is given by the application configuration. If fewer than this number of levels exist,
then all descendants of the chosen node are displayed

3. System changes the shape and color of selected node as specified in the application configuration to
indicate that it has become an expanded node.

4. End of use case.

ALT 1: User selects to expand selected nodes.
A1-1A: User selects a set of nodes (Refer to Scenario 2).
A1-1B: User selects to expand selected nodes.
A1-1C: Use case continues with step 2.

Scenario 5: Collapse
1. User points the mouse cursor at a node and clicks the left mouse button.
2. System removes all descendants of the selected node from the displayed graph.
3. System changes the shape and color of selected node as specified in the application configuration to

indicate that it has become a collapsed node.
4. End of use case.

Scenario 6: Hide nodes
1. User selects one or more displayed nodes. (Refer to Use Case 7.)
2. User selects option to hide selected displayed nodes.
3. System removes the selected nodes from the displayed graph.
4. System changes the types of the displayed nodes remaining on the screen to indicate that there are

hidden nodes in the displayed graph.
5. End of use case.

Scenario 7: Search
1. User selects option to search SDT for a desired sub-tree.
2. System asks user for the criteria to search nodes. Search criteria for SDTs are presented in Appendix E.
3. User enters search criteria.
4. System finds the first matching sub-tree in the SDT starting at the current keyboard cursor location

(ALT 1).
5. System creates a displayed graph for the sub-tree matching the search criteria. The displayed nodes of

the matching sub-tree are highlighted. If no nodes match the search criteria, none are highlighted.
6. If both SDT and Pretty-printed text are displayed, the pretty-printed text corresponding to the

highlighted nodes of the SDT is highlighted.
7. End of use case.

ALT1: Failed search.
A1-4: The system displays a message indicating that the search has failed.
A1-5: End of use case.

Scenario 8: Repeat Search
1. User selects option to repeat a search SDT for a desired sub-tree.
2. System finds the next matching sub-tree in the SDT starting at the current keyboard cursor location.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
25

3. System creates a displayed graph for the sub-tree matching the search criteria. The displayed nodes of
the matching sub-tree are highlighted. If no nodes match the search criteria, none are highlighted.

4. If both SDT and Pretty-printed text are displayed, the pretty-printed text corresponding to the
highlighted nodes of the SDT is highlighted.

5. End of use case.

Scenario 9: Copy Text From Text Window.
1. System displays text of leaf nodes in currently displayed graph in a text window.
2. User selects a portion of displayed text.
3. System highlights selected portion of text in the text window.
4. User selects option to copy selected text. Minimally, the system will copy selected text in response to

the Ctrl-Insert key combination.
5. System puts the selected and copied text in the Host OS copy/paste buffer.
6. End of use case.

Scenario 10: Refresh Display.
Precondition: The system is displaying an SDT generated by a transformation program. The transformation
program is executed while the SDT is being displayed. The SDT file is overwritten by the ApplyTransformation
program.

1. The user selects the option to refresh the display of the SDT.
2. The system disposes of the currently displayed SDT.
3. The system reads the SDT file and displays the newly generated SDT. The display of the SDT contains

approximately the same number of nodes as the previously displayed SDT.
4. End of use case.

2.2.2.8. Use-case 8: Display Pretty-Printed Text Transformation Output
Use Case Summary: The user wants to display and manipulate a text representation of the result of applying a
transformation language program to a target file. Manipulation of text includes selecting text and searching for
sub-strings.
Actors: User, Host OS
Preconditions: Transformation of a target file was successful and transformation output has been stored and
associated with the application.

Scenario 1: Display Pretty-Printed Text

1. User selects option to view and manipulate a pretty-printed text from a particular successful
transformation.

2. User selects pretty-printed text to view and manipulate. (Refer to Use Case 4.)
3. System displays the pretty-printed text in a work window.

a) The work area of the display of pretty-printed text contains a text window that displays the
text.

b) If the window is too small to contain all the information to be presented, the windows will
have scroll bars to facilitate scrolling. The system will respond to dragging of scroll buttons
(or pressing arrow keys) by shifting the display in the appropriate direction.

4. User is able to manipulate the pretty-printed text. (See the remainder of the scenarios.)
5. End of use case.

Scenario 2: Select text.

1. User selects a portion of the displayed pretty-printed text. Text selection methods are described here.
• Text can be selected by clicking and dragging the mouse across an area of text.
• Text can be selected by holding the shift key and moving the keyboard cursor using the arrow

keys.
When a user selects text using these operations, the previously selected text (if any) is unselected.

2. System highlights selected portion of the displayed pretty-printed text.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
26

3. If both pretty-printed text and graphical representation of SDT are displayed, the system finds the
corresponding displayed nodes of the SDT of the selected portion of pretty-printed text and highlights
the corresponding displayed nodes of the SDT.

4. End of use case.

Scenario 3: Search

1. User selects option to search pretty-printed text for desired text.
2. System asks user for the criteria to search text. Text search criteria are given in Appendix F.
3. User enters or selects criteria to search text.
4. System finds those portions of pretty-printed text that match the search criteria and highlights those

portions of the text that match (ALT 1).
5. If both the pretty-printed text and the graphical representation of an SDT are displayed, the system

finds the corresponding nodes of the SDT of the selected portion of pretty-printed text and highlights
the corresponding nodes of the SDT.

6. End of use case.

ALT1: Failed search.
A1-4: The system displays a message indicating that the search has failed.
A1-5: End of use case.

2.2.2.9. Use-case 9: Generate Pretty-printed Output
Use Case Summary: The user requests the application of a pretty-print style file to a target SDT. The
necessary file names are passed to HATS-SML, HATS-SML applies the pretty-print style to the SDT, and a
formatted text file is generated.
Actors: User, HATS-SML
Preconditions:

1. A target SDT file has been generated and a pretty-print style file exists.
2. An application has been selected. (Refer to Use Case 3.)

Scenario 1:
1. User selects the option to pretty-print a target from the currently selected application.
2. User selects a target SDT (Refer to Use Case 4) (ALT 1).
3. No pretty-print style file is associated with the target file. The HATS-GUI prompts the user to select a

pretty-print style file.
4. User selects a pretty-print style file (Refer to Use Case 4) (ALT 2).
5. HATS-GUI generates a file name by appending “.txt” to the target SDT root name.
6. The HATS-GUI verifies that no file with this name exists in the current directory. This file becomes

the output file name (ALT 3).
7. The HATS-GUI sends a message to the Host OS to start the Pretty-print program and sends the target

SDT file name, the pretty-print style file name, and the output file name to Pretty-print as command
line arguments.

8. HATS-SML applies the style file to the target SDT and writes the output to the output file specified on
the command line (ALT 6).

9. HATS-SML terminates.
10. End of use case.

ALT 1: A target SDT has already been selected.
A1-2A: Step 2 is skipped.
A1-2B: Use case continues with step 3.

ALT 2: A pretty-print style file is associated with the target file.
A2-1: Use case continues with step 5.

ALT 3: A file already exists with the output file name.
A3-6A: HATS-GUI prompts the user to save the output under a new name. The prompt includes a text
window containing the current output file name, a cancel option, and an OK option.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
27

A3-6B: The user enters a new name and selects OK (ALT 4, ALT 5).
A3-6C: Use case continues with step 6.

ALT 4: User selects the Cancel option.
A4-1: End of use case.

ALT 5: User selects OK option without changing file name.
A5-6A: The output file name remains unchanged. The existing file will be overwritten.
A5-6B: Use case continues with step 7.

ALT 6: The Pretty-print encounters an error.
A6-8A: No text file is generated. The HATS-GUI displays an error message.
A6-8B: End of use case.

2.3. General Constraints
The general constraints on the development of the system are as follows:

• The system shall be platform independent and function properly on any operating system. Specifically,
the system shall be tested under Sun Solaris, Windows 2000, and Linux. It is intended for the system to
run under any variation of the Microsoft Windows operating system later than Windows 95.

