SOFTWARE REQUIREMENTS SPECIFICATION FOR THE X-RAY TELESCOPE CONTROL PROCESSOR FOR THE SWIFT GAMMA RAY BURST EXPLORER

Document No. 04121-XCPSRS-01 Rev. 2 Chg. 0 April 23, 2001

SwRI Project No. 10-04121

Prepared for

Penn State University Department of Astronomy and Astrophysics University Park, PA 16802

Prepared by

SOUTHWEST RESEARCH INSTITUTE

Automation and Data Systems Division 6220 Culebra Road, San Antonio, Texas 78228-0510 (210) 684-5111 • FAX (210) 522-5499

SOFTWARE REQUIREMENTS SPECIFICATION FOR THE X-RAY TELESCOPE CONTROL PROCESSOR FOR THE SWIFT GAMMA RAY BURST EXPLORER

Document No. 04121-XCPSRS-01 Rev. 2 Chg. 0 April 23, 2001

SwRI Project No. 10-04121

Prepared by:		Date:
	Robert Klar, SwRI Software Lead	
Prepared by:	David Koller, PSU Software Lead	Date:
Approved by:	Mike McLelland, SwRI Swift Proje	Date:ect Manager
Approved by:	David Burrows, PSU XRT Lead	Date:
Approved by:	SwRI Software Quality Assurance	Date:

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page ii

Software Requirements Specification

REVISION NOTICE

Version Identifier	Date of Issue	Summary of Changes
WIP 11/22/00	11/22/2000	Software Peer Review Version.
Rev. 0 Chg. 0	2/22/2001	Software Requirements Review Version.
WIP 3/1/01	3/1/2001	Changes from SRR held on 2/26.
WIP 3/8/01	3/8/2001	Changes from SRR held on 3/7.
Rev. 1 Chg. 0	3/16/2001	Pre-approval baseline.
Rev. 1 Chg. 1	4/02/2001	Pre-approval baseline.
Rev. 1 Chg. 2	4/12/2001	Initial release.
Rev. 2 Chg. 0	4/22/2001	Deleted Formatter CSC. Removed most values from current value table and deleted associated requirements as per discussion with PSU on 4/20/2001.

This document contains information that is as complete as possible. Where final numerical values or specification references are not available, best estimates are given and noted **TBR** (To Be Reviewed). Items which are not yet defined are noted **TBD** (To Be Determined). The following table summarizes the TBD/TBR items in this revision of the document, and supplements the revision notice above.

Section	Description
2.0	Some referenced document data is incomplete.
3.0	Some abbreviations are TBR.
Table 2	Some information about science data acquisition modes is TBD.
6	Some items in Data Dictionary are TBD/TBR.
Appendix A,	Requirements in these sections are TBD/TBR. PSU input is needed. Verification is
Sections 5.22, 5.23, 5.24, 5.26, 5.27	TBD.

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page iii

TABLE OF CONTENTS

1. Scope	1
1.1 System Overview	1
2. Referenced Documents	7
3. Abbreviations	11
4. Overview	15
4.1 System Context	
4.2 Operational Concepts	16
4.3 Constraints	
4.4 Goals	
4.5 Software Components	
5. Context Diagrams	
5.1 MIL-STD-1553B Driver	
5.2 RS-422 Driver	
5.3 Analog I/O Driver	
5.4 Built-In Tests CSC	
5.5 Bootstrap CSC	
5.6 CCD Interface CSC	
5.7 Command and Control CSC	
5.8 CCD Data Driver	
5.9 Data Compression CSC	
5.10 Error Detection and Correction CSC	
5.11 EEPROM File System CSC	40
5.12 EEPROM Interface Driver	41
5.13 Engineering Ethernet Driver	
5.14 Power Distribution Driver	
5.15 Periodic Processing CSC	
5.16 Real-Time Operating System CSC	
5.17 SCU Interface CSC	
5.18 Sequencer Interface CSC	
5.19 Time Synchronization CSC	45
5.20 Timer/Sequencer Driver	
5.21 Tube Heater Control CSC	
5.22 Baffle Heater Control	47
5.23 Data Collection Control CSC	47
5.24 Event Recognition Processor CSC	
5.25 (Deleted) Formatter CSC	
5.26 Telescope Alignment Monitor CSC	
5.27 Thermo-Electric Cooler CSC	

Southwest Research Institute	0412	21-XCPSRS-01
XRT Control Processor	April 23, 2001	Rev. 2 Chg. 0
Software Requirements Specification		Page iv
6. Data Dictionary		51
APPENDIX A – Detailed Software Requirements		A-1
APPENDIX B – EEPROM Memory Maps		B-1
APPENDIX C – Telecommands		C-1
APPENDIX D – CPU Throughput Calculation		D-1

XRT Control Processor Software Requirements Specification 04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page v

LIST OF FIGURES

Figure 1. XEP Block Diagram	2
Figure 2. CCD Diagram	3
Figure 3. Requirements Flow-Down	6
Figure 4. Flight Software Context Diagram – External Interfaces	15
Figure 5. Flight Software Context Diagram – Hardware Module Interfaces	15
Figure 6. Observing Sequence (Part 1)	17
Figure 7. Observing Sequence (Part 2)	
Figure 8. Observing Sequence (Part 3)	19
Figure 9. XCP Flight Software States	21
Figure 10. Application Software Data Flow Diagram – Command	
Figure 11. Application Software Data Flow Diagram – Telemetry	
Figure 12. Application Software Data Flow Diagram – Task Control	
Figure 13. MIL-STD-1553B Driver Context Diagram	
Figure 14. RS-422 Driver Context Diagram	35
Figure 15. Analog I/O Driver Context Diagram	
Figure 16. Built-In Tests CSC Context Diagram	
Figure 17. Bootstrap CSC Context Diagram	
Figure 18. CCD Interface CSC Context Diagram	
Figure 19. Command and Control CSC Context Diagram	
Figure 20. CCD Data Driver Context Diagram	
Figure 21. Data Compression CSC Context Diagram	
Figure 22. Error Detection and Correction CSC Context Diagram	40
Figure 23. EEPROM File System CSC Context Diagram	41
Figure 24. EEPROM Interface Driver Context Diagram	41
Figure 25. Engineering Ethernet Driver Context Diagram	42
Figure 26. Power Distribution Driver Context Diagram	42
Figure 27. Periodic Processing CSC Context Diagram	
Figure 28. Real-Time Operating System CSC Context Diagram	
Figure 29. SCU Interface CSC Context Diagram	45
Figure 30. Sequencer Interface CSC Context Diagram	45
Figure 31. Time Synchronization CSC Context Diagram	46
Figure 32. Timer/Sequencer Driver Context Diagram	46
Figure 33. Tube Heater Control CSC Context Diagram	47
Figure 34. Baffle Heater Control CSC	47
Figure 35. Data Collection Control CSC Context Diagram	48
Figure 36. Event Recognition Processor CSC Context Diagram	49
Figure 37. (Deleted) Formatter CSC Context Diagram	49

Southwest Research Institute		04121-XCPSRS-01	
XRT Control Processor	April 23, 2001	Rev. 2 Chg. 0	
Software Requirements Specification		Page vi	
Figure 38. Telescope Alignment Monitor CSC Context Diagram		50	

XRT Control Processor Software Requirements Specification 04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page vii

LIST OF TABLES

Table 1. FSW States	
Table 2. Science Data Acquisition Modes	
Table 3. Science Telemetry Rates for Typical 30 Minute Observation	
Table 4. Science Data Rates for Theoretical 24-Hour Observation	
Table 5. Constraints	
Table 6. XCP Software Goals	
Table 7. Data Dictionary	51
Table 8. XCP_EEPROM Memory Map	1
Table 9. SYSTEM_BLOCK Memory Map	1
Table 10. SYSTEM_CONFIG_AREA Memory Map	1
Table 11. SYSTEM_VOLATILE_AREA Memory Map	
Table 12. BIT_DATA Memory Map	2
Table 13. BIT_DRAM Memory Map	
Table 14. Telecommands	1

1.SCOPE

This document defines the software requirements for the Swift X-Ray Telescope (XRT) Control Processor (XCP) Flight Software (FSW). This document is a Level 4 specification as defined in document GSFC-410.4-SPEC-0004, *Swift Missions Requirements Document*.

1.1System Overview

The Swift observatory is the next in a series of National Aeronautics and Space Administration (NASA) mediumclass explorer (MIDEX) satellites and is the first-of-its-kind observatory for multi-wavelength transient astronomy. The goal of the Swift mission is to determine the origin of Gamma-Ray Bursts (GRBs) and to exploit data from these bursts to probe the early universe. Swift instrumentation will exploit newly discovered GRB afterglow characteristics to make a comprehensive study of approximately 1000 bursts over its planned three-year mission. Swift will determine the origin of GRBs, reveal how GRB blast waves interact with surroundings, and identify different classes of bursts and associated physical processes. To accomplish these mission goals, Swift employs three semi-autonomous science instruments. The Burst Alert Telescope (BAT) is a wide-angle x-ray telescope that detects GRBs. On detection, the spacecraft slews in the direction of the GRB, bringing it into the view of two narrow-field telescopes for higher-resolution multi-wavelength observation. The narrow-field telescopes are the X-Ray Telescope (XRT), and the Ultraviolet/Optical Telescope (UVOT).

The XRT is a sensitive, autonomous X-ray Charge-Coupled Device (CCD) imaging spectrometer designed to measure the flux, spectrum, and light curve of GRBs and afterglow over a wide dynamic range covering more than seven orders of magnitude in flux. It will refine the BAT positions (~1-4' uncertainty) to 2.5" within 5 seconds of target acquisition for typical bursts, allowing ground-based optical telescopes to begin immediate spectroscopic observations of the afterglow.

The XRT will reuse some components from the following previous projects: Cosmic Unresolved Background Instrument using CCDs (CUBIC), Imager for Magnetopause-to-Aurora Global Exploration (IMAGE), Joint European X-Ray Telescope (JET-X), and the X-Ray Multi-Mirror (XMM) satellite.

The XRT electronics is split into two parts: the XRT Electronics Package (XEP), and the Camera Head.

1.1.1XRT Electronics Package (XEP)

The XEP is mounted on the Spacecraft (S/C) and is comprised of:

- A VERSAmodule European (VME) enclosure with two separate Faraday shielded compartments for separate digital and analog sections
- A split backplane for separate digital and analog sections
- A low voltage power supply with fixed voltage outputs
- A Lockheed-Martin Federal Systems (LMFS) single board computer using the RAD6000 microprocessor
- The Communication board which has a Dual Redundant MIL-STD-1553 (1553) interface, a Real Time Clock (RTC), a Universal Asynchronous Receiver-Transmitter (UART) to interface to the Telescope Alignment Monitor (TAM), and a CCD data buffer
- A Relay board which has relays to control the heaters, TAM power, camera door High-Output Paraffin (HOP) actuators, and the camera pressure relief valve HOP actuator. The Relay board also has the Digital-to-Analog Converters (DACs) for controlling the CCD voltages.
- The Sequencer board which uses an AD21020 microprocessor to generate the CCD clock waveforms
- The Housekeeping board that reads voltages, temperatures, and pressure.
- The Clock board that drives the CCD's clock and bias voltage inputs.
- The Signal Chain board that processes the CCD's analog video output and converts it to a digital bit stream. The Signal Chain board is dual redundant.
- A Thermo-Electric Cooler (TEC) power supply with a variable voltage output

• The Engineering Units (EU) will also have an Ethernet board for software development, but the Flight Units (FU) will not.

A one-meter maximum length cable electrically connects the XEP and Camera Head. The XRT Interface Control Document (Pennsylvania State University [PSU] document # XRT-PSU-018) describes the interface between these two components.

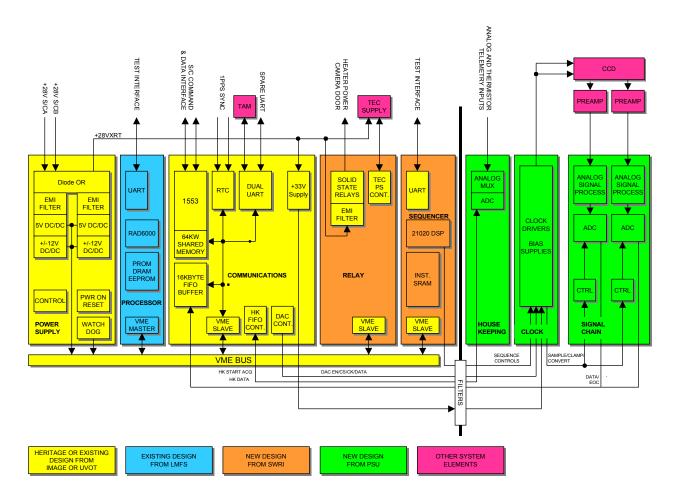


Figure 1. XEP Block Diagram

1.1.2Camera Head

The major component of the XRT's electronics is the CCD camera. The CCD camera collects science data in the form of images, light curves, photon-counts, and spectral data. The CCD camera has three main modes of operation and up to sixty-four modes total.

The Camera Head is mounted on the telescope tube and is comprised of a CCD and two video preamplifiers.

The CCD itself has an image section, a store section, and two readout registers with video outputs. There are four synchronized three-phase clocks that shift the pixel rows in the image and store sections and shift the individual pixels in the two readout registers. The Clock Sequencer in the XEP generates these clocks. Each readout register has five guard pixels at the output side, and the readout register will not be operated in the split mode; therefore, both readout registers will be clocked in the same direction transferring all of the pixels to one, but not both, of the video

Southwest Research Institute	0412	21-XCPSRS-01
XRT Control Processor	April 23, 2001	Rev. 2 Chg. 0
Software Requirements Specification		Page 3

outputs. Since the readout registers are comprised of split-pixels, the readout registers have to be clocked twice (double-clocked) to shift out one pixel. The readout registers will be double-clocked an extra 30 times (overclocks) to produce an output row length of 640 pixels. The clocking of an empty output register produces overclocked pixels that are used to determine system noise information. To transfer an image from the Image Section to the Store Section, the Image Section and Store Section three-phase clocks must be clocked simultaneously 602 times. The Clock Sequencer can be programmed with up to 64 waveform patterns which corresponds to the 64 modes of operation previously mentioned.

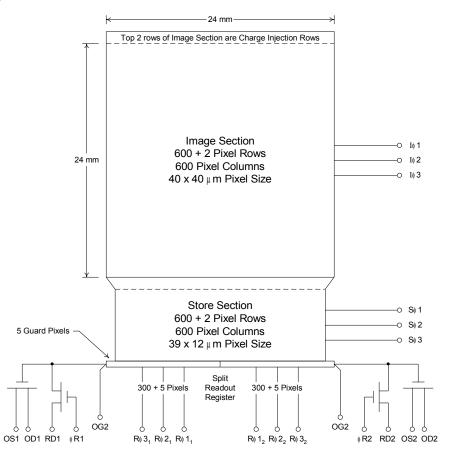


Figure 2. CCD Diagram

1.1.3Thermo-Electric Cooler(TEC)

The CCD is cooled by a TEC. The CCD's temperature is closed-loop controlled by the FSW. Telecommands will control the temperature setpoint, the ramp rate, and the mode — open or closed loop. A digital potentiometer with 100 wiper tap points will control the temperature setpoint. Two digital logic signals will control the wiper position: the up/down input and the clock input.

1.1.4Power

The XRT is powered by the S/C by two 28VDC power buses. They are the Operational Power Bus (OPB) and the Survival Power Bus (SPB). During normal operation, both buses are on. If the XRT fails to communicate to the S/C, the S/C will turn off the XRT's OPB, thereby deactivating the XEP. The hardware-reset function is exercised

by cycling the OPB off then back on. The SPB supplies power to heaters that prevent the XRT from being damaged by low temperatures. The S/C may switch off the SPB, but it will only do this in an emergency condition. The OPB is dual redundant, and the SPB is single string.

1.1.5Communications Network

The XRT communicates to the S/C via a dual redundant MIL-STD-1553B serial interface. Data transmitted to the S/C from the XRT and commands received by the XRT from the S/C are formatted into "packets" within "frames" in accordance with the *Swift 1553 Bus Protocol Interface Control Document* (Spectrum Astro document # 1143-EI-S19121). The BAT, UVOT, XRT, two Star Trackers, and the S/C are all networked together on the 1553 bus.

1.1.6Real Time Clock (RTC)

A local copy of the spacecraft clock is maintained and is used to timestamp the data packets, which are formatted as Consultative Committee for Space Data Systems (CCSDS) Source Packets. To synchronize the clocks in the instruments with the clock in the S/C the S/C provides an At-The-Tone-The-Time-Will-Be message, delivered via the 1553 interface, and an RS422, One-Pulse-Per-Second (1PPS), hardwired signal that is the "Tone."

1.1.7Telescope Alignment Monitor (TAM)

The XRT's tube has uses a device called the Telescope Alignment Monitor (TAM) to measure the change in mechanical alignment of the XRT's tube. The TAM consists of a point source of light that is reflected by mirrors across the length of the telescope tube to a CCD camera. The change in the telescope's alignment is proportional to the change in the position of the point source of light shining on the CCD's pixel array. To obtain a resolution better than the pixel size, a centroid algorithm will be utilized. The TAM receives power from the XEP and delivers image data through an RS-422 serial interface. The TAM power can be turned on or off by a telecommand.

1.1.8Doors and Sun Shutter

The XRT has two doors: a telescope tube door and a camera door. The telescope tube door is controlled by the S/C. The camera door is controlled by circuitry in the XEP. Once opened, the camera door cannot be closed; therefore, it is important that the door is not inadvertently opened.

The Sun Shutter is powered by the SPB and has its own solar panel for backup power. It is automatically opened and closed by a photosensor but can be overridden by a telecommand.

1.1.9Heaters

The telescope tube has 36 heater groups. Each heater group is closed-loop controlled by the FSW with the temperature set point and hysteresis controlled by a telecommand. These controllers are simple on-off type with hysteresis.

The Mirror Baffle has three heater groups: Survival, Control 1, and Control 2. The Survival Heaters are powered and controlled by the Spacecraft Bus. The Control Heaters are closed-loop controlled by the FSW with a temperature set point controlled by a telecommand. The Control Heaters will be driven by solid state relays to allow for the numerous on-off cycles that will be required to regulate the temperature. The XRT Thermal Design Specification (PSU document # XRT-PSU-012) describes the heaters in greater detail.

1.1.10Housekeeping

The XRT monitors several items and reports them as Housekeeping (HK) telemetry. Numbers in parenthesis indicate how many of each housekeeping item are being monitored. The housekeeping items are:

- CCD bias voltages (10)
- CCD clock voltages (16)

- Miscellaneous voltages (7: analog, digital, and clock driver)
- Circuit board temperature sensors (10)
- Mirror temperature sensors (10)
- Telescope tube temperature sensors (20 forward and 20 rear)
- Contamination sensors(4: focal plane, mirror, and one unassigned)
- Mirror baffle temperature sensors (3)
- TEC sensors (4: voltage, current, and temperature)
- Miscellaneous temperature sensors (5: cold finger, CCD, camera, and optical bench interface)
- Miscellaneous sensors (6: camera door position, sun shutter position, camera vacuum pressure, and bellows pressure)

The XRT Data Formats document (PSU document # XRT-PSU-028) describes the HK formats in detail.

XRT Control Processor

Software Requirements Specification

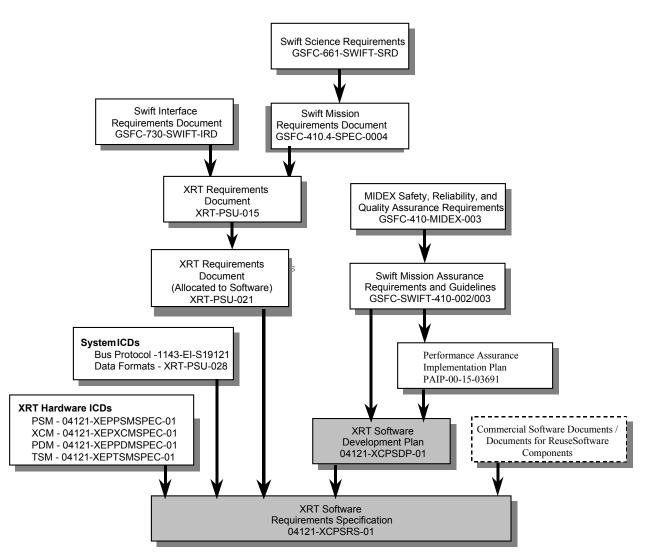


Figure 3. Requirements Flow-Down

2.REFERENCED DOCUMENTS

The following documents, of the exact issue shown, were referenced as indicated during the development of this SRS. The applicability statement associated with each document reference indicates *Superceding* if the referenced document supersedes this document in the event of a conflict.

Document ID: Originator: Issue: Title: Applicability:	04121-XCPSDP-01 Southwest Research Institute, San Antonio TX Rev 2 Chg 0 (December 2000) Software Development Plan for the X-Ray Telescope Control Processor for the Swift Gamma Ray Burst Explorer. Establishes and identifies this document, and describes the requirements analysis process used to produce it.
Document ID: Originator: Issue: Title: Applicability:	 PAIP-00-15-3691 Southwest Research Institute, San Antonio TX Revision 0 Performance Assurance Implementation Plan (PAIP) for SwRI Project 15-03691 and 15-04121 Provides performance assurance guidelines for the SwRI Swift DPU and XRT projects, as derived from the Swift Mission Assurance Requirements and Swift Mission Assurance Guidelines. <i>Superseding</i>.
Document ID: Originator: Issue: Title: Applicability:	10-26977Southwest Research Institute, San Antonio TXJanuary 2000Swift Digital Electronics Module (DEM) Chassis and Data Processing Unit (DPU)Is the proposal to PSU for the UVOT DPU system-level flight software. Some of these components will be reused for XRT.
Document ID: Originator: Issue: Title: Applicability:	10-26977D Southwest Research Institute, San Antonio TX Revision D, August 18, 2000 Swift XRT Chassis, XRT Digital Electronics, and System Software Framework Is the proposal to PSU for the flight software activities addressed by this SDP.
Document ID: Originator: Issue: Title: Applicability:	 1143-EI-S19121 Spectrum Astro, Inc. Rev –, 25 August 2000 Swift 1553 Bus Protocol Interface Control Document. Specifies the instrument-generic interface between the remote terminal (RT) Instruments and the Spacecraft from which software requirements in this document are derived. Superceding.
Document ID: Originator: Issue: Title: Applicability:	04121-XEPPDMSPEC-01 Southwest Research Institute, San Antonio TX December 2000 (Draft 12/20/2000) Swift Specification XRT Electronics Package Power Distribution Module Specifies the interface to the XRT Power Distribution Module from which software requirements in this document were derived.