• The system shall be designed in such a way as to minimize the number of windows opened by the
application. For example, it is not acceptable to open a new window for every output file generated by
HATS-SML at the time each file is received by the HATS-GUI.

• The system shall be developed using the Java programming language.
• The system shall be completed by December 2001.

2.4. Assumptions and Dependencies
The following assumptions are made with respect to the HATS-GUI:

• A JVM shall have been installed on the system under which the HATS-GUI is running.
• An ML interpreter shall have been installed on the system under which the HATS-GUI is running.
• HATS shall run on the same system on which the HATS-GUI is running.
• HATS shall support only one user at a time.
• Users shall have a high level of sophistication and shall not need guidance in the form of extensive help

messages.
• The Host OS shall support a hierarchical, tree-structured file system.
• The development team shall use this SRS to implement the system.
• HATS-SML version 2.0 shall be available by October, 2001.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
28

3. Specific Requirements

3.1. External Interface Requirements
This section contains the specification of requirements for user, hardware, software and communication
interfaces among different components and their external capabilities.

3.1.1. User Interfaces
[SRSreq 01] Any operation requiring the user to supply a file name shall allow the user either to select the files

from a list derived from files in the currently open application or to key in a file name, a relative
path name, or a complete path name.

[SRSreq 02] For any operation where the user is prompted to select from a list, the user shall be able to cancel
the operation.

[SRSreq 03] When collecting generated output files from HATS-SML, the HATS-GUI shall overwrite any file
whose name is generated automatically. For example, given a transformation language program
X.tlp, the file X.tlp.parsed is generated when the parser is executed. If X.tlp.parsed existed prior
to executing the parser, it shall be overwritten without prompting the user.

[SRSreq 04] When saving or copying files, the HATS-GUI shall use the following sequence of actions:

• The HATS-GUI shall prompt the user for a file name for the file to be saved.
• The HATS-GUI shall examine the contents of the application directory.
• If a file with the given name already exists, the HATS-GUI shall prompt the user to

overwrite the existing file. If the user agrees to overwrite the file, the HATS-GUI shall:
o attempt to write the new file using a temporary name,
o delete the previously existing file,
o then rename the new file.

• If the user does not agree to overwrite the existing file or if system errors occur while
writing or renaming the new file or deleting the previous file, the new file shall not be
written and the previous file shall be left unchanged.

• In the case of an error, the HATS-GUI shall notify the user of the error.

For example, the user shall be able to save an SDT generated during transformation program
execution. If the user specifies the name of an existing file, the existing file is only overwritten
after the user confirms that it is permissible to do so.

[SRSreq 05] Output pretty-printed text files and SDTs shall only be displayed when the user requests.
[SRSreq 06] The main interface shall be menu driven. A summary of the menus available is given below in

Table 5. Items in the first row of Table 5 are top-level menu items. Items in following rows are
second-level menu items.

Table 5: Menu Items for HATS-GUI

File Application Configure Run View
Select
Edit
Save-as
Delete
Exit

Select
Close
Save
Save-as
Delete

Editors
Node Display
File Associations
HATS-SML

Generate Parser
Parse Target
Parse Program
Execute Transforms
Pretty-Print

SDT
Text
Standard error
Standard output
Select Text
Copy Text

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
29

[SRSreq 07] The File menu shall contain menu items related to manipulating individual files and for closing the
HATS-GUI application.

[SRSreq 08] The Application menu shall contain items related to manipulating entire applications.
[SRSreq 09] The Configure menu shall contain items related to modifying the configuration of the application.
[SRSreq 10] The Run menu shall contain items related to executing the HATS-SML programs.
[SRSreq 11] The View menu shall contain items related to viewing HATS-SML output.
[SRSreq 12] The File/Select menu item shall provide an interface for selecting files within the currently open

application.
[SRSreq 13] The File/Edit menu item shall provide an interface for starting an editor as an external process. The

editor shall be started according to information in the application configuration.
[SRSreq 14] The File/Save-as menu item shall provide an interface for saving a previously selected file under a

different name.
[SRSreq 15] The File/Delete menu item shall provide an interface for deleting a selected file. The HATS-GUI

shall prompt the user to confirm deletion prior to completing this action.
[SRSreq 16] The File/Exit menu item shall provide an interface for exiting the HATS-GUI.
[SRSreq 17] The Application/Select menu item shall provide an interface for selecting and opening an

application.
[SRSreq 18] The Application/Close menu item shall provide an interface for closing an application.
[SRSreq 19] The Application/Save menu item shall provide an interface for saving application configuration

information.
[SRSreq 20] The Application/Save-as menu item shall provide an interface for saving an application and its

associated files under a different name.
[SRSreq 21] The Application/Delete menu item shall provide an interface for deleting an application and all the

files in the application directory. The HATS-GUI shall prompt the user to confirm deletion prior
to completing this action.

[SRSreq 22] The Configure/Editors menu item shall provide an interface for the user to enter editor
configuration information. This information shall be used when editors are started as processes.

[SRSreq 23] The Configure/Node Display menu item shall provide an interface for configuring the display of
nodes.

[SRSreq 24] The HATS-GUI shall allow the user to specify the number of levels of nodes to expand during
SDT viewing.

[SRSreq 25] The HATS-GUI shall allow the user to select the colors for types of displayed nodes in a displayed
graph. At a minimum, the system shall provide eight colors (red, yellow, white, black, green,
blue, orange, and violet) for displayed nodes.

[SRSreq 26] The HATS-GUI shall allow the user to select the shapes for types of displayed nodes in a
displayed graph. At a minimum, the system shall provide two shapes, rectangles and ellipses, for
displayed nodes.

[SRSreq 27] The Configure/File Associations menu item shall provide an interface for associating files in an
application. File associations are shown in Table 6.

[SRSreq 28] The Configure/HATS-SML menu item shall provide an interface for the user to enter
implementation-dependent information for starting HATS-SML processes.

[SRSreq 29] The Run/Generate Parser menu item shall provide an interface for generating a parser program.
[SRSreq 30] The Run/Parse Target menu item shall provide an interface for selecting and parsing target

programs.
[SRSreq 31] The Run/Parse Program menu item shall provide an interface for selecting and parsing

transformation language programs.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
30

[SRSreq 32] The Run/Execute Transforms menu item shall provide an interface for selecting and executing
transformation language programs.

[SRSreq 33] The Run/Pretty-print menu item shall provide an interface for selecting SDTs and pretty-print style
files and formatting the SDT according to the style.

[SRSreq 34] The View/SDT menu item shall provide an interface for viewing, navigating through, and searching
SDTs output from the execution of transformation programs.

[SRSreq 35] The View/Text menu item shall provide an interface for viewing and searching pretty-printed text.
[SRSreq 36] The View/Standard Error menu item shall provide an interface for viewing error strings collected

from HATS-SML.
[SRSreq 37] The View/Standard Output menu item shall provide an interface for viewing debugging

information collected from HATS-SML.
[SRSreq 38] The View/Select Text menu item shall provide an interface for selecting pretty-printed text or text

strings associated with SDT displays.
[SRSreq 39] The View/Copy Text menu item shall provide an interface for copying selected text into an

operating system buffer.

3.1.2. Hardware Interfaces
There are no local hardware interface requirements.

3.1.3. Software Interfaces

3.1.3.1. HATS-SML
[SRSreq 40] The HATS-GUI shall interface with HATS-SML (version 2.0) in order to parse transformation

language programs, execute transformation language programs, and create output SDTs, error
messages, pretty-printed text, and parsed transformation language programs. The interface shall
consist of starting HATS-SML programs and passing command line arguments and capturing data
written to the standard output and standard error streams of the HATS-SML processes. The
HATS-SML programs and their command line arguments are described in Appendix D.

[SRSreq 41] The GUI shall allow the user to create, modify, copy, or delete applications or files regardless of
the current status of HATS-SML.

[SRSreq 42] If the HATS-GUI attempts to start a HATS-SML program and fails, the HATS-GUI shall notify
the user by displaying the following message: “Unable to start HATS-SML.” The HATS-GUI
shall provide any other details related to the failure that are available from the Host OS. Examples
of information available from an operating system include indications that a specified file does ot
exist, that a file cannot be opened due to file protection violations, or that errors occurred during
I/O operations.

3.1.3.2. Host OS
[SRSreq 43] The HATS-GUI shall be able to communicate with Sun Solaris, Linux, and Windows 2000.
[SRSreq 44] Data sets shall be saved as files using file names with the appropriate extensions. See Table 3 for

description of the files and extensions.
[SRSreq 45] The user shall be able to initiate processes from an interface provided by the HATS-GUI. The

HATS-GUI shall optionally pass command line arguments to the process. Command sequences
for initiating processes are part of the application configuration.

[SRSreq 46] After initiating processes for editing files, the HATS-GUI is not responsible for communications
with the process other than passing command line arguments.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
31

[SRSreq 47] The HATS-GUI shall interact with the HOST OS file services to perform the following tasks:

• Create new files
• Delete existing files
• Open an existing file for read and/or write
• Read from an open file
• Write to an open file
• Close an open file.

[SRSreq 48] The HATS-GUI shall interact with the HOST OS to find files in directories. (This capability is

necessary for the HATS-GUI to display file lists.)
[SRSreq 49] The HATS-GUI shall interact with the HOST OS to compare time stamps for files. Time stamps

indicate the date and time of the most recent update to a file. These time stamps must be reported
with a precision of one second or less.

3.2. Behavioral Requirements

3.2.1. Related Real-world Objects
The real-world objects are applications, inputs and outputs, display windows, and HATS-SML. Requirements
related to these objects are described here.

3.2.1.1. Application
The HATS-GUI manages several different types of files (Table 3). Some of these files are input to the
transformation process, and others are output from the transformation process. The HATS-GUI does not apply
transformations. It invokes services from HATS-SML to accomplish transformations. (See Appendix B for data
flow descriptions of the transformation process.) A general description of files and applications is presented in
Section 2.

[SRSreq 50] The HATS-GUI shall allow a user to create an application minimally consisting of a lexical

specification file, a grammar file, a user-defined functions file, and application configuration
information. The user shall be able to name this application.

[SRSreq 51] All files associated with a given application shall be stored in one directory.
[SRSreq 52] The directory in which application files are stored shall be named with the application name.
[SRSreq 53] There shall be exactly one file describing the lexical specification of inputs associated with an

application. It shall have the file extension .spec.
[SRSreq 54] There shall be exactly one file describing the grammar of inputs associated with an application. It

shall have the file extension .grm.
[SRSreq 55] There shall be exactly one file describing the interpretation of function symbols associated with an

application. This file shall be written in ML and have the file extension .lib.
[SRSreq 56] <deleted>
[SRSreq 57] The HATS-GUI shall suggest a file name for the user whenever it prompts the user to enter a file

name. The HATS-GUI shall suggest the same file name for files copied to a different directory.
The HATS-GUI shall suggest a file name with a sequentially numbered extension for files copied
to the same directory. For example, if NatLang.txt exists, a suggested file name would be
NatLang.txt.2.

[SRSreq 58] An application shall have associated with it an application configuration. The application
configuration elements are given in Table 6.

Table 6: Application Configuration Elements

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
32

Element Description
File Associations • The grammar and lexical specification files are associated with the parser.

• The parsed transformation language program file is associated with the
transformation language program file.

• The parsed target file is associated with the target file.
• The transformation output SDT file names are associated with the

transformation language program file.
• The library and program parser are associated with the transformation language

program file.
• The input target files are associated with a transformation language program.
• The transformation language program files are associated with the output SDT

file.
• The two most-recent pretty-print style files used to format transformation

output are associated with the output SDT file.
• The target file and pretty-print style files are associated with the text output file

resulting from a transformation.
Editor
Configurations

Command sequences to initiate editors under the Host OS

Editor Associations Associations of editors to file types
Associations of editors to specific files

Node Display Colors for displayed node types
Shapes for displayed node types

Node expansion Number of nodes to expand when expanding displayed nodes
Parser file Name of the parser file associated with the language of the application.

3.2.1.2. Input and Output
The types of outputs generated by HATS-SML are described in section 2.1.4.
[SRSreq 59] The HATS-GUI shall display output written to the standard output and standard error streams in a

tab-selectable window. Text in this window shall be cleared prior to executing individual HATS-
SML programs, unless the programs are contained in a program script. In the case of a script, the
window contents shall be cleared prior to executing the script. Refer to section 3.2.3.2 for a
discussion of the execution of script files.

[SRSreq 60] <deleted>
[SRSreq 61] <deleted>

3.2.1.3. HATS-SML
Refer to Section 3.1.3 for the requirements related to HATS-SML.

3.2.1.4. Display Windows
[SRSreq 62] The system shall open a new window when the user selects to display output.
[SRSreq 63] Display windows opened by the system shall have buttons for closing the windows.
[SRSreq 64] A navigation window shall be available. Navigation windows are discussed in section 3.2.3.3.4.
[SRSreq 65] Each active display window shall have a mouse cursor, which indicates the location of the pointing

device in the window.
[SRSreq 66] Each display window shall have a keyboard cursor to track the current location in the display.
[SRSreq 67] The keyboard cursor shall be movable by the arrow keys.
[SRSreq 68] The keyboard cursor shall be set to the location of the mouse cursor when the pointing device is

clicked.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
33

3.2.2. Stimulus/Response
This section details the response the HATS-GUI shall make when it receives stimulus either from the user, the
Host OS, or HATS-SML.

3.2.2.1. Menu Items

3.2.2.1.1. File Menu
[SRSreq 69] When a user selects the File/Select menu item, the HATS-GUI shall provide the user with a list of

files in the currently open application and allow the user to select a file. This file becomes the
currently selected file. If no application is currently open, the HATS-GUI will prompt the user to
select and open an application, then prompt the user to select a file.

[SRSreq 70] When a user selects the File/Save As menu item, the HATS-GUI shall prompt the user to enter a
new name. A new file shall be created in the currently open application with the newly entered
file name. The contents of the selected file shall be written into the new file, and the new file shall
become the currently selected file.

[SRSreq 71] When a user selects the File/Delete menu item, the HATS-GUI shall prompt the user to confirm
the deletion operation. If the user confirms, the currently selected file shall be deleted. No file
shall be currently selected at the end of this operation.

[SRSreq 72] When a user selects the File/Edit menu item, the HATS-GUI shall request that the operating
system start a process and load that process with the editor specified by the application
configuration. The name of a selected file shall be passed to the editor as a command line
argument. The editor started by the HATS-GUI shall be the editor associated with the file in the
application configuration, or if there is no editor associated with the file, then the editor
associated with the file type of the file in the application configuration. If no editor is associated
with either the file or the file type, then the default editor shall be used. If no default editor has
been selected, then the HATS-GUI shall present a list of the configured editors and allow the user
to select an editor. If no editors have been configured, then the HATS-GUI shall inform the user
that an editor must be configured before starting an editor.

[SRSreq 73] When a user selects the File/Exit menu option, the HATS-GUI shall request the host operating
system to kill all currently active HATS-SML processes started by the HATS-GUI and halt the
HATS-GUI process. If changes have been made to the configuration but have not been saved, the
user shall be prompted to save the configuration. If the user agrees, the configuration shall be
saved. If the user does not agree, the configuration shall not be saved.

3.2.2.1.2. Application Menu
[SRSreq 74] When a user selects the Application/Select menu item, the HATS-GUI shall display a list of

directory names in the current working directory, allow a user to navigate the directory structure,
and allow a user to select a previously created application. This application becomes the currently
selected application.

[SRSreq 75] When a user selects the Application/Close menu item, the HATS-GUI shall close the currently
selected application. No application is currently selected at the end of this operation. If changes
have been made to the configuration but have not been saved, the user shall be prompted to save
the configuration. If the user agrees, the configuration shall be saved. If the user does not agree,
the configuration shall not be saved.

[SRSreq 76] When a user selects the Application/Save menu item, the HATS-GUI shall save all application
configuration information to nonvolatile storage.