XRT Control Processor

Software Requirements Specification

Document ID: Originator: Issue: Title: Applicability:	04121-XEPPSMSPEC-01 Southwest Research Institute, San Antonio TX Rev. 0 Chg. 0, March 2001 Swift Specification XRT Electronics Package Power Supply Module Specifies the interface to the XRT Power Supply Module Module from which software requirements in this document were derived.
Document ID: Originator: Issue: Title: Applicability:	04121-XEPTSMSPEC-01 Southwest Research Institute, San Antonio TX Rev. 0 Chg. 0, March 2001 Swift Specification XRT Electronics Package Timing and Sequence Module Specifies the interface to the XRT Timing and Sequence Module from which software requirements in this document were derived.
Document ID: Originator: Issue: Title: Applicability:	04121-XEPXCMSPEC-01 Southwest Research Institute, San Antonio TX Rev. 0 Chg. 0, March 2001 Swift Specification XRT Electronics Package Communications Module Specifies the interface to the XRT Communications Module from which software requirements in this document were derived.
Document ID: Originator: Issue: Title:	7384-BSPS-01 Southwest Research Institute, San Antonio TX Rev 0 Chg 0 (February 1997) Bootstrap Monitor Protocol Specification for the Space Station Furnace Facility Control Units.
Applicability:	Specifies the Bootstrap Monitor interface for the Space Station Furnace Facility (SSFF) control units. The SSFF Bootstrap Monitor was reused on the IMAGE Central Instrument Data Processor (CIDP) with minimal modifications to the user interface. The IMAGE bootstrap will be reused on the XCP with minor adjustments to accommodate hardware address differences. Therefore, the protocol and user interfaces documented in the referenced specification are relevant.
Document ID: Originator: Issue: Title:	 7384-SRS-01 Southwest Research Institute, San Antonio TX Rev 0 Chg 0 (March 1997) Software Requirements Specification for the SSFF Command and Data Handling Subsystem Control Units. The MIL-STD-1553 and Ethernet drivers are reuse code from SSFF. Specifies the requirements for SSFF. A significant amount of the SSFF code will be
Applicability:	reused on the XCP.
Document ID: Originator: Issue: Title: Applicability:	 8089-CIDPSRS-01 Southwest Research Institute, San Antonio TX Rev 0 Chg 1 (March 1999) Software Requirements Specification for the Central Instrument Data Processor for the Imager for Magnetopause-to-Aurora Global Exploration Specifies the requirements for the IMAGE CIDP. A significant amount of the IMAGE CIDP code will be reused on the XCP.

XRT Control Processor

Software Requirements Specification

Document ID: Originator: Issue: Title: Applicability:	9000-0013 NASA Goddard Space Flight Center, Greenbelt MD June 1999 Phase A Study Report in Response to AO-98-OSS-03 Describes the Swift mission science goals, overall observatory design, and outlines the high level component design and integration plans.
Document ID: Originator: Issue: Title: Applicability:	GSFC-410.4-SPEC-0004 Goddard Space Flight Center, Greenbelt MD TBD Swift Mission Requirements Document Defines the mission level requirements for the Swift observatory.
Document ID: Originator: Issue: Title: Applicability:	GSFC-410.4-SPEC-0005 (aka GSFC-661-SWIFT-SRD) Goddard Space Flight Center, Greenbelt MD Version 1.0 (August 21, 2000) Swift Science Requirements Document Defines the Swift mission and specifies high-level requirements for the Swift observatory, and is the Level 1 specification for Swift. <i>Superceding</i> .
Document ID: Originator: Issue: Title: Applicability:	GSFC-730-SWIFT-IRD Goddard Space Flight Center, Greenbelt MD Version 1.2 (April 6, 2000) Swift Interface Requirements Document Defines the high-level interface requirements for the Swift observatory.
Document ID: Originator: Issue: Title: Applicability:	 IBM-POWER-ARCH (for reference in the document only) IBM Advanced Workstations Division, Austin TX Version 1.53 (July 22, 1991) POWER Processor Architecture Contains the procedure for accessing the Rios Single Chip (RSC)-VME processor board Real-Time Clock.
Document ID: Originator: Issue: Title: Applicability:	 IBM-FAULT-MGMT (for reference in the document only) IBM Advanced Workstations Division, Austin, TX Version 1.1 (February 3, 1992) RSC System: Fault Handling and Storage Management Contains a description of RSC processing unit fault handling and storage management facilities, from which software requirements in this document are derived.
Document ID: Originator: Issue: Title: Applicability:	LMFS-EMAIL-112497 (for reference in this document only) Lockheed Martin Federal Systems, Manassas VA November 24, 1997 Email from Lockheed Martin Federal Systems (LMFS) to SwRI - "FYI: RAD6000 Diagnostic Mode" Contains a description of the behavior of the EDAC capability of the RAD6000 DRAM, from which software requirements in this document are derived.
Document ID: Originator: Issue: Title: Applicability:	LMFS-RSC-WB (for reference in this document only) Lockheed Martin Federal Systems, Manassas VA September 10, 1996 RSC VME Engineering Workbook (Breadboard/EM/Flight FPGA-Based Configuration) Contains design details of the RAD6000 CPU Module from which software requirements in this document are derived.

XRT Control Processor

Document ID: Originator: Issue: Title: Applicability:	MIL-STD-1553B Department of Defense, Washington DC September 21, 1978, with Notices 1 & 2 MIL-STD-1553B Describes the MIL-STD-1553B standard referenced by software requirements within this document.
Document ID: Originator: Issue: Title: Applicability:	SED-SSP (for reference in this document only) Southwest Research Institute, San Antonio TX April 2000 Software Engineering Department Standard Software Process Specifies the standard processes and procedures for software development in the Software Engineering Department (SED) at SwRI.
Document ID: Originator: Issue: Title: Applicability:	XRT-PSU-012 Penn State University, State College PA Version 2.0, 23/09/2000 XRT Thermal Design Specification Specifies the thermal design specification for the XRT.
Document ID: Originator: Issue: Title: Applicability:	XRT-PSU-015 Penn State University, State College PA Version 2.4, 11/28/2000 XRT Requirements Document Specifies the science requirements for the XRT, and is the Level 3 specification for the XRT. <i>Superceding</i> .
Document ID: Originator: Issue: Title: Applicability:	XRT-PSU-021 Penn State University, State College PA Version 1.2, 02/10/2001 XRT Software Requirements Document Specifies the software requirements for the XRT.
Document ID: Originator: Issue: Title: Applicability:	XRT-PSU-028 Penn State University, State College PA Version 1.1, 11/21/2000 XRT Data Formats Specifies the data formats for the XRT.
Document ID: Originator: Issue: Title: Applicability:	UTMC-SUMMIT (for reference in this document only) United Technologies Microelectronics Center, Inc., Colorado Springs CO 1994 Summit LX/DX 1553 Product Handbook Describes the MIL-STD-1553B controller interface from which software requirements in this document are derived.

3.ABBREVIATIONS

	Micrometer
μM	
µsec	Microsecond
1553	MIL-STD-1553B Bus
1PPS	One-Pulse-Per-Second
ADC	Analog to Digital Converter
BAT	Burst Alert Telescope
BIT	Built-In Test
bps	Bits/Second
CCD	Charge-Coupled Device
CCSDS	Consultative Committee for Space Data Systems
CIDP	Central Instrument Data Processor (IMAGE)
CONT	Control/Controller
COTS	Commercial Off-The-Shelf
cps	Counts/sec
CPU	Central Processing Unit
CSC	Computer Software Component
CSCI	Computer Software Configuration Item
CTRL	Control/Controller
CUBIC	Cosmic Unresolved Background Instrument using CCDs
DAC	Digital-to-Analog Converter
DC	Direct Current
DC/DC	DC to DC (converter)
DEM	Digital Electronics Module
DMA	Direct Memory Access
DPU	Data Processing Unit
DRAM	Dynamic Random Access Memory
DSP	Digital Signal Processor
EDAC	Error Detection And Correction
EEFS	EEPROM File System
EEPROM	Electrically Erasable Programmable Read-Only Memory
EM	Engineering Model
EMI	Electromagnetic Interference
EU	Engineering Unit
FIFO	First In First Out
FPGA	Field Programmable Gate Array
FSW	Flight Software
FU	Flight Unit
GRB	Gamma Ray Burst
GSE	Ground Support Equipment
GSFC	Goddard Space Flight Center
0010	Goddard Space I light Center

XRT Control Processor

Software Requirements Specification

GSW	Ground Software
НК	Housekeeping
НОР	High-Output Paraffin
I&T	Integration and Test
I/O	Input/Output
IBM	International Business Machines
IMAGE	Imager for Magnetopause-to-Aurora Global Exploration
INST	Instruction
ITOS	Integrated Test and Operations System
JET-X	Joint European X-Ray Telescope
Kb	Kilo-bits
kbps	Kilo-bits/second
Kbyte	1024 bytes
KW	1024 words
LDS	Large Data Structure
LMFS	Lockheed Martin Federal Systems
Mars98	RAD6000 Module produced by LMFS
MB	Mega-bytes
mCrabs	Milli-Crabs
MIDEX	Medium Class Explorer
mm	Milimeter
MS-DOS	Microsoft Disk Operating System
msec	Millisecond
MUX	Multiplexer
N/A	Not Applicable
NASA	National Aeronautics and Space Administration
OFP	Operational Flight Program (Operating System + System Software + Applications)
OPB	Operational Power Bus
PAIP	Performance Assurance Implementation Plan
PDM	Power Distribution Module
PID	Proportional-Integral-Derivitive
PREAMP	Preamplifier
PROM	Programmable Read-Only Memory
PS	Power Supply
PSF	Point Source Frame (TBR)
PSM	Power Supply Module
PSU	Pennsylvania State University
PWR	Power
RBI	RSC Bus Interface
RSC	Rios Single Chip
RT	Remote Terminal (1553 term for a science instrument on the 1553 bus), real-time
RTC	Real Time Clock
S	Second

Southwest Research Institute XRT Control Processor Software Requirements Specification

S/C	Spacecraft
SCU	Spacecraft Control Unit
SDP	Software Development Plan
sec	Second
SED	Software Engineering Department
SMOC	Science Mission Operations Center
SPB	Survival Power Bus
SSFF	Space Station Furnace Facility
SSP	Standard Software Process
SSR	Solid State Recorder
SwRI	Southwest Research Institute
TAM	Telescope Alignment Monitor
TBD	To Be Determined
TBR	To Be Reviewed
TDRSS	Tracking and Data Relay Satellite System
TEC	Thermo-Electric Cooler
TSM	Timer/Sequencer Module
UART	Universal Asynchronous Receiver-Transmitter
UTC	Universal Time Coordinate
UVOT	Ultraviolet/Optical Telescope
V	Volt(s)
VDC	Volts of Direct Current
VME	VERSAmodule European
XCM	XRT Communications Module
ХСР	XRT Control Processor (RAD6000 Module)
XCP-1553	MIL-STD-1553B Bus Driver
XCP-422	RS-422 Driver
XCP-ANIO	Analog I/O Driver
XCP-BHC	Baffle Heater Control CSC
XCP-BIT	Built-In Tests CSC
XCP-CCD	CCD Interface CSC
XCP-CCM	Command and Control CSC
XCP-CDD	CCD Data Driver
XCP-DCC	Data Collection Control CSC
XCP-EDAC	Error Detection And Correction CSC
XCP-EEFS	EEPROM File System CSC
XCP-EEPRM	EEPROM Interface Driver
XCP-ENET	Engineering Ethernet Driver
XCP-ERP	Event Recognition Processor CSC
XCP-PDD	Power Distribution Driver
XCP-PP	Periodic Processing CSC
XCP-RTOS	Real-Time Operating System CSC
XCP-SCUI	Spacecraft Control Unit Interface CSC

XCP-SEQ	Sequencer Interface CSC
XCP-TAM	Telescope Alignment Monitor CSC
XCP-TEC	Thermo-electric Cooler CSC
XCP-THC	Tube Heater Control CSC
XCP-TIS	Time Synchronization CSC
XCP-TSD	Timer/Sequencer Driver
XEP	XRT Electronics Package
XMM	X-Ray Multi-Mirror
XRT	X-Ray Telescope

4.OVERVIEW

This section provides an overview of the FSW including a system context, operational concepts, goals and constraints, and a list of the computer software components (CSCs) which comprise the FSW. Detailed functional, performance, error recovery, and interface requirements for the identified CSCs are provided in Appendix A.

4.1System Context

From a system (observatory) perspective, the FSW interfaces with the Spacecraft Control Unit (SCU) via the MIL-STD-1553B bus and the one pulse per second (1PPS) interface. The interfaces of the FSW in this context are illustrated in the following figure.

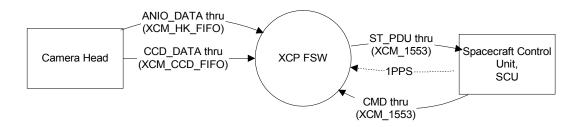


Figure 4. Flight Software Context Diagram – External Interfaces

From a XCP hardware interface perspective, the FSW executes on the XCP, stores and retrieves data from XCP Electrically Erasable Programmable Read Only Memory (EEPROM), and communicates with the Spacecraft using the MIL-STD-1553B Bus. The MIL-STD-1553B and Camera Head Interfaces are contained on the XRT Communications Module (XCM). The interfaces of the FSW in this context are illustrated in the following figure.

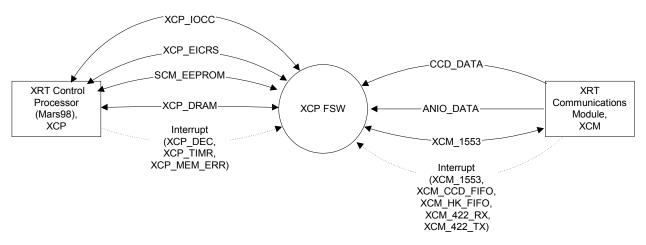


Figure 5. Flight Software Context Diagram – Hardware Module Interfaces

4.20perational Concepts

The following sections describe the operational concepts of the FSW, including its functions, interfaces, performance characteristics, error detection, reporting and recovery mechanisms, and ground systems concepts.

4.2.1Functions

The FSW has the following primary functions:

- Process science data from the camera and relay it to the Spacecraft Control Unit (SCU) in the form of CCSDS Source Packets.
- Receive commands from the SCU that establish the current instrument state and camera mode.
- Transmit detailed housekeeping data to the SCU in the form of CCSDS Source Packets.
- Receive a time message from the SCU and synchronize the XCP local copy of the spacecraft clock.
- Control the heaters on the telescope tube and on the thermal baffles.
- Read the TAM.

4.2.2Observation Sequence

The XRT supports three different, but very similar, observation sequences. The three observation types are:

- Automatic
- Preplanned
- Target of Opportunity

Figure 6 and Figure 7 show a detailed flowchart for the observation types. The sequence shown in the figures assumes the software is in automatic mode and not presently engaged in performing an observation. The sequence starts when a SISCATTITUDE message is received with the IS_SETTLED indication set to *false*. The message also indicates IS_IN_10_ARCMIN, which is *true* when the S/C is within ten arc minutes of the target position. When the distance remaining to slew is greater than ten arc minutes, the S/C begins the first of up to three activities that precede an observation. Each activity is initiated when the distance remaining is greater than ten arc minutes and the previous activity is complete. The pre-observation activities are:

- Calculate row bias map
- Calculate image bias map
- Collect raw data image

Swift XRT Observing Sequence Flow Diagram

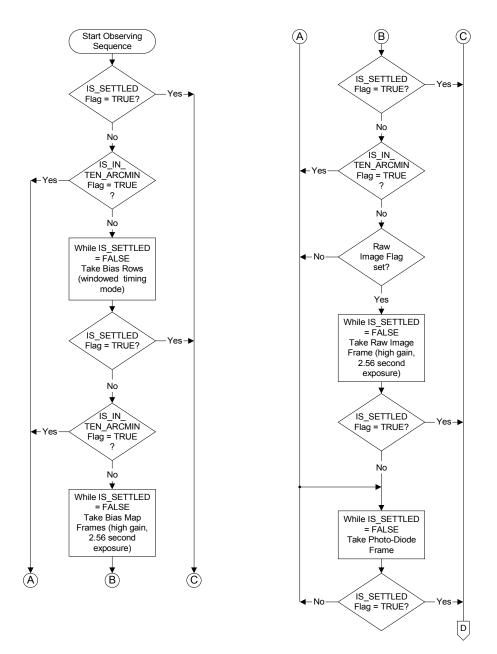


Figure 6. Observing Sequence (Part 1)

XRT Control Processor

Software Requirements Specification

Ď IS_AT_TARGET is a sub-field flag of the FO_NEXTOBS_INFO message from the FoM. IS_AT_TARGET No "IS_AT_TARGET = Yes" means that this is the first observance of an Automated Target (AT). Yes T=0 ¥ Take Image Frame (low gain, 0.1 second exposure) While IS_SETTLED = TRUE Begin Photo-Diode Take Image Frame Mode (low gain, 2.56 second exposure) T=2.66s IS_SETTLED Flag = TRUE? End Observation No Yes Accumulate images in memory and filter Detectable Accumulation No Source? Time > 30s out cosmic rays Yes (> 20 mCrabs) Yes While IS SETTLED = TRUE Centroid on Source and Determine Intensity T=5s IS_SETTLED End Flag = TRUE? Observation Yes Send XRT Send XRT Standard Send XRT Centroiding Error Centroiding Error Deviation of PSF Position Message No (source confusion) to TDRSS & UVOT (no source found) Okay? to TDRSS & UVOT to TDRSS & UVOT Ē

Figure 7. Observing Sequence (Part 2)

XRT Control Processor

Software Requirements Specification

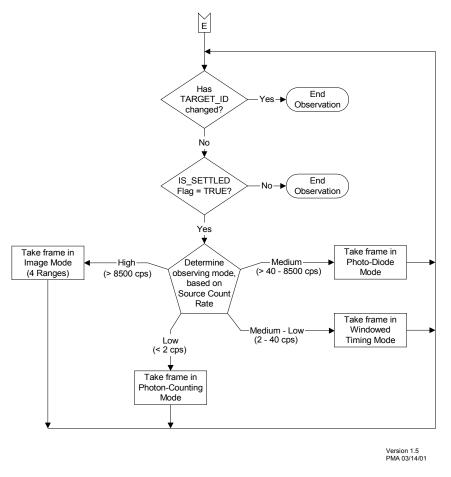
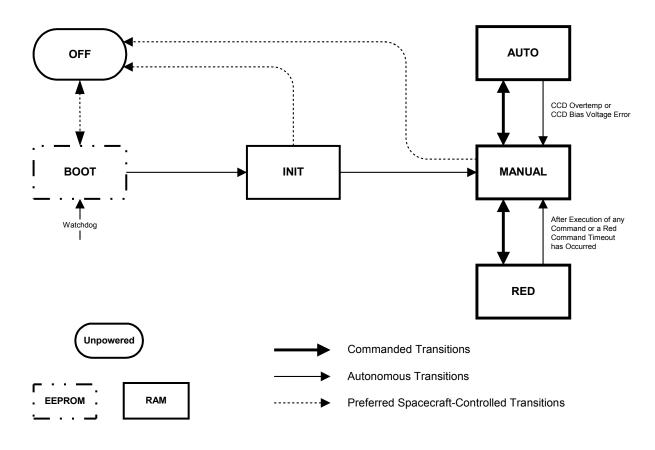


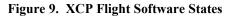
Figure 8. Observing Sequence (Part 3)

The row bias map is maintained by the system so that it does not have to be recalculated prior to each observation; however, recalculation is preferred to provide the best results. One frame is acquired for the row bias map. Once the frame has been acquired, the software recalculates and stores the updated row bias map. Next, the software recalculates the image bias map, if more than ten arc minutes remain to the target location. The software accumulates 3-6 frames for the recalculation of the row bias map. Otherwise, the existing image bias map is reused. Finally, if the acquire raw data image flag is true and the distance to the target location is more than ten arc minutes, then the software acquires a single raw data image which is saved for later download to the ground.

At this point, the S/C has come to within ten arc minutes of the target or the observation preliminary activities are complete, and the software switches to the fast timing mode. When the SISCATTITUDE message indicates that the S/C is settled, the software starts the main portion of the observation sequence.

The software now acquires a frame of data and begins counting the pixels above a detection threshold. To be considered of interest, this count of pixels must exceed a programmable threshold. If the count does not exceed the threshold, then another image is acquired and summed with the first image. This new image is subjected to the pixel count. This process continues until the count threshold is met or the timeout period is exceeded. If the timeout is exceeded, an "XRT Centroid Error" message is transmitted to UVOT and to the ground (via TDRSS). Otherwise,


when the source is detected, the software performs a centroid calculation on the image. If the centroid calculation fails, an "XRT Centroid Error" message is sent; otherwise, an "XRT Position" message is sent.


Next, the software enters the fast timing mode. In this mode, the CCD reports a single value representing the entire image. The CCD reports one pixel every 16 µsec, or approximately 60,000 pixels/sec. The software remains in this mode while the lit pixel rate exceeds 40 cps. Once the count falls below 40 cps, the software switches to normal timing mode. In this mode, the CCD reports one row every 5 msec. Each row report sums up the CCD columns. This method is used until the rate drops below 2 cps. At this point, the software switches to photon counting mode. In this mode, the entire image is collected and scanned for lit pixels. The update rate is approximately once every 2.5 sec. The observation sequence ends when the target is occulted and the S/C slews to a new target.

Preplanned observations differ from automatic ones in that the "XRT Position" message is not used. Processing is otherwise similar. The target of opportunity observations are treated like preplanned observations from an operational point of view of the software.

The FSW has the following states: Off, Boot, Init, Manual, Red, and Auto. The following diagram illustrates these states and their transitions.

SWIFT XRT STATE TRANSITIONS

Note, the state diagram indicates that the S/C can only switch off the XRT's power when the XRT is in the Boot, Init, or Manual state. This is the preferred mode of operation and can only be accomplished if the S/C first sends a "Safehold Notification" message to the XRT. In a time critical emergency condition the S/C will turn off the power to the XRT regardless of what state it is in.

Southwest Research Institute XRT Control Processor Software Requirements Specification

The following table describes the XCP states and, for each mode, indicates whether the FSW is commandable, whether the FSW produces any telemetry, and whether or not detector events are processed.

Table 1. FSW States							
State	Entered On	Description	Command	Telemetry	CCD Data		
OFF	Power Off	Unpowered electronics	No	No	None		
BOOT	Power Up, or Watchdog Reset	Bootstrap software executes, performs Built-In Test (BIT) Stage 1, and then starts the flight program	No	No	None		
INIT	Automatically from BOOT	Check CCD voltages, perform Built-In Test Stage 2, transition to MANUAL or IDLE	No	Startup Packet	None		
AUTO	Commanded from IDLE, or MANUAL	Automatically calculate a bias map and a mean-row map each time the state is entered, follow observation sequence	Yes	Yes	Processed		
MANUAL	Automatically from INIT if CCD voltages are not correct Automatically from RED after execution of a command, Commanded	CCD is unpowered if state was entered from INIT. CCD is powered if state was entered from IDLE, AUTO, or RED. Commands must be sent to put XRT into different observation modes and produce telemetry.	Yes	Yes	May be processed		
RED	from IDLE, AUTO, or RED Commanded from MANUAL	Returns to MANUAL mode after execution of RED command. If a command is received in this state that is not a RED command, the command will be rejected	Yes	HK only	Discarded		

XCP has multiple modes. These modes are detailed in Table 2.

XRT Control Processor

Software Requirements Specification

T	able 2. Science Data Ac	quisition Modes	
Mode and Description	Entered On	Setup	Activities and Data Products
Bias Image Calculation			
The purpose of the Bias Calculation is to establish a map which contains a bias for every CCD pixel will be subtracted from every image.			
Perform bias calculation on command– collect a N "dark" frames (5-10 frames), samples what CCDs look like with "no events" to establish bias map – contains a bias for every pixel. This will get subtracted from every frame created. Looking for the number of times you see an event with a given amplitude. Get a graph and analyze it in software. Algorithm is smart enough to ignore the x-rays, so don't care if door is open or closed. Will have at least three bias algorithms on ground – select which algorithm on ground command. Send full frame to ground also so can check the bias.			
Bias Row Calculation			
The purpose of the Bias Row Calculation is to establish a map which contains a bias for every CCD column which will be subtracted from every row in Normal Timing Mode.			
Perform bias calculation on command– collect a N "dark" rows (5-10 rows), samples what CCDs look like with "no events" to establish bias row – contains a bias for every column. This will get subtracted from every row created in Normal Timing Mode. Looking for the number of times you see an event with a given amplitude. Get a graph and analyze it in software. Algorithm is smart enough to ignore the x-rays, so don't care if door is open or closed. Will have			
door is open or closed. Will have at least three bias algorithms on ground – select which algorithm on ground command. Send full row to ground also so can check the bias.			

XRT Control Processor

Software Requirements Specification

Table 2. Science Data Acquisition Modes							
Mode and Description	Entered On	Setup	Activities and Data Products				
Image The purpose of Image Mode is to centroid on the source, and to create an image until the count rate drops below 8500 counts per second. Provides photometry and position for <26x Crabs.	On receipt of slew settle, or Observation of target with count rate greater than 8500 cps, or Ground command	Read out prior mode data Select and download sequencer program Verify DAC setup	Acquire single frame, locate source, centroid, produce XRT Position Message to UVOT and TDRSS (new burst) Create Postage Stamp Report and transmit via TDRSS within 1200 seconds of burst alert Collect and transmit Postage Stamp Image Report to spacecraft				
Photo-Diode Mode (Fast Timing) The purpose of Photo-Diode Mode is to measure the rate of burst decay at a much higher rate (0.5 msec) by collapsing the entire CCD into a single pixel. Provides lightcurve and intensity spectrum for source fluxes between 40 mCrabs and 8.5 Crabs.	On receipt of Slew Start, or Observation of target with count rate between 40 and 8500 cps, or Ground Command	Read out prior mode data Select and download sequencer program Verify DAC setup	Acquire and accumulate timing mode pixels. Produce Fast Timing Frame Report and transmi to spacecraft.				
Windowed Timing (Slow Timing) The purpose of Windowed Timing Mode is to measure the rate of burst decay at a much higher rate (5 msec) by collapsing the entire CCD into a single row. Provides lightcurve and intensity spectrum for source fluxes between 2 and 40 mCrabs.	Observation of target with count rate between 2 and 40 cps, or Ground Command	Read out prior mode data Select and download sequencer program Verify DAC setup	Histogram timing mode pixels for TBD seconds, produce Spectrum Report and transmit to TDRSS within 1200 second of new burst. Acquire and accumulate timing mode pixels. Produce Normal Timing Frame Report and transmit to spacecraft.				
Photon Counting The purpose of Photon Counting Mode is to provide energy and position of individual photons. Each event represents nine pixels.	Observation of target with count rate less than 2 cps, or Ground command	Read out prior mode data Select and download sequencer program Verify DAC setup	Execute event recognition algorithm on successive five-row event sets. Produce Event List Report and transmit to spacecraft.				
Null The purpose of Null Mode is to clock the CCD with a selected sequencer program without producing an output. This mode can be used to continuously clock the CCD to sweep out charge when data is not being collected.	Clocking of CCD during TEC cool-down, Observation of target when in the SAA, or Ground command	Read out prior mode data Select and download sequencer program Verify DAC setup	No report.				
Raw Data The purpose of the Raw Data Mode is to provide a complete unprocessed CCD image for diagnostic purposes.	Ground Command	Read out prior mode data Select and download sequencer program Verify DAC setup	Should include a paramete to send every Nth frame. Produce Raw Frame Report and transmit to spacecraft.				

XRT Control Processor

Table 2. Science Data Acquisition Modes							
Mode and Description	Entered On	Setup	Activities and Data Products				
Ramp DACs	RED Ground Command		No report.				
The purpose of the Ramp DACs Mode is to continuously ramp the CCD bias voltages through all possible values.			Used only during Integration and Test to verify CCD bias voltage circuitry before installing CCD. Real-time telemetry (strip chart mode) is used to check this data.				

4.2.3Interfaces and Performance

Estimates of the maximum amount of memory required to buffer an observation were computed according to the following analyses.

Table 3 shows the science telemetry data rates expected for a burst whose x-ray emission has dropped below about 3 Crabs within 30 seconds. Since in this case it is assumed that it takes the S/C 50 seconds to slew to the source, the flux is already at or below 4000 cps by the time the S/C has slewed to the target and generated an XRT Position and an XRT image report. At this flux, the XRT is generating science telemetry at a rate of just over 100kbps, but only for about 50 seconds. Within 30 minutes, the maximum length of an observation before the target is occulted, the data rate has dropped to less than 700bps. During such an observation the XRT would generate about 2.7MB of data, for an average rate of about 12kbps.

Time Since Burst (sec)		ce Burst (sec) Time Since Slew Settle (sec) *		tle Duration	Flux (cps)	Report	Bytes per Report	Number of Reports	Total Bytes	Bits per Second
Start	Stop	Start	Stop							
50	55	0	5	5	N/A	XRT Position	960	1	960	1536
55	56	5	6	1	N/A	XRT Image	5760	1	5760	46080
56	100	6	50	44	3000	Fast Timing	1050	528	554400	100800
100	300	50	250	200	1000	Fast Timing	1050	800	840000	33600
300	1000	250	950	700	300	Fast Timing	1050	840	882000	10080
1000	1150	950	1100	150	100	Fast Timing	1050	60	63000	3360
1050	1150	1000	1100	100	N/A	XRT Spectrum	2880	1	2880	230.4
1150	1850	1100	1800	700	100	Fast Timing	1050	280	294000	3360
		0	1800	1800	N/A	30 min Automated Observation			2643000	11747

Table 4 shows the expected data that would be generated by the XRT if it could observe the burst described above for 24 continuous hours. Of course, the XRT cannot observe the burst for more than 30 minutes per orbit. However,

whatever time it was not observing the burst, it would be observing the afterglows of bursts a day or more old, at expected data rates of less than 700bps, or about the minimum data rate of the continuous observation of the new burst. Hence, the data rate of the continuous, 24-hour observation of a new burst represents the maximum data rate expected for the XRT. Under this scenario, the XRT would generate about 10MB of data per day, for an average rate of about 1kbps, which is well within the 3.9kbps average rate allocated to the XRT for science telemetry. Hence, under these conditions, if the amount of memory allocated for observation buffers exceeds 10MB, the XRT should easily be able to meet its allocated science telemetry rate.

Time Since I	Burst (sec)	Time Since (sec		Duration	Flux (cps)	Report	Bytes per Report	Number of Reports	Total Bytes	Bits pe Second
Start	Stop	Start	Stop							
50	55	0	5	5	N/A	XRT Position	960	1	960	1536
55	56	5	6	1	N/A	XRT Image	5760	1	5760	4608
56	100	6	50	44	3000	Fast Timing	1050	528	554400	1008
100	300	50	250	200	1000	Fast Timing	1050	800	840000	3360
300	1000	250	950	700	300	Fast Timing	1050	840	882000	1008
1000	1150	950	1100	150	100	Fast Timing	1050	60	63000	336
1050	1150	1000	1100	100	N/A	XRT Spectrum	2880	1	2880	230.
1150	3000	1100	2950	1850	100	Fast Timing	1050	740	777000	336
3000	10000	2950	9950	7000	30	Slow Timing	360	2800	1008000	115
10000	30000	9950	29950	20000	10	Slow Timing	160	8000	1280000	51
30000	86450	29950	86400	56450	3	Photon Counting	210	22580	4741800	67
		0	86400	86400	N/A	24 Hour Automated Observation			10155800	940.

Estimates for Central Processing Unit (CPU) margin are computed in Appendix D.

4.2.4Error Detection, Reporting and Recovery

The following sections summarize the error handling, reporting and recovery mechanisms of the XCP.

4.2.4.1Software Configuration Integrity

The XCP maintains primary and alternate FSW configurations in EEPROM. The primary FSW configuration in EEPROM is software locked to be read-only. The primary FSW provides MIL-STD-1553B communications with the SCU provided there are no failures. The XCP bootstrap software autonomously switches to the alternate FSW configuration in the event the primary configuration fails to boot.

Problems with the FSW that are identified on-orbit can be corrected by patch or by a complete software reload. The FSW contains an EEPROM-resident file system on which an object file containing a software patch can be loaded. This object file can then be dynamically loaded and linked into the active FSW. Alternatively, a complete software

build can be loaded to the alternate FSW location in EEPROM and the XCP commanded to boot the alternate configuration rather than the primary.

4.2.4.2Memory Error Detection and Correction

The processor board includes the EEPROM that holds the FSW, including the bootstrap and EEPROM File System (EEFS), and the Dynamic Random Access Memory (DRAM) that is used for program and data memory. The EEPROM includes a section that contains the bootstrap. This section of the EEPROM is software write locked prior to flight and includes a checksum that is compared against the stored data as part of the Built-In Tests (BIT) that are executed on system startup. The DRAM includes Error Detecting and Correcting (EDAC) memory. This facility stores redundant information in parallel with each memory word. Whenever a memory word is read, the EDAC is checked. The EDAC can detect and correct single bit errors. The EDAC can detect double bit errors. Both events cause an interrupt, and the software logs information about the error including the affected address and incrementing the EDAC error count. Multiple bit errors (two or more) cause the software to reset the processor by discontinuing strobing of the watchdog timer, which causes the watchdog timer to reset the board when it times out.

A low priority software task called the Memory Scrubber runs when no other tasks are executing. This task steps through DRAM and reads each location. When a word is read that contains a single-bit error, this routine rewrites it to correct the problem, and the problem is logged to EEPROM through the interrupt mechanism. The scrubbing process seeks to repair single bit errors before they become uncorrectable multiple bit errors. Multiple bit errors uncovered by the scrubber result in a reset, even if the memory was not currently in use for processing by the FSW.

4.2.4.3Error Reporting

Errors are reported in XCP housekeeping telemetry. If an unrecoverable error occurs (such as an uncorrectable memory error), the XCP will reboot via watchdog timer. Detectable exceptions that cause a watchdog reboot are recorded to EEPROM.

4.2.4.4Keep Alive Messaging

A heartbeat message from XRT to the SCU serves to indicate "aliveness" of the XRT Instrument to the Spacecraft.

4.2.5Ground Systems

Ground systems are required for the following purposes:

- Low-level driver integration and testing,
- XCP process integration and verification testing,
- Control and monitoring of XRT on orbit, and
- Operational display of downlinked data.

Low-level driver integration and testing is accomplished using a XCP-resident test application which exercises the hardware interfaces via actual flight software drivers. A Ground Support Equipment (GSE)-resident application communicates with the XCP-resident test application over an RS-232 port which is unused on flight. The GSE-resident application commands the XCP-resident application to output or receive data on a particular hardware interface. The GSE has a direct connection to each hardware interface, and stimulates or measures the interface in accordance with the command sent to the XCP. Because the RS-232 port is not used on flight, each interface can be tested without interfering with the command-and-response communication between the XCP and GSE resident applications.

Simulators are used to facilitate integration and verification of the FSW. To contain costs and smooth integration, the external interfaces to the simulators used for integration testing and verification of the FSW are the same as the ground system interfaces in the Science Mission Operations Center (SMOC). This approach allows, at the

conceptual level, software and displays built for the display of data during simulated tests, to be reused for the operational display of downlinked data without modification.

4.3Constraints

Certain constraints are imposed upon the specification and design of the FSW and are derived from upper-level specifications and known system design constraints. These constraints are listed in Table 5, along with the implications of the constraint.

	Table 5. Constraints					
#	Constraint	Implication(s)	Source			
C1	The TDRSS downlink bandwidth is limited to 1 kbps for the S/C.	This limits the rate at which housekeeping will be produced.	Document GSFC-410.4- SPEC-0004, Table EB-1.			
C2	Malindi ground contacts are limited to about 7 ground contacts per day (or less) of 7-10 minutes each. This is based on a 96-minute orbital period.	The design of the FSW must avoid any time- consuming setup or configuration as part of its nominal operation. This may also have implications for the way in which large software loads are structured.	Document 9000-0013, Section 3.6.6.2.			
C3	The interface with the S/C provides that real-time HK packets be limited to 230 bytes or less. Instrument HK is placed into the last 230 bytes of the regular S/C RT HK frame.	The FSW design must structure its HK packets such that the 230-byte constraint is not violated. In addition, the HK rate should be optimized to help ensure that a HK packet can reasonably appear in the S/C frame at an acceptable rate. It is not clear whether this also has implication to memory dumps. The FSW may have to provide for small dump packets if going down the RT link, and larger ones if going to the Solid State Recorder (SSR).	Document 1143-EI- S19121, section 4.8.3.			
C4	The S/C does not reassemble segmented ackets and the Integrated Test and Operations System (ITOS) ground system Rackley on 08/30/00, ITOS will be upgraded to Meeting with Mike Rackley on 08/30/00, ITOS will be upgraded to Meeting with I		Document 1143-EI- S19121, section 4.8. Meeting with Mike Rackley of GSFC on 08/30/00.			
C5	The ITOS ground system will not be capable of decompressing packets.	The FSW cannot compress any packet that must be recognized and processed by ITOS.	Meeting with Mike Rackley of GSFC on 08/30/00.			

4.4Goals

Table 6 presents goals that serve to guide the specification, design, and development of the software. These goals should contribute to the simplicity (S), reliability (Rl), maintainability (M), reusability (Ru), and testability (T) of the system.

	Table 6. XCP Software Goals					
	Goal	S	RI	М	Ru	т
G1	G1 Maintain simple, consistent data flow interfaces between the FSW and its external interfaces.					х
G2	Produce a design that requires as little a priori knowledge of the internal operations of the SCU as possible.	Х		х		х

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 29

Software Requirements	Specification
-----------------------	---------------

	Table 6. XCP Software Goals					
	Goal	S	RI	м	Ru	т
G3 Produce modular, project-generic designs and code to maximize reusability on other system components and on future projects. This should be done in such a way as to minimize modifications required as a result of project or component-specific design, coding, comments, or naming conventions.				Х	X	
G4	Produce a design which provides for upgrade and maintenance			Х		
G5	Produce a flexible design that includes the mechanisms needed to support ground Integration and Test (I&T) and provide for off-nominal configurations in flight.		x			х
G6	G6 Produce a design that benefits from the reuse of software components from the SSFF, IMAGE, and CUBIC projects.				X	
G7	Produce error-free code.		Х			
G8	Minimize the amount of re-work necessary at each level of integration.		Х		Х	Х
G9	Produce a design that is reasonably fault-tolerant.		Х			

4.5Software Components

The Software Development Plan for the XCP lists and identifies the computer software configuration items (CSCIs) for the FSW and ground software. The following sections describe these CSCIs and their components. The following figures illustrate the overall data flows among the application-level CSCs.

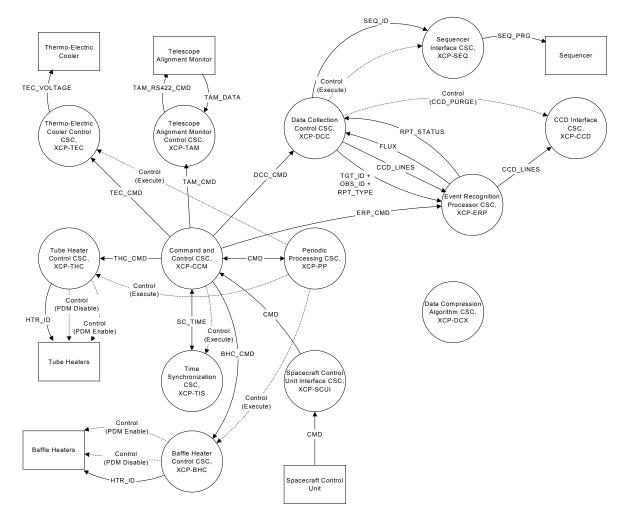


Figure 10. Application Software Data Flow Diagram – Command

XRT Control Processor

Software Requirements Specification

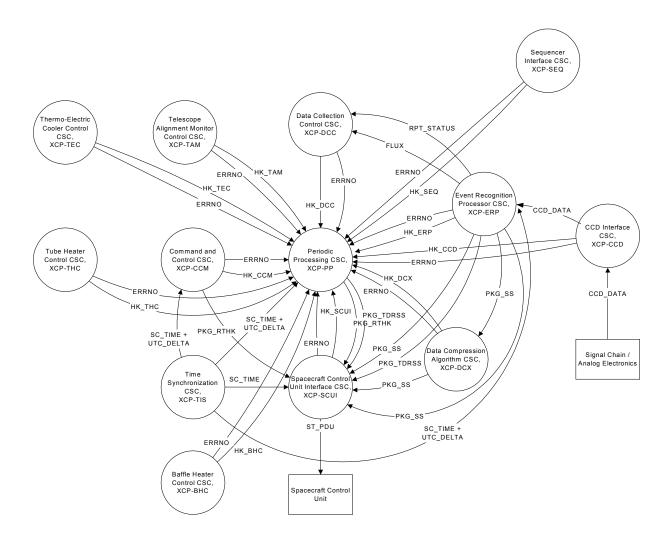


Figure 11. Application Software Data Flow Diagram – Telemetry

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 32

Software Requirements Specification

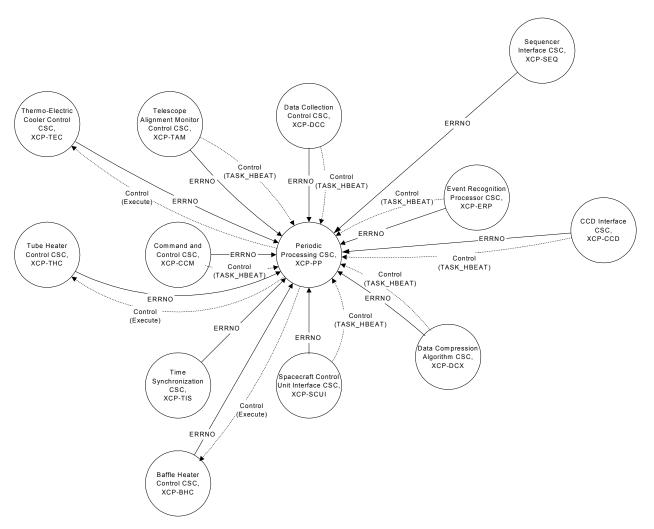


Figure 12. Application Software Data Flow Diagram – Task Control

4.5.1System and Framework Flight Software

This section lists and describes the computer software components (CSCs) of the System and Application Framework Flight Software. This software will be developed at SwRI.

The <u>MIL-STD-1553B Driver</u>, identified XCP-1553, provides an application interface to the MIL-STD-1553B data bus hardware on the XCM.