[SRSreq 77] When a user selects the Application/Save As menu item, the HATS-GUI shall prompt the user for a
new application name. The HATS-GUI shall create a new directory at the same level as the
currently selected application. All files in the application directory, including all subdirectories,
shall be copied to the new directory, and the new directory shall become the currently selected
application.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
34

[SRSreq 78] When a user selects the Application/Delete menu item, the HATS-GUI shall prompt the user to
confirm the deletion operation. If the user confirms, all files in the application directory shall be
deleted and the application directory itself shall be deleted. No application is currently selected at
the end of this operation.

[SRSreq 79] When deleting an application directory, if the application directory contains a subdirectory, the
system shall confirm the deletion of the subdirectory with the user before continuing. If the user
does not confirm the deletion of the subdirectory, the application director shall not be deleted.

3.2.2.1.3. Configure Menu
[SRSreq 80] When a user selects the Configure menu options, the HATS-GUI shall provide a list of elements in

the application configuration, allow the user to select an element, then prompt the user for a value
for the configuration element. The application configuration elements are given in Section
3.2.1.1. This information becomes part of the application configuration.

3.2.2.1.4. Run Menu
[SRSreq 81] When a user selects the Run/Generate Parser menu option, the HATS-GUI shall generate the

parser using the MakeParser HATS-SML program as described in Appendix D.
[SRSreq 82] When a user selects the Run/Parse Target menu option, the HATS-GUI shall parse the selected

target program by using the ParseTarget HATS-SML programs as described in Appendix D. If
no target program is selected, the HATS-GUI shall first prompt the user to select a target
program.

[SRSreq 83] When a user selects the Run/Parse Program menu option, the HATS-GUI shall parse the selected
transformation language program by using the ParseTlp HATS-SML programs as described in
Appendix D. If no target program is selected, the HATS-GUI shall first prompt the user to select
a transformation language program.

[SRSreq 84] When a user selects the Run/Execute Transforms menu option, the HATS-GUI shall execute the
ApplyTransformations HATS-SML programs as described in Appendix D. This process is
further described in Section 3.2.3.

[SRSreq 85] When a user selects the Run/Pretty-print menu option, the HATS-GUI shall execute the Pretty-
print HATS-SML programs as described in Appendix D. This process is further described in
Section 3.2.3.

3.2.2.1.5. View Menu
[SRSreq 86] When a user selects the View/SDT menu option, the HATS-GUI shall prompt the user to select an

SDT file in the current application. The file list shall include SDTs in the application. The
viewing of outputs is detailed in Section 3.2.3.

[SRSreq 87] When a user selects the View/Text menu option, the HATS-GUI shall prompt a user to select a
pretty-printed text file in the current application. The viewing of text outputs is detailed in
Section 3.2.3.

[SRSreq 88] When a user selects the View/Standard Error menu option, the HATS-GUI shall display the
standard error screen showing all outputs written to the standard error stream since the most
recent clearing of this data. The viewing of errors is detailed in Section 3.2.3.

[SRSreq 89] When a user selects the View/Standard Output menu option, the HATS-GUI shall display the
standard error screen showing all outputs written to the standard output stream since the most
recent clearing of this data. The viewing of output is detailed in Section 3.2.3.

3.2.2.2. Mouse and Keyboard actions
Section 3.2.3.3.4 details keyboard and mouse selection and navigation.
[SRSreq 90] When viewing an SDT, a single left mouse click on an expandable displayed node shall expand the

node by displaying the node’s children or collapse the node by hiding the node’s children.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
35

[SRSreq 91] When a displayed node is expanded, the number of levels of children added to the displayed graph
shall be determined by the application configuration.

[SRSreq 92] When viewing an SDT, a single left mouse click on an already-expanded displayed node shall
collapse the displayed node. When a displayed node is collapsed, all descendants of the node are
removed from the displayed graph.

3.2.2.3. HATS-SML Completion
[SRSreq 93] The HATS-GUI shall collect process exit codes from HATS-SML processes. Process exit codes of

0 indicate nominal completion of the process. Process exit codes other than 0 indicate failure.

3.2.3. Related Features

3.2.3.1. Prepare Application
Selecting, deleting, and copying applications are described in Section 3.2.2. Editing files is discussed in Section
3.2.2.1.1.
[SRSreq 94] The GUI shall allow the user to import a file into the selected application. Importing a file consists

of copying the file into the application directory.

3.2.3.2. Parse/Execute Transformation
The HATS-GUI shall facilitate parsing transformation language programs and target files. The HATS-GUI shall
orchestrate executing transformation language programs. Parsing is accomplished by sending a parser file and
an input file to HATS-SML.

To execute a transformation language program, the parsed transformation language program and the user-
defined library file are sent to HATS-SML. During execution of a transformation language program, HATS-
SML writes a sequence of new SDTs. These output SDTs are specified in the transformation language program.
The HATS-GUI shall make these data sets available for viewing and/or saving as permanent files in the
application. In addition to the output file, the transformation language program may specify that debugging
output be written to the standard output stream. Errors encountered during program execution are written to the
standard error stream. The HATS-GUI shall capture data written to these streams and make that data available
to the user.

Parsing and running transformations are also described in section 3.2.2.

[SRSreq 95] The HATS-GUI shall use the protocol and program signatures listed in Appendix D when

executing HATS-SML programs.
[SRSreq 96] To perform a transformation in an application, the HATS-GUI shall execute the following

sequence of actions:

• The HATS-GUI shall confirm that the transformation language program exists. (It is an error
if the program does not exist.)

• The HATS-GUI shall check that the parser file is younger than the grammar and lexical
specification files and that the parser file was generated from the grammar and lexical
specification files. If this is not the case, the HATS-GUI shall generate a new parser file.

• The HATS-GUI shall check that a parsed version of the transformation language program
exists and is younger than the parser file and the transformation language program file. If it is
not, the HATS-GUI shall generate a new parsed version of the transformation language
program.

• The HATS-GUI shall start the FindTarget program using the transformation language
program as input.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
36

• The HATS-GUI shall take the list of target program files generated by FindTarget, and for
each file in the list it shall check that a parsed version of the target program exists and is
younger than the target parser file and the target program file. If it is not, the HATS-GUI shall
generate a new parsed version of the target program.

• The HATS-GUI shall start the ApplyTransformation program in HATS-SML and pass the
parsed transformation language program file name, the user defined library file name, and the
output file name to the ApplyTransformation program. The HATS-GUI shall redirect the
standard output and standard error streams and capture any text written to those streams.

[SRSreq 97] <deleted>.
[SRSreq 98] The HATS-GUI shall allow the user to continue working while transformations are taking place.

Thus a user shall be able to edit files, view output, and transmit other problems to HATS-SML
while waiting for HATS-SML to generate output.

[SRSreq 99] The HATS-GUI shall allow the user to execute a script file. A script file shall contain a linear
sequence of HATS-SML programs. The HATS-GUI shall begin with the first command and
execute the commands sequentially until either an error occurs or all commands in the script file
have been executed.

[SRSreq 100] Prior to starting the execution of a script file, the display screens for the standard error and the
standard output shall be cleared.

3.2.3.3. Display Transformation Output
There are several types of output that can be received from HATS-SML:

• error messages written to the standard error stream resulting from parser generation, parsing, or
program execution;

• parsed transformation language programs;
• parsed target files;
• transformation language program parser files;
• target program parser files;
• text output written to the standard output stream; and
• pretty-printed text.

[SRSreq 101] The HATS-GUI shall allow a user to select output files in the application to display.
[SRSreq 102] The HATS-GUI shall allow a user to display selected output files. The manner in which the

output is displayed shall depend on the type of the output.
[SRSreq 103] <deleted>

3.2.3.3.1. Displayed Node and Text Selection
[SRSreq 104] The user shall be able to select an arbitrary set of displayed nodes in a displayed graph. Selected

displayed nodes shall be indicated visually. The following methods shall be used to select
displayed nodes.