The RS-422 Driver, identified XCP-422, provides an application interface to the RS-422 interface on the XCM.

The <u>Analog I/O Driver</u>, identified XCP-ANIO, provides an application interface to the Analog/Digital Converter, and Digital/Analog Converters on the XCM.

The <u>Built-In Tests CSC</u>, identified XCP-BIT, provides a set of functions to perform and record the results of memory and hardware interface Built-In Tests (BIT).

The <u>Bootstrap CSC</u>, identified XCP-BOOT, is a EEPROM-resident program which performs a basic hardware BIT, loads the flight program from EEPROM, and provides a simple RS-232-based monitor useful during development for examining memory and for downloading programs.

The <u>CCD Interface CSC</u>, identified XCP-CCD, creates a ring buffer in XCP local memory and block transfers CCD row data from the XCM using XCP-CDD.

The <u>Command and Control CSC</u>, identified XCP-CCM, is an application program that establishes and maintains the current system state, receives and dispatches commands.

The <u>CCD Data Driver</u>, identified XCP-CDD, provides an application interface to read CCD rows from the CCD hardware interface.

The <u>Data Compression CSC</u>, identified XCP-DCX, is an application program that compresses the data products produced by the by the Event Recognition Processor CSC.

The <u>Error Detection and Correction CSC</u>, identified XCP-EDAC, provides a set of functions to facilitate the tracking, handling, and recording of memory errors.

The <u>EEPROM File System CSC</u>, identified XCP-EEFS, provides a file system, which is media-compatible with Microsoft Disk Operating System (MS-DOS). The file system facilitates dynamic loading of application programs using the VxWorks loader.

The <u>EEPROM Interface Driver</u>, identified XCP-EEPRM, provides an application interface to the EEPROM on the XCP.

The <u>Engineering Ethernet Driver</u>, identified XCP-ENET, provides a network driver that can be used to support networking on the EU.

The <u>Power Distribution Driver</u>, identified XCP-PDD, provides an application interface to relays on the Power Distribution Module (PDM).

The <u>Periodic Processing CSC</u>, identified XCP-PP, is an application program that collects housekeeping telemetry, monitors the running tasks, and is responsible for overall error handling.

The <u>Real-Time Operating System CSC</u>, identified XCP-RTOS, provides a real-time, multi-tasking environment. The XCP-RTOS is a Commercial Off-The-Shelf (COTS) product, identified as VxWorks 5.3, kernel version WIND 2.4, from Wind River Systems. The basic operating system is supplemented with a library of system utilities for memory management, and accessing the VME bus.

The <u>SCU Interface CSC</u>, identified XCP-SCUI, is an application program that manages communications with the SCU over the 1553 interface at the application data protocol level.

The <u>Sequencer CSC</u>, identified XCP-SEQ, provides an application interface that is capable of loading a sequencer program from the EEPROM File System and starting it on the TSM.

The <u>Time Synchronization CSC</u>, identified as XCP-TIS, provides an application interface to access the XCM clock, compute Universal Time Coordinate (UTC) time, and perform clock synchronization with the Spacecraft.

The <u>Timer/Sequencer Driver</u>, identified XCP-TSD, provides an application interface to the Timer/Sequencer Module (TSM).

The <u>Tube Heater Control CSC</u>, identified XCP-THC, is an application program that controls the operation of the telescope heaters.

4.5.2Science Flight Software

This section lists and describes the computer software components (CSCs) of the Science Flight Software. This software will be developed at PSU.

The <u>Baffle Heater Control CSC</u>, identified XCP-BHC, is an application program that controls the operation of the baffle heaters using a proportional-integral-derivative (PID) control algorithm.

The <u>Data Collection Control CSC</u>, identified XCP-DCC, receives data collection commands, programs the sequencer through XCP-SEQ, and sets up CCD clocks and bias voltages through XCP-PDD and XCP-ANIO. In AUTO mode, XCP-DCC selects the camera mode based on counts-per-second.

The <u>Event Recognition Processor CSC</u>, identified XCP-ERP, receives raw CCD data from XCP-CCD, generates output Reports, and outputs them to XCP-DCX for compression and transmission to the Spacecraft. It also contains the Event Recognition Algorithm, the Centroid Algorithm, the bad pixel/row/column routines, bias algorithms, baseline correction, and mean row correction.

The <u>Telescope Alignment Monitor CSC</u>, identified XCP-TAM, reads an image from the TAM CCD, processes the image through a centroid algorithm, and computes a position correction for XCP-ERP.

The <u>Thermo-electric Cooler CSC</u>, identified XCP-TEC, is an application program that controls the operation of the thermo-electric cooler using a PID control algorithm.

5.CONTEXT DIAGRAMS

The following sections provide a context diagram for each CSC. The detailed requirements for each CSC are enumerated in an electronic spreadsheet to facilitate requirements traceability and verification tracking. A copy of this spreadsheet is contained in Appendix A. The electronic spreadsheet is configuration-controlled, and the copy attached to this document contains the version of the requirements applicable to the indicated revision of this document.

5.1MIL-STD-1553B Driver

A context diagram for the MIL-STD-1553B (1553) Driver is shown in the following figure.

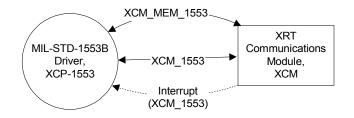


Figure 13. MIL-STD-1553B Driver Context Diagram

5.2RS-422 Driver

A context diagram for the RS-422 Driver is shown in the following figure.

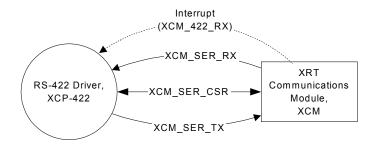


Figure 14. RS-422 Driver Context Diagram

5.3Analog I/O Driver

A context diagram for the Analog I/O Driver is shown in the following figure.

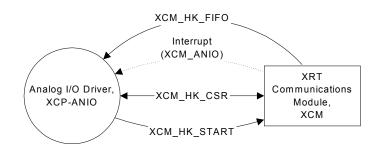
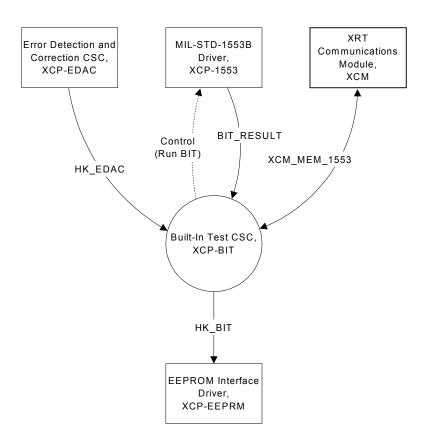



Figure 15. Analog I/O Driver Context Diagram

5.4Built-In Tests CSC

A context diagram for the Built-In Tests (BIT) CSC is shown in the following figure.

Figure 16. Built-In Tests CSC Context Diagram

5.5Bootstrap CSC

A context diagram for the Bootstrap CSC is shown in the following figure.

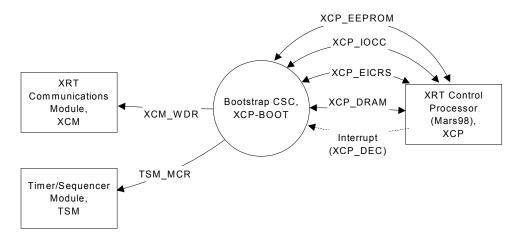


Figure 17. Bootstrap CSC Context Diagram

5.6CCD Interface CSC

A context diagram for the CCD Interface CSC is shown in the following figure.

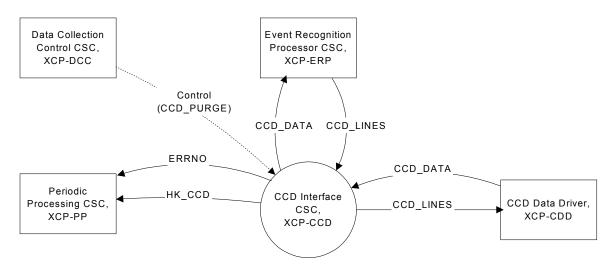


Figure 18. CCD Interface CSC Context Diagram

5.7Command and Control CSC

A context diagram for the XCP-CCM is shown in the following figure.

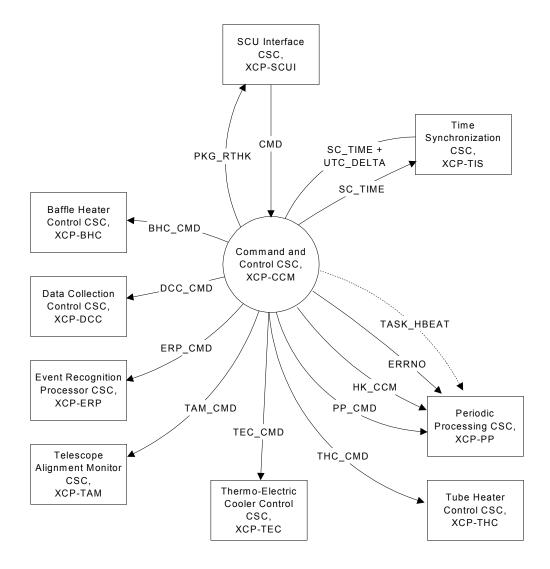


Figure 19. Command and Control CSC Context Diagram

5.8CCD Data Driver

A context diagram for the CCD Data Driver is shown in the following figure.

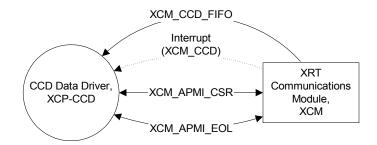


Figure 20. CCD Data Driver Context Diagram

5.9Data Compression CSC

A context diagram for the Data Compression CSC is shown in the following figure.

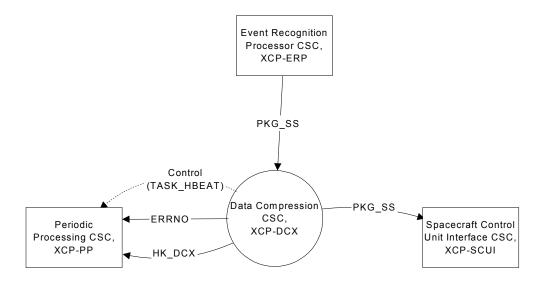


Figure 21. Data Compression CSC Context Diagram

5.10Error Detection and Correction CSC

A context diagram for the Error Detection and Correction (EDAC) CSC is shown in the following figure.

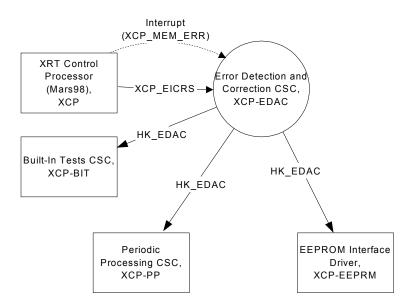


Figure 22. Error Detection and Correction CSC Context Diagram

5.11EEPROM File System CSC

A context diagram for the EEPROM File System CSC is shown in the following figure.

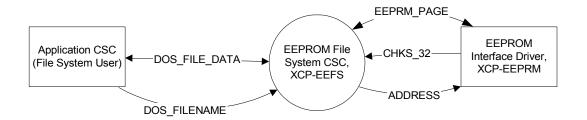


Figure 23. EEPROM File System CSC Context Diagram

5.12EEPROM Interface Driver

A context diagram for the EEPROM Interface Driver is shown in the following figure.

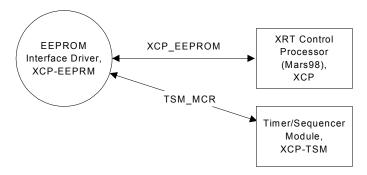


Figure 24. EEPROM Interface Driver Context Diagram

5.13Engineering Ethernet Driver

A context diagram for the Engineering Ethernet Driver is shown in the following figure.

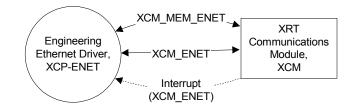


Figure 25. Engineering Ethernet Driver Context Diagram

5.14Power Distribution Driver

A context diagram for the Power Distribution Driver is shown in the following figure.

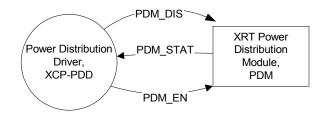


Figure 26. Power Distribution Driver Context Diagram

5.15Periodic Processing CSC

A context diagram for the Periodic Processing CSC is shown in the following figure.

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0

Software Requirements Specification

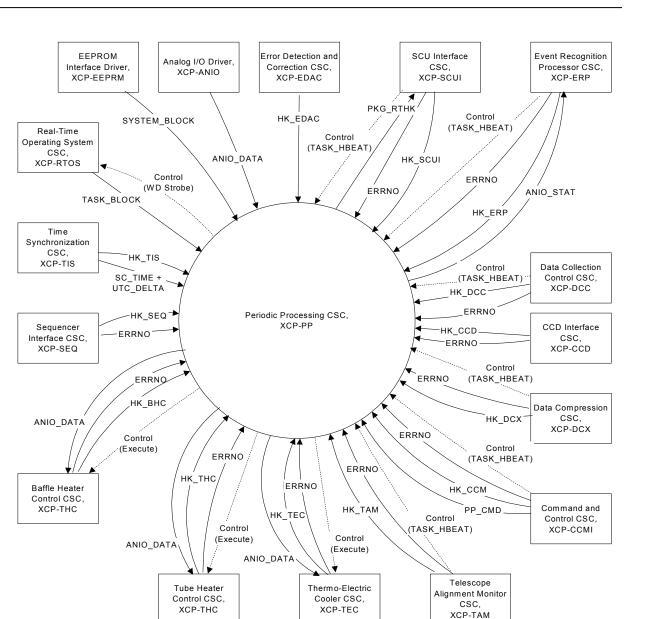


Figure 27. Periodic Processing CSC Context Diagram

Page 43

5.16Real-Time Operating System CSC

A context diagram for the Operating System CSC is shown in the following figure.

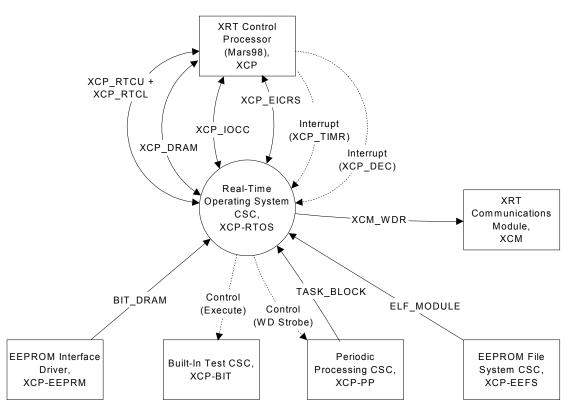


Figure 28. Real-Time Operating System CSC Context Diagram

5.17SCU Interface CSC

A context diagram for the XCP-SCUI is shown in the following figure.

XRT Control Processor

Software Requirements Specification

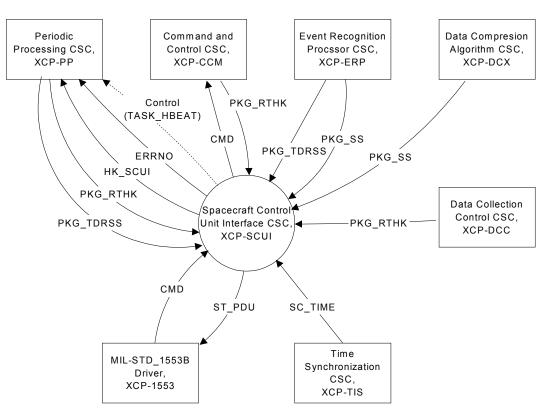
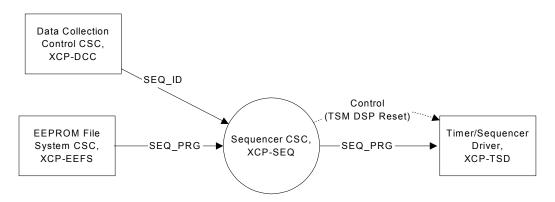
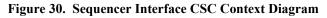




Figure 29. SCU Interface CSC Context Diagram

5.18Sequencer Interface CSC

A context diagram for the Sequencer Interface CSC is shown in the following figure.

5.19Time Synchronization CSC

Southwest Research Institute	h Institute 04121-XCPSRS-0	
XRT Control Processor	April 23, 2001	Rev. 2 Chg. 0
Software Requirements Specification		Page 46

Command and Control CSC, XCP-CCM SC_TIME SC_TIME + UTC_DELTA **Event Recognition** Processor CSC, XCP-ERP SC_TIME + XCM_TMHI+ UTC_DELTA XRT XCM_TMLO+ Time Communications XCM_TMFINE + Synchronization Periodic SC_TIME + Module, Processing CSC, CSC, XCM_METCSR UTC_DELTA хсм XCP-PP **XCP-TIS** SC_TIME Spacecraft Control Unit Interface CSC XCP-SCUI

A context diagram for the Time Synchronization CSC is shown in the following figure.

Figure 31. Time Synchronization CSC Context Diagram

5.20Timer/Sequencer Driver

A context diagram for the Timer/Sequencer Driver is shown in the following figure.

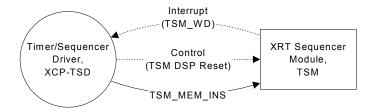
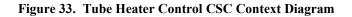



Figure 32. Timer/Sequencer Driver Context Diagram

5.21Tube Heater Control CSC

Control Command and (PDM Enable) THC_CMD Control CSC, • Tube Heater Power Distribution XCP-CCM Control CSC, HTR_ID Driver, Control XCP-THC XCP-PDD (Execute) ERRNO HK_THC Periodic Processing CSC, ANIO_DATA XCP-PP

A context diagram for the Tube Heater Control CSC is shown in the following figure.

5.22Baffle Heater Control

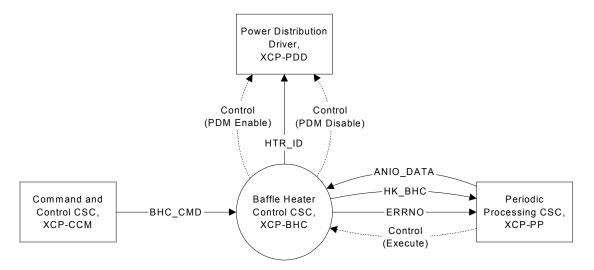
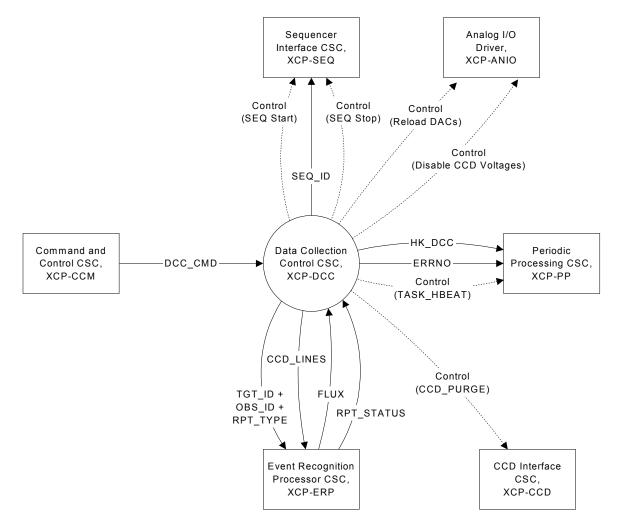



Figure 34. Baffle Heater Control CSC

5.23Data Collection Control CSC

A context diagram for the Data Collection Control CSC is shown in the following figure.

Figure 35. Data Collection Control CSC Context Diagram

5.24Event Recognition Processor CSC

A context diagram for the Event Recognition Processor CSC is shown in the following figure.

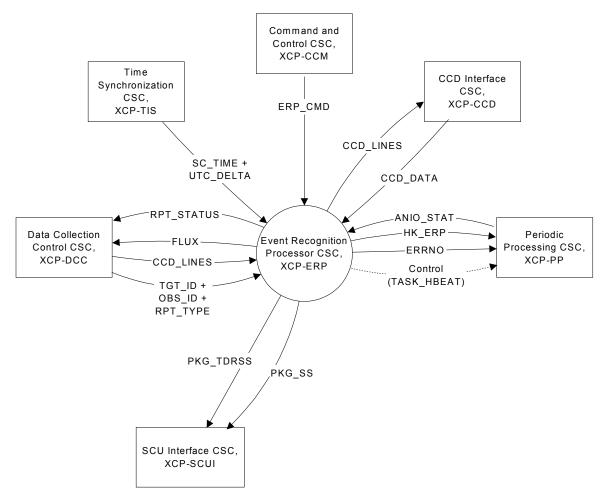


Figure 36. Event Recognition Processor CSC Context Diagram

5.25(Deleted) Formatter CSC

A context diagram for the Formatter CSC is shown in the following figure.

Figure 37. (Deleted) Formatter CSC Context Diagram

5.26Telescope Alignment Monitor CSC

A context diagram for the Telescope Alignment Monitor CSC is shown in the following figure.

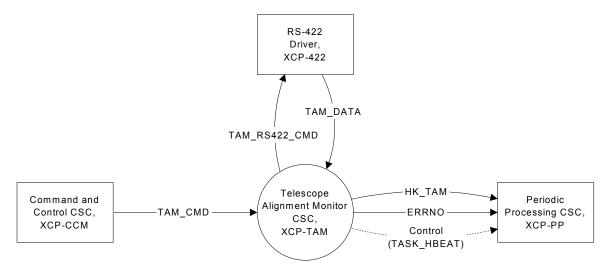


Figure 38. Telescope Alignment Monitor CSC Context Diagram

5.27Thermo-Electric Cooler CSC

A context diagram for the Thermo-Electric Cooler CSC is shown in the following figure.