• A single node shall be selected by right-clicking the mouse cursor on the node.
• A single node shall be selected by moving the keyboard cursor to the node (using the tab key)

and pressing the enter key.
• Clicking and dragging the pointing device selection rectangle around a set of displayed nodes

shall select a set of adjacent nodes.
• A set of nodes shall be selected by holding the shift key while selecting nodes using the

methods specified previously in this section.
[SRSreq 105] The user shall be able to deselect all selected displayed nodes by

• clicking either the right or left mouse buttons while the mouse cursor is not pointed at any
displayed nodes and the shift key is not depressed; or

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
37

• by pressing the escape key.
[SRSreq 106] When viewing an SDT, selecting nodes shall result in the highlight of all displayed nodes in the

smallest well-formed tree of the selected nodes.
[SRSreq 107] When the system displays a navigation window, the user shall be able to select a current SDT

location by clicking the mouse cursor in the navigation window. The center of the displayed
graph will be the displayed node closest to the mouse cursor when the mouse is clicked.

[SRSreq 108] When both an SDT and a pretty-printed text display corresponding to a single transformed target
file are open, highlighting and cursor location motion shall be mirrored in the two windows.
Thus, when a displayed node is selected in the SDT display, the corresponding text in the pretty-
print window is highlighted. When the user scrolls to the end of the pretty-printed text display,
the display of the SDT should also scroll to the corresponding displayed nodes.

3.2.3.3.2. Display Windows
[SRSreq 109] The user shall be able to resize windows dynamically. When displayed graph windows are

resized, the HATS-GUI shall respond by utilizing the space available.
[SRSreq 110] The display of an SDT shall also result in the display of text from leaf nodes in a text display

area.
[SRSreq 111] The text displayed in the text display area shall correspond to the concatenation of the node labels

(separated by spaces) of the leaf nodes of the displayed graph (in-order traversal, left to right). If
a leaf displayed node corresponds to a non-terminal SDT node, the label in the text window shall
be surrounded by pointed brackets (<>). For example, if a non-terminal TERM appears in a leaf
node, its text representation shall be <TERM>. Appendix G gives an example of the display of
text associated with an SDT.

[SRSreq 112] The HATS-GUI shall provide for the copying of text from the text display area to a system buffer
available for pasting into other applications (such as an editor).

[SRSreq 113] The user shall be able to display more than one SDT at a time. Each SDT shall be displayed in a
separate window.

3.2.3.3.3. Display of SDTs
In the following we make the distinction between an SDT and a displayed graph. An SDT is an abstract tree
containing a set of nodes. A displayed graph is a graphical representation of a subset of the nodes in an SDT.
The displayed graph places the visual representation of a node above the visual representation of its descendant
nodes. In a displayed graph, a displayed node that does not have any displayed descendant nodes is a leaf node.
This is not to be confused with terminal nodes in the SDT. In the SDT, there are two types of nodes: terminals
and non-terminals. Terminal nodes correspond to tokens in the language. Non-terminal nodes correspond to
elements on the left-hand side of productions of the grammar of the language. The types of nodes in a displayed
graph are listed in Table 4.

[SRSreq 114] The HATS-GUI shall provide for the manipulation and display of SDTs.
[SRSreq 115] SDTs shall be displayed as directed acyclic graphs with nodes and edges. Nodes in the displayed

graph correspond to nodes in the SDT. Edges in the displayed graph correspond to the parent-
child relationship between nodes in the SDT.

[SRSreq 116] Initially, a displayed graph will have a single displayed node. That node will correspond to the
root of the SDT.

[SRSreq 117] When a displayed node and its children are displayed simultaneously, the parent node shall be
displayed higher than the children.

[SRSreq 118] All displayed children of a single node shall appear at the same height.
[SRSreq 119] The user shall be able to control the display by choosing the color and shapes of displayed nodes

based on node type. The HATS-GUI shall use the shape and color of displayed node types stored
in the application configuration to display nodes.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
38

[SRSreq 120] The user shall be able to expand displayed nodes (provided it is possible to expand the selected
nodes). The HATS-GUI shall change the graph display by adding the descendant nodes to the
displayed graph (thus changing the expandable nodes to internal nodes).

[SRSreq 121] The user shall be able to collapse displayed nodes. The HATS-GUI shall change the displayed
graph by removing all descendants of the selected displayed nodes (thus changing the internal
nodes to non-expandable leaf nodes).

[SRSreq 122] The user shall be able to hide a set of selected displayed nodes. The HATS-GUI shall change the
display by removing the selected nodes from the display and changing the parent and descendant
nodes of the removed nodes to nodes with hidden descendants and parents, respectively.

[SRSreq 123] The user shall be able to issue an unhide instruction that reverses the hide instruction for all
displayed nodes.

[SRSreq 124] After issuing the unhide instruction, a user shall be able to issue a rehide instruction that reverses
the unhide instruction. All displayed nodes hidden before the most recent unhide instruction shall
become hidden.

[SRSreq 125] The HATS-GUI shall allow the user to expand the SDT by a predetermined number of node
levels. The number of levels expanded is set in the application configuration.

[SRSreq 126] The HATS-GUI shall provide the function to fully expand a sub-tree regardless of the node
expansion level in the application configuration.

[SRSreq 127] The user shall be able to view multiple SDTs simultaneously.
[SRSreq 128] SDT displays shall also provide the user with a view of text associated with the leaves of the

displayed sub-tree. This text shall be copy-and-pasteable in the host operating system. Thus, text
displayed in a HATS-GUI window can be pasted into other applications such as text editors that
may be running concurrently with the HATS-GUI.

[SRSreq 129] SDT displays shall provide the user with the option to refresh the display. When a display is
refreshed, the current display is erased, the SDT file is read, and a new SDT display is generated.
The new SDT display shall approximate the previous SDT display by expanding the SDT to the
same number of nodes, if this is possible.

3.2.3.3.4. Navigation
[SRSreq 130] If a displayed graph or a text display is too large to fit inside its window, the windows shall have

scroll bars attached to them. Dragging scrollbar buttons shall scroll the display. Pressing the
arrow keys of the keyboard shall also scroll the display.

[SRSreq 131] For text windows, the keyboard cursor location shall move according the following rules:

• A left arrow key moves the cursor to the left one character. If the cursor is at the beginning of a
line, the cursor is moved to the end of the previous line. If there is no previous line, the cursor
does not move.

• A right arrow key moves the cursor to the right one character. If the cursor is at the end of a line,
the cursor is moved to the first character of the next line. If there is no line after the current line,
the cursor is not moved.

• An up arrow key moves the cursor up one line. If there is text in the same column, the column
does not change. If there is no text in the column above the current cursor location, the cursor is
moved to the end of the previous line. (A space is considered text.)

• A down arrow key moves the cursor down one line. If there is text in the same column, the column
does not change. If there is no text in the column below the current cursor location, the cursor is
moved to the end of the previous line. (A space is considered text.)

[SRSreq 132] If keyboard cursor movement causes the keyboard cursor to move to text or graph nodes not
currently displayed, the display will scroll the minimal amount to display the current cursor
location.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
39

[SRSreq 133] For displayed graph windows, the keyboard cursor location shall move according the following
rules:

• A left arrow key moves the cursor to the next unhidden node to the left. The node to the left does
not need to be a sibling of the current node, but it does need to be at the same level as the current
node. If there are no nodes to the left, the cursor does not move.

• A right arrow key moves the cursor to the next unhidden node to the right. The node to the right
does not need to be a sibling of the current node, but it does need to be at the same level as the
current node. If there are no nodes to the right, the cursor does not move.

• An up arrow key moves the cursor to the closest ancestor that is not hidden. If there is no such
node, the cursor does not move.

• An down arrow key moves the cursor to the leftmost, nearest descendant that is not hidden. If
there is no such node, the cursor does not move.

[SRSreq 134] The pointing-device cursor shall track the motion of the pointing device. The keyboard cursor
shall move to the text element or graph node closest to the pointing-device cursor when the
pointing device is clicked.

[SRSreq 135] If the displayed graph of the entire SDT is too large for the window, a separate, small window
with a compressed view of the SDT shall be displayed. The compressed view is called the
navigation window display. In this navigation window, a representation of the entire SDT will be
drawn. A small box will be displayed showing the part of the SDT currently displayed in the
main tree display window.

[SRSreq 136] The user shall be able to turn the navigation window on and off.
[SRSreq 137] The HATS-GUI shall provide the user the capability to search SDTs. The search criteria are

described in Appendix E. The user shall enter a search pattern (see Appendix E and the following
requirement). The HATS-GUI shall search the SDT for a matching pattern. When a match is
found, the HATS-GUI shall highlight the matching displayed nodes and center the display on the
left-most, top-level displayed node in the matching pattern. The keyboard cursor is set to this
node. If no matches are found, the HATS-GUI shall display a message stating “No Match
Found.”

[SRSreq 138] To initiate an SDT search, the user shall be able to use the following sequence of actions.
• The user selects a set of nodes using the mouse cursor.
• The user presses the Ctrl-Insert key combination.
• The user selects the tree search option.
• The HATS-GUI presents a prompt for entering the search pattern.
• The user presses the Ctrl-Shift-Insert key combination.
• The HATS-GUI fills the search pattern entry box with text concatenated from the nodes

highlighted at the time of the Ctrl-Insert key press.
• The user selects initiation of search.

[SRSreq 139] When searching for SDT patterns, search begins at the SDT node corresponding to the node at the
current keyboard cursor location. This becomes the original starting location. Search continues
top-to-bottom, left-to-right until the end of the SDT is encountered. When the end of the SDT is
encountered, search will continue from the root of the SDT until arriving back at the starting
location.

[SRSreq 140] The HATS-GUI shall provide for repeating a search. Repeating a search shall find the next
matching sub-tree starting from the current keyboard cursor location. Search terminates when
either a matching sub-tree is found or the search arrives at the original starting location.

[SRSreq 141] The HATS-GUI shall provide for repeating a search in the reverse direction. Searching in the
reverse direction continues right-to-left, bottom-to-top. Search terminates when either a matching
sub-tree is found or the search arrives at the original starting location.

[SRSreq 142] The HATS-GUI shall provide the user the capability to search the text display for text sub-strings.
The search criteria are described in Appendix F. The user shall be prompted to enter a text string

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
40

describing a string pattern. The HATS-GUI shall search the text for a matching pattern. When a
match is found, the HATS-GUI shall highlight the matching text and center the display on the
left-most element of the matching text. If no matches are found, the HATS-GUI shall display a
message stating “No Match Found.”

[SRSreq 143] When searching for text patterns, search begins at the current keyboard cursor location and
continues left-to-right, top-to-bottom until the end of the text is encountered. When the end of the
text is encountered, search will continue from the start of the text until arriving back at the
starting location.

3.2.3.3.5. Display of Pretty-Printed Text
Pretty-printed text is text formatted with white space and line breaks. Pretty-printed text is generated from the
terminal nodes of an SDT by applying a pretty-print style to an SDT. The HATS pretty-printer is a general
transformation system. The output of the pretty-printer may contain text not found in terminal nodes of the SDT
and may not contain text from every terminal SDT node. In the most extreme cases, the output from the pretty
printer may not have any tokens from the terminal nodes of the input SDT. The lack of correspondence of
terminal node text to pretty-printed text may make association actions on displayed graphs to pretty-printed text
difficult. In the following, we assume that terminal-node text appears in the output from the pretty-printer.

[SRSreq 144] The formatting of the displayed pretty-printed text shall be faithful to the formatting represented

in the pretty-printed text file. No additional white space shall be inserted, and a fixed width font
shall be used to display the text.

[SRSreq 145] The user shall be able to select pretty-printed text files to display.
[SRSreq 146] Selected pretty-printed text shall be displayed in a separate window.
[SRSreq 147] Windows for pretty-printed text shall allow for scrolling left, right, up, and down if the text is too

large to display in the window.
[SRSreq 148] The HATS-GUI shall provide the user the capability to search the text display for text sub-strings.

The search criteria are described in Appendix F. The user shall be prompted to enter a text string
describing a string pattern. The HATS-GUI shall search the text for a matching pattern. When a
match is found, the HATS-GUI shall highlight the matching text and center the display on the
left-most element of the matching text. The keyboard cursor shall be set to this location. If no
matches are found, the HATS-GUI shall display a message stating “No Match Found.”

[SRSreq 149] When searching for text patterns, search begins at the location of the keyboard cursor and
continues left-to-right, top-to-bottom until the end of the text is encountered. When the end of the
text is encountered, search will continue from the start of the text until arriving back at the
starting location.

3.2.3.3.6. Display of Errors
[SRSreq 150] The HATS-GUI shall not halt as a result of any error messages received from HATS-SML.
[SRSreq 151] The HATS-GUI shall collect error messages from HATS-SML in a single display area. This

display area shall be initially clear, and shall contain all error messages generated by HATS-SML
since the HATS-GUI was started. The display area shall be a window accessible via a window
tab. The display shall list all error received from HATS-SML in the order received.

[SRSreq 152] Errors shall not be displayed until requested by the user.
[SRSreq 153] The user shall be able to clear the error window without restarting the HATS-GUI.

3.2.3.3.7. Display of SDT and Pretty-Printed Text from Common Target file
[SRSreq 154] When both an SDT and a pretty-printed text display corresponding to a single transformed target

file are open, navigation in the SDT window shall result in navigation in the pretty-printed text
window. Searching, selecting, and cursor location motion should be mirrored in the two
windows. Specifically, when a node is selected in the displayed graph, the corresponding text in
the pretty-print window is highlighted. For this purpose, the corresponding text is all the text that

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
41

corresponds to terminal nodes of the SDT that are descendants of the SDT nodes that correspond
to the selected display nodes.

[SRSreq 155] When both an SDT and a pretty-printed text display corresponding to a single transformed target
file are open, navigation in the pretty-printed text window shall result in navigation in the SDT
display. Selecting, and cursor location motion should be mirrored in the two windows.
Specifically, when text is selected in the text window, the displayed nodes corresponding nodes
in the SDT are highlighted.

3.3. Non-behavioral Requirements

3.3.1 Performance Requirements
[SRSreq 156] The HATS-GUI shall display and SDT with 10,000 nodes in five seconds or less.
[SRSreq 157] The HATS-GUI shall display 1,000,000 node SDTs in the same amount of time, plus or minus

two seconds, as it takes to display a 10,000 node SDT.
[SRSreq 158] The HATS-GUI shall allow a user to request transformations while HATS-SML is performing

transformations or parsing.
[SRSreq 159] The HATS-GUI shall allow a user to navigate through the display of an SDT with 10,000 nodes

so that scrolling a screen width with any portion of the SDT displayed takes less than 3 seconds.
[SRSreq 160] The complexity of the text search algorithm shall not exceed O(n2) for n nodes.
[SRSreq 161] The complexity of the tree search algorithm shall not exceed O(n2) for n nodes.
[SRSreq 162] The complexity of the scrolling algorithms for text and displayed graphs shall not exceed O(n2)

for n displayed nodes.

3.3.2 Qualitative Requirements

3.3.2.1 Security
[SRSreq 163] The user shall not be required to log in or authenticate his/her identity when using the system.

3.3.2.2 Portability
It is intended that the HATS-GUI run on any platform that supports ML and Java. HATS-SML version 2.0 is
intended to eliminate non-portable communications techniques.
[SRSreq 164] The GUI shall run on Windows 2000, Sun Solaris 8, and Linux operating systems without

modification of the Java code.

3.3.3 Design and Implementation Constraints
[SRSreq 165] The system shall be implemented in the Java 1.3 programming language.
[SRSreq 166] One algorithm for displaying an SDT has been implemented and found to be unacceptable:

• Draw SDT into large virtual window with a smaller viewing area;
• Zoom in on portions of the tree;

This algorithm results in excessive memory usage and slow performance. This algorithm shall not be
used in the HATS-GUI.