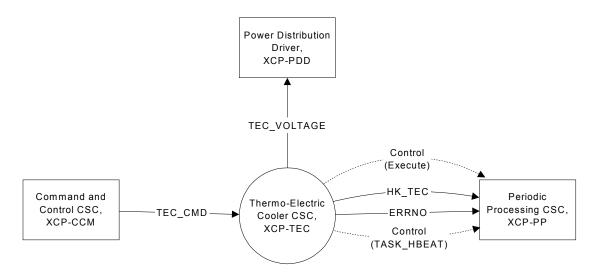


Figure 39. Thermo-Electric Cooler CSC Context Diagram

6.DATA DICTIONARY

This section contains the data dictionary for the FSW. In this dictionary, Data Elements are described either as types or as composites. Composite Data Elements are constructed from more elementary components.

	Table 7. Data Dic	•
Name	Attributes	Description
1553_SUB_ADRS	Type: UINT16	MIL-STD-1553B Sub-address
	Range: 1-31	
1553_SUB_DATA	Composite:	MIL-STD-1553B Sub-address Buffer
	32{UINT16}32	
ADDRESS	Type: Fundamental, char *	Address
ALT_OS_BLOCK	Composite:	Alternate Configuration of OFP
	128{UINT32}128	
	Location:	
	eeBase32 + 0x880000 through eeBase32 + 0x8FFFFF	
ALTITUDE	Type: UINT32	Altitude
		(from SISCATTITUDE)
ANIO_BUS_VOLTAGE	Type: UINT16	Spacecraft Bus Voltage
		(from ANIO_DATA)
ANIO_DATA	Composite:	Analog I/O Data
	128{UINT16}128	(from hardware)
ANIO_SAMPLES	Type: UINT32	Total number of accumulated samples
ANIO_SQUARES	Composite:	Accumulated I/O Sum of Squares
	128{DOUBLE}128	
ANIO_STAT	Composite:	Accumulated I/O Statistics
	ANIO_SUMS + ANIO_SQUARES + ANIO_SAMPLES	
ANIO_SUMS	Composite:	Accumulated I/O Sums
	128{DOUBLE}128	
APID	Type: UINT16	Application ID
BAD_COL	Type: INT16	Bad Row
-		for Photo-Diode or windowed timing modes
BAD_COL_TBL	Composite:	Bad Column Table
	{BAD_COL}	
BAD_PIX	Composite:	Bad Pixel Coordinate
	BAD_PIX_ROW + BAD_PIX_COL	-1 for BAD_PIX_ROW indicates entire column -1 for BAD_PIX_COL indicates entire row
BAD_PIX_COL	Type: INT16	Bad Pixel Column
BAD_PIX_ROW	Type: INT16	Bad Pixel Row
BAD_PIX_TBL	Composite:	Bad Pixel Table
	{BAD_PIX}	

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 52

	Table 7. Data Dicti	onary
Name	Attributes	Description
BC_INDEX	Type: UINT32	Boot Configuration Index
	Value:	
	0x0: Boot Alternate 0x1-0xFFFFFFF: Boot Primary	
BC1_CHKS_32	Type: CHKS_32	Stored checksum of OFP bytes
	Location: eeBase32 + 0xAF0050	
BC1_CHKS_NEW	Type: CHKS_32	Freshly calculated checksum of OFP bytes
BC1_COPY_ADDR	Type: ADDRESS	Start address in DRAM to copy OFP
	Location: eeBase32 + 0xAF0048	
BC1_END_ADDR	Type: ADDRESS	End address of OFP in EEPROM
	Location: eeBase32 + 0xAF0044	
BC1_ENTRY_ADDR	Type: ADDRESS	Address of entry point of OFP in DRAM
	Location: eeBase32 + 0xAF004C	
BC1_START_ADDR	Type: ADDRESS	Start address of OFP in EEPROM
	Location: eeBase32 + 0xAF0040	
BHTR_ID	Type: UINT8	Baffle Heater ID
BHTR_PARMS	Composite: (TBR)	Baffle Heater Control Parameters
	BHTR_SETPT_LO + BHTR_SETPT_HI	
BHTR_PARMS_TBL	Composite:	Baffle Heater Parameters Table
	{BHTR_PARMS}	
BHTR_SETPT_HI	Type: UINT16	Baffle Heater Control Upper Threshold
BHTR_SETPT_LO	Type: UINT16	Baffle Heater Control Lower Threshold
BIAS_ALG_ID	Type: UINT8	Bias Algorithm
BIAS_MAP_ID	Type: UINT8	Bias Map ID
BIAS_THRSH	Type: UINT16	Bias Map Threshold
 BIT_1553_INT	Type: BIT_RESULT	MIL-STD-1553B Internal BIT results
	Location: eeBase32 + 0xAF1084	
BIT_1553_RAM	Type: BIT_RESULT	MIL-STD-1553B Device RAM BIT results
	Location: eeBase32 + 0xAF1080	
BIT_CPU_BRANCH	Type: BIT_RESULT	Branch Processor BIT result
	Location: eeBase32 + 0xAF1040	
BIT_CPU_FLTPT	Type: BIT_RESULT	Floating Point Processor BIT result
	Location: eeBase32 + 0xAF1048	-
BIT_CPU_FXPT	Type: BIT_RESULT	Fixed Point Processor BIT result
	Location: eeBase32 + 0xAF1044	
BIT_CPU_INT	Type: BIT_RESULT	Interrupt Processor BIT results
	Location: eeBase32 + 0xAF104C	
BIT_CPU_TIMER	Type: BIT_RESULT	Timer Processor BIT results
	Location: eeBase32 + 0xAF1054	

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 53

	Table 7. Data Dictionary				
Name	Attributes	Description			
BIT_DATA	Composite: BIT_DRAM + BIT_CPU_BRANCH + BIT_CPU_FXPT + BIT_CPU_FLTPT + BIT_CPU_INT + BIT_CPU_TIMER + BIT_1553_RAM + BIT_1553_INT Location: eeBase32 + 0xAF1000 through	Built-In Tests Data			
BIT_DRAM	eeBase32 + 0xAF11FC Composite: {BIT_RESULT} Location: eeBase32 + 0xAF1100 through eeBase32 + 0xAF113C	Built-In Tests Data for DRAM			
BIT_EDAC_MBE	Type: BIT_RESULT Location: eeBase32 + 0xAF105C	Multiple-bit error EDAC BIT result			
BIT_EDAC_SBE	Type: BIT_RESULT Location: eeBase32 + 0xAF1058	Single-bit error EDAC BIT result			
BIT_PROM_CHKS	Type: BIT_RESULT Location: eeBase32 + 0xAF1060	PROM checksum BIT result			
BIT_RESULT	Type: UINT32 Value: 0: PASS -1: FAIL	Built-In Test Result			
BIT_SUMMARY	Type: UINT32	Built-In Test Results with 1 bit per test			
BOOL	Type: Fundamental, char Value: FALSE or TRUE	Boolean value			
BOOT_BLOCK	Composite: 4096{UINT32}4096	Bootstrap Program Storage			
BOOT_CNT	Type: UINT32	Count of the number of times booted			
BUF_LEN	Type: UINT32	Buffer length			
CCD_DATA	Composite: {UINT16}	CCD Data			
CCD_LINES	Type: UINT8	CCD Number of Lines			
CCSDS_APID	Composite: 11{MBIT}11 Value: 0x480-0x4DF: real-time telemetry 0x4E0-0x53F: TDRSS telemetry 0x540-0x59F: Stored science telemetry 0x680-0x69F: Telecommands	CCSDS Application ID			

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 54

	Table 7. Data Dictionary				
Name	Attributes	Description			
CCSDS_HDR	Composite: CCSDS_VER_NUM + CCSDS_TYPE + CCSDS_SEC_HDR + CCSDS_APID + CCSDS_SEQ_FLG + CCSDS_SEQ_CNT + CCSDS_PKT_LEN	CCSDS Packet Header			
CCSDS_PKT_LEN	Type: UINT16	CCSDS Packet Length			
		(Application data length – 1)			
CCSDS_SEC_HDR	Type: MBIT Value: 0: No secondary header 1: Secondary header is used	CCSDS flag indicating whether or not a secondary header is present			
CCSDS_SEQ_CNT	Composite: 14{MBIT}14 Range: 0 - 16383	CCSDS sequence count for segmented data packets			
CCSDS_SEQ_FLG	Composite: 2{MBIT}2 Value: 00: Continuation segment of app data 01: 1 st segment of app data 10: Last segment of app data 11: Unsegmented app data	CCSDS sequence flags			
CCSDS_TLM_PKT	Composite: CCSDS_HDR + CCSDS2_TLM_HDR TLM_DATA SS_DATA	CCSDS Telemetry Data Packet			
CCSDS_TYPE	Type: MBIT Value: 0: telemetry packets 1: telecommand packets	CCSDS packet type			
CCSDS_VER_NUM	Composite: 3{MBIT}3 Value: 0 (Version 1 CCSDS packet)	CCSDS Version Number			
CCSDS2_APDATA	Type: UINT16	CCSDS secondary header application data			
CCSDS2_CHKS	Type: CHKS_16	CCSDS secondary header checksum			
CCSDS2_CMD_HDR	Composite: CCSDS2_HDR_TYPE + CCSDS2_RESERVED + CCSDS2_FCODE + CCSDS2_APDATA + CCSDS2_CHKS	CCSDS telecommand Secondary Packet Header			
CCSDS2_FCODE	Type: UINT8	CCSDS secondary header function code			
CCSDS2_HDR_TYPE	Type: BIT Value: 0 (secondary header)	Flag indicating data is secondary header			

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 55

Table 7. Data Dictionary				
Name	Attributes	Description		
CCSDS2_RESERVED	Composite:	Reserved bits in CCSDS secondary header		
	7{MBIT}7			
	Value: 0			
CCSDS2_SECONDS	Type: UINT32	CCSDS secondary header time (seconds)		
CCSDS2_SUB_SECONDS	Type: UINT16	CCSDS secondary header time (sub-seconds)		
CCSDS2_TLM_HDR	Composite:	CCSDS Telemetry Secondary Packet Header		
	CCSDS2_SECONDS + CCSDS2_SUB_SECONDS			
CENT_PARMS	Composite: TBD	Centroid Algorithm Parameters		
CENT_PARMS	Type: TBD	Centrod Algorithm Parameters		
CENT_THRSH	Type: UINT16	Centroid Algorithm Threshold		
CENT_THRSH	Type: UINT16 (TBR)	Centroid Algorithm Threshold		
CHKS_16	Type: UINT16	Vertical Checksum		
	Value:			
	Sum of UINT8 ignoring carry			
CHKS_32	Type: UINT32	PROM or EEPROM checksum		
	Value:			
	Sum of several UINT32 ignoring carry			
CMD	Composite:	XRT Ground Command		
	SC_TIME + BYTE_CNT + CMD_DATA +	(See Appendix C for a complete list of the commands and associated details.)		
	CHKS_16			
CMD_CNT	Type: UINT32	Number of telecommands received since last reset		
CMD_ECHO	Type: 62{CHAR}62	Echo of recent telecommand		
CMD_ECHO	Composite:	Three most recent telecommands and their		
	CMD_REJ_FLAG + CMD	dispatch time		
CMD_REJ_FLAG	Type: BOOL	Time of recent telecommand		
CMD_RUN	Type: UINT32	Number of telecommands dispatched since last reset		
COLD_MEM_SIZE	Type: MEM_SIZE	Memory size for a cold boot		
COLD_SKIP_BIT	Type: SKIP_BIT	Skip BIT flag for a cold boot		
Control (Bias Voltage Error)	Type: Fundamental, Control	Respond to a bias voltage error		
Control (CCD_PURGE)	Type: Fundamental, Control	Purge data from receive queue		
Control (Disable CCD Voltages)	Type: Fundamental, Control	Disable CCD bias voltages		
Control (Enter Auto)	Type: Fundamental, Control	Enter automatic observation mode		
Control (Execute)	Type: Fundamental, Control	Execute routine in caller's context		
Control (Exit Auto)	Type: Fundamental, Control	Exit automatic observation mode		
Control (PDM Disable)	Type: Fundamental, Control	PDM Relay Disable		
Control (PDM Enable)	Type: Fundamental, Control	PDM Relay Enable		

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 56

	Table 7. Data Dictionary				
Name	Attributes	Description			
Control (Reload DACs)	Type: Fundamental, Control	Reload DACs controlling CCD bias voltages			
Control (Run BIT)	Type: Fundamental, Control	Activate driver built-in test			
Control (SEQ Start)	Type: Fundamental, Control	Start sequencer program			
Control (SEQ Stop)	Type: Fundamental, Control	Stop sequencer program			
Control (TASK_HBEAT)	Type: Fundamental, Control	Report that task is alive			
Control (TSM DSP Reset)	Type: Fundamental, Control	Reset processor on sequencer module			
Control (WD Strobe)	Type: Fundamental, Control	Strobe watchdog timer			
CPU_SPEED	Type: UINT32	Processor Clock Speed			
	Location: eeBase32 + 0xAF0034				
	Range: 0-4				
	Value:				
	0: 2.5 MHz				
	1: 5 MHz 2: 10 MHz				
	3: 20 MHz				
DAC_ID	Type: UINT8	DAC Identifier (for CCD Voltages)			
DAC_TBL	Composite:	Bias Voltage Table (for CCD Voltages)			
	{DAC_VOLTAGE}				
DAC_VOLTAGE	Type: UINT8	Count Value (for CCD Voltages)			
DCC_CMD	Type: CMD	Data Collection Control Command			
DCC_STATUS	Type: CMD	Data Collection Control Status			
DEC	Type: UINT32	Declination			
DEC_POINT_DIR	Type: INT32	Declination of pointing direction			
DOOR_ACT_ID	Type: UINT8	Door Actuator ID			
	Value:				
	1: Actuator 1				
	2: Actuator 2 3: Actuator 1 and 2				
DOOR_TIMEOUT	Type: UINT8	Door timeout in seconds			
DOS_FILE_DATA	Composite:	DOS File Data			
	{UINT8}				
DOS_FILENAME	Composite:	DOS Filename			
	[A-Z a-z] +0{[A-Z a-z 0-9]}7 + 0{.}1 + 0{A-Z				
	a-z 0-9}3				
DOUBLE	Type: Fundamental, double	Floating Point, Double-precision			
DUMP_ADDRESS	Type: ADDRESS	Source Address for Dump			
DUMP_PARMS	Composite:	Memory Dump Parameters			
	DUMP_ADDRESS + DUMP_SIZE				
DUMP_SIZE	Type: UINT16	Size of memory dump in bytes			
edacEeMbeAdrs	Type: ADDRESS	EEPROM Multiple-Bit Error Last Occurrence			
edacEeMbeCnt	Type: UINT32	EEPROM Multiple-Bit Error Count			

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 57

	Table 7. Data Dictionary				
Name	Attributes	Description			
edacEeMbePrev	Type: ADDRESS	EEPROM Multiple-Bit Error Next-to-last Occurrence			
edacEeSbeAdrs	Type: ADDRESS	EEPROM Single-Bit Error Last Occurrence			
edacEeSbeCnt	Type: UINT32	EEPROM Single-Bit Error Count			
edacEeSbePrev	Type: ADDRESS	EEPROM Single-Bit Error Next-to-last Occurrence			
edacRscMbeAdrs	Type: ADDRESS	DRAM Multiple-Bit Error Last Occurrence			
edacRscMbeCnt	Type: UINT32	DRAM Multiple-Bit Error Count			
edacRscMbePrev	Type: ADDRESS	DRAM Multiple-Bit Error Next-to-last Occurrence			
edacRscSbeAdrs	Type: ADDRESS	DRAM Single-Bit Error Last Occurrence			
edacRscSbeCnt	Type: UINT32	DRAM Single-Bit Error Count			
edacRscSbePrev	Type: ADDRESS	DRAM Single-Bit Error Next-to-last Occurrence			
eeBase32	Type: ADDRESS	Base address for EEPROM			
	Value: 0xFF000000				
EEPRM_PAGE	Composite:	EEPROM Page			
_	128{UINT32}128	, i i i i i i i i i i i i i i i i i i i			
eicrBase32	Type: ADDRESS	Base address for External Interrupt Control			
	Value: 0xD000000	Registers on the RAD6000 CPU Module			
ELF MODULE	Composite:	Program object file for patches (relocatable)			
_	{BYTES}				
ENET_HOST_IP	Type: UINT32	32-Bit Integer representation of Host IP			
	Location: eeBase32 + 0xAF01F8				
ENET_IP	Type: UINT32	32-Bit Integer representation of XCP IP			
_	Location: eeBase32 + 0xAF01F4				
ENET_MAC	Composite:	Ethernet Media Access Control Address			
_	2{UINT32}2	Only first six bytes are valid.			
	Location:				
	eeBase32 + 0xAF0014 through eeBase32 + 0xAF0018				
ERP_CMD	Type: CMD	Event recognition processor command			
ERRNO	Type: UINT32	Error Number			
	Bits:				
	31-16: Module Number 15-0: Sequence Number				
ERROR_SET	Composite:	Top 5 errors on PP error queue			
	5{ERRNO}5				
EVENT_STHRSH	Type: UINT16	Timing Mode Split Event Threshold			
EVENT_THRSH	Type: UINT16	Timing Mode Event Threshold			
EVENT_ULD	Type: UINT16	Timing Mode Upper Level Discriminator			
FCODE	Type: CCSDS2_FCODE	CCSDS secondary header function code			

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
FILE_SYSTEM_BLOCK	Composite: {UINT32} Location: eeBase32 + 0x500000 through eeBase32 + 0x7EFFF	File System Block
FLOAT	Type: Fundamental, float	Floating Point, Single-precision
FLUX	Type: UINT32	Flux
FO_OBS_MODE	Type: UINT8 (TBR)	Observation Mode (from FO_NEXTOBS_INFO)
FO_OBS_TYPE	Type: UINT8 (TBR)	Observation Type (from FO_NEXTOBS_INFO)
HDR_DATA	Type: UINT8	Data Package Header
HK_BHC	Composite: TBD	Baffle Heater Control CSC Housekeeping
HK_BIT	Composite: BOOT_CNT+ BIT_CPU_BRANCH+ BIT_CPU_FXPT + BIT_CPU_FLTPT + BIT_CPU_TIMER + BIT_EDAC_SBE + BIT_EDAC_MBE + BIT_PROM_CHKS + BIT_1553_RAM + BIT_1553_INT + BIT_IIM_RAM + BIT_DRAM	XCP BIT Housekeeping Package
HK_CCD	Composite: HK_CCD_LINES + HK_CCD_FRAMES + HK_CCD_OVERFLOW + HK_CCD_READERR + HK_CCD_LC_OVERFLOW + HK_CCD_STATUS	CCD Interface CSC Housekeeping
HK_CCD_FRAMES	Type: UINT32	Number of lines read since last reset
HK_CCD_LC_OVERFLOW	Type: UINT32	Number of line counter overflow errors since last reset
HK_CCD_LINES	Type: UINT32	Number of lines read since last reset
HK_CCD_OVERFLOW	Type: UINT32	Number of overflow errors since last reset
HK_CCD_READERR	Type: UINT32	Number of read errors since last reset
HK_CCD_STATUS	Type: UINT32	Last hardware status
HK_CCM	Composite: HK_CCM_N_CMD_REC + HK_CCM_N_CMD_REJ + HK_CCM_LAST_REJCMD + HK_CCM_N_LAST_REJ	Command and Control CSC Housekeeping
HK_CCM_LAST_ECMD	Type: CMD	Echo of last command executed

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 59

Table 7. Data Dictionary				
Name	Attributes	Description		
HK_CCM_LAST_RCVCMD	Туре: СМD	Echo of last command received		
HK_CCM_LAST_REJCMD	Type: CMD	Echo of last command rejected		
HK_CCM_N_CMD_REC	Type: UINT32	Number of commands received		
HK_CCM_N_CMD_REJ	Type: UINT32	Number of commands rejected		
HK_CCM_N_LAST_EXEC	Type: UINT32	Index of last command executed		
HK_CCM_N_LAST_RCV	Type: UINT32	Index of last command received		
HK_CCM_N_LAST_REJ	Type: UINT32	Index of last command rejected		
HK_DCC	Composite:	Data Collection Control CSC Housekeeping		
	TBD			
HK_DCX	Composite:	Data Compression CSC Housekeeping		
	HK_DCX_NUM_IN + HK_DCX_NUM_CMP + HK_DCX_NUM_OUT			
HK_DCX_NUM_CMP	Type: UINT32	Number of packets compressed		
HK_DCX_NUM_IN	Type: UINT32	Number of packets enqueued		
HK_DCX_NUM_OUT	Type: UINT32	Number of packets output		
HK_EDAC	Composite:	Error Detection and Correction Data		
	edacRscSbeCnt + edacRscSbeAdrs + edacRscSbePrev + edacRscMbeCnt + edacRscMbeAdrs + edacRscMbePrev			
HK_ERP	Composite: TBD	Event Recognition Processor CSC Housekeeping		
HK_SAMP_TIME	Type: SC_TIME	Time of last sample		
HK_SCUI	Composite: SCU_BUFFER_RATE + SCU_XMIT_BYTES	SCU Interface CSC Housekeeping		
HK_SEQ	Composite: HK_LAST_SEQ_ID	Sequencer Interface CSC Housekeeping		
HK_SEQ_LAST_SEQ_ID	Type: SEQ_ID	Identifier of last sequencer program loaded		
HK_TAM	Composite:	Telescope Alignment Monitor CSC		
	тво	Housekeeping		
HK_TEC	Composite:	Thermo-electric Cooler CSC Housekeeping		
	твр			
HK_THC	Composite:	Tube Heater Control CSC Housekeeping		
	HK_THC_RELAY_STATUS			
HK_THC_RELAY_STATUS	Type: 3{UINT16}3	Current Status of Heater Relays		
HK_TIS	Composite: HK_TIS_LAST_TIME + HK_TIS_NUM_TIMES	Time Synchronization CSC Housekeeping		

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 60

Table 7. Data Dictionary				
Name	Attributes	Description		
HK_TIS_LAST_TIME	Type: SC_TIME	Time from last time-at-the-tone message received		
HK_TIS_NUM_TIMES	Type: UINT32	Number of time-at-the-tone messages received		
HK_UTC_CORR	Type: UTC_OFFSET	UTC correction for last sample		
HTR_ID	Type: UINT8	Heater Number		
IN_SAA_FLAG	Type: BOOL	Flag to indicate the Spacecraft is in the SAA		
IN_SAFE_MODE	Type: BOOL	Flag to indicate if the Spacecraft is in Safe Pointing		
INT16	Type: Fundamental, short	Short Integer		
INT32	Type: Fundamental, int	Integer		
Interrupt (TSM_WD)	N/A	Timer/Sequencer Watchdog Interrupt		
Interrupt (XCM_1553)	N/A	MIL-STD-1553B Interrupt		
Interrupt (XCM_422_RX)	N/A	RS-422 Receiver Ready		
Interrupt (XCM_ANIO)	N/A	Analog/Digital Conversion Complete Interrupt		
Interrupt (XCM_CCD)	N/A	CCD Data Ready Interrupt		
Interrupt (XCM_ENET)	N/A	Ethernet Interrupt		
Interrupt (XCP_DEC)	N/A	Decrementer Interrupt		
Interrupt (XCP_MEM_ERR)	N/A	EDAC Interrupt		
Interrupt (XCP_TIMR)	N/A	RSC Bus Interface Timer Interrupt		
IOCC_EOI_IRQ7	Type: UINT32	End of Interrupt Register (IRQ7)		
	Type: UINT32			
	Location: ioccBase32 + 0x47008C			
	Bits:			
	31-0: Reserved			
ioccBase32	Type: ADDRESS	Base address for the Input/Output Channel		
	Value: 0xE000000	Controller on the RAD6000 CPU Module		
IS_AT_TARGET	Type: BOOL	New Automated Target Indicator		
IS_IN_10_ARCMIN	Type: BOOL	Flag to indicate the Spacecraft is with 10 arcmir of the target		
IS_SETTLED	Type: BOOL	Flag to indicate the Spacecraft is slewing/ or stopped		
LAST_BOOT_TIME	Type: SC_TIME	Time of last XCP boot		
LATTITUDE	Type: UINT32	Lattitude		
		(from SISCATTITUDE)		
LE_DAR	Type: UINT32	Last exception Data Access Register		
LE_DSISR	Type: UINT32	Last exception Data Storage Interrupt Status Register		
LE_ERRNO	Type: ERRNO	Last exception ERRNO		
LE_FPS	Type: UINT32	Last exception Floating Point Status and Contro Register		
LE_MASK0	Type: UINT32	Last exception External Interrupt Mask Register 0		

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary			
Name	Attributes	Description	
LE_MASK1	Type: UINT32	Last exception External Interrupt Mask Register	
LE_SPTR	Type: ADDRESS	Last exception stack pointer	
LE_TASK_ID	Type: TASK_ID	Last exception task ID	
LE_VNUM	Type: UINT32	Last exception vector number	
LE_VOFF	Type: UINT32	Last exception vector offset	
LONGITUDE	Type: UINT32	Longitude (from SISCATTITUDE)	
MBIT	Type Fundamental, binary digit Value: 0 or 1	Binary digit	
MEM_SIZE	Type: UINT32 Range: 0x00800000-0x08000000 Value: 0x00800000: 8 MB 0x01000000: 16 MB 0x02000000: 32 MB 0x04000000: 64 MB 0x08000000: 128 MB (and values in between)	Size in bytes of DRAM to clear/test	
MRC_ALG_ID	Type: UINT8	Mean Row Correction Algorithm	
MRC_FQ	Type: UINT16	Mean Row Correction Frequency	
MRC_ROW	Type: UINT16	Mean Row Correction Row	
MRC_THRSH	Type: UINT16	Mean Row Correction Threshold	
N_CCD_ROWS	Type: UINT8	Number of CCD rows	
OBS_BUF	Composite: BUF_LEN {BYTES}	Observation buffer	
OBS_ID	Type: UINT16	Observation ID	
PAST_OBS_TIME	Type: SC_TIME	Past Observation Time (from FO_NEXTOBS_INFO)	
PDM_CLPD	Type: UINT16 Location: pdmBase16 + 0x000002 Bits: 15-9: Reserved 8-5: Wax Actuators Disable (Write: 1 – Disable) 4: +35V Supply Disable (Write: 1 – Disable) 3: Reserved 2: TAM Supply Disable (Write: 1 – Disable) 1: Reserved 0: TEC Supply Disable (Write: 1 – Disable)	PDM CL Power Disable Register (Write Only)	

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary				
Name	Attributes	Description		
PDM_CLPE	Type: UINT16 Location: pdmBase16 + 0x000000 Bits: 15-9: Reserved 8-5: Wax Actuators Enable (Write: 1 - Enable) 4: +35V Supply Enable (Write: 1 - Enable) 3: Reserved 2: TAM Supply Enable (Write: 1 - Enable) 1: Reserved 0: TEC Supply Enable (Write: 1 - Enable)	PDM CL Power Enable Register (Write Only)		
PDM_CLPS	Type: UINT16 Location: pdmBase16 + 0x000000 Bits: 15-14: Reserved 13-6: Wax Actuator Over-current & Status 5: +35V Supply Over-current (Read: 0 – Nominal, 1 – Over-current) 4: +35V Supply Status (Read: 0 – Off, 1 – Off) 3: TAM Supply Over-current (Read: 0 – Nominal, 1 – Over-current) 2: TAM Supply Status (Read: 0 – Off, 1 – On) 1: TEC Supply Over-current (Read: 0 – Nominal, 1 – Over-current) 0: TEC Supply Status (Read: 0 – Off, 1 – On) 0: TEC Supply Status (Read: 0 – Nominal, 1 – Over-current) 0: TEC Supply Status (Read: 0 – Off, 1 – On)	PDM CL Power Status Register (Read Only)		
PDM_DIS	Composite: PDM_H1PD + PDM_H2PD + PDM_H3PD	PDM Heater Disables		
PDM_EN	Composite: PDM_H1PE + PDM_H2PE + PDM_H3PE	PDM Heater Enables		
PDM_H1PD	Type: UINT16 Location: pdmBase16 + 0x000006 Bits: 15-0: Heater Disables (Write: 1 – Disable)	PDM Heater Bank 1 Power Disable Register (Write Only)		
PDM_H1PE	Type: UINT16 Location: pdmBase16 + 0x000004 Bits: 15-0: Heater Enables (Write: 1 – Enable)	PDM Heater Bank 1 Power Enable Register (Write Only)		

XRT Control Processor

Table 7. Data Dictionary		
Name	Attributes	Description
PDM_H1PS	Type: UINT16	PDM Heater Bank 1 Power Status Register
	Location: pdmBase16 + 0x000004	(Read Only)
	Bits:	
	15-0: Heater Statuses	
	(Read: 0 – Off, 1 – On)	
PDM_H2PD	Type: UINT16	PDM Heater Bank 2 Power Disable Register (Write Only)
	Location: pdmBase16 + 0x00000A	(white Only)
	Bits:	
	15-0: Heater Disables (Write: 1 – Disable)	
PDM_H2PE	Type: UINT16	PDM Heater Bank 2 Power Enable Register
	Location: pdmBase16 + 0x000008	(Write Only)
	Bits:	
	15-0: Heater Enables (Write: 1 – Enable)	
PDM_H2PS	Type: UINT16	PDM Heater Bank 2 Power Status Register
	Location: pdmBase16 + 0x000008	(Read Only)
	Bits:	
	15-0: Heater Statuses (Read: 0 – Off, 1 – On)	
PDM_H3PD	Type: UINT16	PDM Heater Bank 3 Power Disable Register
	Location: pdmBase16 + 0x00000E	(Write Only)
	Bits:	
	15-0: Heater Disables (Write: 1 – Disable)	
PDM_H3PE	Type: UINT16	PDM Heater Bank 3 Power Enable Register
	Location: pdmBase16 + 0x00000C	(Write Only)
	Bits:	
	15-0: Heater Enables (Write: 1 – Enable)	
PDM_H3PS	Type: UINT16	PDM Heater Bank 3 Power Status Register
	Location: pdmBase16 + 0x00000C	(Read Only)
	Bits:	
	15-0: Heater Statuses (Read: 0 – Off, 1 – On)	
PDM_HTR_STATUS	Composite:	PDM Heater Status
	3{UINT16}3	
PDM_RESET	Type: UINT16	PDM Master Reset
	Location: pdmBase16 + 0x00001E	A write to this register resets all of the relays to
	Bits:	the Off state.
	15-0: Reserved	

XRT Control Processor

Table 7. Data Dictionary		
Name	Attributes	Description
PDM_STAT	Composite:	PDM Heater Status Registers
	PDM_H1PS + PDM_H2PS + PDM_H3PS	
PDM_TEC_CTRL	Type: UINT16 Location: pdmBase16 + 0x000016 Bits: 15-0: TBD	PDM TEC Control Register
PDM_TEC_STAT	Type: UINT16 Location: pdmBase16 + 0x000016 Bits: 15-0: TBD	PDM TEC Status Register
PKG_RTHK	Composite: APID+ SCUI_CTRL+ BUF_LEN+ TLM_DATA	The detailed format of the stored science data is contained in XRT-PSU-028 Section 3. The CCSDS headers and checksums listed in the document are not part of this data dictionary item.
PKG_SS	Composite: APID + SCUI_CTRL+ BUF_LEN + SS_DATA	Stored science data package
PKG_TDRSS	{BYTES}	The detailed format of the TDRSS messages is contained in XRT-PSU-028 Section 2. The CCSDS headers and checksums listed in the document are not part of this data dictionary item.
PP_RANGE	Type: UINT16	Periodic Processing Range
PP_RANGE_TBL	Composite: {PP_RANGE} + STRIP_INTERVAL	Periodic Processing Range Table
PP_RATE	Type: UINT8 Value: 255: Never 0: At startup only 1-254: Period in seconds	Periodic Processing Rate
PP_RATE_TBL	Composite: 10{PP_RATE}10	Periodic Processing Rate Table
PRIME_OS_BLOCK	Composite: 128{UINT32}128 Location: eeBase32 + 0x800000 through eeBase32 + 0x87FFFF	Primary Configuration of OFP
RA	Type: UINT32	Right Ascension
RA_POINT_DIR	Type: INT32	Right ascension of pointing direction

XRT Control Processor

Table 7. Data Dictionary		
Name	Attributes	Description
RAD_SRC_FLAG	Type: UINT8 Value: 0: without radioactive source	Close Shutter Radioactive Source Flag
	1: with radioactive source.	
RAW_HK_DATA	Type: 80{UINT16}80	Raw housekeeping values from hardware
RED_APID	Type: APID	Application ID for Next RED Command
RED_FCODE	Type: FCODE	Function Code for Next RED Command
RML	Type: UINT16	Running Mean Length
ROLL	Type: UINT32	Roll
RPT_STATUS	Type: DCC_CMD (TBR)	Report Status
RPT_TYPE	Type: UINT8	Report Type
SAA_FLAG	Type: UINT8 (TBR) Value: 0: Disable, 1: Use Spacecraft SAA, 2: Use 3-circle method	Flag to determine how to determine when XRT is in the SAA
SAA_PARMS	Composite:	3-circle method parameters:
	9{FLOAT}9	Circle 1 center: longitude Circle 1 center: latitude Circle 1 radius Circle 2 center: longitude Circle 2 center: latitude Circle 2 radius Circle 3 center: longitude Circle 3 center: latitude Circle 3 radius
SC_CHKS_32	Type CHKS_32 Location: eeBase32 + 0xAF01FC Value: (See CHKS_32)	Stored 32-Bit checksum on System Configuration Area
SC_CHKS_NEW	Type CHKS_32	Freshly calculated 32-Bit checksum on System Configuration Area
SC_TIME	Composite: SC_TIME_HI + SC_TIME_MI + SC_TIME_LO	Spacecraft Time
SC_TIME_HI	Type: UINT16	Spacecraft Time,
	Units: 65536 seconds	Seconds, Upper
SC_TIME_LO	Type UINT16	Spacecraft Time,
	Units: Microseconds	Sub-seconds
SC_TIME_MI	Type: UINT16	Spacecraft Time,
	Units: seconds	Seconds, Lower
SCLK_SECONDS	Type: UINT32	Spacecraft time in seconds
SCU_BUFFER_RATE	Type: UINT32	SCU Rate Buffering Parameter
SCU_XMIT_BYTES	Type: UINT32	Number of bytes transferred to SCU
SEQ_ID	Type: UINT8	Sequencer ID

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
SEQ_ID	Type: UINT8	Sequencer Program ID
		Null, Image (4 modes: low-gain fast-exposure, low-gain slow-exposure, high-gain fast- exposure, high-gain slow-exposure), Photo- Diode, Windowed Timing, Photon-Counting, Bias Image Calculation, Bias Row Calculation, Raw-Data, Predetermined Science Telemetry Pattern
SEQ_PRG	Composite:	Sequencer Program Image
	{BYTES}	Table with the following columns:
SEQ_TBL	Composite: (TBR) {SEQ_ID} + {FLUX} + {DAC_VOLTAGE}	Table with the following columns: Mode: Null, Image (4 modes: low-gain fast- exposure, low-gain slow-exposure, high-gain fast-exposure, high-gain slow-exposure), Photo- Diode, Windowed Timing, Photon-Counting, Bias Image Calculation, Bias Row Calculation, Raw-Data, Predetermined Science Telemetry Pattern
		Counts Per Second (CPS)
		Sequence Program No.
		Charge Injection
SKIP_BIT	Type: UINT32 Value: 0x00000000-0x736B697F: Perform BIT 0x736B6970: Skip Stage 1 BIT 0x736B6971-0xFFFFFFF: Perform BIT	Skip Stage 1 Built-In Tests
SS_DATA	{BYTES}	The detailed format of the stored science data is contained in XRT-PSU-028 Section 4. The CCSDS headers and checksums listed in the document are not part of this data dictionary item.
ST_PDU	Composite: XFER_REQ_CNTR {CCSDS_TLM_PKT}	Swift telemetry data protocol data unit
STATE_CODE	Type: UINT8	State Code
 STATE_NEXT	Type: STATE_CODE	Next State
STRING	Type: Fundamental, char *	Character String
STRIP_INTERVAL	Type: PP_RATE	Strip-chart interval
SYSTEM_BLOCK	Composite: SYSTEM_CONFIG_AREA + SYSTEM_VOLATILE_AREA + BIT_DATA Location: eeBase32 + 0xAF0000 through	System Configuration Block

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 67

Table 7. Data Dictionary		
Name	Attributes	Description
SYSTEM_CONFIG_AREA	Composite: SKIP_BIT + MEM_SIZE + ENET_MAC + CPU_SPEED + BC1_END_ADDR + BC1_ENTRY_ADDR + BC1_CHKS_32 + ENET_IP + ENET_HOST_IP + SC_CHKS_32 Location: eeBase32 + 0xAF0000 through eeBase32 + 0xAF01FF	System Configuration Area
SYSTEM_VOLATILE_AREA	Composite: BC_INDEX + BOOT_CNT + XCP_MODE + CQ_START_ADDR Location: eeBase32 + 0xAF0400 through eeBase32 + 0xAF05FF	System Volatile Area
TAM_BORE_LED1	Type: UINT16 (TBR)	LED 1 Boresight Offset
TAM_BORE_LED2	Type: UINT16 (TBR)	LED 2 Boresight Offset
TAM_CMD	Type: CMD	Telescope Alignment Monitor Command
TAM_DATA	Composite: (TBD) {BYTES}	Telescope Alignment Monitor Data
TAM_RDFQ	Type: UINT16 (TBR)	TAM Sampling Period in Seconds
TAM_RS422_CMD	Type: CMD	Telescope Alignment Monitor Command
TARGET_ID	Type: UINT16	Target ID (from FO_NEXTOBS_INFO)
TASK_BLOCK	Composite: TASK_DELAY + TASK_ID + TASK_PRIORITY + TASK_STATUS + TASK_PC + TASK_SP + TASK_ERRNO	Task Control Block Information
TASK_DELAY	Type: UINT32	Task Delay (number of clock ticks task is sleeping)
TASK_ERRNO	Type: UINT32	Task Error Number
TASK_ID	Type: ADDRESS	Task Identifier, Pointer to Task Control Block
TASK_PC	Type: ADDRESS	Task Program Counter
TASK_PRIORITY	Type: UINT8	Task Priority
TASK_SP	Type: ADDRESS	Task Stack Pointer

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
TASK_STATUS	Type: UINT8	Task Status
TEC_ACOOL_DCOEFF	Type: FLOAT (TBR)	TEC Automatic Cooling Derivative Coefficient
TEC_ACOOL_ICOEFF	Type: FLOAT (TBR)	TEC Automatic Cooling Integral Coefficient
TEC_ACOOL_PCOEFF	Type: FLOAT (TBR)	TEC Automatic Cooling Proportional Coefficient
TEC_ACOOL_RR	Type: UINT8 (TBR)	TEC Automatic Cooling Ramp Rate
		(Percentage)
TEC_ACOOL_SETPT	Type: UINT16 (TBR)	TEC Automatic Cooling Set Point
TEC_AHEAT_DCOEFF	Type: FLOAT (TBR)	TEC Automatic Heating Derivative Coefficient
TEC_AHEAT_ICOEFF	Type: FLOAT (TBR)	TEC Automatic Heating Integral Coefficient
TEC_AHEAT_PCOEFF	Type: FLOAT (TBR)	TEC Automatic Heating Proportional Coefficient
TEC_AHEAT_RR	Type: FLOAT (TBR)	TEC Automatic Heating Ramp Rate
TEC_AHEAT_SETPT	Type: UINT16 (TBR)	TEC Automatic Heating Set Point
TEC_AHEAT_TIMEOUT	Type: UINT16 (TBR)	TEC Automatic Heating Timeout
TEC_CMD	Type: CMD	Thermo-Electric Cooler Command
TEC_MCOOL_RR	Type: UINT8 (TBR)	TEC Manual Cooling Ramp Rate
		(Percentage)
TEC_MHEAT_RR	Type: UINT8 (TBR)	TEC Manual Heating Ramp Rate
		(Percentage)
TEC_MHEAT_TIMEOUT	Type: UINT16 (TBR)	TEC Manual Heating Timeout
TEC_PARMS_TBL	Composite: TEC_ACOOL_SETPT + TEC_SENS_ID + TEC_ACOOL_RR + TEC_ACOOL_PCOEFF + TEC_ACOOL_ICOEFF + TEC_ACOOL_ICOEFF + TEC_AHEAT_SETPT + TEC_AHEAT_SETPT + TEC_AHEAT_RR + TEC_AHEAT_RR + TEC_AHEAT_ICOEFF + TEC_AHEAT_ICOEFF + TEC_AHEAT_TIMEOUT + TEC_VOLTAGE + TEC_WHEAT_RR + TEC_MHEAT_RR + TEC_MHEAT_RR + TEC_MHEAT_RR + TEC_MHEAT_RR + TEC_MHEAT_RR + TEC_MHEAT_TIMEOUT	TEC Parameters Table
TEC_SENS_ID	Type: UINT8 Value: 0: Sensor 1 1: Sensor 2	TEC Temperature Sensor ID
TEC_VOLTAGE	Type: UINT16 (TBR)	TEC Voltage (for Manual Cooling/Heating)
 TGT_ID	Type: UINT16	Target ID

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
THC_PARMS_TBL	Composite: THTR_PWR + THTR_RESIST + THTR_LIMIT + {THTR_PARMS}	Tube Heater Control Parameters Table
THTR_ENABLE	Type: UINT8 Value: 0: Automatic Control 1-255: Manual Control	Tube Heater Control Manual Control Flag
THTR_ID	Type: UINT8	Tube Heater ID
THTR_LIMIT	Type: UINT8	Maximum number of tube heaters that can be on simultaneously in manual mode.
THTR_PARMS	Composite: THTR_SETPT_LO + THTR_SETPT_HI + THTR_ENABLE	Tube Heater Control Parameters
THTR_PWR	Type: UINT8	Power budget in volts for the tube heaters.
THTR_RESIST	Type: UINT16	Resistance in ohms for one of the tube heaters (all are assumed to be the same).
THTR_SETPT_HI	Type: UINT16	Tube Heater Control Upper Threshold
THTR_SETPT_LO	Type: UINT16	Tube Heater Control Lower Threshold
TIMING_PARMS	Composite: TBD	Timing Algorithm Parameters
TIMING_THRSH	Type: UINT16	Timing Threshold
TLM_DATA	{BYTES}	The detailed format of the real-time housekeeping telemetry data is contained in XRT-PSU-028 Section 3. The CCSDS headers and checksums listed in the document are not part of this data dictionary item.
TSM_IMR	Type: UINT16 Location: tsmBase16 + 0xA10300 Bits: 15-8: Reserved 7: Watchdog Interrupt 6-0: Reserved	TSM Interrupt Mask Register
TSM_IPR	Type: UINT16 Location: tsmBase16 + 0xA10304 Bits: 15-8: Reserved 7: Watchdog Interrupt 6-0: Reserved	TSM Interrupt Pending Register