3.4. Other Requirements

There are no other requirements at this time.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
42

4. Appendix A: HATS-GUI Class Diagram

Er ror
type

Internal

Metrics

Non Expandable
H iddent parent

Non
expand able

Expandable
H idden parent

Expandable

0..2

R oot

Graphica l D is play
leaf text

dis p lay()D is played
Node

color
s hape
label

paint()
expand()
co llaps e()
s earch()
h ide()
h ighlight()
navigate()

1..n
1

1..n
1

Node
label10..1 10..1

1
0..n

1
0..n

Output

dis p la y()

Pretty-Printe
d Text
filenam e

.s ty
filenam e

SDT
filenam e

1..n

1

1..n

1

.tlp .pars ed
filenam e

.tgt
filenam e

1

1

1

1n0..2 n0..2

HATS
s tar tup c omm ands

pars e targ et()
pars e t lp ()
apply tr ans form ation()

n

1

n

1

re turns

1

1

1

1 transform s

Editor
Start up com m and

1

1

1

1

1

1

1

1

.tlp
filenam e

11 11
11

1

1

1

1

parses

1

1

1

1

.s pec
filenam e

1
1
1
1

.grm
filenam e

1
1
1
1

.s m l
filenam e

1

1

1

1

Core
filenam e

1

1

1

1

1

1

1

1

0..1

1

0..1

1

Config urati on

Applicati on Dom ain
nam e

create()
open()
configure()
s ave()
s ave-as ()
clos e()

0..n
1
0..n

1

1

1

1

1

1
n

1
n

0..n
1

0..n
1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

1

1

1

1

1

Figure 3: HATS-GUI Class Diagram

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
43

5. Appendix B: HATS-GUI Data Flow Diagram

Conf igure
Application

Prepare
Application

Parse

Apply Transf ormation

Manipulate and
Nav igate SDT

User

Display

Application

{ Changes to current
settings }{ Current Sett ings}{ New Sett ings }

{f iles }

{f iles }

{ outputs }

{ outputs }

{f iles }

{f iles }
error

error

graph

graph

Manipulate Pretty
Printed Text

SDT

Pretty -printed Text User selection

pretty -printed-text

User selection

{ f ilenames }

{ f ilenames }

pretty -printed-text

mappings

mappings

{ Instructions }

Figure 4: HATS-GUI Data Flow Diagram -- Level 1

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
44

 HATS-GUI Data Flow Diagram – Level 2

graph

Collapse Graph

User

expanded
graph

collapsed
 graph

Expand Graph

Highlight nodes

graph with highlighted
nodes

Display Window

selected node

Navigate Graph

direction

selected nodes

selected nodes

Find Best well-formed
Tree

Search SDT

Hide nodes

search criteria

graph with
hidden nodes

graph

Get leaf text

Application

Generate Graphical
representation

Display

graph

leaf text

SDT file

Map pretty
printed text to

nodes

selected nodes
(mapped nodes)

selected nodes
(matching nodes)

shifted graph

Map nodes
to pretty

printed text

Memory (currently
displayed pretty

printed text)

pretty printed text

(SEE Manipulate
pretty printed
text Diagram)

(SEE Manipulate
pretty printed
text Diagram)

Figure 5: HATS-GUI Data Flow Diagram: Manipulate and Navigate SDT

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
45

HATS-GUI Data Flow Diagram – Level 2

User

Create

Save

Application
name

name

application settings

filename

Editor name
Host O.SLaunch Editor and

open file

filename

Editor name

Figure 6: HATS-GUI Data Flow Diagram: Prepare Application

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
46

HATS-GUI Data Flow Diagram – Level 2

Display

User

Memory (Currently
displayed pretty

printed text)

pretty-printed text to
display

Search Pretty-
printed Text

Highlight
Text

matching text

highlighted
pretty-printed

 text

search criteria
Map pretty

printed text to
nodes

pretty printed text

selected text

Memory (Currently
displayed graph)

(SEE Manipulate and
Navigate SDT)

graph

Map nodes
to pretty

printed text

(SEE Manipulate and
Navigate SDT)

mapped text

Figure 7: HATS-GUI Data Flow Diagram: Manipulate Pretty-Printed Text

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
47

HATS-GUI Data Flow Diagram – Level 2

Application

Make Parser

Parse TLP

Parse Target
Program

Pretty Print

grammar

lexer

Parser

Output SDT
PPrint Style File

PPrint Text

Apply
Transformation

Target
 SDT

TLP
SDT

User Defined
 Libraries

Output SDT

Transformation Lang
Prog

Parser
TLP SDT

Target Program

Target Parser

Target SDT

Figure 8: HATS-GUI Data Flow Diagram: Apply Transformation

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
48

6. Appendix C: HATS-GUI State Transition Diagrams

HATS GUI State Transition Diagram

N o app lica tion
s elected

Applica tion Selec ted

Saving
app lica tion

s e lect app lica tio n

exit

App lying Tra nsform a tion

Making Target
Pars er

Making TLP
Pars er

Pars ing Target
Program

Pars ing TLP
Program

Applying
TLP

Making Target
Pars er

Making TLP
Pars er

Pars ing Target
Program

Pars ing TLP
Program

Applying
TLP

D is playing
SDT

Pret ty Prin t
exit

clos e application

app ly trans form ati on

Figure 9: HATS-GUI State Diagram

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
49

7. Appendix D: HATS-SML Communication Protocol

HATS-SML is a collection of programs that are invoked with command line arguments. Collectively, they
provide the functionality of HATS. Table 7 below lists the programs, their arguments, and a description of each
program. The arguments to each program are positional, and specify input and output file names for each
program. A file name may be a complete path name. A description of each file is given following Table 7.

Table 7: Summary of HATS-SML Programs

MakeParser <lexer> <grammar> <parser-program>
Generates a parser for transformation language programs and target programs in a given language.
MakeParser generates a parser file for translation language programs that is written to the file path
specified by the third argument (parser-program). MakeParser returns 0 if the parser-program file
generation is successful.

ParseTarget <parser-program> <target> <targetSDT>
Generates a parsed target file from a target-parser file and a target. The parser-program file must have
been generated previously by MakeParser. ParseTarget generates an SDT file representing the target.
This file is written to the path specified by the third argument (targetSDT). This program returns 0 if
the targetSDT file generation is successful.

ParseTLP <parser-program> <program> <programSDT>
Generates a parsed transformation language program file from a translation language program parser
(parser-program) and a transformation language program (program). The tlp-parser file must have
been generated previously by MakeParser. ParseTLP generates an SDT file representing the
translation program. This file is written to the path specified by the third argument (programSDT).
This program returns 0 if the programSDT file generation is successful

FindTargets <program> <targetlist>
Generate a list of target files that are used as inputs for a transformation language program. The target
file names are listed in the file <program> and are written, one file name per line, to the file
<targetlist>.

ApplyTransformations <functions> <programSDT>
Executes a transformation language program. The inputs are a user defined functions file (functions)
and a program SDT (generated by ParseTLP). The output files are written according to path names
embedded in the program. This program returns 0 if the transformation program executes
successfully.

PrettyPrint <style> <targetSDT> <pretty-print>
Generates a formatted output file from an SDT. The inputs are a pretty-print style file (style) and a
target SDT (targetSDT) generated by ApplyTransformations or ParseTarget. The output is a
formatted text string written to the path specified by the third argument (pretty-print).

The sequence of actions to invoke HATS-SML actions is similar for all HATS-SML actions. The sequence is
depicted below. The host operating system initiates a HATS-SML process on behalf of the HATS-GUI at the
request of the HATS-GUI. The HATS-GUI provides the path names of input and output files (as command line
arguments when the request is passed to the host operating system). The HATS-SML process reads the input
files, processes, then writes the output files (assuming there are no errors). The HATS-SML process terminates,
sending a process return code to the host operating system, which forwards the return code to the HATS-GUI.

Error messages, if they are generated by the HATS-SML process, are written to the standard error stream for the
process.