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
TSM_IVR	Location:	TSM Interrupt Vector Registers
-	tsmBase16 + 0xA10308	
	Bits:	
	15-8: Reserved 7: Watchdog Interrupt	
	6-0: Reserved	
TSM_MCR	Type: UINT16 (TBD)	Memory Control Register
	Bits:	
	15-1: Reserved 0: EEPROM Write Inhibit	
TSM_MEM_INS	Type: UINT16	TSM DSP 21020 Instruction SRAM
	Location:	
	tsmBase16 + 0x000000 through tsmBase16 + 0x3FFFFC	
TSM_P2_ENABLE	Type: UINT16	TSM DSP to P2 Output Latch Enable
	tsmBase16 + 0xA10310	
	Bits:	
	15-1: Reserved	
	0: Output Latch Enable (Write: 0 – Disable, 1 – Enable)	
TSM_RESET	Type: UINT16	TSM DSP 21020 Hardware Reset Register
	tsmBase16 + 0xA1030C	
	Bits:	
	15-1: Reserved 0: DSP Reset (Write: 0 – Release, 1 – Set/Hold Reset)	
tsmBase16	Type: ADDRESS	TSM Base Address
UINT16	Type: Fundamental, unsigned short	Unsigned Short Integer
UINT32	Type: Fundamental, unsigned int	Unsigned Integer
UINT8	Type: Fundamental, unsigned char	Unsigned Character, Byte
UPLD_APARM1	Type: UINT32	Target address for memory uploads
 UPLD_APARM2	Type: UINT32	Block Checksum
 UPLD_DATA	Composite:	Data Payload for Upload Command
	1{BYTE}42	
UPLD_DATA_ID	Type: UINT8	File System ID
	Value:	
	0: Raw memory write	
	1: Sequencer Program	
UPLD_HDR	Composite:	Upload Header
	UPLD_DATA_ID +	
	UPLD_SEQ_ID + UPLD_APARM1+	
	UPLD_APARM2	
UPLD_SEQ_ID	Type: SEQ_ID	Sequencer Program ID

XRT Control Processor

Software Requirements Specification

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page 71

Table 7. Data Dictionary		
Name	Attributes	Description
UTC_DELTA	Composite: UTC_DELTA_SECS + UTC_DELTA_SUBSECS	Universal Time Coordinate offset
UTC_DELTA_SECS	Type: UINT32	Delta from Spacecraft time to compute UTC
UTC_DELTA_SUBSECS	Type: UINT16	Delta from Spacecraft time to compute UTC
UTC_SECONDS	Type: UINT32	UTC seconds (from SISCATTITUDE)
UTC_SUBSECONDS	Type: UINT16	UTC sub-seconds (from SISCATTITUDE)
UTC_TIME	Type: SC_TIME	Universal Time Coordinate
VALVE_HTR_ID	Type: UINT8 Value: 1: Heating Element 1 2: Heating Element 2	Valve Heater ID
VALVE_TIMEOUT	Type: UINT8	Timeout in seconds
XCM_1553	Composite: XCM_1553_BIT + XCM_1553_BLK + XCM_1553_CTRL + XCM_1553_CWD + XCM_1553_ILL + XCM_1553_ILR + XCM_1553_INR + XCM_1553_INR + XCM_1553_IPR + XCM_1553_RTBITS + XCM_1553_STS + XCM_1553_TMR Tupo: ADDRESS	Page address of 1552 Interface Chip
XCM_1553_BASE	Type: ADDRESS Value: xcmBase16 + 0x20000	Base address of 1553 Interface Chip
XCM_1553_BIT	Type: UINT16 Location: xcmBase16 + 0x00000C Bits: 15: DMA Fail 14: Wrap Fail 13: Terminal Address Parity Fail 12: BIT Fail 11: Channel A Fail 10: Channel B Fail 9-0: User-Defined Bits	Summit Interrupt BIT Word Register
XCM_1553_BLK	Type: UINT16 Location: xcmBase16 + 0x000010 Bits: 15-0: Remote Terminal Descriptor Address Bits	Summit Remote Terminal Descriptor Pointer Register

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
XCM_1553_CTRL	Type: UINT16 Location: xcmBase16 + 0x000000	Summit Control Register
	Bits:	
	 15: Start Execution 14: Start BIT 13: Start Software Reset 12: Channel A Enable 11: Channel B Enable 10: External Timer Clock Enable 9-7: Reserved 6: Buffer Mode Enable 5: Reserved 4: Broadcast Enable 3: Dynamic Bus Control Acceptance 2: Ping-Pong Enable 1: Interrupt Log Enable 0: Transmit Last Status Word 	
XCM_1553_CWD	Type: UINT16	Summit Current Command Register
	Location: xcmBase16 + 0x000004	
	Bits:	
	15-0: Current Command Bits	
XCM_1553_ILL	Type: UINT16	Summit Illegalization Register
X0M_1000_122	Location: xcmBase16 + 0x000020	
	Bits: Refer to UTMC-SUMMIT	
XCM_1553_ILR	Type: UINT16	Summit Interrupt Log List Pointer Register
XOW_1000_IER	Location: xcmBase16 + 0x00000A	
	Bits:	
	15-0: Interrupt Log List Pointer Bits	
XCM_1553_IMR	Type: UINT16	Summit Interrupt Mask Register
	Location: xcmBase16 + 0x000006	
	Bits: 15: DMA Fail Interrupt 14: Wrap Fail Interrupt 13: Terminal Address Parity Fail Interrupt 12: BIT Fail Interrupt 11: Message Error Interrupt 10: Subaddress Accessed Interrupt 9: Broadcast Command Received Interrupt 8: Index Equal Zero Interrupt 7: Illegal Command Interrupt 6-0: Reserved	
XCM_1553_INIT	Type: UINT16	Summit Initialization Block Register
	Location: xcmBase16 + 0x000014	
	Bits: Refer to UTMC-SUMMIT	

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
XCM_1553_IPR	Type: UINT16 Location: xcmBase16 + 0x000008 Bits:	Summit Interrupt Pending Register
	 15: DMA Fail Interrupt 14: Wrap Fail Interrupt 13: Terminal Address Parity Fail Interrupt 12: BIT Fail Interrupt 11: Message Error Interrupt 10: Subaddress Accessed Interrupt 9: Broadcast Command Received Interrupt 8: Index Equal Zero Interrupt 7: Illegal Command Interrupt 6-0: Reserved 	
XCM_1553_RTBITS	Type: UINT16 Location: xcmBase16 + 0x000012 Bits:	Summit Status Word Bits Register
	 15: Immediate Clear Function 14-10: Reserved 9: Instrumentation Bit 8: Service Request Bit 7-4: Reserved 3: Busy 2: Subsystem Flag Bit 1: Reserved 0: Terminal Flag 	
XCM_1553_STS	Type: UINT16 Location: xcmBase16 + 0x000002	Summit Operational Status Register
	Bits: 15: Terminal Address Bit 4 14: Terminal Address Bit 3 13: Terminal Address Bit 2 12: Terminal Address Bit 1 11: Terminal Address Bit 0 10: Terminal Address Parity 9: Mode Select 1 8: Mode Select 1 8: Mode Select 0 7: Military Standard A or B 6: LOCK Pin 5: AUTOEN Pin 4: SSYSF Pin 3: Summit MCM-C Executing 2: Terminal Parity Fail 1: READY Pin 0: TERACT Pin	
XCM_1553_TMR	Type: UINT16 Location: xcmBase16 + 0x00000E Bits:	Summit Time-Tag Register
	15-0: Time-tag Counter Bits	

XRT Control Processor

Table 7. Data Dictionary		
Name	Attributes	Description
XCM_APMI_CSR	Type: UINT16	XCM APMI Control and Status Register
	Location: xcmBase16 + 0x010426	
	Bits:	
	15: Reset FIFO	
	(Write: 1 – Reset)	
	14: End-Of-Line Interrupt Enable (Write: 1 – Enable)	
	13: End-Of-Line Interrupt Status	
	(Read: 0 – No interrupt, 1 – Interrupt present) (Write: 1 – Reset interrupt)	
	12: End-Of-Frame Interrupt Enable	
	(Write: 1 – Enable)	
	11: End-Of-Frame Interrupt Status (Read: 0 – No interrupt, 1 – Interrupt present)	
	(Write: 1 – Reset interrupt)	
	10: Overflow Interrupt Enable (Write: 1 – Enable)	
	9: Overflow Interrupt Status	
	(Read: 0 – No interrupt, 1 – Interrupt present)	
	(Write: 1 – Reset interrupt) 8: Half Full Flag	
	(0 – Not half-full, 1 – At least half full)	
	7: Empty Flag (0 – Not empty, 1 – FIFO is empty)	
	6: FIFO Read Error	
	(0 – No error, 1 – Read past end)	
	5-4: Reserved 3-0: EOL Interrupt Count	
	(Number of EOL flags before EOL Interrupt)	
XCM_APMI_EOL	Type: UINT16	XCM APMI End-Of-Line Counter Register
	Location: xcmBase16 + 0x010426	
	Bits:	
	15-9: Reserved	
	8: EOL Counter Overflow 7-0: EOL Counter	
XCM_CCD_FIFO	Type: UINT16	XCM CCD Data FIFO
	Location: xcmBase16 + 0x010100	
XCM_DAC1_CTRL	Type: UINT16	XCM DAC1 Control Register
	Location: xcmBase16 + 0x010428	
	Bits:	
	15-0: Timer Bits	
XCM_DAC2_CTRL	Type: UINT16	XCM DAC2 Control Register
	Location: xcmBase16 + 0x010428	
	Bits:	
	15-0: Timer Bits	
XCM_EEPROM	Type: {UINT32}	EEPROM on the XCM.
	Locations:	Refer to Appendix B for memory map.
	eeBase32 + 0x800000 through eeBase32 + 0xAFFFFC	

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name	Attributes	Description
XCM_ENET	Composite: {UINT16}	Ethernet engineering support board control and data registers
XCM_ENET_BASE Type: ADDRESS Value: xcmBase16 + 0x020300		Base address of Ethernet External Port
XCM_HK_CSR	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 15: Reset HK FIFO (Write: 1 – Reset FIFO) 14: Reserved 13-12: Acquisition Mode Set 11: Reserved 10: FIFO Empty Flag 9: Frame Received Interrupt Status 8: Frame Received Interrupt Enable 7-0: Multiplexer Address Set	XCM Housekeeping Control and Status Register
XCM_HK_FIFO	Type: UINT16 Location: xcmBase16 + 0x010200	XCM Housekeeping Data FIFO
XCM_HK_START	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 15-0: Reserved	XCM Housekeeping Start Register (Write Only) Write to register starts Analog/Digital Conversion according to mode set in XCM_HK_CSR
XCM_IMR	Type: UINT16 Location: xcmBase16 + 0x020604 Bits: 15-7: Reserved 6: 1553 Interrupt 5: Rx Ready Interrupt 4: HK Done Interrupt 3: APMI Error Interrupt 2: APMI EOL or EOF Interrupt 1: Ethernet Interrupt 0: Reserved	XCM Interrupt Mask Register
XCM_IPR	Type: UINT16 Location: xcmBase16 + 0x020606 Bits: 15-7: Reserved 6: 1553 Interrupt 5: Rx Ready Interrupt 4: HK Done Interrupt 3: APMI Error Interrupt 2: APMI EOL or EOF Interrupt 1: Ethernet Interrupt 0: Reserved	XCM Interrupt Pending Register

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name Attributes Description		
XCM_IVR	Type: UINT16 Location: xcmBase16 + 0x020608	XCM Interrupt Vector Register
	Bits: 15-8: Reserved 7-3: VME Status/ID 2-0: IRQ (Read only)	
XCM_MEM_1553	Composite: {UINT16} Location: xcmBase16 + 0x030000 through xcmBase16 + 0x03FFFC	MIL-STD-155B Shared Memory
XCM_MEM_ENET	Type: {UINT32}	Ethernet engineering support board memory
XCM_METCSR	Type: UINT16 MET Control and Status Register Location: xcmBase16 + 0x020616 Bits: 15-3: Reserved 2: MET Reset Enable 1: MET Time Jam Enable 0: MET PPS Source Select	
XCM_METRST	Type: UINT16 Location: xcmBase16 + 0x020618 Bits: 15-0: Reserved	MET Reset Register
XCM_SER_CSR	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 15-10: Reserved 9: Serial Channel 2 Frame Error 8: Serial Channel 2 Frame Error 7: Serial Channel 2 Tx Interrupt Enable 6: Serial Channel 2 Tx Interrupt Enable 5: Serial Channel 2 Tx Empty 4: Serial Channel 2 Tx Interrupt Enable 2: Serial Channel 1 Tx Interrupt Enable 2: Serial Channel 1 Tx Interrupt Enable 1: Serial Channel 1 Tx Empty 0: Serial Channel 1 Tx Empty	XCM Serial Interface Control and Status Register
XCM_SER_RX	Composite: XCM_SER1_RX + XCM_SER2_RX	XCM RS-422 Receive Registers
XCM_SER_TX	Composite: XCM_SER1_TX + XCM_SER2_TX	XCM RS-422 Transmit Registers
XCM_SER1_RX	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 2 bytes received	XCM Serial Interface 1 Receive Register

XRT Control Processor

Table 7. Data Dictionary		
Name	Attributes	Description
XCM_SER1_TX	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 15-0: 2 bytes to transmit	XCM Serial Interface 1 Transmit Register
XCM_SER2_RX	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 2 bytes received	XCM Serial Interface 2 Receive Register
XCM_SER2_TX	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 2 bytes to transmit	XCM Serial Interface 2 Transmit Register
XCM_TMFINE	Type: UINT16 Location: xcmBase16 + 0x010428 Bits: 15-0: Timer Bits	XCM Timer Register Fine
ХСМ_ТМНІ	Type: UINT16 Location: xcmBase16 + 0x010424 Bits: 15-0: Timer Bits	XCM Timer Register High
XCM_TMLO	Type: UINT16 Location: xcmBase16 + 0x010426 Bits: 15-0: Timer Bits	XCM Timer Register Low
XCM_WDR	Type: UINT16 Location: xcmBase16 + 0x010436 Bits: 15-0: Reserved	XCM Watchdog Strobe Register A write to this register, regardless of contents, strobes the watchdog timer on the Power Supply Module (PSM).
xcmBase16	Type: ADDRESS Value: 0xCF000000	Base address of XCM (D16 access) (Base address of XCM is 0xFF000000 VME.)
XCP_BYTES_LAST	Type: UINT32 Number of bytes sent by XCP last spin	
XCP_DRAM	Type: UINT32	XCP Main Memory
XCP_EEPROM	Composite: {UINT32}	XCP EEPROM (See Appendix B.)

XRT Control Processor

Table 7. Data Dictionary		
Name Attributes Desc		Description
XCP_EICR_EIM0	Type: UINT16	External Interrupt Mask Register
	Location: eicrBase32 + 0x000000	
	Bits:	
	31: RBI Timer Interrupt 30: Reserved 29: UART Interrupts 28-24: Reserved 23: VME IRQ 7 22: VME IRQ 6	
	21: VME IRQ 5 20: VME IRQ 4 19: VME IRQ 3 18: Reserved 17: VME IRQ 2 16: VME IRQ 1 15-0: Reserved	
		Marking Oback Error Address Davister
XCP_EICR_MEAR	Type: UINT16 Location: eicrBase32 + 0x00001C	Machine Check Error Address Register
	Bits: 31-24: Syndrome 23-0: Bits 3-26 or Real Address	
XCP_EICR_MESR	Type: UINT16	Machine Check Error Status Register
	Location: eicrBase32 + 0x000018	
	Bits:	
	 31: Error occurred in Diagnostic Mode 30: Error occurred on a processor load or store 29: Reserved 28: Address Exception 27: Attempted store into a Read-Only Segment 26: Uncorrectable ECC Error 25-0: Reserved 	
XCP_EICR_SBAR	Type: UINT16	Single-Bit Error Address Register
	Location: eicrBase32 + 0x00002C	
	Bits:	
	31-24: Syndrome 23-0: Bits 3-26 or Real Address	
XCP_EICR_SBSR	Type: UINT16	Single-Bit Error Status Register
	Location: eicrBase32 + 0x000028	
	Bits:	
	31: Single-Bit ECC Error 30-0: Reserved	
KCP_EICRS	Composite:	External Interrupt Control Registers
	EICR_MEAR + EICR_MESR + EICR_SBAR + EICR_SBSR + EICR_EIM0	
KCP_FUNC_ENABLED	Type: BOOL	Indicates whether or not a particular automatic control function is enabled.

XRT Control Processor

Table 7. Data Dictionary		
Name Attributes		Description
XCP_IOCC	Composite:	Input/Output Channel Controller Registers
	XCP_IOCC_IRQ_REGS + XCP_IOCC_RBI_TIMER + XCP_IOCC_INT_REG + XCP_IOCC_EOI_REGS	
XCP_IOCC_EOI_IRQ1	Type: UINT32	End of Interrupt Register (IRQ1)
	Location: ioccBase32 + 0x41008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_IRQ2	Type: UINT32	End of Interrupt Register (IRQ2)
	Location: ioccBase32 + 0x42008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_IRQ3	Type: UINT32	End of Interrupt Register (IRQ3)
	Location: ioccBase32 + 0x43008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_IRQ4	Type: UINT32	End of Interrupt Register (IRQ4)
	Location: ioccBase32 + 0x44008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_IRQ5	Type: UINT32	End of Interrupt Register (IRQ5)
	Location: ioccBase32 + 0x45008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_IRQ6	Type: UINT32	End of Interrupt Register (IRQ6)
	Location: ioccBase32 + 0x46008C	
	Bits:	
	31-0: Reserved	
XCP_IOCC_EOI_REGS	Composite:	End of Interrupt Registers
	IOCC_EOI_SYSFAIL + IOCC_EOI_IRQ1 + IOCC_EOI_IRQ2 + IOCC_EOI_IRQ3 + IOCC_EOI_IRQ3 + IOCC_EOI_IRQ5 + IOCC_EOI_IRQ5 + IOCC_EOI_IRQ6 + IOCC_EOI_IRQ7	
XCP_IOCC_EOI_SYSFAIL	Type: UINT32	End of Interrupt Register (SYSFAIL)
—	Location: ioccBase32 + 0x40008C	
	Bits:	
	31-0: Reserved	

XRT Control Processor

Software Requirements Specification

Table 7. Data Dictionary		
Name Attributes Description		
XCP_IOCC_RBI_CFG	Type: UINT32	RBI Configuration Register
	Location: ioccBase32 + 0x400010	
	Bits:	
	31: Master Enable	
	30: Reserved 29-28: Turbo clock	
	27-26: VME AML	
	25-24: VME LIM 23: Reserved	
	22-20: TCW Table Size	
	19: Reserved 18: Bus Hold/ 3P DMA K bit	
	17: PIO/3P Select	
	16: Clock Control 15-0: Reserved	
XCP_IOCC_RBI_TIMER	Type: UINT32	RBI Time Control Register,
	Location: ioccBase32 + 0x480004	Real Time Incrementer (Interval Timer)
	Bits:	
	31-16: Interrupt Interval	
	(two's complement of interval) 15-0: Reserved	
	Units:	
	2.17 μsecs	
XCP_IOCC_SYSFAIL	Type: UINT32	VME SYSFAIL Interrupt Register,
	Location: ioccBase32 + 0x400004	Store Generate,
	Bits:	Load Acknowledge
	31-0: Reserved	
XCP_PROM	Composite: {UINT32}	Bootstrap Area in EEPROM
	Location:	
	eeBase32 + 0x0A0000 through eeBase32 + 0x0A7FFC	
XCP_PROM_CHKS	Type: CHKS_32	Preprogrammed PROM Checksum
	Location: eeBase32 + 0x0A7FFC	
	Value: (See CHKS_32)	
XCP_PROM_MBE	Type: UINT32	Preprogrammed PROM Multiple Bit Error
	Location: eeBase32 + 0x0A7FF4	Location
	Value: 0xC0000000 (uncorrected)	
XCP_PROM_SBE	Type: UINT32	Preprogrammed PROM Single-Bit Error
	Location: eeBase32 + 0x0A7FF8	Location
	Value:	
	0x00000000 (corrected) 0x80000000 (uncorrected)	
XCP_RTCL	Type: UINT16	XCP Real-time Clock low
XCP_RTCU	Type: UINT16	XCP Real-time Clock upper
XCP_STATE	Type: STATE_CODE	System State
XFER_REQ_CNTR	Type: UINT16	ST_PDU transfer request counter

APPENDIX A DETAILED SOFTWARE REQUIREMENTS

Note: If reviewing this document electronically, the detailed software requirements are contained in a separate Microsoft® Excel spreadsheet file, 04121-xrtsrs-01.xls.

APPENDIX B EEPROM MEMORY MAPS

The following table details the locations of the various components of the Electrically-Eraseable Programmable Read-Only Memory, **XCP_EEPROM**.

Table 8. XCP_EEPROM Memory Map		
Location	Data Dictionary Entry	
eeBase32 + 0x800000 through eeBase32 + 0x807FFF	BOOT_BLOCK	
eeBase32 + 0x808014 through eeBase32 + 0x88FFFF	PRIME_OS_BLOCK	
eeBase32 + 0x980000 through eeBase32 + 0x98FFFF	ALT_OS_BLOCK	
eeBase32 + 0xA00000 through eeBase32 + 0xAEFFFF	FILE_SYSTEM_BLOCK	
eeBase32 + 0xAF0000 through eeBase32 + 0xAFFFFF	SYSTEM_BLOCK	

The following table details the locations of the various components of the **SYSTEM_BLOCK**.

Table 9. SYSTEM_BLOCK Memory Map	
Location	Data Dictionary Entry
eeBase32 + 0xAF0000 through eeBase32 + 0xAF01FF	SYSTEM_CONFIG_AREA
eeBase32 + 0xAF0200 through eeBase32 + 0xAF03FF	Reserved
eeBase32 + 0xAF0400 through eeBase32 + 0xAF05FF	SYSTEM_VOLATILE_AREA
eeBase32 + 0xAF0600 through eeBase32 + 0xAF0FFF	Reserved
eeBase32 + 0xAF1000 through eeBase32 + 0xAF11FF	BIT_DATA
eeBase32 + 0xAF1200 through eeBase32 + 0xAFFFFF	Reserved

The following table details the locations of the components of the SYSTEM_CONFIG_AREA.

Table 10. SYSTEM_CONFIG_AREA Memory Map	
Location Data Dictionary Entry	
eeBase32 + 0xAF0000	Reserved
eeBase32 + 0xAF0004 COLD_SKIP_BIT	

Software Requirements Specification

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page B-2

Table 10. SYSTEM_CONFIG_AREA Memory Map	
Location	Data Dictionary Entry
eeBase32 + 0xAF0008 through eeBase32 + 0xAF0008	Reserved
eeBase32 + 0xAF0010	COLD_MEM_SIZE
eeBase32 + 0xAF0014 through eeBase32 + 0xAF0018	ENET_MAC (Test Only)
eeBase32 + 0xAF001C through eeBase32 + 0xAF0030	Reserved
eeBase32 + 0xAF0034	CPU_SPEED
eeBase32 + 0xAF0038	Reserved
eeBase32 + 0xAF003C	Reserved
eeBase32 + 0xAF0040	BC1_START_ADDR
eeBase32 + 0xAF0044	BC1_END_ADDR
eeBase32 + 0xAF0048	BC1_COPY_ADDR
eeBase32 + 0xAF004C	BC1_ENTRY_ADDR
eeBase32 + 0xAF0050	BC1_CHKS_32
eeBase32 + 0xAF0054 through eeBase32 + 0xAF01F0	Reserved
eeBase32 + 0xAF01F4	ENET_IP (Test only)
eeBase32 + 0xAF01F8	ENET_HOST_IP (Test only)
eeBase32 + 0xAF01FC	SC_CHKS_32

The following table details the locations of the components of the **SYSTEM_VOLATILE_AREA**.

Table 11. SYSTEM_VOLATILE_AREA Memory Map	
Location	Data Dictionary Entry
eeBase32 + 0xAF0400	BC_INDEX
eeBase32 + 0xAF0404	BOOT_CNT
eeBase32 + 0xAF0408 though eeBase32 + 0xAF05FF	Reserved

The following table details the locations of the components of the BIT_DATA.

Table 12. BIT_DATA Memory Map	
Value: (one result/word [4 bytes]) Failure: FFFFFFF Success: 00000000	
Location	Data Dictionary Entry
eeBase32 + 0xAF1000 through eeBase32 + 0xAF103C	Reserved
eeBase32 + 0xAF1040	BIT_CPU_BRANCH

XRT Control Processor

Software Requirements Specification

0412	04121-XCPSRS-01		
April 23, 2001	Rev. 2 Chg. 0		
	Page B-3		

Table 12. BIT_DATA Memory Map		
Value: (one result/word [4 bytes]) Failure: FFFFFFF Success: 00000000		
Location	Data Dictionary Entry	
eeBase32 + 0xAF1044	BIT_CPU_FXPT	
eeBase32 + 0xAF1048	BIT_CPU_FLTPT	
eeBase32 + 0xAF104C	BIT_CPU_INT	
eeBase32 + 0xAF1050	Reserved	
eeBase32 + 0xAF1054	BIT_CPU_TIMER	
eeBase32 + 0xAF1058	BIT_EDAC_SBE	
eeBase32 + 0xAF105C	BIT_EDAC_MBE	
eeBase32 + 0xAF1060	BIT_PROM_CHKS	
eeBase32 + 0xAF1064 through eeBase32 + 0xAF107C	Reserved	
eeBase32 + 0xAF1080	BIT_1553_RAM	
eeBase32 + 0xAF1084	BIT_1553_INT	
eeBase32 + 0xAF1088 through eeBase32 + 0xAF10FC	Reserved	
eeBase32 + 0xAF1100 through eeBase32 + 0xAF113C	BIT_DRAM	
eeBase32 + 0xAF1140 through eeBase32 + 0xAF11FC	Reserved	

The following table details the locations of the components of the **BIT_DRAM**.

Table 13. BIT_DRAM Memory Map		
Value: Packed (1 bit for each 256Kb Failure: 1 Success: 0	block)	
Location	Description	
eeBase32 + 0xAF1100	0MB-8MB Result	
eeBase32 + 0xAF1104	8MB-16MB Result	
eeBase32 + 0xAF1108	16MB-24MB Result	
eeBase32 + 0xAF110C	24MB-32MB Result	
eeBase32 + 0xAF1110	32MB-40MB Result	
eeBase32 + 0xAF1114	40MB-48MB Result	
eeBase32 + 0xAF1118	48MB-56MB Result	
eeBase32 + 0xAF111C	56MB-64MB Result	
eeBase32 + 0xAF1120	64MB-72MB Result	
eeBase32 + 0xAF1124	72MB-80MB Result	
eeBase32 + 0xAF1128	80MB-88MB Result	
eeBase32 + 0xAF112C	88MB-96MB Result	
eeBase32 + 0xAF1130	96MB-104MB Result	

XRT Control Processor

04121-XCPSRS-01 April 23, 2001 Rev. 2 Chg. 0 Page B-4

Software	Requirements	Specification
----------	--------------	---------------

Table 13. BIT_DRAM Memory Map		
Value: Packed (1 bit for each 256Kb block) Failure: 1 Success: 0		
Location	Description	
eeBase32 + 0xAF1134	104MB-112MB Result	
eeBase32 + 0xAF1138	112MB-120MB Result	
eeBase32 + 0xAF113C	120MB-128MB Result	

APPENDIX C TELECOMMANDS

The following table lists the telecommands supported by XRT.

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
FO_NEXTOBS_INFO	The FOM Has Identified a Target Preliminary information from FOM Peer Review presentation.	ALL	TARGET_ID, RA, DEC, ROLL, FO_OBS_MODE, FO_OBS_TYPE, PAST_OBS_TIME, IS_AT_TARGET
SINOOP	Command ignored.	ALL	None
	Broadcast Telecommand Test		
	See Spectrum Astro document # 1143-EI-S22904, Swift Spacecraft to Payload Telecommand Interface Control Document.		
SISCATTITUDE	Attitude of the Spacecraft See Spectrum Astro document # 1143-EI-S22904, Swift Spacecraft to Payload Telecommand Interface Control Document.	ALL	UTC_SECONDS, UTC_SUBSECONDS, TARGET_ID, RA, DEC, ROLL, LATTITUDE, LONGITUDE, ALTITUDE, IN_SAA_FLAG, IS_IN_10_ARCMIN, IS_SETTLED, IN_SAFE_MODE
SISLEWABORT	Command ignored.	ALL	None
	The Spacecraft Has Aborted the Slew See Spectrum Astro document # 1143-EI-S22904, Swift Spacecraft to Payload Telecommand Interface Control Document.		
SISLEWWARNING	Command ignored.	ALL	None
	The Spacecraft is About to Slew		
	See Spectrum Astro document # 1143-EI-S22904, Swift Spacecraft to Payload Telecommand Interface Control Document.		
SITIMETONE	Time of the Spacecraft	ALL	SCLK_SECONDS,
	See Spectrum Astro document # 1143-EI-S22904, Swift Spacecraft to Payload Telecommand Interface Control Document.		UTC_DELTA_SECS, UTC_DELTA_SUBSECS

XRT Control Processor

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_ALG_SET_CPARMS	Set the FPC's Centroid Algorithm Parameters	MAN	CENT_PARMS
X_ALG_SET_CTHRSH	Set the FPC's Centroid Pixel Threshold	MAN	CENT_THRSH
X_ALG_SET_ETHRSH	Set Event Threshold	MAN	EVENT_THRSH
X_ALG_SET_STHRSH	Set Split Event Threshold	MAN	EVENT_STHRSH
X_ALG_SET_TPARMS	Set Photo-Diode Mode and Windowed Timing Mode Parameters	MAN	TIMING_PARMS
	Photo-Diode Mode is primarily used to generate light curves.		
	Windowed Timing Mode is primarily used to generate a spectrum.		
X_ALG_SET_TTHRSH	Set Photo-Diode Mode and Windowed Timing Mode Event Threshold	MAN	TIMING_THRSH
X_ALG_SET_ULD	Set Upper Level Discriminator	MAN	EVENT_ULD
	The ULD is the upper energy threshold used for the event recognition algorithm.		
X_BHTR_DIS	Disable Thermal Baffle Control Heater	MAN	BHTR_ID
X_BHTR_EN	Enable Thermal Baffle Control Heater	MAN	BHTR_ID
X_BHTR_SET_PARMS	Set Thermal Baffle Control Heater's Control Parameters	MAN	BHTR_PARMS
X_CCD_BASEL_DIS	Disable the FPC's Baseline Correction	MAN	None
X_CCD_BASEL_EN	Enable the FPC's Baseline Correction	MAN	None
X_CCD_CALC_MRC	Calculate Mean Row Correction Row	MAN	None
X_CCD_CLR_RAW_IM	Clear Raw Image Flag Manually	ALL	None
X_CCD_DAC_DIS	Disable DACs	MAN	None
X_CCD_DAC_EN	Enable DACs	MAN	None
X_CCD_DUMP_BAD_P	Dump Bad Pixel Table	MAN	None
X_CCD_DUMP_BAD_R	Dump Bad Row	MAN	None
	For Photo-Diode and Windowed Timing modes		
X_CCD_DUMP_MRC	Dump the MRC Row	MAN	None
X_CCD_MRC_DIS	Mean Row Correction Disable	MAN	None
X_CCD_MRC_EN	Mean Row Correction Enable	MAN	None
X_CCD_RSET_BAD_P	Reset Bad Pixel in Bad Pixel Table	MAN	BAD_PIX_ROW,
	-1 to reset an entire row or column		BAD_PIX_COL
X_CCD_RSET_BAD_R	Reset Bad Pixel in Bad Row	MAN	BAD_PIX_COL
	For Photo-Diode and Windowed Timing modes		
X_CCD_SEL_B_ALG	Select the Focal Plane Camera's (FPC) Bias Algorithm	MAN	BIAS_ALG_ID

XRT Control Processor

Software Requirements Specification

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_CCD_SEL_BMAP	Select the FPC's Active Bias Map	MAN	BIAS_MAP_ID
X_CCD_SEL_MRC_ALG	Select Mean Row Correction Algorithm	MAN	MRC_ALG_ID
X_CCD_SEL_MRC_ROW	Select Mean Row Correction Row	MAN	MRC_ROW
X_CCD_SET_BAD_P	Set Bad Pixel in Bad Pixel Table	MAN	BAD_PIX_ROW,
	-1 to set an entire row or column		BAD_PIX_COL
X_CCD_SET_BAD_R	Set Bad Pixel in Bad Row	MAN	BAD_PIX_COL
	For Photo-Diode and Windowed Timing modes		
X_CCD_SET_BTHRSH	Set the FPC's Bias Threshold	MAN	BIAS_THRSH
	When updating the bias, only use pixels to update bias if less than threshold.		
X_CCD_SET_DAC_T	Set DAC Table	MAN	DAC_TBL
	Set the CCD DAC value located in memory and use for all future DAC loads.		
X_CCD_SET_MRC_FQ	Set MRC Row Update Frequency	MAN	MRC_FQ
X_CCD_SET_MTHRSH	Set MRC Threshold	MAN	MRC_THRSH
X_CCD_SET_RAW_IM	Set Raw Image Flag	ALL	None
	A raw image report will be generated at the beginning of the next spacecraft slew, and the raw image flag is cleared automatically by the XRT FSW.		
X_CCD_SET_RML	Set the FPC's Running Mean Length	MAN	RML
X_CLK_SET_TIME	Set Clock Time	MAN	SC_TIME
X_CLK_SYNC_DIS	Disable Time Synchronization with Spacecraft	MAN	None
X_CLK_SYNC_EN	Enable Time Synchronization with Spacecraft	MAN	None
X_HK_CMDECHO_DIS	Disable Command Echo	ALL	None
X_HK_CMDECHO_EN	Enable Command Echo	ALL	None
X_HK_SET_LIMITS	Set the Upper and Lower HK Limits	MAN	PP_RANGE_TBL
	Critical HK parameters are monitored by the flight software for proper operating range.		
X_HK_SET_PERIOD	Set Housekeeping Period	ALL	PP_RATE_TBL
X_HK_SET_STRIP	Set Stripchart Time Interval	ALL	STRIP_INTERVAL
X_HK_START_SEND	Resend Startup Packet	ALL	None
X_HK_STRIP_DIS	Disable Stripchart Mode	ALL	None
X_HK_STRIP_EN	Enable Stripchart Mode	ALL	None
X_LED_OFF	Turn Off the CCD Test LED	MAN	None
X_LED_ON	Turn On the CCD Test LED	MAN	None

XRT Control Processor

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_MEM_DUMP	Download Memory	MAN	DUMP_PARMS
X_MEM_UPLD	Upload Memory	MAN	UPLD_HDR, UPLD_DATA
X_MEM_UPLD_STORE	Store Upload Buffer to Memory	RED	UPLD_HDR, UPLD_DATA
X_SEQ_ABORT	Abort current mode, reset Sequencer and FIFO and flush ERP, and start null mode.	MAN	None
X_SEQ_RAMP_START	Execute Ramp DACs Mode Ramp CCD DAC voltages for I&T purposes only. Will be available in I&T software only.	RED	DAC_ID
X_SEQ_START	Start Manual Mode	MAN	SEQ_ID Null, Image (4 modes: low-gain fast- exposure, low-gain slow-exposure, high-gain fast-exposure, high-gain slow-exposure), Photo-Diode, Windowed Timing, Photon- Counting, Bias Image Calculation, Bias Row Calculation, Raw-Data, Predetermined Science Telemetry Pattern
X_SEQ_UPLD_PRG	Upload Sequencer Program	MAN	UPLD_HDR, UPLD_DATA
X_SEQ_UPLD_TBL	Upload Sequencer Programs Lookup Table	MAN	SEQ_TBL
X_SYS_CHKS32	Calculate and store checksum	MAN	3{ADDRESS}3
X_SYS_CLOS_SHUTR	Close Sun Shutter	RED	RAD_SRC_FLAG
X_SYS_DCX_OFF	Turn Off Data Compression	MAN	None
X_SYS_DCX_ON	Turn On Data Compression	MAN	None
X_SYS_LKOP_SHUTR	Lock the Sun Shutter Open	RED	None
X_SYS_OPEN_DOOR	Open Camera Door There are two HOP type actuators, and they require many seconds to heat the wax (150 seconds typical). A timeout value will prevent current draw after the door is open if the door switch fails, and it will also allow the actuators to be tested if the timeout value is set to a low value (5 seconds).	RED	DOOR_ACT_ID, DOOR_TIMEOUT
X_SYS_OPEN_SHUTR	Open Sun Shutter	RED	None
X_SYS_OPEN_VALVE	Open Camera Pressure Relief Valve This is a HOP type actuator, and requires many seconds to heat the wax (150 seconds typical). A timeout value will prevent current draw after the valve is open, and it will also allow the actuator to be tested if the timeout value is set to a low value (5 seconds).	RED	VALVE_HTR_ID, VALVE_TIMEOUT
X_SYS_RSET_CMDCTR	Reset the Command Counters	MAN	None

XRT Control Processor

Software Requirements Specification

	Table 14. Telecom	Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)		
X_SYS_SET_BUFFER	Sets when the buffer's interrupt will occur. After the specified number of CCD rows have been written into the buffer, an interrupt will be generated.	MAN	N_CCD_ROWS		
X_SYS_SET_SAA_MODE	This command sets configuration information used by XRT to determine how to handle the SAA.	ALL	SAA_FLAG, SAA_PARMS		
X_SYS_SHELL	Execute a command at the VxWorks shell	RED	STRING		
X_SYS_STATE_AUTO	Set State to AUTO	MAN	STATE_NEXT		
X_SYS_STATE_MAN	Set State to MAN	ALL	STATE_NEXT		
X_SYS_STATE_RED	Set State to RED	MAN	STATE_NEXT, RED_APID, RED_FCODE		
X_SYS_STOP_DOOR	Cancel the Open Camera Door Command	ALL	DOOR_ACT_ID		
X_SYS_STOP_VALVE	Cancel the Open Camera Pressure Relief Valve Command	ALL	VALVE_HTR_ID		
X_TAM_CORR_DIS	Disable TAM Correction	MAN	None		
X_TAM_CORR_EN	Enable TAM Correction	MAN	None		
K_TAM_LED1_ON	Turn on TAM LED 1, and turn off TAM LED 2 if it's on.	MAN	None		
X_TAM_LED2_ON	Turn on TAM LED 2, and turn off TAM LED 1 if it's on.	MAN	None		
X_TAM_LEDS_OFF	Turn off TAM LEDs.	MAN	None		
X_TAM_PWR_DIS	Telescope Alignment Monitor (TAM) Disable	MAN	None		
X_TAM_PWR_EN	Telescope Alignment Monitor (TAM) Enable	MAN	None		
X_TAM_READ	Forces the TAM to be read immediately.	MAN	None		
X_TAM_READ_FREQ	Set the Period for Reading TAM	MAN	TAM_RDFQ		
X_TAM_SET_CPARMS	Set the TAM's Centroid Algorithm Parameters	MAN	CENT_PARMS		
X_TAM_SET_CTHRSH	Set the TAM's Centroid Pixel Threshold	MAN	CENT_THRSH		
X_TAM_SET_OFFSET	Set the TAM's Boresight Calibration Offsets	MAN	TAM_BORE_LED1, TAM_BORE_LED2		

XRT Control Processor

Software Requirements Specification

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_TEC_AUTO_COOL	TEC Automatic Cooling Mode If TEC is off: set the parameters as specified, set the TEC Power Supply's SHUTDOWN input to a low logic level, and start the TEC Cooling Mode PID Control Loop.	RED	TEC_ACOOL_SETPT, TEC_SENS_ID, TEC_ACOOL_RR, TEC_ACOOL_PCOEFF, TEC_ACOOL_ICOEFF, TEC_ACOOL_ICOEFF,
	If TEC is in Manual Cooling Mode: set the parameters as specified and start the TEC Cooling Mode PID Control Loop.		
	If TEC is in Automatic Cooling Mode: set the parameters as specified.		
	If TEC is in Manual Heating Mode: ignore command.		
	If TEC is in Automatic Heating Mode: ignore command.		
X_TEC_AUTO_HEAT	TEC Automatic Heating Mode	RED	TEC_AHEAT_SETPT,
	If TEC is off: set the parameters as specified, energize the heating relay, set the TEC Power Supply's SHUTDOWN input to a low logic level, and start the TEC Heating Mode PID Control Loop.		TEC_SENS_ID, TEC_AHEAT_RR, TEC_AHEAT_PCOEFF, TEC_AHEAT_ICOEFF, TEC_AHEAT_ICOEFF, TEC_AHEAT_DCOEFF, TEC_AHEAT_TIMEOUT
	If TEC is in Manual Heating Mode: set the parameters as specified and start the TEC Heating Mode PID Control Loop.		
	If TEC is in Automatic Heating Mode: set the parameters as specified.		
	If TEC is in Manual Cooling Mode: ignore command.		
	If TEC is in Automatic Cooling Mode: ignore command.		
X_TEC_EMER_OFF	Turn off the TEC Immediately	RED	None
	Stops the TEC Control Loop, sets the TEC Power Supply's SHUTDOWN input to a high logic level, sets the TEC Power Supply's digital potentiometer to its minimum value, and if the TEC is in Automatic or Manual Heating Mode, the heating relay is deenergized.		

XRT Control Processor

Software Requirements Specification

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_TEC_MAN_COOL	TEC Manual Cooling Mode If TEC is off: set the TEC Power Supply's SHUTDOWN input to a low logic level, and ramp the TEC Power Supply's output voltage to the specified value. If TEC is in Manual Cooling Mode:	RED	TEC_VOLTAGE, TEC_MCOOL_RR
	ramp the TEC Power Supply's output voltage to the specified value. If TEC is in Automatic Cooling Mode: stop the TEC Cooling Mode PID Control Loop, and ramp the TEC Power Supply's output voltage to the specified value. If TEC is in Manual Heating Mode: ignore command. If TEC is in Automatic Heating Mode:		
	ignore command.		
X_TEC_MAN_HEAT	TEC Manual Heating Mode If TEC is off: energize the heating relay, set the TEC Power Supply's SHUTDOWN input to a low logic level, and ramp the TEC Power Supply's output voltage to the specified value.	RED	TEC_VOLTAGE, TEC_MHEAT_RR, TEC_MHEAT_TIMEOUT
	If TEC is in Manual Heating Mode: ramp the TEC Power Supply's output voltage to the specified value.		
	If TEC is in Automatic Heating Mode: stop the TEC Heating Mode PID Control Loop, and ramp the TEC Power Supply's output voltage to the specified value.		
	If TEC is in Manual Cooling Mode: ignore command.		
	If TEC is in Automatic Cooling Mode: ignore command.		
X_TEC_NORMAL_OFF	Turn off the TEC Gracefully	RED	None
	Stops the TEC Control Loop, ramps the TEC Power Supply's digital potentiometer to its minimum value, sets the TEC Power Supply's SHUTDOWN input to a high logic level, and if the TEC is in Automatic or Manual Heating Mode, the heating relay is deenergized.		
X_THTR_DIS	Disable Telescope Tube Heater	MAN	THTR_ID
X_THTR_EN	Enable Telescope Tube Heater	MAN	THTR_ID

XRT Control Processor

Software Requirements Specification

Table 14. Telecommands			
Mnemonic	Description	State	Parameters (See Data Dictionary)
X_THTR_SET_PARMS	Set theTelescope Tube Heater Temperature Set Point Adjust until the temperature ripple is centered on the desired temperature. Also, starts the Thermal Baffle Control Heater's control loop if it is currently stopped.	MAN	THTR_LIMIT, THTR_RESIST, THTR_PWR, {THTR_ID + THTR_PARMS}

APPENDIX D CPU THROUGHPUT CALCULATION

Note: If reviewing this document electronically, the CPU throughput calculations are contained in a separate Microsoft® Excel spreadsheet file, *XRTcpu_rev1.xls*.