Read

Host OSHATS-GUI HATS-SML

Start
Start process

Parameters

Files

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
50

Figure 10: HATS-GUI/HATS-SML Message Sequence Chart

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
51

8. Appendix E: SDT Search Criteria

8.1. Overview
The HATS-GUI shall support searching the SDTs for matching sub-trees. This appendix describes searching
SDTs for sub-trees. Search in SDTs is done on tokenized strings. The smallest unit of search is a token (as
opposed to a character in most text editor searches). Tokens are language specific, and thus SDT searches
depend on the lexical specification and grammar of the language of the SDT.

 SDT searching is a function performed by the GUI in which a selected SDT is searched for occurrences of a
specified "pattern". Some facility should be provided for "first match", "next match", and so on. The location in
the SDT where a match occurs should be brought into view and highlighted in the SDT display window. Also,
the corresponding text should be highlighted in the text window that is associated with the SDT display
window.

8.2. Definitions

8.2.1. Well-formed SDT string of a node
Given a node N, the well-formed SDT strings of N are defined recursively by the following.

• The node label of N is a well-formed SDT string of N. (Note that node labels have pointed brackets
around them if the node is non-terminal.)

• The left-to-right ordered concatenation of the labels of all of the children nodes of N is a well-formed
SDT string of N.

• The left-to-right ordered concatenation of the well-formed SDT strings of the children nodes of N is a
well-formed SDT string of N.

8.2.2. ββββ derives αααα
Let β denote a non-terminal in the target grammar. β derives a string α if there is some finite sequence of
transformations that convert β to α.

Assume that a target program contains a non-terminal β and the string α has been derived from β. The SDT for
the transformed target program will contain β. The string α will be a well-formed SDT string of β. We say that
α is derived from β.

8.2.3. Search pattern
 A search pattern is a string w such that w is a sub-string of a string α and α is a string derived from some non-
terminal β in the target grammar.

8.3. Searching
Given a search pattern ω, the GUI should highlight the smallest derivation string α containing ω. That is, find
the smallest string α, and corresponding non-terminal β, such that

1. ω is a sub-string of α, and
2. β derives α.

Note that α is smallest iff there does not exist a β ' and α ' such (1) that α ' is a sub-string of α, (2) ω is a sub-
string of α ', and (3) β ' derives α '.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
52

 Intuitively, what we are looking for is the smallest well-formed SDT that contains ω as leaf elements. Also,
note that ω may contain non-terminal symbols.

8.4. Example
For example, assume we have the following grammar describing simple expressions.

E: <T> * <T> | <T>
T: <F> + <F> | <F>
F: 0 | 1 | … | 9 | (<E>)

Suppose we have the string

(7 * (3 + 6)) * 8

A syntax derivation tree for this expression given this grammar (where all the tokens are single characters) is
given below. The nodes are numbered with a subscript to assist in identification for this example.

E1

T2

F24

E5(4

T10

T23

F3

F11F7

F15 F18

E13

T14

*22

T6

78

825

+17

*9

)21

619316

)20(12

Figure 10: Tree Search Example

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
53

The strings “<E>”, “<T> * <<T>”, and “7 * (<E>)” are all well-formed SDT strings from node 5. Each of
these strings is derived from “<E>”.

Table 8 describes the results for some example searches.

Table 8: Results from Example Tree Searches

Search Expression Search Results
3+6 The sub-tree with root T14.
(<E>) The sub-tree [F3 [(4, E5,)21]] and the sub-tree [F11 [(12, E13,)20]]
3+<F> The sub-tree [T14 [F15 [316], +17, F18]].
+ <T> No match.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
54

9. Appendix F: Text Search Criteria

Text searching applies to both pretty-printed text and text windows associated with an SDT display. The only
difference between the two is the specification of non-terminal symbols appearing in the SDT text windows.

A search string is a sequence of characters which includes the special characters $, *, [,], \, and ^. A sub-string
in text being searched matches a search string if, reading left to right in both strings, there is a character or a set
of characters in the sub-string that matches, in order and without skipping any characters, the characters in the
search string. Table 9 shows the interpretation of the special characters.

Table 9: Special Symbols in Text Search Strings

Symbol Interpretation Example
$ Matches a single character. “abc def geh” matches the search string “abc def g$h”
* Matches a set of characters. “abc def geh” matches the search string “abc*”
^ Start of line. “abc def

geh” matches the search string “^g”
\ Inhibits interpretation of

following character
For example, “\$” matches the “$” character. “abc $def geh”
matches the search string “abc \$def”
Other characters that must be preceded by a “\” are “\”, “*”, “^”,
“[“, and “]”.

[…] Matches one of the characters
contained in the brackets.

“abc” matches the search string “a[kbl]c”

Example: Suppose we have the following text.

"When in the Course of human events, it becomes necessary for one people to
dissolve the political bands which have connected them with another”

Table 10 gives some example search strings and the results, searching from the start of the string.

Table 10: Results from Example Text Searches

Search Expression Search Results
an ev The sub-string “an ev” of “human events”.
ec$me The sub-string “ecome” of “becomes”.
Course of * bands The sub-string “Course of human events, it becomes

necessary for one people to dissolve the political bands”
[hv]en The words “when” and “events” have sub-strings matching this

expression.
^d Only matches the d in “dissolve”.

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
55

10. Appendix G: Example SDT Display

TARGET PROGRAM
5 * 7 * (123 + 3 * (2 + x))

SDT
(Expr(E(E(E(T(T(T(F(integer(5))))(*)(F(integer(7))))(*)(F(integer(123)))))
(+)(T(T(T(T(F(integer(5))))(*)(F(integer(7))))(*)(F(integer(3))))(*)(F(int
eger(2)))))(+)(T(T(T(T(F(integer(5))))(*)(F(integer(7))))(*)(F(integer(3))

))(*)(F(id(ident(x)))))))

PRETTY-PRINTED TEXT

5 * 7 * 123 + 5 * 7 * 3 * 2 + 5 * 7 * 3 * x

Software Requirements Specification

Software Requirements Specification

CS4311 Date:
11/01/2001

Page
56

♦ End of Document

	Introduction
	Purpose and Intended Audience
	Scope of Product
	Definitions
	Acronyms

	Overview
	References

	General Description
	Product Features
	Management Of Applications
	Parsing Of Transformation Language Programs and Target Files
	Execution of Transformation Language Programs
	Examination of SDT and Pretty-Printed Output From Transformations

	Use Cases
	Actors
	Use-case Descriptions
	Use-case 1: Parse
	Use-case 2: Execute Transformation Program
	Use-case 3: Select Application
	Use-case 4: Select File
	Use-case 5: Prepare Application
	Use-case 6: Configure Application
	Use-case 7: Display SDT Transformation Output
	Use-case 8: Display Pretty-Printed Text Transformation Output
	Use-case 9: Generate Pretty-printed Output

	General Constraints
	Assumptions and Dependencies

	Specific Requirements
	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	HATS-SML
	Host OS

	Behavioral Requirements
	Related Real-world Objects
	Application
	Input and Output
	HATS-SML
	Display Windows

	Stimulus/Response
	Menu Items
	File Menu
	Application Menu
	Configure Menu
	Run Menu
	View Menu

	Mouse and Keyboard actions
	HATS-SML Completion

	Related Features
	Prepare Application
	Parse/Execute Transformation
	Display Transformation Output
	Displayed Node and Text Selection
	Display Windows
	Display of SDTs
	Navigation
	Display of Pretty-Printed Text
	Display of Errors
	Display of SDT and Pretty-Printed Text from Common Target file

	Non-behavioral Requirements
	Performance Requirements
	Qualitative Requirements
	Security
	Portability

	Design and Implementation Constraints

	Other Requirements

	Appendix A: HATS-GUI Class Diagram
	Appendix B: HATS-GUI Data Flow Diagram
	Appendix C: HATS-GUI State Transition Diagrams
	Appendix D: HATS-SML Communication Protocol
	Appendix E: SDT Search Criteria
	Overview
	Definitions
	Well-formed SDT string of a node
	? derives ?
	Search pattern

	Searching
	Example

	Appendix F: Text Search Criteria
	Appendix G: Example SDT Display

